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Abstract—Self-supervised monocular depth estimation meth-
ods typically rely on the reprojection error to capture geometric
relationships between successive frames in static environments.
However, this assumption does not hold in dynamic objects in
scenarios, leading to errors during the view synthesis stage,
such as feature mismatch and occlusion, which can significantly
reduce the accuracy of the generated depth maps. To address this
problem, we propose a novel dynamic cost volume that exploits
residual optical flow to describe moving objects, improving
incorrectly occluded regions in static cost volumes used in
previous work. Nevertheless, the dynamic cost volume inevitably
generates extra occlusions and noise, thus we alleviate this by
designing a fusion module that makes static and dynamic cost
volumes compensate for each other. In other words, occlusion
from the static volume is refined by the dynamic volume, and
incorrect information from the dynamic volume is eliminated by
the static volume. Furthermore, we propose a pyramid distillation
loss to reduce photometric error inaccuracy at low resolutions
and an adaptive photometric error loss to alleviate the flow
direction of the large gradient in the occlusion regions. We
conducted extensive experiments on the KITTI and Cityscapes
datasets, and the results demonstrate that our model outperforms
previously published baselines for self-supervised monocular
depth estimation.

Index Terms—Cost volume, Depth estimation, monocular

I. INTRODUCTION

Currently, depth information plays a significant role in
several fields, including autonomous vehicles [1], robots [2],
AR/VR applications [3], and 3D reconstructions [4]. Although
professional hardware can provide relatively accurate depth
information, its high cost precludes widespread use. An al-
ternative approach is to use RGB cameras, which generate
a sequence of RGB images that can be leveraged by self-
supervised monocular depth prediction methods [5]–[9]. While
this approach addresses the expensive cost of professional
hardware, its performance still falls short of that of profes-
sional hardware or deep multi-view methods. Nevertheless,
self-supervised monocular depth prediction methods show
promise and are gaining popularity in both research and
industrial communities. However, estimating depth from a
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Fig. 1. Our baseline [10] is based on a static environment to generate a cost
volume. However, this approach is limited when there are dynamic objects in
the scene, which can cause errors such as mismatches and occlusions (Figures
(a) and (c)). To handle this issue, we propose a novel dynamic cost volume
that incorporates residual optical flow (Figure (g)) to capture object motion.
While the dynamic cost volume can reduce occlusions, it may also introduce
new occlusions and noise (Figures (b) and (d)). To overcome this challenge,
we design an adaptive fusion module that makes the static and dynamic cost
volumes complement each other. This approach leads to further occlusion
reduction and significant improvements in performance (Figures (e) and (f)).

monocular image is an ill-posed problem due to the numerous
plausible depth values that can exist in the same 3D scene,
with the depth information able to project countless identical
2D scenes.

Previous self-supervised depth estimation methods rely on
multi-frame information during training but only use the
current frame as input during inference [11]–[16]. In contrast,
multi-frame self-supervised depth estimation methods employ
multi-frame information during both training and inference
stages, typically by constructing a cost volume [10], [17]–[23]
or utilizing related layers [24] to learn additional geometric
features for improving the performance of the model. Al-
though multi-frame methods seem to perform better, it heavily
relies on feature matching to establish geometric relation-
ships between frames. Therefore, multi-frame methods will
fail in some cases, especially encountering moving objects.
Currently, both the single-frame method and the multi-frame
method use photometric error loss to train the model. This
kind of loss is based on the static environment, once there is a
moving object between consecutive frames, which will mislead
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the model and bring some wrong information. Additionally,
despite the fact that the existing work on self-unsupervised
depth estimation [10], [19], [22], [25], [26] provides excellent
solutions for unlabeled data, they are incapable of effectively
handling dynamic objects, which limits their applicability to
real-world scenarios.

In this work, we present DS-Depth, a self-supervised depth
estimation framework designed to achieve general applicability
in depth estimation. To mitigate occlusions caused by dynamic
objects during view synthesis, as depicted in Figure 1, we
incorporate residual optical flow to refine the cost volume
generated by ego-motion, resulting in a dynamic cost volume
that accurately captures the scene’s dynamics. However, it is
worth noting that dynamic cost volume alone is insufficient to
resolve the occlusion problem while bringing extra occlusion
and noise. Therefore, we propose a fusion module to combine
the dynamic and static cost volumes and mitigate the occlusion
and noise during view synthesis. In order to make the fused
cost volume obtain the more correct gradient, we design an
adaptive photometric error loss to alleviate the large gradient in
the occlusion region. Additionally, during the training process,
we introduce a pyramid distillation loss to alleviate the inaccu-
racies of photometric errors at low resolutions, leading to more
accurate predicted depth maps. In summary, the contributions
of our work are as follows:

1) We propose a novel dynamic cost volume using camera
ego-motion and residual optical flow to construct, which
improves upon the cost volume constructed from camera
ego-motion to handle occlusions caused by moving
objects.

2) We investigate the occlusion and noise in dynamic
cost volume approaches and propose an adaptive fusion
module that makes static and dynamic cost volumes
compensate for each other. Our experimental results
show a significant improvement in the estimated depth.

3) We design a pyramid error loss to improve the photomet-
ric error at low resolution and an adaptive photometric
error loss to make the fused cost volume get a more
accurate gradient. Experiments show that our design is
effective.

4) We achieve state-of-the-art depth estimation results on
two challenging datasets KITTI and Cityscapes.

II. RELATED WORKS

A. Self-supervised monocular depth estimation

More recently, self-unsupervised monocular depth estima-
tion has been a kind of promising method for the limited
labeled depth data, which aims to from a single image to
predict a pixel-level depth map. The original self-supervised
depth estimation framework is proposed by Zhou et al. [15],
which leverages a DpethNet and PostNet to predict the geom-
etry relationship between frames. This framework originally
is used for stereo pairs, and then it was extended to the
monocular. Additionally, Godard et al. [11] consider the depth
estimation task as a view synthesis problem and minimize
the image reconstruction objective. In terms of the view
synthesis, Monodepth2 [12] propose a minimal reprojection

error to address occlusion and reduce visual artifacts using
full-resolution multiscale sampling. In terms of the additional
losses, FeatDepth [14] designs a new reconstruction error
metric, which improves depth prediction of the low-texture
area. For camera geometry modeling, Gordon et al. [27] first
explore learning the camera intrinsic parameters through the
network so that the model can be applied in wild videos. In
terms of the network architectures, PackNet [13] aims to solve
the problem that traditional encoder (such as ResNet) leads to
the resolution being reduced and thus lose some details.

