L)

Check for
updates

CPFloat: A C Library for Simulating Low-precision
Arithmetic

MASSIMILIANO FASI, Durham University, United Kingdom
MANTAS MIKAITIS, University of Leeds, United Kingdom

One can simulate low-precision floating-point arithmetic via software by executing each arithmetic operation
in hardware and then rounding the result to the desired number of significant bits. For IEEE-compliant for-
mats, rounding requires only standard mathematical library functions, but handling subnormals, underflow,
and overflow demands special attention, and numerical errors can cause mathematically correct formulae to
behave incorrectly in finite arithmetic. Moreover, the ensuing implementations are not necessarily efficient,
as the library functions these techniques build upon are typically designed to handle a broad range of cases
and may not be optimized for the specific needs of rounding algorithms. CPFloat is a C library for simulating
low-precision arithmetics. It offers efficient routines for rounding, performing mathematical computations,
and querying properties of the simulated low-precision format. The software exploits the bit-level floating-
point representation of the format in which the numbers are stored and replaces costly library calls with
low-level bit manipulations and integer arithmetic. In numerical experiments, the new techniques bring a
considerable speedup (typically one order of magnitude or more) over existing alternatives in C, C++, and
MATLAB. To our knowledge, CPFloat is currently the most efficient and complete library for experimenting
with custom low-precision floating-point arithmetic.

CCS Concepts: « Mathematics of computing — Mathematical software; Mathematical software per-
formance; Numerical analysis; Arbitrary-precision arithmetic;

Additional Key Words and Phrases: Low-precision arithmetic, floating-point arithmetic, mixed precision, IEEE
754 standard, binary16, bfloat16, round-to-nearest, directed rounding, round-to-odd, stochastic rounding

ACM Reference format:

Massimiliano Fasi and Mantas Mikaitis. 2023. CPFloat: A C Library for Simulating Low-precision Arithmetic.
ACM Trans. Math. Softw. 49, 2, Article 18 (June 2023), 32 pages.

https://doi.org/10.1145/3585515

The work of the first author was supported by the Royal Society, by Istituto Nazionale di Alta Matematica INdAAM-GNCS
Project 2020, and by Wenner-Gren Foundations grant UPD2019-0067. The work of the second author was supported by an
EPSRC Doctoral Prize Fellowship and by EPSRC grant EP/P020720/1. This work was initiated while the two authors were
at the Department of Mathematics, the University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom,
and was partly carried out when the first author was at the School of Science and Technology, Orebro University, Orebro,
SE-701 82, Sweden.

Authors’ addresses: M. Fasi, Department of Computer Science, Durham University, Upper Mountjoy Campus, Stockton
Road, Durham, DH1 3LE, United Kingdom; email: massimiliano.fasi@durham.ac.uk; M. Mikaitis, School of Computing,
University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, United Kingdom; email: m.mikaitis@leeds.ac.uk.

This work is licensed under a Creative Commons Attribution International 4.0 License.
© 2023 Copyright held by the owner/author(s).

0098-3500/2023/06-ART18

https://doi.org/10.1145/3585515

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 18. Publication date: June 2023.

https://www.acm.org/publications/policies/artifact-review-and-badging-current#reusable
https://www.acm.org/publications/policies/artifact-review-and-badging-current#available
https://orcid.org/0000-0002-6015-391X
https://orcid.org/0000-0001-8706-1436
https://doi.org/10.1145/3585515
https://doi.org/10.1145/3585515
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3585515&domain=pdf&date_stamp=2023-06-17

18:2 M. Fasi and M. Mikaitis

1 A PLETHORA OF FLOATING-POINT FORMATS AND ROUNDING MODES

The 2019 revision of the IEEE 754 standard for floating-point arithmetic [32] specifies three basic
binary formats for computation: binary32, binary64, and binary128. Most 64-bit CPUs equipped
with a floating-point unit natively support binary32 and binary64 arithmetic, and 32-bit CPUs can
simulate binary64 arithmetic very efficiently by relying on highly optimized software libraries. The
binary128 format, introduced in the 2008 revision [31] of the original IEEE 754 standard [30], has
not gained much popularity among hardware manufacturers, and over 10 years after having been
standardized, it is supported only by two IBM processor families: the POWERY, which implements
version 3.0 of the Power Instruction Set Architecture [36], and the z/Architecture [39].

In fact, the low-precision requirements of artificial intelligence applications have steered the
hardware market in the opposite direction, and a number of fewer-than-32-bit formats have been
proposed in recent years. The first widely available 16-bit floating-point format was binary16. De-
spite having been defined in the last two revisions of the IEEE 754 standard only as an interchange
format, binary16 has been supported as an arithmetic format by all NVIDIA microarchitectures
since Pascal [45] and all AMD architectures since Vega [51]. Google has recently introduced the
bfloat16 data type [34], a 16-bit format with approximately the same dynamic range as binary32.

The latest Armv8 CPUs support a wide variety of floating-point formats, including binary32,
binary64, bfloat16 [1, Section A1.4.5], binary16, and an alternative custom half-precision format
[1, Section A1.4.2]. The latter is a 16-bit format based on binary16 that extends the dynamic range
from [-65,504, +65,504] to [—131,008, +131,008] by reclaiming the 2,048 bit patterns (about 3%)
used for infinities and NANs (Not a Number).

The latest NVIDIA graphics card microarchitectures offer new low-precision formats, aimed
at machine learning, that break with the 16-bit tradition. The A100 GPUs, which are based on
the Amprere microarchitecture [46], support a 19-bit floating-point format, called TensorFloat-32,
which combines the precision of binary16 with the exponent range of binary32. The latest H100
GPUs, based on the Hopper microarchitecture [47], provide two 8-bit formats: E4M3, with 4 bits
of precision and dynamic range [-240, 240], and E5M2, which trades one bit of precision for the
much larger dynamic range [-57,344, 57,344].

In Section 4, we discuss the general framework that underlies all these floating-point formats.
This framework is a straightforward extension of the IEEE 754 standard [30-32] and is well estab-
lished in the literature [27, 44].

Such a broad range of floating-point formats poses a major challenge to those trying to develop
mixed-precision algorithms for scientific computing, because studying the numerical behavior of
an algorithm in different working precisions may require access to a number of high-end hardware
platforms. To alleviated this issue, two families of techniques for simulating low-precision floating-
point arithmetic via software have been proposed over the years.

In principle, one can use (signed) integers to represent the exponent and significand of the low-
precision numbers. All mathematical functions can then be evaluated by explicitly operating on
the integers that make up these representations. This solution allows for maximum flexibility, and
it is typically used to simulate arbitrary-precision arithmetics, where exponent and significand can
have arbitrarily many digits.

If only low-precision arithmetic is of interest, however, then relying on the floating-point
arithmetics available in hardware will typically lead to more efficient software simulators. In fact,
one can perform each arithmetic operation using a floating-point format available in hardware,
check that the result is representable in the low-precision format of interest, and then round the
significand to the desired number of significant bits. In this context, simulating low-precision
floating-point arithmetic only requires the ability to round a high-precision number to lower
precision, and users can leverage existing hardware and mathematical libraries. This method is

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 18. Publication date: June 2023.

CPFloat: A C Library for Simulating Low-precision Arithmetic 18:3

more convenient: It leads to software that is easier to maintain, since less code is necessary, and
is typically more efficient, as most of the computation is performed using thoroughly optimized
high-precision mathematical routines that are already available. Here, we follow this second
approach, which is the one most often encountered in the literature, as the survey of existing
software for simulating low-precision floating-point arithmetic in Section 2 illustrates.

Our contribution is two-fold. First, we discuss how the operations underlying the rounding of a
floating-point number x to lower precision can be performed directly on the binary floating-point
representation of x. We present the new algorithms in Section 5, and in Section 6, we explain how to
implement them efficiently using bitwise operations and integer arithmetic. Second, we introduce
CPFloat, a header-only C library that implements our algorithms and can be used to simulate
custom low-precision binary floating-point arithmetic. The name of the library is a shorthand
for Custom-Precision Floats. Section 3 lists the functions available in the library and provides a
minimal, self-contained code snippet showing how CPFloat can be used as a full arithmetic library
with custom precision floating-point formats. Section 7 discusses some implementation details and
describes how the library was tested for correctness.

The floating-point representation in the simulated (target) format exists only implicitly: In prac-
tice, all numbers are represented in a (storage) format that is natively supported by the compiler.
The storage formats currently available in CPFloat are binary32 and binary64.

CPFloat is not the first library for simulating low-precision arithmetic in C: The GNU MPFR
library [19], for example, allows the programmer to work with arbitrarily few, as well as arbitrarily
many, bits of precision. Unlike MPFR, CPFloat is intended only as a simulator for low-precision
floating-point arithmetics. Internally, floating-point values are represented using binary32 or bi-
nary64 numbers, thus only formats with at most 53 bits of precision and an exponent range no
broader than that of binary64 can be simulated. This narrower aim provides scope for the wide
range of optimizations we discuss, which in turn yield more efficient implementations.

We provide a MEX interface that allows users to call CPFloat directly from their MATLAB and
Octave codes. We use this to compare the performance of the new library with that of the MATLAB
function chop [28] and of the MATLAB toolboxes FLOATP_Toolbox [41] and INTLAB [54]. Our
experimental results, discussed in Section 8, show that the new codes bring a considerable speedup
over these existing alternatives, as long as the matrices being rounded are large enough to offset
the overhead of calling C code from MATLAB.

The library can be used to prototype and test mixed-precision algorithms, as well as to simulate
custom-precision hardware. Recently, for example, we have used CPFloat to develop an algorithm
for computing matrix-matrix products on NVIDIA GPUs equipped with tensor cores [13]. These
mixed-precision matrix multiply-accumulate units internally use different precisions and round-
ing modes [14]. Using a software simulation, we could evaluate the numerical behavior of custom
variations of the tensor cores, which we obtained by changing the rounding mode used in some
key operations.

2 RELATED WORK

A number of packages to simulate low-precision floating-point arithmetic via software are avail-
able. These are summarized in Table 1, where we report the main programming language in which
the software is written and detail what storage formats, target formats, and rounding modes are
supported.

The most comprehensive software package for simulating arbitrary-precision floating-point
arithmetic is the GNU MPFR library [19], which extends the formats in the IEEE 754 standard
to any precision and to an arbitrarily large exponent range. The library is written in C, but inter-
faces for most programming languages are available. GNU MPFR is a de facto standard for working

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 18. Publication date: June 2023.

18:4 M. Fasi and M. Mikaitis

Table 1. Synoptic Table of Available Software Packages for Simulating
Low-precision Floating-point Arithmetic

Package Primary Storage Target format & &I @)

name language format p e s built-in $ Q% Q(y ‘l‘§ M &
GNU MPFR C custom A A O v ! vV v
SIPE C multiple R S Y v v
rpe Fortran fpe4 R B B fpl6 v
FloatX C++ fp32/fpe4 R S Y v
INTLAB MATLAB fpe4 R S Y v v v
chop MATLAB {p32/fpe4 R S F fpl6/bfle v v v v
FLOATP MATLAB fpe4 R A N v v v v
QPyTorch Python fp32 R S N v v/ v
CPFloat C fp32/fpe4 R S F fple/bfie/infs2 v v v v v vV Y

The first three columns report the name of the package, the main programming language in which the software is
written, and what storage formats are supported. The following three columns describe the parameters of the target
formats: whether the number of bits of precision in the significand is arbitrary (A) or limited to the number of bits in
the significand of the storage format (R); whether the exponent range can be arbitrary (A), must be a—possibly
restricted—sub-range of the exponent range of the storage format (S), or can be a sub-range only for built-in types (B);
whether the target format supports subnormal numbers (Y), does not support them (N), supports them only for built-in
types (B), supports them by default but allows the user to switch the functionality off (F), or does not support them by
default but allows the user to turn the functionality on (O). The following column lists the floating-point formats that
are built into the system, if any. The last seven columns indicate what rounding modes the software supports:
round-to-nearest with ties-to-even (RNE), ties-to-zero (RNZ), or ties-to-away (RNA), round-toward-zero (RZ),
round-to-+co and round-to-—co (RUD), round-to-odd (RO), and the two variants of stochastic rounding discussed in
Section 4 (SR). Fully supported rounding modes are denoted by v', while ! is used for rounding modes that can be
simulated at a higher computational cost. The abbreviations bf16, tf32, fp16, fp32, and fp64 denote the formats bfloat16,
TensorFloat-32, binary16, binary32, and binary64, respectively.

with arbitrary precision and is typically used to perform computations that require high accuracy,
rather than to simulate low-precision arithmetics.

S1PE is a header-only C mini-library designed to simulate low precision efficiently. This software
supports round-to-nearest with ties-to-even and round-to-zero, and numbers can be stored either
as a pair of signed integers representing the significand and the exponent of the floating-point
value [37] or as a value in a native floating-point format. The latest version of the library [38]
supports float, double, long double, or __float128 (from the GCC libquadmath library).

Dawson and Diiben [11] recently developed a Fortran library, called rpe, for simulating reduced-
precision floating-point arithmetics in large numerical simulations. In rpe, the reduced-precision
floating-point values are stored as binary64 numbers, a solution that provides a very efficient
technique for simulating floating-point formats with the same exponent range as binary64 and
no more than 53 bits of precision.

FloatX [16] is a header-only C++ library for simulating low-precision arithmetic that supports
binary32 and binary64 as storage formats. This software is more flexible than rpe, in that it allows
the user to choose not only the number of significant digits, but also the number of bits used to
represent the exponent in the target format.

The only rounding mode currently implemented by both rpe and FloatX is round-to-nearest
with ties-to-even, which may be too restrictive when one wants to simulate hardware units where
truncation or stochastic rounding are available.

The flround function in the INTLAB toolbox for MATLAB and Octave [54] allows the user
to round binary64 values to lower-precision formats. The routine implements the binary version
of the algorithm by Rump [55, Alg. 3] and rounds a number x by first computing x" = x + C,
where C is a suitably chosen constant, and then returning y = x” — C. Addition and subtraction

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 18. Publication date: June 2023.

CPFloat: A C Library for Simulating Low-precision Arithmetic 18:5

are performed in floating-point arithmetic using the format in which x is stored and are thus
performed efficiently when the operations can be performed in hardware. This strategy requires
that the exponent range of x be limited, to avoid overflow in the computation of C: In binary64,
for example, the maximum available exponent is 1,023, but the exponent of x cannot exceed 970
when the flround function is used. The toolbox supports round-to-nearest with ties-to-even and
the three directed rounding modes prescribed by the IEEE 754 standard. Furthermore, the full
arithmetic library f1 is available on f1-type objects, which are rounded binary64 values to some
lower custom precision representation.

Higham and Pranesh [28] proposed chop, a MATLAB function for rounding arrays of binary32
or binary64 numbers to lower precision. This solution is more efficient and flexible than the fp16
and vfp16 MATLAB data types proposed by Moler [42], as the user can specify not only the bound-
aries of the dynamic exponent range and the number of bits in the significand, but also the round-
ing mode to be used and whether subnormals are supported. chop supports six rounding modes:
the four default rounding modes prescribed by the IEEE 754-2019 for single operations and two
variants of stochastic rounding. This function can be used only from within the MATLAB program-
ming environment, and the underlying algorithms, which rely on mathematical operations involv-
ing the exponent and significand of the represented floating-point numbers, are not necessarily
suitable for efficient implementations in a low-level language such as C. For example, chop uses the
built-in MATLAB functions abs, sign, ceil, floor, log2, and pow2, which may not be optimized
for the narrow range of inputs required to disassemble and reassemble floating-point numbers.

FLOATP_Toolbox [41] is a MATLAB toolbox for simulating reduced-precision fixed-point and
floating-point arithmetics. This library uses binary64 as storage format, supports the same six
rounding modes as chop [28], and implements a number of mathematical functions, such as log,
exp, or sin, for example. The functionalities of the FLOATP_Toolbox can be used in two ways:
either by calling the routines that work directly on the binary64 data structure or by relying on
the methods of the floatp class, which override a number of built-in MATLAB functions. A similar
library for simulating posit arithmetic has been developed by the same author [12, 26].

The QPyTorch library is a low-precision arithmetic simulator, written in PyTorch, whose pri-
mary goal is to facilitate the training of neural networks in low precision without the overhead of
building low-precision hardware [60]. The core design principles of this library are analogous to
those of chop, in that numbers are stored in binary32 before as well as after rounding. QPyTorch
supports custom floating-point formats that can fit into the binary32 format, arbitrary-precision
fixed-point formats no wider than 24 bits, and block floating-point formats [59]. Infinities, NANs,
and subnormals are not supported for efficiency’s sake and because, as the authors point out, these
special values do not appear when training neural networks and thus may not be supported by
the underlying low-precision hardware. The supported rounding modes are stochastic rounding
and round-to-nearest with ties-to-even.

VPREC-1ibm [4] is a related tool developed to evaluate the accuracy/performance tradeoffs of
numerical code. The library instruments the code so calls to mathematical functions are intercepted
at runtime and performed in simulated low precision. Each function is evaluated in binary128
arithmetic by using the GCC libquadmath library and the result is then rounded to the target
precision.

The packages SERP [56] and FASE [49] utilize dynamic binary translation to seamlessly change
the precision of an executable without requiring any alteration of the source code. A downside of
this approach is that the user cannot control which rounding mode a given operation will use, and
the target format appears to be a global setting that cannot be changed on a per-operation basis—
this significantly limits the simulation environment and notably does not allow for the simulation
of mixed-precision operations, which are becoming more and more common in hardware devices.

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 18. Publication date: June 2023.

18:6

The algorithms presented here complement existing software by proposing efficient techniques
for implementing rounding using low-level bitwise instructions. Our library is intended as a soft-
ware package that enables the use of these rounding functionalities in low-level languages such
as C and C++, but high-level languages that allow the user to call C routines, either directly or

M. Fasi and M. Mikaitis

indirectly, can also benefit from it.

3 FEATURES AND EXAMPLES

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

#include <stdio.h>
#include "cpfloat_binary64.h"

#define N 3

int main () {

// Allocate the data structure for target formats and rounding parameters.

optstruct xfpopts = init_optstruct();

// Set up the parameters for binaryl6 target format.

fpopts->precision = 11; // Bits in the significand + 1.
fpopts->emax = 15; // The maximum exponent value.
fpopts->subnormal = CPFLOAT_SUBN_USE; // Support for subnormals is on.
fpopts->round = CPFLOAT_RND_TP; // Round toward +infinity.
fpopts->flip = CPFLOAT_NO_SOFTERR; // Bit flips are off.

fpopts->p = 0; // Bit flip probability (not used).

fpopts->explim = CPFLOAT_EXPRANGE_TARG; // Limited exponent in target format.

// Validate the parameters in fpopts.
int retval = cpfloat_validate_optstruct(fpopts);
printf ("The validation function returned %d.\n", retval);

// Initialize C array with arbitrary elements.

double X[N] = { (double)5/3, M_PI, M_E };

double Y[N] = { 1.5, 1.5, 1.5 };

double Z[N];

printf ("X in binary64:\n %.15e %.15e %.15e\n", X[Q], X[1], X[21);

// Round the values of X to the binary16 format and store in Z.
cpfloat(Z, X, N, fpopts);
printf ("X rounded to binaryl6:\n %.15e %.15e %.15e\n", Z[@], Z[1],

// Round the sum of X and Y.
cpf_add(z, X, Y, N, fpopts);

printf ("Sum rounded to binaryl6:\n %.15e %.15e %.15e\n", Z[Q@], Z[1],

// Round the product of X and Y.
cpf_mul(Z, X, Y, N, fpopts);
printf("Product rounded to binaryl6:\n %.15e %.15e %.15e\n", Z[0],

// Round the logarithm of X.
cpf_log(Z, X, N, fpopts);

printf("Log rounded to binaryl16:\n %.15e %.15e %.15e\n", Z[@], Z[1],

// Round the 2-argument arctangent of X and Y.
cpf_atan2(Z, X, Y, N, fpopts);

printf("Angle rounded to binaryl16:\n %.15e %.15e %.15e\n", Z[0], Z[1],

free_optstruct (fpopts);

Listing 1. CPFloat example.

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 18. Publication date: June 2023.

Z[21);

z[1],

z[21);

z021);

Z[21);

CPFloat: A C Library for Simulating Low-precision Arithmetic 18:7

At the core of CPFloat are the efficient rounding routines described in Section 5. These convert
a number from one floating-point format (the storage format, which will be either binary32
or binary64) to a second, custom format (the target format). The representation in the target
format is implicit, as the rounded numbers are still stored as either binary32 or binary64 values.
Relying on these rounding routines, CPFloat provides functions to simulate custom low-precision
arithmetic when operating on arrays of scalars. We now describe its user interface, using Listing 1
as reference. In the example, we use double as storage format, thus, we include the header file
cpfloat_binary64.h; the header file cpfloat_binary32.h should be included when using
float arrays.

The target numerical format is specified by a C structure of type optstruct. The structure
should be initialized by calling

optstruct *init_optstruct()

as done on line 8. This function allocates the memory underlying the optstruct correctly, but the
target format that the structure represents is still undefined. The parameters of the target format
should be initialized explicitly as shown on lines 11-17.

In Listing 1, we do not showcase all the functionalities of CPFloat, and, in particular, we do
not inject soft errors in the low-precision results. The library supports two injection modes, which
can be selected by changing the value of the flip field of the optstruct structure. If flip is
set to CPFLOAT_FRAC_SOFTERR, then with probability p a single bit flip can strike the fraction of
the low-precision rounded number. This is the injection mode used in chop [28]. If flip is set
to CPFLOAT_FP_SOFTERR, however, then the single bit flip can strike any bit of the low-precision
floating-point representation. Soft errors are typically modelled in this way in high-performance
computing studies [2] as well as in numerical simulations [52, Section V]. For reproducibility, errors
are sometimes introduced by hand at specific points of the execution rather than at random [57];
in CPFloat, this can be achieved by setting p to 1.0 and switching the value of the flip field
between CPFLOAT_FP_SOFTERR (soft errors on) and CPFLOAT_NO_SOFTERR (soft errors off).

The parameters in an optstruct structure can be validated with

int cpfloat_validate_optstruct(optstruct *fpopts)

if the storage format is binary64, or

int cpfloat_validate_optstructf(optstruct *fpopts)

if the storage format is binary32. The convention of appending an f to the function name when the
storage format is binary32 is common in C and is used throughout the library whenever a binary64
and a binary32 variants are offered. The two functions return a negative integer if the fields of the
input do not represent a valid floating-point format, zero if they do, and a positive integer if they
represent a valid format that may yield an unexpected behavior such as potentially harmful double
rounding (see Section 5). Some of the fields of an optstruct are pointers, and the function

void free_optstruct(optstruct *fpopts)

should be used as shown on line 49 to free the memory correctly.

The functions that make up the library can be divided into three groups: functions for rounding,
functions for computing in low-precision arithmetic, and functions for probing the low-precision
floating-point format. We discuss these assuming arrays of binary64 values—for binary32 arrays
it suffices to change all double to float and add an f at the end of the function name.

A double array can be rounded to low precision using the functions

int cpfloat(double *X, const double *A, const size_t n, optstruct *fpopts)
int cpf_fpround(double *X, const double *A, const size_t n, optstruct *fpopts)

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 18. Publication date: June 2023.

18:8 M. Fasi and M. Mikaitis

which convert the n elements in the array A to the format specified by the parameters in fpopts.
We note that cpfloat is just an alias for cpf_fpround that ensures backward compatibility with
previous versions of the library—the two functions rely on the same implementation. We also
remark that X and A may point to the same memory location, in which case the rounding is
performed in place.

The second group contains functions for simulating the four elementary arithmetic operations
and many mathematical functions in low precision. The computation is first performed in the
storage format, using the corresponding C operators or C mathematical library (math. h) functions,
and the result is then rounded to the specified low-precision format.

The third and last group comprises functions that work on the implicit target-format repre-
sentation. These can be used to extract the exponent and fraction of the number rounded to low
precision to compute the number that in the target format is closest to a given value in the stor-
age format and to check whether a value in the storage format would become subnormal, normal,
infinite, or NaNonce rounded to the target format.

We list all functions available in CPFloat in Table 2 and refer the reader to the package docu-
mentation for additional details.

The example in Listing 1 is available in the CPFloat source code repository on GitHub.! As
we explain in more detail in Section 7, CPFloat can leverage OpenMP to run multiple threads
in parallel, but the runtime overhead causes the parallel version of the code to be slower than the
sequential one on arrays with very few elements. To alleviate this issue, we use a sequential version
of the code for small arrays and switch to the parallel variant only when the number of elements
exceeds a machine-dependent threshold that we determine with an auto-tuning procedure. For the
C library, the auto-tuning can be triggered with the command

$ make autotune
The example in Listing 1 can be compiled with
$ make example

which produces the binary bin/example. When executed, this program produces the following
output:

The validation function returned 0.
X in binary64:

1.666666666666667e+00 3.141592653589793e+00 2.718281828459045e+00
X rounded to binaryl6:

1.666992187500000e+00 3.142578125000000e+00 2.718750000000000e+00
Sum rounded to binaryl6:

3.167968750000000e+00 4.644531250000000e+00 4.218750000000000e+00
Product rounded to binaryl16:

2.500000000000000e+00 4.714843750000000e+00 4.078125000000000e+00
Log rounded to binaryl6:

5.112304687500000e-01 1.145507812500000e+00 1.000000000000000e+00
Angle rounded to binaryl16:

7.329101562500000e-01 4.455566406250000e-01 5.043945312500000e-01

4 FLOATING-POINT STORAGE FORMATS AND ROUNDING

A family of binary floating-point numbers F{p, €1, €max> 5p) 15 a finite set that includes a subset
of the real line and a handful of values with a special meaning. In our notation, the three integer

!https://github.com/north-numerical-computing/cpfloat.