B. Multi-frame Monocular Depth Estimation

Single-frame depth estimation is based on the depth cues,
such as motion information, linear perspective, occlusion,
texture, and shadow [28]–[30]. The accuracy of these cues
determines the estimated depth [11]–[15], [27]. Early multi-
frame depth estimation approaches use test-time refinement
methods [3], [14], [31]–[34] and recurrent neural networks
[35], [36] to improve the performance of the model.

The stereo matching method performs feature matching
by correcting the image with a known baseline, thus the
method has been transformed into a pixel-by-pixel disparity
estimation in the horizontal direction [37], [38].The test-time
refinement method employs a monocular approach to use
temporal information at test time, while the recurrent neural
network combines a monocular depth estimation network to
process continuous frame sequences. However, models using
recurrent neural networks are often computationally expensive
and have no explicit geometric inference method. Multi-view
stereo (MVS) matches any number of views [21], [37]–[41],
however, most methods are supervised, and some recent self-
supervised methods exploit the cost volume in stereo matching
combined with single-frame features for geometric inference
[10], [18], [19], [22], [42]. Similar to MVS, these works
first pre-define a set of depths through which the reference
frame is warped to the target frame, and then compute the
difference between this frame and the target frame, stacking
this difference to form a cost volume. In the cost volume
space, the hypothesized depth with the lowest value is closest
to the true depth. By using cost volume, the performance of the
model has been greatly improved, however, these methods also
use reprojection error as training loss, the model fails when
encountering scenes with dynamic objects. These methods
either try to avoid dynamic objects or use a single-frame model
as a teacher-guided cost volume to alleviate this problem.
We propose to use optical flow to describe dynamic objects
to synthesize correct views, thereby building a credible cost
volume to improve the performance of the model.

In addition, we use cost volume to solve the ambiguity
of multiple depths, while [43] utilizes the consistency of
point clouds for the same purpose. Additionally, they address
the matching problem caused by photometric errors, while
we tackle the issue of occlusions. [44] employs a layered
method to refine the camera pose and generate a depth map,
whereas we apply a similar approach by manipulating the cost
volume to adjust inaccurate information and obtain a more
precise depth map. Although [45] and [29] enhance the quality
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Fig. 2. The pipeline of our network is depicted and comprises four main components: a multi-frame depth estimation network, a single-frame depth
estimation network, a pose network, and an optical flow module. Specifically, we adopt a ResNet18 [46] as the backbone. We employ the same pose network
as used in [12]. In contrast to [10], our model generates two cost volumes, which are fused using a specialized fusion module. Additionally, we generate the
dynamic cost volume by combining ego-motion with the residual flow, where the residual flow is obtained from FlowNet [16].

of the depth map through depth bin and iterative features,
respectively, they do not consider the impact of moving objects
on the results.

C. Dynamic Objects in Self-supervised Depth Prediction

Currently, due to self-supervised depth prediction using
reprojection error is not suitable for dynamic scenes. Thus, the
key to solving this problem is how to separate static objects
and dynamic objects. Additionally, separating static environ-
ments and dynamic objects can also improve the robustness of
depth estimation in dynamic situations. There have been some
works [10], [18], [22], [27], [47]–[49] that propose solutions to
train static and moving objects separately, which aim to solve
the problem that moving objects in assumed static environment
cannot be reprojected well to the correction position.

Although, above all methods have some good performance,
there are still some limitations. For example, the input frame
is a single frame that cannot clarify the temporal information,
and disentangling moving objects and static objects will in-
crease the complexity of the model. In addition, for methods
using cost volume, dynamic object regions can mislead the
model to build the wrong cost volume, this cost volume with
negative information will affect the gradient of the model,
causing the model to incorrectly learn the motion region. When
the model finally predicts depth, it mistakenly thinks that the
motion region is infinite, which reduces the accuracy of the
model and affects the performance of the model. Although
the method using the cost volume is better than the single-
frame method, it still needs to consider the influence of moving
objects.

In addition, several approaches have been proposed for
jointly learning optical flow and depth using multi-task net-

works [16], [24], [50]–[52], where optical flow can be in-
directly recovered for capturing dynamic objects. While our
method uses the residual optical flow to fix the reprojection
inaccurate regions in the cost volume.

III. METHOD

A. Preliminaries

In this section, we briefly introduce the use of view synthesis
to construct similar images and then compute their correlations
to construct cost volumes.

1) View Synthesis: Following [10], [12], we use view
synthesis as supervision signals. Let two frames It−1 and It
from an input video as source image and target image where
pixel from target image can be expressed as:

zps→t = K[R|T ]t→sDtK
−1ps (1)

where K denotes the camera intrinsic and [R|T ] is the camera
extrinsic, p denotes the 2D pixel coordinates, and we use the
estimated depth map of the target image, relative pose from
the target image to the source image, and source image to
synthesize target image.

2) Cost Volume Construction: Based on the Equation (1),
which can be transformed into view synthesis between two
features Ft and Ft+i in temporal. Thus, The synthesized frame
F̂t+i can be expressed as:

F̂t+i = Ft ⟨proj(Dt, Tt→t+i,K)⟩ . (2)

F ⟨·⟩ is bilinear sampling operation and proj is the resulting
2D coordinates of the projected depths Dt, which is equal
Equation (1). Note that when building the cost volume, the
predicted depth is replaced by a predefined set of depth values
(Dt = {D1, . . . , Di−1, Di, i ∈ [1, N ]}) to generate a synthetic
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voxel. Leveraging this synthetic voxel (V s) to calculate the
correlation (The commonly used methods are SSIM [53],
difference of absolute values and dot product.) with the target
frame (It), and the final correlation cost volume (CV ) is
obtained. As we describe in Section III-C, a cost volume
constructed in this way can produce erroneous information in
dynamic scenarios. Therefore, we introduce residual optical
flow to refine the moving object information in cost volume.

B. Architecture

Previous works [10], [22] construct the cost volume of
two successive frames solely based on camera ego-motion
learned from pose networks, which is less capable of handling
dynamic regions/objects as explained in Section III-C. To
address this problem, we propose dynamic cost volumes,
which can effectively handle the dynamic regions/objects from
the static cost volume, while also bringing some noise. Thus,
based on the static and dynamic cost volumes, we carefully
design an adaptive fusion module to handle static and dynamic
scenarios pixel-wise to alleviate this case. The overview of our
DS-Depth is shown in Figure 2.

C. Dynamic Cost Volume Construction

The differences that need to be captured when constructing
the cost of two frames essentially originate from 1) the motion
of moving objects and 2) changes in the relative camera pose
between the two frames. This difference creates occlusions that
affect the performance of the model. To better model the effect
of moving objects, which was ignored in previous cost volume
based on depth estimation networks [10], we first define the
relationship between two-frame correspondences in a 3D scene
as follows.

There is a 3D point X in the space, the 2D point projected
by X in the frame I at time t is u. We define Xsen

t→t+1 as the
motion of the X from time t to time t + 1 in the 3D scene.
When using a known intrinsics camera to observe point Xt,
we define P(Xt) as the projection of the Xt to the image
coordinate ut. Additionally, we define the ego-motion of the
camera as ucam

t→t+1, and the move of optical flow as uopt
t→t+1.

As shown in Figure 3, for ease of understanding here, we
set t and t + 1 to 0 and 1, respectively. The projection of
optical flow in a 3D perspective can be expressed as:

uopt
0→1 = P(T1(X0 +Xsen

0→1))− P(T0X0) (3)

where T denotes the known camera extrinsics matrix for It.
Intuitively, Equation (3) could represent projected scene flow
Xsen

0→1 on 2D plane. However, since the camera is moving, the
view motion should be taken into account. To be specific, the
2D correspondences moves I0 to I1 can be expressed as:

ucam
0→1 = P(T1X0)− P(T0X0) (4)

Thus, the u0 observed on I0 should be represented as u′
0

on I1, thereby scene flow Xsen
0→1 can be derived as:

Xsen
0→1 = T−1

1 P−1(u′
0 + uopt1

0→1, D1)− T−1
0 P−1(u′

0, D0) (5)

where D indicates ith depth level. Based on Equation (5), we
need to know two different depths (D0 and D1) to represent

Fig. 3. Geometric relationship of points on two frames. Consider two
frames, denoted I0 and I1, where the camera moves from I0 to I1. Let X0

and X1 be two points in 3D space, and let their corresponding 2D coordinates
be projected onto the frames as u0 and u1, respectively. Note that u′

0 is the
projection of X0 onto I1, and if X0 is observed in I1, its location can be
calculated by reprojecting the camera, and its motion can be expressed as
ucam
0→1. If the camera is static and observes X0 and X1 at the same time, the

motion from X0 to X1 can be expressed as Xsen
0→1. Then, the motion of the

2D coordinates u′
0 and u1 on I1 can be expressed as a projected optical flow,

denoted uopt1
0→1. Similarly, on I0, this projected optical flow can be expressed

as uopt0
0→1. Finally, ures0

0→1 represents the residual flow learned by our optical
flow module, and uM

0 is obtained by moving u0 by residual optical flow.

the scene flow Xsen
0→1 in space, but in our framework, we can

only predict D0. Therefore, we use an optical flow module to
learn the residual flow ures0

0→1 on the frame I0 combined with
the camera ego-motion to represent the scene flow. As shown
in Figure 3, the 2D point u0 move to u1 can be expressed as:

(u0 → u1) = ucam
0→1 + uopt1

0→1 (6)

However, uopt1
0→1 is not equal to uopt0

0→1 because the camera
is moving, which causes the corresponding motion of u0.
Therefore, we utilize an optical flow network to learn a
residual flow ures0

0→1 that approximates uopt1
0→1. In this case, we

can substitute uopt1
0→1 with ures0

0→1, resulting in the following
relationship:

(u0 → u1) = ucam
0→1 + ures0

0→1 (7)

thus, similar to Equation (2), new synthesized feature F̂N
t is:

F̂N
t+i = F̂t(⟨proj(Dt, Tt→t+i,K)⟩+ urest

t→t+i). (8)

To construct dynamic cost volume, we follow a similar
approach to Manydepth, but with the added consideration
of dynamic object movement. Specifically, when generating
a target view from a reference view, we incorporate resid-
ual optical flow and camera transformation information into
the synthesis process. Furthermore, we have enhanced the
construction of our cost volume by utilizing a projection
error consistent method. While Manydepth employs an L1

approach, we adopt a formulation that combines structural
similarity index measure (SSIM) and L1, which is:

E(F̂ , F ) = α(1− SSIM(F̂ , F )) + (1− α)
∥∥∥F̂ − F

∥∥∥
1

(9)
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TABLE I
DEPTH ESTIMATION RESULTS ON KITTI AND CITYSCAPES. THE METHODS IN THIS TABLE ARE CLASSIFIED ACCORDING TO MULTI-FRAME AND

SINGLE-FRAME, ABS.REL. ERROR DESCENDING ORDER, WHERE THE BEST METHOD IS IN BOLD AND THE SECOND BEST IS UNDERLINED.
ADDITIONALLY, THE TABLE ONLY SHOWS THE RESULTS OF SPLITTING THE KITTI WITH EIGEN ET. AL. [54] AND THE CITYSCAPES SPLIT WITH [15].

K – KITTI C – CITYSCAPES

Method Test frames Dateset WxH Lower is better Higher is better
AbsRel SqRel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

Ranjan et al. [55] 1 K 832x256 0.148 1.149 5.464 0.226 0.815 0.935 0.973
EPC++ [56] 1 K 832x256 0.141 1.029 5.350 0.216 0.816 0.941 0.976

Struct2depth (M) [31] 1 K 416x128 0.141 1.026 5.291 0.215 0.816 0.945 0.979
Li et al. [57] 1 K 416x128 0.130 0.950 5.138 0.209 0.843 0.948 0.978

Videos in the wild [27] 1 K 416x128 0.128 0.959 5.230 0.212 0.845 0.947 0.976
Monodepth2 [12] 1 K 640x192 0.115 0.903 4.863 0.193 0.877 0.959 0.981
Packnet-SFM [13] 1 K 640x192 0.111 0.785 4.601 0.189 0.878 0.960 0.982
Johnston et al. [58] 1 K 640x192 0.106 0.861 4.699 0.185 0.889 0.962 0.982
Guizilini et al. [59] 1 K 640x192 0.102 0.698 4.381 0.178 0.896 0.964 0.984