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 18. Publication date: June 2023.

https://github.com/north-numerical-computing/cpfloat

CPFloat: A C Library for Simulating Low-precision Arithmetic 18:9

Table 2. CPFloat Functions if double is Used as Storage Format

Function Description
cpfloat_validate_optstruct Validate fields of optstruct struct variable.
cpfloat Round double array to target format (legacy function name).
cpf_fpround Round double array to target format.
cpf_add Sum in target format.

cpf_sub Difference in target format.

cpf_mul Product in target format.

cpf_div Ratio in target format.

cpf_cos Trigonometric cosine.

cpf_sin Trigonometric sine.

cpf_tan Trigonometric tangent.

cpf_acos Inverse trigonometric cosine.

cpf_asin Inverse trigonometric sine.

cpf_atan Inverse trigonometric tangent.

cpf_atan2 Two-argument arctangent.

cpf_cosh Hyperbolic cosine.

cpf_sinh Hyperbolic sine.

cpf_tanh Hyperbolic tangent.

cpf_acosh Inverse hyperbolic cosine.

cpf_asinh Inverse hyperbolic sine.

cpf_atanh Inverse hyperbolic tangent.

cpf_exp Exponential.

cpf_frexp Exponent and normalized fraction in target format.
cpf_ldexp Scale number by power of 2.

cpf_log Natural logarithm.

cpf_log10 Base-10 logarithm.

cpf_modf Integral and fractional part.

cpf_exp2 Base-2 exponential.

cpf_expml exp(x) — 1.

cpf_ilogb Integral part of logarithm of absolute value.
cpf_loglp Natural logarithm of number shifted by one.
cpf_log2 Base-2 logarithm.

cpf_scalbn Scale number by power of FLT_RADIX.
cpf_scalbln Scale number by power of FLT_RADIX.
cpf_pow Real powers.

cpf_sqrt Square root.

cpf_cbrt Cube root.

cpf_hypot Hypotenuse of a right-angle triangle.
cpf_erf Error function.

cpf_erfc Complementary error function.

cpf_tgamma Gamma function.

cpf_lgamma Natural logarithm of absolute value of gamma function.
cpf_ceil Ceiling function.

cpf_floor Floor function.

cpf_trunc Integer truncation.

(Continued)

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 18. Publication date: June 2023.

18:10 M. Fasi and M. Mikaitis
Table 2. Continued

Function Description

cpf_round Closest integer (round-to-nearest).

cpf_lround Closest integer (round-to-nearest).

cpf_llround Closest integer (round-to-nearest).

cpf_rint Closest integer with specified rounding mode.

cpf_lrint Closest integer with specified rounding mode.

cpf_llrint Closest integer with specified rounding mode.

cpf_nearbyint
cpf_remainder
cpf_remquo
cpf_copysign
cpf_nextafter
cpf_nexttoward
cpf_fdim
cpf_fmax
cpf_fmin
cpf_fpclassify
cpf_isfinite

Closest integer with specified rounding mode.
Remainder of floating point division.

Remainder and quotient of rounded numbers.
Compose number from magnitude and sign.

Next number in specified direction in target format.
Next number in specified direction in target format.
Positive difference.

Element-wise maximum.

Element-wise minimum.

Categorize floating-point values.

Check whether value is finite in target format.

cpf_isinf Check whether value is infinite in target format.
cpf_isnan Check if value is not a number in target format.
cpf_isnormal Check whether value is normal in target format.
cpf_fabs Absolute value.

cpf_fma Fused multiply-add.

The names of the corresponding functions for float are obtained by appending the suffix “f”: for example, the function
cpfloat_mulf can be used to multiply two float arrays elementwise. All mathematical functions return as output
numbers in the target format.

parameters p, e.;,, and e, represent the number of binary digits of precision, the minimum
exponent, and the maximum exponent, respectively, and the Boolean flag s, indicates whether
subnormals are supported. A real number x := (s, m, e) in F (P, €ypin> €max» Sn) €N be written as

x=(-1)-m-2¢7P%, (4.1)

where s is the sign bit, set to 0 if x is positive and to 1 otherwise, the integral siginificand m is a
natural number not greater than 2 — 1, and the exponent e is an integer between e;, and e
inclusive.

To ensure a unique representation for all numbers in F(p, €, €max> Sn2 \ {0}, it is customary to
normalize the system by assuming that if x > 2°min, then 2071 < m < 2P — 1, that is, the number
is represented using the smallest possible exponent and the largest possible significand. In such
systems, the number (s,m,e) € F (P, €nin> €max> Sn) \ {0} is normal if m > 2P~1 and subnormal
otherwise. The exponent of subnormals is always e,;,, and in a normalized system any number
x = (s,m, e) # 0 has a unique p-digit binary expansion (—1)° - m - 2¢, where

max

— _ d dp—1
A=me 2P =dyt ok s = dody o dp, (4.2)
for some dy,dy,...,d,-1 € {0,1}, is called the normal significand of x. One can verify that if x is

normal, then dy = 1 and 1 < m < 2, whereas if x is subnormal, then dy = 0 and 0 < m < 1. Con-
ventionally, the signed zero values +0 and —0 are considered neither normal nor subnormal. In a
normalized system, the smallest subnormal is Xpinsab = 2¢émin~P*1 wwhereas the smallest and largest

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 18. Publication date: June 2023.

CPFloat: A C Library for Simulating Low-precision Arithmetic 18:11

positive normal numbers are x_, := 2% and x__ := 2°mx(2 — 2'"?), respectively. Their negative
counterparts can be obtained by observing that a floating-point number system is symmetric with
respect to 0. In our notation, subnormals are kept if 5, = true and rounded to either the closest
smallest floating-point number or the zero of appropriate sign if s, = false.

The floating-point numbers in F(p, ., €max- 5n) €an be represented efficiently as binary strings.
The sign is stored in the leftmost bit of the representation, and the following b, bits are used to
store the exponent. Under the IEEE 754 assumption that e_;, = 1 — e, the most efficient way
of representing the exponent is obtained by setting e, = 2%¢~! — 1 and using a representation
biased by e, 50 00 - - - 01, represents the smallest allowed exponent and 11 - - - 10, represents the
largest. The trailing p — 1 bits are used to store the significand of x. It is not necessary to store
the value of dy explicitly, as the IEEE standard uses an encoding often referred to as “implicit bit”:
dp is assumed to be 1 unless the binary encoding of the exponent is the all-zero string, in which
case dy = 0 and x represents either a signed 0, if m = 0, or a subnormal number, otherwise. If
the exponent field contains the reserved all-one string, then the number represents +oco or —co if
the fraction field is set to 0, and a NAN otherwise. Infinities are needed to express values whose
magnitude exceeds that of the largest positive and negative numbers that can be represented in
F P, €mins €max> Sn)» Whereas NANs represent the result of invalid operations, such as taking the
square root of a negative number, dividing a zero by a zero, or multiplying an infinity by a zero.
These are needed to ensure that the semantics of all floating-point operations is well specified and
that the resulting floating-point number system is closed.

A rounding is an operator that maps a real number x to one of the floating-point numbers clos-
est to x in a given floating-point family. The original IEEE 754 standard [30, Section 4] defines four
rounding modes for binary formats: the default round-to-nearest with ties-to-even, and three di-
rected rounding modes, round-toward-+oo, round-toward-—oco, and round-toward-zero. The 2008
revision of the standard [31] introduces a fifth rounding mode, round-to-nearest with ties-to-away,
but states that it is not necessary for an implementation of a binary format to be IEEE compli-
ant. Finally, the latest revision of the standard [32] recommends the use of round-to-nearest with
ties-to-zero for augmented operations [32, Section 9.5]. Here, we also consider two less common
rounding strategies, round-to-odd [3] and stochastic rounding [9].

With round-to-odd, we have to set the least significant bit of the rounded number to 1 unless
the infinitely-precise number is exactly representable in the target format. This rounding has ap-
plications in several domains. In computer arithmetic, for instance, it can be used to emulate a
correctly rounded fused multiply-add (FMA) operator when a hardware FMA unit is not avail-
able [3]. In general, round-to-odd helps avoid issues associated with double rounding and is used
for this purpose in GCC,? for example. The fact that it can be implemented at low cost in hardware
has recently prompted interest from the machine learning community [7].

Unlike all rounding modes discussed so far, stochastic rounding is non-deterministic, in the
sense that the direction in which to round is chosen randomly and repeating the rounding may
yield different results. The simplest choice is to round an infinitely precise number that is not
representable in the target format to either of the two closest representable floating-point numbers
with equal probability. A more interesting flavor is obtained by rounding a non-representable num-
ber x to either of the closest floating-point numbers with probability proportional to the distance
between x and the two rounding candidates. This rounding mode dates back to the '50s [17, 18]
and has recently gained prominence owing to the surge of interest in low-precision floating-point
formats. It is particularly effective at alleviating swamping in long sums [8] and ordinary
differential equation solvers [15, 29] and at counteracting the loss of accuracy observed when

Zhttps://gce.gnu.org/bugzilla/show_bug.cgi?id=21718#c25.

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 18. Publication date: June 2023.

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=21718#c25

18:12 M. Fasi and M. Mikaitis

the precision used to train neural networks is reduced [25, 58]. Stochastic rounding is not widely
available in general-purpose hardware but has started to appear in some specialized processors,
such as the Intel Loihi neuromorphic chips [10] and the Graphcore IPU, an accelerator for
machine learning [22]. We refer the reader to the recent survey by Croci et al. [9] for more details
on this rounding mode.

5 EFFICIENT ROUNDING TO A LOWER-PRECISION FORMAT

We simulate low-precision arithmetic by first performing each operation in some higher precision
available in hardware and then rounding the result to the desired target format. In this section,
we discuss how to exploit the binary representation in the storage format to develop efficient
algorithms for rounding x € ¥ to x € ¥, where

si)and FO=F el el (65

min>

FO = g p® (B o)

min® “max?

and the same superscript notation is used for X insub® Xmin® and X -

Whether this technique can be used to simulate low precision accurately depends on the floating-
point parameters of the two formats under consideration. First, we need to ensure that any number
in (¥ is representable in 7). In most cases, a necessary and sufficient condition for 7 (©) ¢ # "
is that p < p™ and e{9) < e(®) ' When sl(f) = true but s,(lh) = false, however, this is not sufficient,
because a number that is subnormal in) is not necessarily normal in F (" In this case, we
need to require that e{Q), > e + p — 1 or equivalently that e{0) < e(’) —p + 1.

But this may not be enough when it comes to simulating arithmetic operations. Let y € R
be the exact result of an arithmetic operation f(xi,...,xn), where x1, ..., xy € F ™M and let
fl, :R— F®andfl, : R » F© be the functions that round to the high- and low-precision
formats, respectively. A correctly rounded floating-point implementation of f will return fl, (y),
and a low-precision simulation should return fl/(y).

Is flo(y) = flo(fl(y)) for any value of xy, ..., x5? This is always true for directed rounding, but
when round-to-nearest is considered, one may have that fl,(y) # fl/(fl,(y)) if the intermediate
format 7" does not have enough extra bits of precision.

If f is one of the arithmetic operators required by the IEEE-754 standard [32, Section 5.4.1], for
which the IEEE 754 standard mandates correct rounding, then it is known that p < p(" /2 — 1 will
guarantee that double rounding will be innocuous for the four elementary arithmetic operations
(+, —, %, and <) and for the square root [53, 55].

If f is a transcendental function, then we cannot guarantee that harmful double rounding will
not occur, but this is not a problem, as the IEEE-754 standard [32, Section 9.2] only recommends
that these operations be correctly rounded, and many general-purpose mathematical libraries do
not provide correct rounding. This is the case, for example, for the GNU C library” [40, Section 19.7],
for the OpenCL C++ 1.0 Specification [24, Section 7.4] and OpenCL C 2.0 Specification [23, Sec-
tion 4.4], which the Intel oneAPI math kernel library* uses to determine the accuracy of mathemat-
ical functions,® and for the Radeon open compute math library.® Most mathematical libraries do
not provide correctly rounded implementations of transcendental functions, and we refer the inter-
ested reader to recent work by Innocente and Zimmermann [33] for an experimental investigation
of the issue.

Shttps://www.gnu.org/software/libc/.

4https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html.
Shttps://www.intel.com/content/www/us/en/develop/documentation/oneapi-dpcpp-cpp-compiler-dev-guide-and-
reference/top/optimization-and-programming/intel-oneapi-dpc- c-compiler-math-library.html.
®https://github.com/RadeonOpenCompute/ROCm-Device-Libs/blob/amd- stg-open/doc/OCML.md#supported-functions.

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 18. Publication date: June 2023.

https://www.gnu.org/software/libc/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-dpcpp-cpp-compiler-dev-guide-and-reference/top/optimization-and-programming/intel-oneapi-dpc-c-compiler-math-library.html
https://github.com/RadeonOpenCompute/ROCm-Device-Libs/blob/amd-stg-open/doc/OCML.md#supported-functions

CPFloat: A C Library for Simulating Low-precision Arithmetic 18:13

ALGORITHM 5.1: Round a number from ¥ to #() in (5.1).
1 function CPFLOAT(x € F) () rounpFun : FW) x Nt x F() — F(h)

2 if sl(f) then
(&)
3 ‘ g Xninsub
4 else
4
> L { xr(ni)n
6 if ABs(x) < xl(]f)n and e&), > ¢() then
7 ‘ te—p-— (enfl)n — EXPONENT(xX))
8 else
9 L te—p
0 | X < ROUNDFUN(x, t,)

We now list the high-level functions we need to operate on floating-point numbers. In the de-
scription, x denotes a floating-point number in F®), n denotes a positive integer, and i is an integer
index between 0 and p(h) — 1 inclusive. Unless otherwise stated, these functions are not defined for
infinities and NANs.

e ABS(x) returns the absolute value of x. For infinities, we use the definition ABs(+00) = +oo.

® DIGIT(x, i) returns the ith digit of the significand of x from the left. The indexing starts from
0, so DIGIT(x, i) is d; in (4.2).

® EXPONENT(x) returns the exponent of x. This is the signed integer e in (4.1) if x is normal,
and an integer y < e_;, otherwise.