Patil et al. [36] N K 640x192 0.111 0.821 4.650 0.187 0.883 0.961 0.982
Wang et al. [60] 2 (-1,0) K 640x192 0.106 0.799 4.662 0.187 0.889 0.961 0.982
ManyDepth [10] 2 (-1,0) K 640x192 0.098 0.770 4.459 0.176 0.900 0.965 0.983

Our 2 (-1,0) K 640x192 0.095 0.698 4.329 0.173 0.905 0.966 0.984
Pilzer et al. [61] 1 C 512x256 0.240 4.264 8.049 0.334 0.710 0.871 0.937

Struct2depth 2 [31] 1 C 416x128 0.145 1.737 7.280 0.205 0.813 0.942 0.976
Monodepth2 [12] 1 C 416x128 0.129 1.569 6.876 0.187 0.849 0.957 0.983

Videos in the wild [27] 1 C 416x128 0.127 1.330 6.960 0.195 0.830 0.947 0.981
Li et al. [57] 1 C 416x128 0.119 1.290 6.980 0.190 0.846 0.952 0.982

Lee et al. [49] 1 C 832x256 0.116 1.213 6.695 0.186 0.852 0.951 0.982
Struct2Depth 2 [31] 3 (-1,0,1) C 416x128 0.151 2.492 7.024 0.202 0.826 0.937 0.972

ManyDepth [10] 2 (-1,0) C 416x128 0.114 1.193 6.223 0.170 0.875 0.967 0.989
Our 2 (-1,0) C 416x128 0.100 1.055 5.884 0.155 0.899 0.974 0.991

where α is 0.4. The yielded cost volume is expressed as:

CVS = E(F̂ , F ) (10)

CVD = E(F̂N , F ) (11)

where CVS is the static cost volume that is constructed with
camera movement, and CVD is the dynamic cost volume that
uses residual optical flow to refine static cost volume, feature
map F̂ is generated by Equation (2) and feature map F̂N is
generated by Equation (8).

D. Adaptive Fusion Module

The cost volume construction involves leveraging the time
t feature and the warped time t − 1 feature. Specifically,
the feature Fw at time t − 1 is warped to time t along a
hypothetical depth D, after which Equation (10) is employed
to generate the cost volume. However, this process will occur
occlusion, which can pollute the cost volume distribution.
To address this issue, we employ a learned residual optical
flow to simulate object motion and rectify the incorrectly
warped pixels caused by dynamic objects, thereby guiding the
gradient flow to the correct pixels. Although we use residual
optical flow to refine the incorrect information in static cost
volume caused by dynamic objects, it will inevitably cause
some extra occlusions and noise (As shown in Figure 1).
Thus, we carefully design a fusion module to alleviate this
problem. This fusion module is divided into two branches,
one of the branches is a simple concatenate operation, while
another branch utilizes static and dynamic cost quantities to

adaptive complement each other. The adaptive fusion branch
can be expressed as:

CVcom =


CVD, (Fw

o ∈ CVS) ∪ (Fw
v ∈ CVD)

CVS , (Fw
o ∈ CVD) ∪ (Fw

v ∈ CVS)

min(CVS , CVD), Fw
v ∈ (CVD ∪ CVS)

(12)
where O/V are the set of occluded/visible areas in Fw.
Specifically, in cases where a pixel in the static cost volume
is occluded, we substitute it with the corresponding pixel in
the dynamic cost volume and vice versa. Thus, the final fused
cost volume is:

CVf = CVcom + CVcat (13)

where CVcat is obtained by concatenating the two cost quan-
tities and passing through a simple convolution layer. After
experiments, the fusion cost volume can effectively alleviate
the partial occlusions and noise problem. The effectiveness
of our design is confirmed in ablation studies. The module
architecture is shown in Figure 4.

Fig. 4. Adaptive Optical Flow Fusion Module. Here, we describe our
adaptive optical flow fusion module, which consists of two branches. The
cost volume is a 4D tensor (B×D× H

4
× W

4
). Where D is the depth level,

using 96 depth bins.
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TABLE II
DEPTH ESTIMATION RESULTS ON KITTI DATASET WITH IMPROVED GROUND TRUTH [62]. WE EVALUATED OUR METHOD USING THE KITTI DATASET

WITH IMPROVED GROUND TRUTH AND FOLLOWED CONVENTION BY SORTING METHODS IN EACH CATEGORY BY THEIR ABSOLUTE RELATIVE ERROR
WITH RESPECT TO THE GROUND TRUTH. THE BEST METHODS WERE HIGHLIGHTED IN BOLD. OUR METHOD SURPASSED ALL OTHER STATE-OF-THE-ART

APPROACHES, INCLUDING SOME STEREO-BASED AND SUPERVISED METHODS.
SUP – SUPERVISED BY GROUND TRUTH DEPTH S – STEREO M – MONOCULAR

Method Training WxH The lower the better The higher the better
Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Zhan FullNYU [63] Sup 608 x 160 0.130 1.520 5.184 0.205 0.859 0.955 0.981
Kuznietsov et al. [64] Sup 621 x 187 0.089 0.478 3.610 0.138 0.906 0.980 0.995

DORN [65] Sup 513 x 385 0.072 0.307 2.727 0.120 0.932 0.984 0.995
Monodepth [11] S 512 x 256 0.109 0.811 4.568 0.166 0.877 0.967 0.988
3net [66] (VGG) S 512 x 256 0.119 0.920 4.824 0.182 0.856 0.957 0.985

3net [66] (ResNet 50) S 512 x 256 0.102 0.675 4.293 0.159 0.881 0.969 0.991
SuperDepth [67] S 1024 x 384 0.090 0.542 3.967 0.144 0.901 0.976 0.993
Monodepth2 [12] S 640 x 192 0.085 0.537 3.868 0.139 0.912 0.979 0.993

EPC++ [56] S 832 x 256 0.123 0.754 4.453 0.172 0.863 0.964 0.989
SfMLearner [15] M 416 x 128 0.176 1.532 6.129 0.244 0.758 0.921 0.971
Vid2Depth [68] M 416 x 128 0.134 0.983 5.501 0.203 0.827 0.944 0.981