® SIGNIFICAND(x) returns the integral significand of x, that is, the positive integer m in Equa-
tion (4.1).

e RAND(n) returns a string of n randomly generated bits.

e sIGN(x) returns —1 if the floating-point number x is negative and +1 otherwise. This function
behaves as expected for (signed) zeros and infinities, i.e., SIGN(+0) = +1 and SIGN(+00) = *1.

e TAIL(x, i) returns the trailing p® — i bits of the significand of x as an unsigned integer. For
infinities, this function returns 0 by convention, thus TAIL(+00, i) = 0 for any i.

e TRUNC(x, i) returns the number x with the last p() — i bits of the significand set to zero.
Truncating an infinity leaves it unchanged, thus TRUNC(%00, i) = *oo for any i.

e ULP(x, i) returns the number QEXPONENT(xX)=i+1 that is the gap between x and its successor in a
floating-point number system with i bits of precision. As noted by Muller [43], this function
corresponds to the unit in the last place as defined by Overton [50, p. 14] and Goldberg [20].

How to implement these efficiently will be discussed in detail in Section 6.

Our rounding strategy is summarized in Algorithm 5.1. The function CPFLOAT computes the
representation of the floating-point number x € ¥ in a lower-precision format ¥ In the
pseudocode, N* denotes the set of positive integers. The input parameter ROUNDFUN is a pointer to
one of the functions in Algorithms 5.2, 5.4, or 5.5. A call to ROUNDFUN(x, ¢, {) returns the floating-
point number X € P, that is, x rounded to F (). The function starts by setting the underflow
threshold ¢, which corresponds to the smallest subnormal number if sx(f) = true and to the
smallest normal number if sr(f) = false. This value will be used by ROUNDFUN to round numbers
that are too small to be represented. Then the algorithm computes the number ¢ of significant
digits in the significand of the binary representation of x. If x falls within the normal range of
F©, then its significand has p significant digits and the algorithm sets ¢ = p. If, however, |x]|

is between % and x¥

insub in? then the exponent of x is smaller than e!Y) and the number t of

min

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 18. Publication date: June 2023.

18:14 M. Fasi and M. Mikaitis

ALGORITHM 5.2: Function for round-to-nearest with ties-to-even.
function ROUNDTONEAREST(x € Fh e NT, (eF (h))

1

2 if ABs(x) < { then > Underflow.
3 if ABs(x) < (/2 then

4 | X < sieN(x) -0

5 else

6 L X < SIGN(x) - {

7 else if ABs(x) > 2€hix (2-277) then > Overflow.
8 | X < siGN(x) - +o0

9 else > In range.
10 X « TRUNC(x, t)

1 if TaTL(x, p) > opM=t=1 oy (Tat(x, p) = 27" ~1=1 and p1crr(x, t — 1) = 1) then

12 L X < X + SIGN(x) - ULP(X, t)

13 return x

significant binary digits may have to be reduced. If e{) = e(®) then x is subnormal and has the
same number of leading zeros in both storage and target formats. Otherwise, the value of ¢ is
given by the difference between p and the number of leading zeros in the representation of X,
including the zero to the left of the binary point.

In the coming sections, we discuss how the function ROUNDFUN can be implemented for the six

rounding strategies we consider.

5.1 Round-to-nearest

Our algorithm for rounding a floating-point number in & to the closest floating-point number
in the lower-precision format (¢ is given in Algorithm 5.2. The pseudocode describes, in partic-
ular, a variant of round-to-nearest known as ties-to-even, whereby a number exactly in-between
two floating-point numbers is rounded to the rounding candidate with even significand, that is,
a number that has a 0 in the t — 1 position to the right of the binary point. Two other variants,
ties-to-zero and ties-to-away, will be briefly examined at the end of this section.

Initially, the function checks if the number to be rounded is too small to be represented in 7 ().
If subnormals are supported, then the smallest representable number xﬁi)ns
and a tie value x € F® such that |x| = /2 is rounded towards zero. If subnormals are not
supported, then x is equidistant from two numbers with even significands, since the significand

b has an odd fraction,

of the smallest normal number xrﬁl in F© is even. We still round x to zero, as this behavior is
consistent with that of the GNU MPFR library.

Next, a number x € F ™ that is too large to be rounded to zero but has absolute value below the
threshold { is rounded to sign(x) - {. If |x]| is larger than the threshold, then the algorithm checks
whether x is within the dynamic range of 7 (©): Following the IEEE 754 standard [32, Section 4.3.1],
x will overflow to infinity without changes in sign if |x| < 20k (2 — 27P).

If x is within the range of numbers representable in 7 (), then the algorithm truncates x € 7"
to t significant digits to obtain X € F (¥, the largest number (in absolute value) that satisfies
sign(x) = sign(x) and |X| < |x|. In general, X is one of the two floating-point numbers in 7 ()
closest to x, the other candidate being x + sign(x) - uLp(x, t). To choose a rounding direction, we
examine the value of the discarded bits. The unsigned integer d := TAIL(x, {) represents the trailing
p™ — ¢ digits of the significand of x. Thus, 0 < d < 2?"'~* — 1, and if d < y := 2¢"’~'"! then X is
the result to be returned, whereas if d > y, then it is necessary to add (or subtract, if x is negative)

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 18. Publication date: June 2023.

CPFloat: A C Library for Simulating Low-precision Arithmetic 18:15

ALGORITHM 5.3: Function for round-to-odd.
1 function RounDTOODD(x € FM) t € N*, ¢ € F (1)

2 if ABS(x) < { and x # 0 then > Underflow.

3 | X e son(x) -

4 else if ABs(x) > xfrfzx and ABs(x) # +oo then > Overflow.
‘ -)

5 X SIGN(x) - x

6 else > In range.

7 X « TRUNC(x, t)

8 if TAIL(x, p) # 0 then

9 L DIGIT(X,t — 1) « 1

10 return x

ULP(X, t) to obtain the correctly rounded value. If d = y, then we have a tie and we need to round
to the nearest even number. Therefore, we add sign(x) - urp(Xx, t) if the bit in position t — 1 of the
significand of x is a 1, and we leave x unchanged otherwise.

The latest revision of the IEEE 754 standard mentions two other tie-breaking rules for round-
to-nearest: ties-to-zero, to be used for the recommended augmented operations, and ties-to-away,
which is required for decimal formats. These can be implemented by changing the conditions of
the if statements on lines 3 and 11 in Algorithm 5.2 to

3 if ABs(x) < (/2 then

[..]
1 if Tar(x,) > 22"t then
for ties-to-zero, and to
3 if ABs(x) < (/2 then

[...]
1 if Tar(x, £) > 22”11 then
for ties-to-away.

Note that this implementation preserves the sign of zero, maps infinities to infinities, and does
not change the encoding of quiet and signaling NAN values. The same observation is true for the
rounding functions in Algorithms 5.3, 5.4, and 5.5.

5.2 Round-to-odd

The function RouNDTOODD in Algorithm 5.3 implements round-to-odd according to the defini-
tion given by Boldo and Melquiond [3, Section 3.1], as this rounding mode is not part of the IEEE
standard. Informally speaking, if x is exactly representable in 7 (©), then the function returns it un-
changed, otherwise it returns the number closest to x with an odd significand, that is, a significand
with a trailing 1. In the spirit of the algorithms discussed so far, one could obtain x by truncating
|x| to the first ¢ significant digits, checking the parity of the significand of x, and adding uLr(x, t)
to the result if X is even. However, in this case, we know that the result of the truncation requires
a correction only if the least significant digit of X is a 0, in which case adding uLp(x, t) amounts to
setting that bit to 1. Therefore, we check the bits obliterated by the truncation, and if TAIL(x, t) # 0,
then we conclude that x is not exactly representable in () and that the significand of the rounded
x must be odd. We can ensure this by setting the digit in position ¢ —1 of the significand of x to 1. In
practice, this operation will have an effect only if that digit is not already set to 1, and in particular
will have no effect when t = 1, as the leading digit of the significand is not stored explicitly. The

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 18. Publication date: June 2023.

18:16 M. Fasi and M. Mikaitis

core idea of this algorithm is the same as that of the second of the two methods for round-to-odd
discussed by Boldo and Melquiond [3, Section 3.4].

The algorithm must round X to the closest odd number in 7 () if it falls within the underflow
or the overflow range. Since 0 is even, rounding to 0 is not an option when this rounding mode
is used, and numbers too small to be represented must be rounded to the smallest floating-point
number with an odd significand of corresponding sign. When subnormals are supported, the small-

est representable number xrﬁlsnb is odd, thus numbers smaller than xr(r?n “ub

simply rounded to sign((yg : xl(fi)nsub.

' is even, and we are faced with a choice. We could round x such that
(6)

in absolute value are
If subnormals are not supported, however, then the smallest

representable number x

mi;
x| < xr(fi)n to sign(x) - (xr(]fi)n +ULp(x, . t)), which is the closest number with odd significand. This
choice, however, feels unnatural: The operator thus defined would not be rounding to either of

the floating-point numbers closest to x. In our pseudocode, we prefer to round x to the rounding

candidate largest in magnitude, that is, sign(x) - xr(lf;)n.

The definition given by Boldo and Melquiond cannot be applied directly to values in the overflow
range, as in principle the significand of +co is neither odd nor even. Since —xl(f:x and xl(fix are
necessarily odd, we prefer to round values outside the finite range of () to the closest finite
number. Being exactly representable, infinities themselves represent an exception to this rule, and

the algorithm leaves them unchanged.

5.3 Directed Rounding

The functions in Algorithm 5.4 show how to implement the three directed rounding modes pre-
scribed by the IEEE 754 standard. The idea underlying the three functions is similar to that dis-
cussed for the function ROUNDTONEAREST in Algorithm 5.2, the main differences being (1) the use
of the sign, which is relevant when the rounding direction is not symmetric with respect to 0, and
(2) the conditions under which a unit in the last place has to be added.

We start by discussing the function ROUNDTOWARDPLUSINFINITY. First, we check whether x
is within the range of numbers that are representable in 7 ©). Numbers that are too small to be
represented are rounded up to 0 if negative and to { if positive. Finite positive numbers larger than

the largest representable number x0

a overflow to +oo, whereas negative numbers smaller than

the smallest representable number —xl(qfix are rounded up to —xr(fzx , with the only exception of —co,

which is handled below using the fact that TRUNC(—o0,) = —co and TAIL(—o0o0,t) = 0.

Next, the function computes x, that is, the number x with significand truncated to ¢ significant
digits, and checks whether x is smaller than the smallest number representable in F (. The round-
ing can be easily performed by noting that the truncation X is the correct result if x is negative or
exactly representable in 7). Otherwise, X is incremented by ULp(X, t).

The function ROUNDTOWARDMINUSINFINITY is identical, modulo some sign adjustments to take
the opposite rounding direction into account. The algorithm starts by checking that x is within
the range of numbers representable in 7 (©). Numbers between —{ and 0 are rounded down to —,
whereas those between 0 and { underflow and are flushed to 0. Numbers that are smaller than the
smallest number representable in F () overflow to —oo, whereas finite numbers greater than the
largest number representable in 7 (©) are rounded to xr(f;
+00. To round a number that falls within the range of 7 (©), we first compute X by truncating the
significand of x to ¢ significant digits and then subtract uLp(x, t) from X if x is negative and not
exactly representable with a t-digit significand.

The function ROUNDTOWARDZERO is simpler than the other two considered in this section, as
truncation is sufficient to correctly round the significand of x to t significant digits. Underflow and

.» the only exception in this case being

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 18. Publication date: June 2023.

CPFloat: A C Library for Simulating Low-precision Arithmetic

18:17

ALGORITHM 5.4: Functions for directed rounding modes.

1 function ROUNDTOWARDPLUSINFINITY(Xx € F t e N*, (e 7—'(}’))

2 if x > 0 and x < { then
3 ‘ x<{
4 else if x < 0 and x > —{ then
5 | X« soN(x) -0
6 else if x > xr(j) then
7 ‘ X +o0
8 else if x < —xl(fzx and x # —co then
9 ‘ e
max
10 else
1 X « TRUNC(x, t)
12 if TAIL(x,p) # 0 and x > 0 then
13 L X « X + uLp(x, t)
14 return x

15 function ROUNDTOWARDMINUSINFINITY(X € Fh) e N, (e ?L'(h))

16 if x < 0 and x > —{ then

17 ‘ Xe-(

18 else if x > 0 and x < { then

19 ‘ X « SIGN(x) - 0

20 else if > ') and ¥ # +co then
21 ‘ X « xr(ézx

22 else if x < —x]gfa)x then

23 ‘ X — —o0

24 else

25 X « TRUNC(x, t)

26 if TAIL(x,p) # 0 and x < 0 then
27 L X « x —uLp(x, t)

28 return x

20 function RouNDTowARDZERO(x € F (M), t € N*, 7 e 7 (1)

30 if ABs(x) < { then
31 ‘ X « SIGN(x) - 0
32 else if ABs(x) > xr(:zx and ABs(x) # +oo then
‘ -)
33 X < SIGN(xX) - x
max
34 else
35 L X « TRUNC(x, t)
36 return X

> Underflow.

> Overflow.

> In range.

> Underflow.

> Overflow.

> In range.

> Underflow.

> Overflow.

> In range.

overflow are also easier to handle: Finite numbers that are smaller than the smallest representable
number in absolute value are flushed to 0, whereas numbers too large to be represented are rounded

to the closest representable finite number.

5.4 Stochastic Rounding

The functions in Algorithm 5.5 describe how to implement the two variants of stochastic rounding

we are concerned with.

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 18. Publication date: June 2023.

18:18 M. Fasi and M. Mikaitis

ALGORITHM 5.5: Functions for stochastic rounding.

1 function ROUNDSTOCHASTIC(x € Fh) e N*, e 7—'(’1))

2 if ABs(x) < { then > Underflow.
3 €min < EXPONENT(()
4 ex ¢ EXPONENT(x)
5 My ¢« SIGNIFICAND(X)
6 b — me . 29x+1_eminj
7 if t > ranp(p\") then
8 ‘ X < SIGN(x) - {
9 else
10 L X « SIGN(x) - 0
1 else > In range or overflow.
12 X « TRUNC(x, t)
13 if TAL(x,t) > RAND(p(h) —p) then
14 | X <X +s16N(x) - ULR(X, 1)
~ 14
15 if x > Zeﬁna)x(z —27P) then > Overflow.
16 L X « SIGN(x) - +00
17 return x

18 function ROUNDSTOCHASTICEQUAL(x € Fh) ¢ e N*, (eF (h))

19 if ABS(x) < { and x # 0 then > Underflow.
20 ‘ X « SIGN(x) - RANDSELECT(0, {)

21 else if ABs(x) > xffﬁx and ABS(x) # +co then > Overflow.
22 ‘ X « SIGN(x) »RANDSELECT(XI(QX , +00)

23 else > In range.
24 X « TRUNC(x, t)

25 if TAIL(x, t) # 0 then

26 | X < RANDSELECT(X, X + SIGN(x) - ULP(X, 1))

27 return x

28 function rRaNDSELECT(x € F 1), ¢y € F(h))

29 if RAND(1) = 1 then
30 ‘ return x

31 else

32 L return y

The function ROUNDSTOCHASTIC implements the strategy that rounds x € ™ to one of the two
closest floating-point numbers with probability proportional to the distance. First, the algorithm
considers numbers in the underflow range, whose rounding candidates are 0 and the threshold
value ¢, which equals x_, . if subnormals are supported and x,_, if they are not. The distance
between |x| and 0 depends not only on the significand but also on the magnitude of x, thus the
algorithm starts by computing the two values e, and m,, which represent the exponent and the
integral significand of x, respectively. Being the exponent of a floating-point number in 7", e,
can be much smaller than e{{) , in which case it may be necessary to rescale m, to align its exponent

rin- 2¢xt1-¢lh In the pseudocode, we take the floor of
the result to keep it integer, although this is not strictly necessary: We prefer to work with integer

arithmetic here so the integers generated by the random number generator can be used without

to e{0) . This is achieved by multiplying m, by

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 18. Publication date: June 2023.

CPFloat: A C Library for Simulating Low-precision Arithmetic 18:19

any further post-processing. This is desirable not only from a performance point of view, but also
because drawing floating-point numbers from the uniform distribution over an interval is not a
trivial task, even when a good integer pseudo-random number generator is available [21]. Finally,
the algorithm generates a p(")-digit random integer y, which is used as a threshold to choose the
rounding direction: If the discarded bits, interpreted as an unsigned integer, are larger than y, then
x is rounded away from zero, otherwise it is rounded towards zero.

The procedure for numbers in the representable range is easier. In this case, it suffices to com-
pute X, the value of x truncated to ¢ significant bits, and then generate a random integer r between
0 and 2°"'~*. Since TAIL(x, t) represents the distance between x and X, we increment the absolute
value of x by uLp(x, t) if TAIL(x, t) > r and leave it unchanged otherwise. For overflow, we use the
threshold value that the IEEE 754 standard recommends for round-to-nearest and round numbers
whose absolute value after rounding is larger than the threshold 26k (2 — 277) to infinity, leaving
the sign unchanged.

The function ROUNDSTOCHASTICEQUAL deals with the simpler strategy that rounds x up or down
with equal probability. Depending on the interval in which x falls, the function selects the two
closest representable numbers in 7 (©) and calls the function RANDSELECT to select one of them
with equal probability. In the pseudocode, we use a single bit generated randomly to discriminate
between the two rounding directions.

6 EFFICIENT IMPLEMENTATION FOR IEEE-LIKE REPRESENTATION FORMATS

The subroutines used in Section 5 can be implemented efficiently if we assume that the numbers
are represented using the floating-point format described in Section 4. First, we need to define
the semantics of the operators for bit manipulation that we will rely on. These are available in
most programming languages, although the notation varies greatly from language to language.
For clarity, we use a prefix notation for all the operators.

Let a and b be strings of n bits. The bits are indexed from left to right, so ay and a,_; denote the
leftmost and the rightmost bit of a, respectively. For i € N, we define the following operators:

e Conjunction: ¢ = AND(a, b) is an n-bit string such that ¢, = 1 if a; and by are both set to 1,
and ¢, = 0 otherwise.

e Disjunction: ¢ = or(a, b) is an n-bit string such that ¢, = 1 if at least one of a; and by is set
to 1, and cx = 0 otherwise.

e Negation: ¢ = NOT(a) is an n-bit string such that ¢, = 1 if ay = 0, and cx = 0 otherwise.

e Logical shift left: ¢ = 1sL(a, i) is an n-bit string such that ¢x = 0if k > (n — 1) — i, and
Ck = aj,; otherwise.

e Logical shift right: ¢ = Lsr(a, i) is an n-bit string such that ¢, = 0if k < i, and ¢x = aj_;
otherwise.

Most of the operations used in Section 5 require extracting a certain subset of the bits in the
binary representation of the floating-point number x € F(p, €yin, €max- 5y While zeroing out the
remaining ones. This can be achieved by taking the bitwise conjunction between the binary string
that represents x and a bitmask, that is, a string as long as the binary representation of x that has
ones in the positions corresponding to the bits to be extracted and zeros everywhere else. More
generally, the functions in Section 5 can be implemented using the operators above as follows.
In the descriptions, x denotes the binary floating-point representation of x, n denotes a positive
integer, and i denotes an integer index between 0 and p — 1.

e ABs(x) can be implemented as AND(X, m,ps), where m,ps is constituted by a single leading 0
followed by ones.

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 18. Publication date: June 2023.

18:20 M. Fasi and M. Mikaitis

DIGIT(x, i) can be implemented as AND(X, mgjgit), where mgigit has a 1 in the position corre-

sponding to the digit to be extracted and 0 everywhere else. We note that checking whether

this digit is 0 or 1 does not require any additional operations in programming languages
such as C where 0 is interpreted as false and any other integer is interpreted as true.

e EXPONENT(x) can be implemented as a sequence of logic and arithmetic operations. The
raw bits of the exponents can be extracted with ¢ := AND(x, Mey,), Where mey, has 1 in
the positions corresponding to the exponent bits of the binary representation of x. This
can be converted into the unsigned integer Lsr(c,p — 1), and the signed exponent can be
obtained by subtracting the bias of the storage floating-point format. If x is subnormal in
F AP, emins €max- 5n)» then the value computed in this way is —e,,, = e,,;, — 1, and the correct
value to return in this case is e,;, + A, where A is the number of trailing zeros in the significand
of x, including the implicit bit.

® SIGNIFICAND(x) can be implemented leveraging the function ExPoNENT. The digits to the
right of the radix point can be obtained as ¢ := AND(X, Mg,c) Where mg,. is the bitmask that
has the p — 1 trailing bits set to 1 and the remaining bits set to 0. If x_, < |x| < x___, then
EXPONENT(x) > e, and the implicit bit must be set to 1. This can be achieved by using
or(c,LsL(1,p — 1)), for instance.
RAND(n) can be implemented by concatenating numbers produced by a pseudo-random num-
ber generator. Two m-bit strings a and b can be joined together by or(1sL(a, m), b), and the
unnecessary bits can be set to zero using a suitable bitmask.
SIGN(x) is relatively expensive to implement by means of bit manipulation. However, note
that we only need to compute the product sign(x)-y, where y is a positive floating-point num-
ber. This operation can be implemented as OR(AND(X, Mgign), y), Where mg;qy, is the bitmask
with a leading 1 followed by zeros, and the string y denotes the floating-point representation
of y.
TAIL(x, i) can be implemented as AND(x, M,i), where the trailing p—i bits of my,; are set to 1
and the remaining bits are set to 0. This way, bits i to p—1 of the significand of x are preserved
while the rest of the bits, including those representing the sign and exponent, are set to
Zero.
e TRUNC(x, i) can be implemented as AND(x, m’), where m” = NOT(m,;1). This way, bits i to
p — 1 of the significand of x are set to zero while the rest of the bits of x, including the
exponent and sign bits, are preserved.
ULP(x, p) is a rather expensive function to implement, because it requires extracting the
exponent from the binary representation of x and then performing arithmetic operations on
it. Increasing or decreasing x by ULP(x, p), on the contrary, can be achieved efficiently using
only one bit shift and one integer arithmetic operation. In particular, it suffices to add to the
binary representation of x, seen as an unsigned integer, a number that has 0 everywhere but
in the position corresponding to the pth digit of x, that is, the digit in position p — 1 of the
significand. We note that this technique could fail if x = +co, since adding ULP(x, p) in this
fashion would turn infinities into NANs. It is easy to check that this is not a problem in our
setting, as we only add or subtract uLp(x, p) when x is finite and nonzero.

It is possible to implement some of the rounding routines even more efficiently by extending to
other rounding modes the technique for round-to-nearest with ties-to-even used in the function
convert_fp32_to_bfloat16 [35, p. 2-17], which manipulates the binary representation of the
floating-point number by using only integer arithmetic. As a demonstration, here, we show the
concrete values of the bitmasks, expressed in hexadecimal notation, that one would use to round a
binary32 number y to binary16. These methods generalize easily to other combinations of storage

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 18. Publication date: June 2023.

CPFloat: A C Library for Simulating Low-precision Arithmetic 18:21

and target formats, and we describe this in general for the conversion of a floating-point number
x € ?(p(h), el e(h) 5,(1}1)) to F{p, el elD) sr(f))

min’® “max? min® “max?

We denote the 32-bit string containing the floating-point representation of y by y and use the
uppercase Latin letters X and Y to denote the unsigned integers that can be obtained by inter-
preting x and y as unsigned integers in radix 2. All the usual underflow and overflow checks
are not included here—the aim is to demonstrate the core ideas for performing each type of
rounding efficiently. We recall that the sign of a floating-point number can be determined by
checking the leftmost bit, and that x (respectively, y) is negative if x, (respectively, y,) is set
and positive otherwise. The rounding modes amenable to this approach can be implemented as

follows:

e Round-to-nearest with ties-to-even: isolate the bit in position p — 1 of the significand of x,
and then compute TRUNC(X + LSR(My,, 1) + DIGIT(x, p — 1), p). When rounding a binary32
number to binary16, the formula becomes TRUNC(Y + 0x7FFF + y,., 16).

e Round-to-nearest with ties-to-away: return TRUNC(X + Lsr(0x1,p® — p — 1), p), which in
our example becomes TRUNC(Y + 0x8000, 16).

e Round-to-nearest with ties-to-zero: return TRUNC(X 4+ LSR(My,j1, 1), p), which in our example
becomes TRUNC(Y + 0x7FFF, 16).

e Round-toward-+oo: return TRUNC(X, p) if x¢ is set and TRUNC(X + my,, p) otherwise. For
our example, return TRUNC(Y, 16), if y, is set, and TRuNc(Y + 0xFFFF, 16), if not.

e Round-toward-—oco: return TRUNC(X, p) if X¢ is not set and TRUNC(X + myj, p) otherwise.
For our example, return TRUNC(Y, 16) if y, is not set and TRUNC(Y + OxFFFF, 16) otherwise.

e Round-toward-zero: return TRUNC(X, p). For our example, return TRunc(Y, 16).

e Stochastic rounding with proportional probabilities: return TRuNc(X + RAND(p") —), p).
For our example, return TRUNC(Y + RAND(13), 13).

7 IMPLEMENTATION AND VALIDATION OF THE CODE

Our C implementation of the algorithms discussed in Sections 5 and 6 is available on GitHub. The
code can be compiled as a static or dynamic library, but we also provide the option to use CPFloat
as a header-only library.

A header-only library allows the user to take advantage of the inlining feature of the C lan-
guage for maximum efficiency, and it also enhances the portability of the code, as packaging of
the binaries and installation of the library are not required. To alleviate the main drawback of this
approach, that is, a longer compilation time, we divided the library into two separate units, one
for each supported storage format.

To achieve better performance on large data, our functions work directly on C arrays. All the
algorithms discussed in Section 5 are embarrassingly parallel, and each element of an array can be
rounded independently from all the others. Therefore, our code can leverage the OpenMP library
if available on the system in use.

In general, OpenMP brings significant gains in terms of performance but greatly increases the
execution time for arrays with just few elements. This well-known phenomenon is caused by
the additional overhead of synchronization and loop scheduling [5], which is negligible for large
arrays but can be significant when only a small amount of work is allocated to each OpenMP
thread. The impact of this overhead is hard to quantify in general, as it depends on the hardware
platform as well as the number of OpenMP threads and the compiler used [6]. Our library contains
both a parallel and a sequential version of each function, but we were unable to provide a single
threshold that would allow the code to switch automatically from one variant to the other for
optimal performance. Thus, we devised a simple auto-tuning strategy that tries to determine the

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 18. Publication date: June 2023.

18:22 M. Fasi and M. Mikaitis

optimal threshold for the system in use by timing the rounding function on several arrays of
different lengths and performing a binary search.