GeoNet [16] M 416 x 128 0.132 0.994 5.240 0.193 0.833 0.953 0.985
DDVO [69] M 416 x 128 0.126 0.866 4.932 0.185 0.851 0.958 0.986
Ranjan [55] M 832 x 256 0.123 0.881 4.834 0.181 0.860 0.959 0.985
EPC++ [56] M 832 x 256 0.120 0.789 4.755 0.177 0.856 0.961 0.987

Johnston et al. [58] M 640 x 192 0.081 0.484 3.716 0.126 0.927 0.985 0.996
Monodepth2 [12] M 640 x 192 0.090 0.545 3.942 0.137 0.914 0.983 0.995
Packnet-SFM [13] M 640 x 192 0.078 0.420 3.485 0.121 0.931 0.986 0.996

Patil et al. [36] M 640 x 192 0.087 0.495 3.775 0.133 0.917 0.983 0.995
Wang et al. [60] M 640 x 192 0.082 0.462 3.739 0.127 0.923 0.984 0.996
ManyDepth [10] M 640 x 192 0.070 0.399 3.455 0.113 0.941 0.989 0.997

Our M 640 x 192 0.067 0.359 3.314 0.109 0.946 0.989 0.997

E. Loss Function

We train our self-unsupervised monocular depth architecture
using only the photometric reprojection loss, which includes
two parts, a structure similarity (SSIM) [53] and absolute error
(L1) terms:

Lp =
α

2
(1− SSIM(It, Ît)) + (1− α)

∥∥∥It − Ît

∥∥∥
1

(14)

Based on previous work we set α = 0.85. In order to
train the residual optical flow, we have changed the synthesis
of Ît. In the previous work, the synthesis of view is via
Equation (2). Now we first obtain the residual optical flow
and then use Equation (8) for the final view synthesis. We can
obtain the new synthetic view Îft . Although the new synthetic
view captures the correct dynamic region, it may also intro-
duce additional noise, which can cause larger gradients and
ultimately lead to degraded module performance if the view
is used directly without any preprocessing or regularization.
Therefore, we design an adaptive photometric loss to alleviate
this problem:

Lp =
α

2
S(It, Ît, Îft ) + (1− α)L(It, Ît, Îft ) (15)

where S can be expressed as:

S = 1−max(SSIM(It, Ît),SSIM(It, Î
f
t )) (16)

and L can be expressed as:

L = min(
∥∥∥It − Ît

∥∥∥
1
,
∥∥∥It − Îft

∥∥∥
1
) (17)

We also use edge-aware smoothness for depth regulariza-
tion:

Ls =
∣∣∣∂xd̂t∣∣∣ e−|∂xIt| +

∣∣∣∂yd̂t∣∣∣ e−|∂yIt| (18)

Moreover, the photometric consistency measurement is not
accurate for low resolution [43], [70]. Direct unsupervised
training at intermediate levels is not suitable, especially at low
resolutions. In this case, we use the last output depth map as a
pseudo-label to add supervised learning to the low-resolution
output. We directly upsample the lower resolution output and
evaluate its difference from the final output. Therefore, our
pyramid distillation loss is:

Ld =

N∑
i=0

1

HW
F(Df − S↑(si, Df )) (19)

where i is scale, S↑ is upsample operate, and F is the robust
penalty function [71]: F = (|x|+ ε)q , q, ε being 0.4 and 0.1.
Finally, our training loss is L = Lp + Ls + Lconsistency +
Ld, where Lconsistency is consistency loss from [10] with no
additional modifications.

IV. EXPERIMENTAL RESULTS

We evaluate our DS-Depth model on two challenging depth
estimation datasets (KITTI [1] and Cityscapes [72]) and show
SOTA results by comparison. Finally, the effectiveness of our
model is verified by ablation experiments.

A. Datasets and Experimental Settings

1) KITTI: The KITTI is a widely-used dataset and is the
standard benchmark for depth evaluation. We use Eigen et
al. split form [54] with filtered static frames form Zhou et
al. [15]. This segmentation method is mostly used for single-
frame depth estimation, but it has also been used for multi-
frame depth estimation recently [10], [18]. It includes 39,810
training images, 4,424 validation images, and 697 test images.
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TABLE III
ABLATION STUDY ON KITTI. EVALUATE OUR DYNAMIC COST VOLUME, FUSION MODULE, ADAPTIVE PHOTOMETRIC LOSS (APM LOSS) AND PYRAMID

DISTILLATION LOSS (PD LOSS) ON KITTI.

Fusion module Lower is betterStatic cost volume Dynamic cost volume Complementary Concatenate APM loss PD loss AbsRel SqRel RMSE RMSElog
✓ 0.101 0.784 4.559 0.183

✓ 0.102 0.761 4.557 0.180
✓ ✓ ✓ 0.102 0.775 4.630 0.182
✓ ✓ ✓ 0.101 0.757 4.500 0.178
✓ ✓ ✓ ✓ 0.096 0.714 4.398 0.174
✓ ✓ ✓ ✓ ✓ 0.095 0.705 4.360 0.173
✓ ✓ ✓ ✓ ✓ ✓ 0.095 0.698 4.329 0.173

TABLE IV
ABLATION STUDY ON CITYSCAPES. HERE WE DEMONSTRATE THE EFFECTIVENESS OF OUR METHOD ON THE CITYSCAPES DATASET BY EVALUATING

IT. OUR APPROACH LEADS TO SUBSTANTIAL IMPROVEMENTS ON CITYSCAPES, WHERE A LARGER NUMBER OF MOVING OBJECTS ARE PRESENT IN BOTH
THE TRAINING AND TEST FOOTAGE, COMPARED TO KITTI.

Fusion module Lower is betterStatic cost volume Dynamic cost volume Complementary Concatenate APM loss PD loss AbsRel SqRel RMSE RMSElog
✓ 0.114 1.193 6.226 0.170

✓ 0.109 1.170 6.130 0.162
✓ ✓ ✓ 0.104 1.159 6.012 0.159
✓ ✓ ✓ 0.103 1.137 6.001 0.158
✓ ✓ ✓ ✓ 0.102 1.140 5.940 0.156
✓ ✓ ✓ ✓ ✓ 0.101 1.051 5.883 0.156
✓ ✓ ✓ ✓ ✓ ✓ 0.100 1.055 5.884 0.155

TABLE V
THE MODEL PARAMETERS AND RUNNING TIME (UNIT: S/BATCH SIZE)

OF THE BASELINE AND OUR METHOD.