For generating the pseudo-random numbers required for stochastic rounding, we rely on al-
gorithms from the family of permuted congruential generators developed by O’Neill [48], who
provides a pure C implementation available on GitHub.” In our code, we use the functions
pcg32_random_r and pcg64_random_r to generate 32-bit and 64-bit random numbers, respec-
tively; we initialize the random number generators with pcg32_srandom_r and pcg64_srandom_r
and advance them with pcg32_advance_r and pcg64_advance_r, respectively. As initial state,
we use the current time as returned by time(NULL). Use of the—considerably slower—default C
pseudo-random number generator is also supported.

To validate our code experimentally, we wrote a suite of extensive unit tests. We describe
in detail how we tested the rounding routines—all other functions in the library are tested by
relying on them. We considered two storage formats, binary32 and binary64, which are available
in C via the native data types float and double, respectively, and two target formats, binary16
and bfloat16. For each combination of storage and target formats, we performed three types of
tests.

First, we checked that all the numbers that can be represented exactly in the target format,
including subnormals and special values such as infinities and NaNs, are not altered by any of the
rounding routines. As the target formats we consider do not have an unduly large cardinality, we
can test that this property is true for all representable numbers.

To check the correctness of the code when rounding is necessary, exhaustive testing is not an
option, as the storage formats contain too many distinct values. In this case, we opted for testing
only a set of representative values. For deterministic rounding, the correctness of the function
can be assessed by checking that the output of the rounding routine matches the value predicted
by the definition. For each pair of numbers x1, x, € F () such that x; and x, are consecutive in
F© and x; < x,, we considered five values in F®: nextafter(xy, +00), nextafter(x,,, —0), X,
nextafter(x,,, +c0), and nextafter(x,, —co). Here, nextafter(x, y) denotes the next number in 7 "
after x in the direction of y, and x,, denotes the mid point between x; and x,. We used the same
technique for numbers in the underflow range, whereas for testing the correctness of overflow, we

used the values nextafter(+x()x +00), nextafter(ixéfl)d, Fo0), ixéizi, nextafter(ixgl)d, +00), where

bizi = 2 (2 = 27P) is the IEEE 754 threshold for overflow in round-to-nearest.

This technique would not work for stochastic rounding, as each value that is not representable
in 7 can be rounded to two different values. We produced a test set by taking, for each pair
of numbers x;,x; € F© such that x; and x; are consecutive in F© and x; < x, the numbers
(3x1 + x2)/4, (x1 + x2)/2, and (x1 + 3x3)/4. We rounded each number 1,000 times and confirmed
that the rounding routines always return either x; or x, and that the empirical probability distri-
bution matches the expected one. We validated the correctness of the implementation for values
in the underflow range by using the same technique, whereas for inputs in the overflow range, we
repeated the test on the three values: (3xr(12X (5))4 (xr(f;X éi)d) /2, and (xl(f;x + 3x({)) /4

The Makefile target

$ make ctest

runs the test suite for the C implementations.
We designed a MEX interface for MATLAB and Octave that is in charge of parsing and checking
the input, allocating the output, and calling our library to perform the rounding. To show that the

"https://github.com/imneme/pcg-c.

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 18. Publication date: June 2023.

https://github.com/imneme/pcg-c

CPFloat: A C Library for Simulating Low-precision Arithmetic 18:23

interface is fully compatible with chop, we designed a set of tests by modifying the default test
suite for chop.® These tests can be run with

$ make mtest
in MATLAB and with
$ make otest

in Octave.

8 PERFORMANCE EVALUATION

The experiments were run on a machine equipped with two 12-core Intel Xeon CPU E5-2690 v3
running at 2.60 GHz. Exclusive node access was used to avoid timing artifacts and ensure that
all 24 CPU threads were available for parallel runs. The C code was compiled with version 9.3.0
of the GNU Compiler Collection (GCC) with the optimization flag -03 and the architecture
option -march=native. The MATLAB experiments were run using the 64-bit GNU/Linux version
of MATLAB 9.10 (R2021a). For our parallel implementations, we used version 4.5 of the OpenMP
library. Source code and scripts to reproduce the experiments discussed in this section are available
on GitHub.’
We compare three versions of our codes.

e cpfloat_seq denotes the sequential C codes in our library. Rounding is performed using
the algorithms in Section 6.

e cpfloat denotes the C codes in our library that leverage OpenMP and employ the auto-
tuning technique discussed in Section 7 to switch between sequential and parallel imple-
mentations. Rounding is performed using the algorithms in Section 6.

e cpfloat_ml denotes our MEX interface to cpfloat compiled in MATLAB. For large matri-
ces, this function relies on the parallel version of our C codes.

As the numerical validation of the code has already been discussed in Section 7, here, we fo-
cus on timings. We time the C or C++ code by comparing the value returned by the function
clock_gettime with CLOCK_MONOTONIC before and after the execution, and we take the median
of 1,000 repetitions to reduce the influence of possible outliers. For the MATLAB code, we rely on
the function timeit, which runs a portion of code several times and returns the median of the
measurements.

8.1 Performance of the C Interface

In this section, we compare the performance of CPFloat, GNU MPFR, and FloatX by considering
the following implementations.

e chop_mpfr denotes the codes that rely on the GNU MPFR library.!? As storage format, we
use the GNU MPFR custom data type mpfr_t. For rounding, our implementation sets the
precision and exponent range of MPFR to the precision and exponent range of the target
format and then converts the binary64 input using the function mpfr_set_d. Arithmetic
operations use mpfr_t arrays for both input and output.

e floatx denotes the codes that use the floatx class from the FloatX library.!' Arrays
of binary64 numbers are converted to a lower-precision target format by invoking the

8https://github.com/higham/chop/blob/master/test_chop.m.
“https://github.com/north-numerical-computing/cpfloat_experiments.
Ohttps://www.mpfr.org/.

Uhttps://github.com/oprecomp/FloatX.

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 18. Publication date: June 2023.

https://github.com/higham/chop/blob/master/test_chop.m
https://github.com/north-numerical-computing/cpfloat_experiments
https://www.mpfr.org/
https://github.com/oprecomp/FloatX

18:24 M. Fasi and M. Mikaitis

Conversion with allocation = Conversion without allocation Elementwise sum

100 102 103 10%
n n n

Conversion with allocation = Conversion without allocation Elementwise sum

T T T T T T

>

10!

T LI

T-E-- 1 --0--

[
Pl T T
J

N

P T

'
10° ,'\'ﬁ"’?‘" EEE 10°H et tle—mik 100t
100 10! 102 10 104 100 10! 102 103 10% 10 10! 102 10 10%
n n n
’----A--- chop_mpfr —e— floatxr -g- floatx --*--cpfloat_seq ‘

Fig. 1. Top: execution time, in seconds, of chop_mpfr, floatxr, floatx, and cpfloat_seq to convert ma-
trices of order n from binary64 to binary16 (left and middle) and to compute the sum of two matrices of
size n in binary16 (right) using round-to-nearest with even-on-ties. Bottom: Corresponding slowdown plots,
where cpfloat_seq is taken as baseline. The timings include the allocation of the output vector only in the
left-most panel.

constructor of the floatx class. This code requires that the parameters of the target format
be specified at compile time, as the floatx class uses C++ templates that are instantiated
only for the low-precision formats declared in the source code. For arithmetic operations,
we use arrays of floatx objects as input and output.

e floatxr denotes the codes that rely on the floatxr class in the FloatX library. Conversion
is performed using the class constructor. This function is more flexible than floatx in that
the number of bits of precision and the maximum exponent allowed for the target format
to be specified at runtime. As with the other implementations, for arithmetic operations, we
assume that input and output are arrays of floatxr objects.

Figure 1 compares the time required by chop_mpfr, floatxr, floatx, and cpfloat_seq to per-
form two operations: converting a square matrix from the storage format to the target format and
computing the sum of two matrices in the target format. For format conversion, we report timings
both including (left) and excluding (middle) the time needed to allocate the output vector. For the
sum, we report only the time needed to execute the operation (right), assuming that the memory
to store the result has already been allocated.

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 18. Publication date: June 2023.

CPFloat: A C Library for Simulating Low-precision Arithmetic 18:25

As storage and target formats, we use binary64 and binary16, respectively. We repeated the
experiment simulating bfloat16 and TensorFloat-32 arithmetic—we do not reproduce these results
here, as they are indistinguishable from those for binary16. We use only round-to-nearest with ties-
to-even, as the FloatX library currently does not support any other rounding modes. We observe,
however, that chop_mpfr also supports directed rounding as prescribed by the IEEE 754 floating-
point standard.

The plots in the top row report the median timing of 100 runs for each algorithm. The plots in
the bottom row present the same data as slowdown with respect to the timings of cpfloat_seq.
Unsurprisingly, the execution time of the four algorithms grows quadratically with the order of the
matrix to be converted and thus linearly with the number of entries in the matrix. For matrices of
small size, the performance of floatx and cpfloat_seq are essentially indistinguishable, and for
floatxr there is only a difference when the time to allocate the memory is considered. For matrices
with 100 or more elements (n > 10), cpfloat_seq is the fastest of the four implementations we
consider. In this regime, floatx is typically two to three times slower than cpfloat_seq, whereas
for the two other algorithms the performance varies, depending on the operation being considered.
The slowdown factor of floatxr can get well over 10 for conversion if the time needed to allocate
the output is factored in, but it goes below 5 when allocations are not considered. The performance
of chop_mpfr, however, seems to depend mostly on what operation is performed: The slowdown
factor is mostly over 20 for data conversion but is generally below 10 for sums.

We remark that chop_mpfr, floatxr, and cpfloat_seq are more flexible than floatx, as the
latter requires the parameters of the target format be known at compile time for the compiler to
instantiate the templates appropriately.

8.2 Performance of the MATLAB Interface

In this section, we compare the performance of cpfloat_ml with that of existing MATLAB alter-
natives.

First, we consider the MATLAB function chop, which is available on GitHub.'? Figure 2 reports
the speedup of cpfloat_ml over chop. In each plot, we consider the conversion of square matrices
of size n between 1 and 10,000 using the six rounding modes implemented in chop. We consider
binary64 as storage format, and binary16 (left), bfloat16 (center), and TensorFloat-32 (right) as
target formats.

The input data is obtained by manipulating the entries of an n X n matrix X of pseudo-random
numbers uniformly distributed in (0, 1). To generate a matrix of normal numbers, we add to each

entry of X the constant value xx(xﬁ)n,
(¢

uniformly in the interval (x ‘)n* 1+ xfli)n).

which guarantees that x;;, for i,j = 1,...,n, is distributed

mi
In all cases, the speedup is greater than one and increases with the size of the input matrix. In

other words, cpfloat_ml is always faster than chop, and particularly so for larger matrices. The
two rounding modes for which the new algorithms bring the most significant gains are the two
flavors of stochastic rounding. This is expected: Generating pseudo-random numbers accounts for
a large fraction of the execution time for these rounding modes, and by using a more efficient
pseudo-random number generator the new algorithms have a great advantage over chop. The
remaining four rounding modes show a very similar speedup, although the curves for round-to-
nearest are generally slightly favorable.

We repeated the experiment using binary32 instead of binary64 as storage format and consider-
ing matrices whose entries are subnormal, rather than normal, in the target format. The results of
these experiments are not included here, as they are not noticeably different from those in Figure 2.

Zhttps://github.com/higham/chop.

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 18. Publication date: June 2023.

https://github.com/higham/chop

18:26 M. Fasi and M. Mikaitis

binary16 bfloat16 TensorFloat-32
103 SRS Bt e e 103 SRS Bt e e 103 SSEsHl e e e
i i i §s i 3
T Ik ™
102 £ 102 |= £ 102 |= T
= = AN ,X- = aa))=t
B T B TV B BT N
B [¥ = [4 + e 'i
B B Vi P ="~ il
10! 101 g 10! ===t
100 1 | O A 11| | 100 1 | O 11| 100 1 N O A 1| WA
10 10! 102 10® 10* 10© 100 102 10® 10% 10 10" 102 10® 10%
n n n
—&— round-to-nearest - ©- round-toward-+oo - round-toward-—co
--#--round-toward-zero - --- stochastic rounding (prop.) ---¢--- stochastic rounding (unif.)

Fig. 2. Ratio of the execution times of chop to that of cpfloat_ml on nXxn matrices of normal floating-point
numbers stored in binary64. Target formats are binary16 (left), bfloat16 (center), and TensorFloat-32 (right).

binary16 bfloat16 TensorFloat-32
300 : —=p 30 300
.
250 | /_:' - 250 250
200 |- "I\"’@ 200 200
150 |- i {150 150

100 100 100

50 50

50

t t t
—E— round-to-nearest - ©- round-toward-+co - round-toward-—oo
--%--round-toward-zero - --- stochastic rounding (prop.) ---¢--- stochastic rounding (unif.)

Fig. 3. Ratio of the execution times of chop to that of cpfloat_ml on a 10,000 X 10,000 matrix of normal
floating-point numbers stored in binary64 as the number of threads increases. Target formats are binary16
(left), bfloat16 (center), and TensorFloat-32 (right).

The timings used to generate Figure 2 were obtained allowing MATLAB to use all 24 computa-
tional threads available on the system whereon the experiment was run. To assess how the better
performance of cpfloat_ml depends on the number of threads used, we run a strong scaling
experiment. We took matrices of size n = 10,000 (the largest value considered in Figure 2) and
measured the speedup as the number ¢ of computational threads increases. We did this by setting
the maximum number of computational threads that MATLAB is allowed to use by means of the
function maxNumCompThreads. The ratios between the execution times of chop and cpfloat_ml
for binary16, bfloat16, and TensorFloat-32 are reported in Figure 3.

We note that the execution time of both functions increases as the number of threads is re-
duced, which confirms that they can both exploit parallelism and take advantage of additional

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 18. Publication date: June 2023.

CPFloat: A C Library for Simulating Low-precision Arithmetic 18:27

binary16 bfloat16 TensorFloat-32
SSe s st el 102 ——————————— S 102

B SR e e B il e e e A

TTTTT
it
—_
(=)
—

B

i}
1

10° = i 10° 3 i 10° 3 i
10—] N A 1 A 10—] N A 1 A 10—1 N A 1 A i
10 100 102 10° 10* 0 10° 10 10 10 10* 10 100 102 10® 10*
n n n
—&— round-to-nearest - ©- round-toward-+oco
% round-toward-—co --#-- round-toward-zero

Fig. 4. Ratio of the execution times of flround from INTLAB V12 to that of cpfloat_ml on n X n matrices
of normal floating-point numbers stored in binary64.

computational threads available. On such large matrices, cpfloat_ml is always at least one order
of magnitude faster than chop. For directed rounding modes, the speedup is just over 20x if a
single thread is used; it increases until ¢+ < 12, which is the maximum number of cores of one of
the available CPUs, and then settles down just below 100x. The speedup for round-to-nearest os-
cillates between 50x and 120x but follows a similar trend. For the two stochastic rounding modes,
however, the speedup does not stop increasing at t = 12 and reaches just below 300X for ¢t = 24.

The data shows that chop and cpfloat_ml can both take advantage of additional computational
resources, but the latter is more efficient than the former at doing so.

We compared the performance of cpfloat_ml and of the MATLAB function f_d_dec2floatp
from the FLOATP_Toolbox!? in a similar way. This library is less efficient than chop at the task we
examine: It is typically over 100 times slower than cpfloat_ml at simulating binary16 and bfloat16
arithmetic and always over 1,000 slower at simulating TensorFloat-32 arithmetic.

Finally, we run a similar comparison with INTLAB’s flround function, part of the f1 custom
precision arithmetic library [55] of INTLAB.!* The results are shown in Figure 4. This rounding
function supports only binary64 as a storage format and does not support rounding to odd or
stochastic rounding modes. These experiments show that cpfloat_ml is faster than INTLAB’s
flround by up to 9x.

We remark that chop, the FLOATP_Toolbox, and INTLAB are entirely written in MATLAB,
whereas CPFloat relies on optimized C code. Therefore, the performance observations in this
section should be understood as a comparison of implementations available in MATLAB, rather
than comparison among the underlying algorithms.

8.3 Overhead of the MATLAB Interface

As a final test, we consider the overhead introduced by MATLAB when calling the underlying C
implementation of the rounding algorithms. In Figure 5, we compare the execution time required
to convert a matrix to binary16 with a direct call to the C code (first column) or with a call to the

Bhttps://gerard-meurant.pagesperso-orange.fr/floatp.zip.
Yhttps://www.tuhh.de/ti3/rump/intlab/.

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 18. Publication date: June 2023.

https://gerard-meurant.pagesperso-orange.fr/floatp.zip
https://www.tuhh.de/ti3/rump/intlab/

18:28 M. Fasi and M. Mikaitis

cpfloat in binary32. cpfloat_ml in binary32. Speedup in binary32.
10_12 ESEEEEEaE| ESEEEE] 10_12 ESEEEEEEE| \\Hui 10 T T TTTTT T TTTTT
8 B B i gl i
3 RN A
i i § i 6| -
= 1 107k g
§ B [P e i
1%
-] *'F]
10—5 Ll L1l 10—5 IR LIl
102 103 104 102 103 104 102 103 104
n n n
cpfloat in binary64. cpfloat_ml in binary64. Speedup in binary64.
10_1 10—1 10

A AL
A\

= *. @

B

—_
S
no

_'—{.‘“”\ TTTTM T TTIM T TTTI

=
!
4P

-4
10 2
10-5 sl EANH 10-5 [{11 [[T 0 LT
10? 10’ 10 10? 10° 10* 10? 10° 10*
n n n
—=— ties-to-away - o- ties-to-zero - ties-to-even
- -#-- round-toward-+oo - x- - round-toward-—co ---¢--- round-toward-zero
---a-- stochastic rounding (prop.) --v--- stochastic rounding (unif.) round-to-odd

Fig. 5. Execution time, in seconds, of cpfloat (first column) and cpfloat_ml (second column) on matrices
of increasing order n and target format binary16. The third column represents the ratio of the execution time
in the first column to that in the second.

MEX interface in MATLAB (second column). As the performance of the two algorithms is very
similar and the data in the two series is hard to compare directly, we provide the speedup in the
third column. We repeat the experiment for both binary32 (top row) and binary64 (bottom row).
We remark that the C functions were tuned by using the make autotune command, whereas for
the MEX interface, we used cpfloat_autotune, a MATLAB function included in the software
package.

The raw timings show that in our implementations stochastic rounding is the slowest rounding
mode. The performance of the other rounding modes is so similar that the lines are hard to distin-
guish for both the C and the MEX interface. The data in the right-most column shows that for both
storage formats we consider, the overhead of the MEX interface is significant for small matrices,
but becomes negligible for matrices of order 3,000 or more.

Our results seem to suggest that MATLAB code that requires the functionalities of cpfloat_ml
should be translated into C to obtain the maximum efficiency. We would like to stress, however,
that this translation might bring only a minor performance gain and in fact not be worth the effort,
unless the cpfloat function is used extensively on matrices of small size. In fact, the overhead of

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 18. Publication date: June 2023.

CPFloat: A C Library for Simulating Low-precision Arithmetic 18:29

the MEX interface is modest in absolute terms and is noticeable only in cases when the overall
execution time of both cpfloat and cpfloat_ml is below 5 milliseconds. This suggests that, in
most cases, switching to a pure C implementation would bring only a marginal benefit, if any.

9 SUMMARY AND FUTURE WORK

Motivated by the growing number of tools and libraries for simulating low-precision arithmetic,
we considered the problem of rounding floating-point numbers to low precision in software. We de-
veloped low-level algorithms for a number of rounding modes, explained how to implement them
efficiently using bit manipulation, and discussed how to validate their behavior experimentally by
means of exhaustive testing. We developed CPFloat, an efficient C library that implements all the
algorithms discussed here and can be used from within MATLAB and Octave by means of a MEX
interface we provide. When used in C, CPFloat can act as a full custom-precision floating-point
arithmetic library, as it supports elementary arithmetic operations and mathematical functions
such as those available in math. h for binary32 and binary64. Our experimental results show that
the new implementations outperform existing alternatives in C, C++, and MATLAB.
Traditionally, floating-point arithmetic has been the most widely adopted technique for working
with non-integer numbers in high-performance scientific computing, but alternative methods have
recently begun to gain popularity. In particular, we believe that the techniques we developed here
could be adapted to posit arithmetic [12, 26], a generalization of the IEEE 754 floating-point number
format, and to fixed-point arithmetic, a de facto standard technique for working with reals on
systems that are not equipped with a floating-point unit. This will be the subject of future work.

ACKNOWLEDGMENTS

The authors are grateful to Nicholas J. Higham, for discussions about the MATLAB function chop
and for insightful observations on early drafts of this document, to Laura Morgenstern and Anne
Reinarz, for feedback on the manuscript, and to Theo Mary, for testing the MEX interface to
CPFloat and for reporting bugs affecting the software. The authors thank the anonymous referees
of ACM Transactions on Mathematical Software for their comments that substantially improved the
quality of the article and led to a change in the scope of the library.

REFERENCES

[1] Arm Limited. 2020. Arm Architecture Reference Manual. Technical Report ARM DDI 0487F.c (ID072120). Retrieved
from https://developer.arm.com/documentation/ddi0487/fc/.

[2] Guillaume Aupy, Anne Benoit, Aurélien Cavelan, Massimiliano Fasi, Yves Robert, Hongyang Sun, and Bora Ugar.
2016. A festschrift for selim g. akl. Emergent Computation, Andrew Adamatzky (Ed.). Emergence, Complexity and
Computation (ECC), Vol. 24, Springer, Cham. DOI : https://doi.org/10.1007/978-3-319-46376-6_11

[3] Sylvie Boldo and Guillaume Melquiond. 2008. Emulation of a FMA and correctly rounded sums: Proved algorithms
using rounding to odd. IEEE Trans. Comput. 57, 4 (Feb. 2008), 462—471. DOI : https://doi.org/10.1109/tc.2007.70819

[4] Emeric Brun, David Defour, Pablo de Oliveira Castro, Matei Istoan, Davide Mancusi, Eric Petit, and Alan Vaquet. 2021.
A study of the effects and benefits of custom-precision mathematical libraries for HPC codes. IEEE Trans. Emerg. Topics
Comput. 9, 3 (July 2021), 1467-1478. DOI : https://doi.org/10.1109/tetc.2021.3070422

[5] J. Mark Bull. 1999. Measuring synchronisation and scheduling overheads in OpenMP. In Proceedings of 1st European
Workshop on OpenMP. Wiley, 99-105.

[6] J. Mark Bull, Fiona Reid, and Nicola McDonnell. 2012. A microbenchmark suite for OpenMP tasks. In Proceedings
of the 8th International Workshop on OpenMP (Lecture Notes in Computer Science, Vol. 7312). Springer-Verlag, Berlin,
271-274. DOI : https://doi.org/10.1007/978-3-642-30961-8_24

[7] Neil Burgess, Jelena Milanovic, Nigel Stephens, Konstantinos Monachopoulos, and David Mansell. 2019. Bfloat16 pro-
cessing for neural networks. In Proceedings of the 26th IEEE Symposium on Computer Arithmetic. Institute of Electrical
and Electronics Engineers, 88-91. DOI : https://doi.org/10.1109/arith.2019.00022

[8] Michael P. Connolly, Nicholas J. Higham, and Theo Mary. 2021. Stochastic rounding and its probabilistic backward
error analysis. SIAM F. Sci. Comput. 43, 1 (Jan. 2021), A566—-A585. DOI : https://doi.org/10.1137/20m1334796

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 18. Publication date: June 2023.

https://developer.arm.com/documentation/ddi0487/fc/
https://doi.org/10.1007/978-3-319-46376-6_11
https://doi.org/10.1109/tc.2007.70819
https://doi.org/10.1109/tetc.2021.3070422
https://doi.org/10.1007/978-3-642-30961-8_24
https://doi.org/10.1109/arith.2019.00022
https://doi.org/10.1137/20m1334796

18:30 M. Fasi and M. Mikaitis

(9]

[10]

[11]
[12]

[13]

[14]
[15]

[16]

(17]
(18]

[19]

[20]

[21]

[22]
[23]
[24]

[25]

[26]
[27]
[28]

[29]

[30]

Matteo Croci, Massimiliano Fasi, Nicholas J. Higham, Theo Mary, and Mantas Mikaitis. 2022. Stochastic rounding:
Implementation, error analysis and applications. Roy. Societ. Open Sci. 9, 3 (Mar. 2022). DOI: https://doi.org/10.1098/
rs0s.211631

Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha Choday, Georgios
Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, Yuyun Liao, Chit-Kwan Lin, Andrew Lines, Ruokun Liu, Deepak Math-
aikutty, Steve McCoy, Arnab Paul, Jonathan Tse, Guruguhanathan Venkataramanan, Yi-Hsin Weng, Andreas Wild,
Yoonseok Yang, and Hong Wang. 2018. Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro
38, 1 (Jan. 2018), 82—99. DOI : https://doi.org/10.1109/MM.2018.112130359

Andrew Dawson and Peter D. Ditben. 2017. rpe v5: An emulator for reduced floating-point precision in large numerical
simulations. Geosci. Model Dev. 10, 6 (June 2017), 2221-2230. DOI : https://doi.org/10.5194/gmd-10-2221-2017

Florent de Dinechin, Luc Forget, Jean-Michel Muller, and Yohann Uguen. 2019. Posits: The good, the bad and the ugly.
In Proceedings of the Conference for Next Generation Arithmetic. ACM Press, 1-10. DOI : https://doi.org/10.1145/3316279.
3316285

Massimiliano Fasi, Nicholas J. Higham, Florent Lopez, Theo Mary, and Mantas Mikaitis. 2023. Matrix multiplication
in multiword arithmetic: Error analysis and application to GPU tensor cores. SIAM . Sci. Comput. 45, 1 (Feb. 2023),
C1-C19. DOI: https://doi.org/10.1137/21M 1465032

Massimiliano Fasi, Nicholas J. Higham, Mantas Mikaitis, and Srikara Pranesh. 2021. Numerical behavior of NVIDIA
tensor cores. Peer] Comput. Sci. 7 (Feb. 2021), e330(1-19). DOI : https://doi.org/10.7717/peerj-cs.330

Massimiliano Fasi and Mantas Mikaitis. 2021. Algorithms for stochastically rounded elementary arithmetic operations
in IEEE 754 floating-point arithmetic. IEEE Trans. Emerg. Topics Comput. 9, 3 (July 2021), 1451-1466. DOI : https://doi.
org/10.1109/tetc.2021.3069165

Goran Flegar, Florian Scheidegger, Vedran Novakovi¢, Giovani Mariani, Andrés E. Tomas, A. Cristiano I. Malossi, and
Enrique S. Quintana-Orti. 2019. FloatX: A C++ library for customized floating-point arithmetic. ACM Trans. Math.
Softw. 45, 4 (Dec. 2019), 1-23. DOI : https://doi.org/10.1145/3368086

George E. Forsythe. 1950. Round-off errors in numerical integration on automatic machinery. Bull. Amer. Math. Societ.
56 (Nov. 1950), 55-64. DOI : https://doi.org/10.1090/S0002-9904-1950-09343-4

George E. Forsythe. 1959. Reprint of a note on rounding-off errors. SIAM Rev. 1, 1 (Jan. 1959), 66-67. DOI : https://
doi.org/10.1137/1001011

Laurent Fousse, Guillaume Hanrot, Vincent Lefévre, Patrick Pélissier, and Paul Zimmermann. 2007. MPFR: A multiple-
precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33, 2 (June 2007), 13:1-13:15.
DOI:https://doi.org/10.1145/1236463.1236468

David Goldberg. 1991. What every computer scientist should know about floating-point arithmetic. ACM Comput.
Surv. 23,1 (Mar. 1991), 5-48. DOI : https://doi.org/10.1145/103162.103163

Frédéric Goualard. 2020. Generating random floating-point numbers by dividing integers: A case study. In Proceedings
of the International Conference on Computational Science. Springer-Verlag, Cham, Switzerland, 15-28. DOI : https://doi.
0rg/10.1007/978-3-030-50417-5_2

Graphcore Limited. 2020. IPU Programmer’s Guide. Retrieved from https://www.graphcore.ai/docs/ipu-programmers-
guide.