Methods Parameter Inference time
Manydepth [10] 13.64M 0.020∼0.034 s/b

Our 13.95M 0.035∼0.045 s/b

2) Cityscapes: The cityscapes contains 150,000 images.
Following [10], [15], [73], we train on 69,731 images, which
are split according to how the script in [15] is split. We do
not use any stereo image pairs or semantics. We evaluate our
model on the 1,525 test images provided by SGM [74].

3) Evaluation Metrics: Following the state-of-the-art meth-
ods [10], [18], we use Absolute Relative Error (Abs Rel),
Squared Relative Error (Sq Rel), Root Mean Squared Error
(RMSE), Root Mean Squared Log Error (RMSElog), and δ1,
δ2, δ3 as the metrics to evaluate the performance of our model.

4) Model Parameters and Inference Time: We present the
refined parameters of our improved encoder model along with
the corresponding inference times in Table V. Despite the
increase in parameters by 0.31M and the inference time rang-
ing from 0.011 to 0.015 seconds per batch, the performance
of our model has significantly improved on both databases,
particularly on Cityscapes.

5) Implementation Details: Our model is implemented us-
ing PyTorch and trained on a single NVIDIA RTX3090 GPU.
We adopt ResNet18 [46], which is pretrained on the ImageNet
dataset [75], as our backbone. To optimize our model, we use
the Adam optimizer [76] with an initial learning rate of 1e-4
for 30 epochs, a batch size of 12, and we reduce the learning
rate by a factor of 10 every 10 epochs when training on the
KITTI dataset. Following [10], we freeze the pose and single-
frame teacher network for the last 5 epochs. To build the cost

volume, we only use the frame t−1, and to calculate the loss,
we use the t− 1 and t+1 frames. For the Cityscapes dataset,
we use a batch size of 8 and freeze network on the 5th epoch.

B. Comparison to State-of-the-art
1) Results on KITTI: In Table I we compare our method

with other methods, e.g. single-frame methods [12], [13],
[31], multi-frame methods [10], [36], [60] and dynamic region
optimization method [49]. Our method focuses on dynamic
region optimization, however, there are fewer moving objects
in this database, and most of them are static scenarios.
Thus, our methods and [18], [27], [31], [48], [49], [57],
[77] have minor improvement for this database (Where [18]
uses mask generated by a pretrained segmentation network,
i.e. the predicted depth is closely related to the performance
of this segmentation network. Furthermore, data splitting is
different from most multi-frame methods, hence we did not
compare with it.). Moreover, compared to our baseline, our
SqRel error improves 9.35% which means our method predicts
fewer depths with large errors (i.e. smaller errors in dynamic
regions/objects.). The Abs.Rel. error statistics per pixel in
Figure 7 also confirm that our method is better than multi-
frame methods, the number of the Abs.Rel. error per pixel of
our method in the interval [0, 0.5] is much larger than that of
the baseline.

2) KITTI benchmark scores: The original Eigen [54] split
of the KITTI [78] dataset employs re-projected single-frame
raw LIDAR points as the ground truth for evaluation. However,
it may contain outliers such as reflections on transparent
objects. Thus, we reported results using the original ground
truth since it is widely used.

Recently, Jonas et al. [62] introduced a set of high-quality
ground truth depth maps for the KITTI dataset. They used a
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Input data [10] Error map Our Error map

Fig. 5. The qualitative results on Cityscapes dataset. Here, the 3 and 5 columns show the Abs.Rel.error, and the 2 and 4 columns show the predicted depth
maps. It can be observed from the error map that our method significantly outperforms our baseline, especially in dynamic regions.
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Fig. 6. The qualitative results on KITTI dataset. Here we show our prediction results and our baseline (MD) [10] results. Since we focus on dynamic
objects, we can see from the figure that our prediction results have better contour and texture information in dynamic regions. Furthermore, the corresponding
qualitative results show in Figure 7.

denser ground truth depth map obtained by accumulating 5
consecutive frames and removing the outliers. This improved
ground truth depth is provided for 652 of the 697 test frames
in the Eigen test split [54]. In this study, we evaluated our
method using these 652 improved ground truth frames and
compared the results with existing state-of-the-art published
methods in Table II. To adhere to convention, we clipped the
predicted depths to 80 meters to match the Eigen evaluation.

Our method was ranked by the Absolute Relative Error and
outperformed all existing state-of-the-art methods, including
some stereo-based and supervised methods.

3) Results on Cityscapes: Below the Table I shows each
method score in the Cityscapes dataset, this dataset contains
a large number of dynamic scenes. Our method currently
outperforms all methods and compare to our baseline, the
performance of our model achieves 12.3% improvement.

Moreover, Figure 10a provides consistency error (The differ-
ence between the depth of teacher network predictions and
the lowest disparity map.), we get this error with the same
parameters trained for 10 epochs and without any pretrained
model, which improves by 7.43% compared to the baseline.
In addition, in Table VI we show the evaluation of the depth
only for the dynamic region, our method improves 24.85% in
the dynamic region compared to the baseline.

C. Qualitative Results

The qualitative results are reported in Figure 6 and Figure 5.
In Figure 6, our method performance is better in dynamic
regions. We can see that the vehicles in columns 1, 3, and 4,
the stones in column 2 and the people in column 5 have clearer
texture, and contours information compared to the baselines.
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Fig. 7. The quantitative results on KITTI dataset. Here we show the Abs.Rel. error statistics for each valid pixel of our method and baseline final depth
map corresponding to Figure 6.

TABLE VI
THE DEPTH EVALUATION RESULTS OF THE DYNAMIC OBJECTS (E.G. VEHICLES, BIKES, AND PEDESTRIANS) ON THE CITYSCAPES DATASET. DYNAMIC

OBJECT MASKS ARE GENERATED BY THE PRE-TRAINED MODEL EFFCIENTPS [79].

Method H x W The lower the better The higher the better
AbsRel SqRel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

Monodepth2 [12] 416 x 128 0.159 1.937 6.363 0.201 0.816 0.950 0.981
InstaDM [48] 832 x 256 0.139 1.698 5.760 0.181 0.859 0.959 0.982

Manydepth [10] 416 x 128 0.169 2.175 6.634 0.218 0.789 0.921 0.969
Our (W/o PD Loss) 416 x 128 0.130 1.163 5.953 0.183 0.801 0.955 0.986
Our (W PD Loss) 416 x 128 0.127 1.047 5.604 0.179 0.827 0.960 0.988

TABLE VII
THE RESULTS OF USING DIFFERENT BACKBONES FOR OUR OPTICAL FLOW MODULE. KITTI∗ IS KITTI DATASET WITH IMPROVED GROUND TRUTH.

Method Dataset The lower the better The higher the better
AbsRel SqRel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

Our KITTI 0.095 0.698 4.329 0.173 0.905 0.966 0.984
Our (ResNet18) KITTI 0.095 0.705 4.326 0.174 0.905 0.966 0.983

Our KITTI∗ 0.067 0.359 3.314 0.109 0.946 0.989 0.997
Our (ResNet18) KITTI∗ 0.068 0.360 3.284 0.109 0.946 0.989 0.997

Our Cityspaces 0.100 1.055 5.884 0.155 0.899 0.974 0.991
Our (ResNet18) Cityspaces 0.102 1.129 5.961 0.157 0.899 0.973 0.990

Fig. 8. The qualitative results on Cityscapes. We provide the view synthesis,
residual flow, occlusion map, and depth map converted to point cloud results.

As shown in Figure 5, the depth predicted by our model
significantly outperforms our baseline method, especially in
dynamic regions, and the vehicles of our method are clearer
and have no mismatched regions. The results, from the error
map, indicate that the error of our method is smaller than that
of our baseline method in the dynamic regions.

In addition, in Figure 8, only using dynamic will bring more
occlusion and noise, while the fusion module can effectively
reduce the occlusion, compared to our baseline. The residual
flow results demonstrate our model’s ability to accurately
capture moving objects and handle inaccurate pixels without
the use of priors, such as pre-trained segmentation models.
Notably, the point cloud image converted from the depth map
shows that our model performs better on moving objects. In
Figure 9, we provide more optical flow visualization results.

D. Ablation Study

In Table III and Table IV, we provide an analysis of
different components in our DS-Depth architecture on KITTI
and Cityscapes, we validate the effectiveness of dynamic cost
volume, three different forms of fusion modules, and pyramid
distillation loss. In Table VII, we provide the results of the
optical flow network using different backbones.

1) Only Using Dynamic Cost Volume: In this setting,
we only use the dynamic cost volume to train our model.
In KITTI, the Abs.Rel. error does not change significantly,
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Fig. 9. The qualitative result of the residual flow on Cityscapes dataset. It is obvious that our optical flow network has captured moving objects.

TABLE VIII
EVALUATE OUR METHOD, L1, AND SSIM ON KITTI AND CITYSCAPES

DATASET TO BUILD COST VOLUME.

Method KITTI Cityscapes
AbsRel SqRel RMSE AbsRel SqRel RMSE

L1 0.099 0.756 4.460 0.102 1.133 5.985
SSIM 0.099 0.778 4.507 0.102 1.136 5.964
Our 0.095 0.698 4.329 0.100 1.055 5.884

which is as we expected. Because the dynamic cost volume
refines part of the occlusion areas but the same brings some
extra occlusions and noise and the low number of dynamic
objects in the KITTI dataset. As shown in Figure 10b, in
the occlusion region, only using dynamic cost volume will
degrade the performance of the model, and the predicted
depth has already deviated from the ground truth. While in
Cityscapes, the Abs.Rel. error improvement is significant,
with a 4.39% improvement. This improvement over KITTI
is very significant, as a large number of moving objects are
included in Cityscapes, and our residual flow succeeds in
warping the moving objects to relatively correct positions.

2) Two Cost Volumes with Fusion Module: We tried three
fusion modules 1) complementary, 2) simple concatenate, and
3) two-branch. In KITTI, compared to only using the dynamic
cost volume, the fusion module increases the performance
of the model (0.9%-6.86%) and also alleviates the occlusion
problem to a certain extent. Our results on Cityscapes also
support this conclusion (4.59%-6.42%). Figure 10a illustrates
that if the dynamic cost volume only is used, the performance
of our model will decrease due to the extra occlusion areas
and noise. When we leverage the fusion module, the error is
significantly reduced and this suggests that our fusion module
alleviates this problem to a certain extent, please see the effect
of our model in the bottom half of Figure 1. In Figure 10b,
when using the fusion module, the predicted depths are closer
to the ground truth than using only the dynamic cost volume,
which confirms that our fusion layer is effective in occluded
regions. After our observation, it became evident that the
complementary module’s functionality on the KITTI dataset
is rather limited. This arises from the dataset’s distinctive
trait of having a lower occurrence of moving objects, with
a significant majority of them being stationary. As a result,
the effectiveness of the complementary module appears to be
diminished when applied to the KITTI dataset. This is because
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Fig. 10. (a) Consistency error and Abs.Rel. error between a teacher network
and the lowest cost volume trained for 10 epochs with no pretrained model
in the Cityscape dataset. (b) The matching probability along depth bins in
the occlusion area. The blue line is our baseline, the orange line only uses
dynamic cost volume and the green line uses the fusion module.

there are two cases in the complementary module: one of the
same region in the dynamic and static cost volume is occluded,
then the module will select the unoccluded cost volume, and
if both cost volumes are unoccluded in the same region then
the module will select the cost volume with the lower error.
However, our cost volume is composed jointly by L1 and ssim
errors, so there are cases of mismatching in some regions. If
the error of dynamic cost volume is small and there is a lot
of noise, and our module incorrectly selects this part of the
dynamic cost volume, then the situation shown in our ablation
experiment will occur. In contrast, for the concatenate module,
because this module is learnable, the above problem does not
exist.

Moreover, the effect of the two-branch fusion module is
better than the complementary and simply concatenate fusion
module, because the complementary fusion module obtains a
small error but some regions are greatly affected by artifacts.
For the simple concatenate fusion module, it cannot directly
get the most correct complementary error, hence the effect is
not significantly improved.

3) Pyramid Distillation Loss: The main purpose of this
loss is to fix the inaccurate photometric error caused by low
resolution. Based on our observations, the photometric error
of our model is only less accurate at 1/8 resolution, this
component has little effect on the performance of our model.
However, as shown in Table VI, the effect of this loss is
relatively obvious in dynamic regions.

In addition, we also provide three different ways to build
cost volume results. Although constructing the cost volume in
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Fig. 11. The comparison of the cost volume constructed by different α for
the performance of the model in the Cityscape dataset. When α = 0.4, the
model performance is the best, and the Abs.Rel. error distribution is relatively
smoother.

the L1 way can alleviate the dynamic problem to a certain
extent, this way sacrifices the surface details, while SSIM can
provide more surface details, thus we try to construct the cost
volume in the way of photometric error. Table VIII presents
to construct cost volume using the photometric error method,
which is better than L1 and SSIM. As shown in Figure 11,
we use Equation (9), we explore the impact of different α on
model performance on cityscapes. Among them, when α =
0.4, the model has the best performance and has a greater
improvement compared to other hyperparameters.

V. CONCLUSION

In this work, we proposed DS-Depth, a general self-
supervised depth estimation model framework. Specifically,
we proposed a dynamic cost volume construction by combin-
ing camera ego-motion and residual optical flow to optimize
the cost volume occlusion problem in dynamic regions. To
alleviate the extra occlusion and noise caused by dynamic
cost volume, the adaptive fusion module is designed to
effectively improve the contour and texture information of
dynamic objects. Moreover, we proposed a pyramid distillation
loss to address the inaccuracy of photometric error at low
resolutions and an adaptive photometric error loss to alleviate
large gradients in occlusion region. During our experiments,
we found that the accuracy of the single-frame teacher network
will have a great impact on the performance of the model in
the later stage of training, especially on the Cityscapes dataset,
which is very obvious and will bring some negative effects.
Therefore, exploring how to optimize single-frame networks
may further improve the performance of multi-frame methods.
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flow, depth, and scene flow without real-world labels,” IEEE Robotics
and Automation Letters, vol. 7, no. 2, pp. 3491–3498, 2022.

[26] X. Meng, C. Fan, Y. Ming, and H. Yu, “Cornet: Context-based ordinal
regression network for monocular depth estimation,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 32, no. 7, pp. 4841–
4853, 2021.

[27] A. Gordon, H. Li, R. Jonschkowski, and A. Angelova, “Depth from
videos in the wild: Unsupervised monocular depth learning from un-
known cameras,” in Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pp. 8977–8986, 2019.

[28] H. Kumar, A. S. Yadav, S. Gupta, and K. Venkatesh, “Depth map
estimation using defocus and motion cues,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 29, no. 5, pp. 1365–
1379, 2018.

[29] Y. Wei, H. Guo, J. Lu, and J. Zhou, “Iterative feature matching for self-
supervised indoor depth estimation,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 32, no. 6, pp. 3839–3852, 2021.

[30] T.-K. Lee, Y.-L. Chan, and W.-C. Siu, “Adaptive search range for hevc
motion estimation based on depth information,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 27, no. 10, pp. 2216–
2230, 2016.

[31] V. Casser, S. Pirk, R. Mahjourian, and A. Angelova, “Depth prediction
without the sensors: Leveraging structure for unsupervised learning from
monocular videos,” in Proceedings of the AAAI conference on artificial
intelligence, pp. 8001–8008, 2019.

[32] Y. Chen, C. Schmid, and C. Sminchisescu, “Self-supervised learning
with geometric constraints in monocular video: Connecting flow, depth,
and camera,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 7063–7072, 2019.

[33] R. McCraith, L. Neumann, A. Zisserman, and A. Vedaldi, “Monoc-
ular depth estimation with self-supervised instance adaptation,” arXiv
preprint arXiv:2004.05821, 2020.

[34] Y. Kuznietsov, M. Proesmans, and L. Van Gool, “Comoda: Continuous
monocular depth adaptation using past experiences,” in Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision,
pp. 2907–2917, 2021.

[35] A. CS Kumar, S. M. Bhandarkar, and M. Prasad, “Depthnet: A recurrent
neural network architecture for monocular depth prediction,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pp. 283–291, 2018.

[36] V. Patil, W. Van Gansbeke, D. Dai, and L. Van Gool, “Don’t forget the
past: Recurrent depth estimation from monocular video,” IEEE Robotics
and Automation Letters, vol. 5, no. 4, pp. 6813–6820, 2020.

[37] A. Kendall, H. Martirosyan, S. Dasgupta, P. Henry, R. Kennedy,
A. Bachrach, and A. Bry, “End-to-end learning of geometry and context
for deep stereo regression,” in Proceedings of the IEEE international
conference on computer vision, pp. 66–75, 2017.

[38] Z. Liang, Y. Feng, Y. Guo, H. Liu, W. Chen, L. Qiao, L. Zhou, and
J. Zhang, “Learning for disparity estimation through feature constancy,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 2811–2820, 2018.

[39] P.-H. Huang, K. Matzen, J. Kopf, N. Ahuja, and J.-B. Huang, “Deepmvs:
Learning multi-view stereopsis,” in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 2821–2830,
2018.

[40] S. Im, H.-G. Jeon, S. Lin, and I. S. Kweon, “Dpsnet: End-to-end deep
plane sweep stereo,” arXiv preprint arXiv:1905.00538, 2019.

[41] Y. Yao, Z. Luo, S. Li, T. Fang, and L. Quan, “Mvsnet: Depth inference
for unstructured multi-view stereo,” in Proceedings of the European
conference on computer vision (ECCV), pp. 767–783, 2018.

[42] S.-J. Hwang, S.-J. Park, J.-H. Baek, and B. Kim, “Self-supervised
monocular depth estimation using hybrid transformer encoder,” IEEE
Sensors Journal, 2022.

[43] S. Chen, Z. Pu, X. Fan, and B. Zou, “Fixing defect of photometric loss
for self-supervised monocular depth estimation,” IEEE Transactions on

Circuits and Systems for Video Technology, vol. 32, no. 3, pp. 1328–
1338, 2021.

[44] G. Wang, J. Zhong, S. Zhao, W. Wu, Z. Liu, and H. Wang, “3d
hierarchical refinement and augmentation for unsupervised learning of
depth and pose from monocular video,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 33, no. 4, pp. 1776–1786, 2022.

[45] J. Jin, J. Liang, Y. Zhao, C. Lin, C. Yao, and A. Wang, “A depth-bin-
based graphical model for fast view synthesis distortion estimation,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 29, no. 6, pp. 1754–1766, 2018.

[46] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 770–778, 2016.
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