Khronos OpenCL Working Group. 2019. The OpenCL C++ 1.0 Specification. The Khronos Group. Retrieved from
https://registry.khronos.org/OpenCL/specs/2.2/pdf/OpenCL_Cxx.pdf.

Khronos OpenCL Working Group. 2019. The OpenCL C 2.0 Specification. The Khronos Group. Retrieved from
https://registry.khronos.org/OpenCL/specs/2.2/pdf/OpenCL_C.pdf.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. 2015. Deep learning with limited
numerical precision. In Proceedings of the 32nd International Conference on Machine Learning (Proceedings of Machine
Learning Research, Vol. 37). PMLR, 1737-1746. Retrieved from http://proceedings.mlr.press/v37/guptal5.html.

John L. Gustafson and Isaac T. Yonemoto. 2017. Beating floating point at its own game: Posit arithmetic. Supercomput.
Front. Innov. 4, 2 (June 2017), 71-86. DOI : https://doi.org/10.14529/jsti170206

Nicholas J. Higham. 2002. Accuracy and Stability of Numerical Algorithms (2nd ed.). Society for Industrial and Applied
Mathematics, Philadelphia, PA. DOI : https://doi.org/10.1137/1.9780898718027

Nicholas J. Higham and Srikara Pranesh. 2019. Simulating low precision floating-point arithmetic. SIAM . Sci. Comput.
41, 5 (Oct. 2019), C585-C602. DOI : https://doi.org/10.1137/19M1251308

Michael Hopkins, Mantas Mikaitis, Dave R. Lester, and Steve Furber. 2020. Stochastic rounding and reduced-precision
fixed-point arithmetic for solving neural ordinary differential equations. Philos. Trans. R. Soc. A 378, 2166 (Jan. 2020),
22. DOI :https://doi.org/10.1098/rsta.2019.0052

IEEE. 1985. IEEE Standard for Binary Floating-point Arithmetic, ANSI/IEEE Standard 754-1985. Institute of Electrical
and Electronics Engineers, Piscataway, NJ. DOI : https://doi.org/10.1109/IEEESTD.1985.82928

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 18. Publication date: June 2023.

https://doi.org/10.1098/rsos.211631
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.5194/gmd-10-2221-2017
https://doi.org/10.1145/3316279.3316285
https://doi.org/10.1137/21M1465032
https://doi.org/10.7717/peerj-cs.330
https://doi.org/10.1109/tetc.2021.3069165
https://doi.org/10.1145/3368086
https://doi.org/10.1090/S0002-9904-1950-09343-4
https://doi.org/10.1137/1001011
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1145/103162.103163
https://doi.org/10.1007/978-3-030-50417-5_2
https://www.graphcore.ai/docs/ipu-programmers-guide
https://registry.khronos.org/OpenCL/specs/2.2/pdf/OpenCL_Cxx.pdf
https://registry.khronos.org/OpenCL/specs/2.2/pdf/OpenCL_C.pdf
http://proceedings.mlr.press/v37/gupta15.html
https://doi.org/10.14529/jsfi170206
https://doi.org/10.1137/1.9780898718027
https://doi.org/10.1137/19M1251308
https://doi.org/10.1098/rsta.2019.0052
https://doi.org/10.1109/IEEESTD.1985.82928

CPFloat: A C Library for Simulating Low-precision Arithmetic 18:31

[31] IEEE. 2008. IEEE Standard for Floating-point Arithmetic, IEEE Std 754-2008 (revision of IEEE Std 754-1985). Institute of

Electrical and Electronics Engineers, Piscataway, NJ. DOIL : https://doi.org/10.1109/IEEESTD.2008.4610935

IEEE. 2019. IEEE Standard for Floating-point Arithmetic, IEEE Std 754-2019 (revision of IEEE Std 754-2008). Institute of

Electrical and Electronics Engineers, Piscataway, NJ. DOIL : https://doi.org/10.1109/IEEESTD.2019.8766229

[33] Vincenzo Innocente and Paul Zimmermann. 2022. Accuracy of Mathematical Functions in Single, Double, Extended
Double and Quadruple Precision. Technical Report hal-03141101, version 2. Inria. Retrieved from https://hal.inria.fr/hal-
03141101v2.

[34] Intel Corporation. 2018. BFLOAT16—Hardware Numerics Definition. Retrieved from https://software.intel.com/en-
us/download/bfloat16-hardware-numerics-defnition.

[35] Intel Corporation. 2020. Intel Architecture Instruction Set Extensions and Future Features Programming Reference.
Technical Report 319433-038 (March 2020). Retrieved from https://software.intel.com/sites/default/files/managed/c5/
15/architecture-instruction-set-extensions-programming-reference.pdf.

[36] International Business Machines Corporation. 2017. Power ISA Version 3.0 B. (2017). Retrieved from https://ibm.ent.
box.com/s/1hzewkwf8rbju5h9iyf44wm94amnlerv.

[37] Vincent Lefévre. 2013. SIPE: Small integer plus exponent. In Proceedings of the 21st IEEE Symposium on Computer
Arithmetic. Institute of Electrical and Electronics Engineers, 99-106. DOI : https://doi.org/10.1109/arith.2013.22

[38] Vincent Lefévre. 2013. Sipe: A Mini-library for Very Low Precision Computations with Correct Rounding. Technical
Report hal-00864580, version 1. Inria. Retrieved from https://hal.inria.fr/hal-00864580.

[39] Cedric Lichtenau, Steven Carlough, and Silvia Melitta Mueller. 2016. Quad precision floating point on the IBM z13.
In Proceedings of the 23rd IEEE Symposium on Computer Arithmetic. Institute of Electrical and Electronics Engineers,
87-94. DOI : https://doi.org/10.1109/ARITH.2016.26

[40] Sandra Loosemore, with Richard M. Stallman, Roland McGrath, Andrew Oram, and Ulrich Drepper. 2022. The GNU
C Library Reference Manual (for version 2.36 ed.). Free Software Foundation. Retrieved from https://www.gnu.org/
software/libc/manual/pdf/libc.pdf.

[41] Gérard Meurant. 2020. FLOATP_Toolbox. Retrieved from https://gerard-meurant.pagesperso-orange.fr/floatp.zip.
Matlab software, variable precision floating point arithmetic.

[42] Cleve B. Moler. 2017. “Half Precision” 16-Bit Floating Point Arithmetic. Blog post. Retrieved from https://blogs.
mathworks.com/cleve/2017/05/08/half- precision-16-bit-floating-point-arithmetic.

[43] Jean-Michel Muller. 2005. On the Definition of ulp(X). Technical Report RR-5504, LIP RR-2005-09. Inria, LIP. Retrieved
from https://hal.inria.fr/inria-00070503.

[44] Jean-Michel Muller, Nicolas Brunie, Florent de Dinechin, Claude-Pierre Jeannerod, Mioara Joldes, Vincent Lefévre,
Guillaume Melquiond, Nathalie Revol, and Serge Torres. 2018. Handbook of Floating-point Arithmetic (2nd ed.).
Birkhauser. DOI : https://doi.org/10.1007/978-3-319-76526-6

[45] NVIDIA Corporation. 2016. NVIDIA Tesla P100 Architecture. Technical Report WP-08019-001_v01.1. Retrieved from
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf.

[46] NVIDIA Corporation. 2020. NVIDIA A100 Tensor Core GPU Architecture. Technical Report V1.0. Retrieved from https:
//images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf.

[47] NVIDIA Corporation. 2022. NVIDIA H100 Tensor Core GPU Architecture. Technical Report V1.03. Retrieved from https:
//resources.nvidia.com/en-us-tensor-core.

[48] Melissa E. O'Neill. 2014. PCG: A Family of Simple Fast Space-efficient Statistically Good Algorithms for Random Number
Generation. Technical Report HMC-CS-2014-0905. Harvey Mudd College. Retrieved from https://www.cs.hmc.edu/tr/
hmec-cs-2014-0905.pdf.

[49] John Osorio, Adria Armejach, Eric Petit, Greg Henry, and Marc Casas. 2022. FASE: A fast, accurate and seamless
emulator for custom numerical formats. In Proceedings of the IEEE International Symposium on Performance Analysis
of Systems and Software. 144-146. DOI : https://doi.org/10.1109/ispass55109.2022.00017

[50] Michael L. Overton. 2001. Numerical Computing with IEEE Floating Point Arithmetic. Society for Industrial and Applied
Mathematics, Philadelphia, PA. DOI : https://doi.org/10.1137/1.9780898718072

[51] Radeon Technologies Group. 2017. Radeon’s Next-generation Vega Architecture. Technical Report. Advanced Micro
Devices. Retrieved from https://en.wikichip.org/w/images/a/al/vega-whitepaper.pdf.

[52] Anne Reinarz, Jean-Mathieu Gallard, and Michael Bader. 2018. Influence of a-posteriori subcell limiting on fault fre-
quency in higher-order DG schemes. In Proceedings of the 8th IEEE/ACM Workshop on Fault Tolerance for HPC at
eXtreme Scale (FTXS). Institute of Electrical and Electronics Engineers, Piscataway, NJ, 79-86. DOI : https://doi.org/10.
1109/ftxs.2018.00012

[53] Pierre Roux. 2014. Innocuous double rounding of basic arithmetic operations. J. Formaliz. Reason. 7, 1 (July 2014),

131-142. DOI : https://doi.org/10.6092/issn.1972-5787/4359

Siegfried M. Rump. 1999. INTLAB — INTerval LABoratory. In Developments in Reliable Computing. Springer-Verlag,

Dordrecht, Netherlands, 77-104. DOI : https://doi.org/10.1007/978-94-017-1247-7_7

(32

—

[54

flan)

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 18. Publication date: June 2023.

https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1109/IEEESTD.2019.8766229
https://hal.inria.fr/hal-03141101v2
https://software.intel.com/en-us/download/bfloat16-hardware-numerics-defnition
https://software.intel.com/sites/default/files/managed/c5/15/architecture -instruction-set-extensions-programming-reference.pdf
https://ibm.ent.box.com/s/1hzcwkwf8rbju5h9iyf44wm94amnlcrv
https://doi.org/10.1109/arith.2013.22
https://hal.inria.fr/hal-00864580
https://doi.org/10.1109/ARITH.2016.26
https://www.gnu.org/software/libc/manual/pdf/libc.pdf
https://gerard-meurant.pagesperso-orange.fr/floatp.zip
https://blogs.mathworks.com/cleve/2017/05/08/half-precision-16-bit-floati ng-point-arithmetic
https://hal.inria.fr/inria-00070503
https://doi.org/10.1007/978-3-319-76526-6
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architectur e-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampe re-architecture-whitepaper.pdf
https://resources.nvidia.com/en-us-tensor-core
https://www.cs.hmc.edu/tr/hmc-cs-2014-0905.pdf
https://doi.org/10.1109/ispass55109.2022.00017
https://doi.org/10.1137/1.9780898718072
https://en.wikichip.org/w/images/a/a1/vega-whitepaper.pdf
https://doi.org/10.1109/ftxs.2018.00012
https://doi.org/10.6092/issn.1972-5787/4359
https://doi.org/10.1007/978-94-017-1247-7_7

18:32 M. Fasi and M. Mikaitis

[55]

[56]

[57]

[58]

[59]

[60]

Siegfried M. Rump. 2017. IEEE754 precision-k base-f arithmetic inherited by precision-m base-f arithmetic for
k < m. ACM Trans. Math. Softw. 43, 3 (Jan. 2017), 1-15. DOI : https://doi.org/10.1145/2785965

John Osorio Rios, Adria Armejach, Eric Petit, Greg Henry, and Marc Casas. 2021. Dynamically adapting floating-
point precision to accelerate deep neural network training. In Proceedings of the 20th IEEE International Conference on
Machine Learning and Applications. 980-987. DOI : https://doi.org/10.1109/ICMLA52953.2021.00161

Philipp Samfass, Tobias Weinzier]l, Anne Reinarz, and Michael Bader. 2021. Doubt and redundancy kill soft errors—
Towards detection and correction of silent data corruption in task-based numerical software. In Proceedings of the
11th IEEE/ACM Workshop on Fault Tolerance for HPC at eXtreme Scale. Institute of Electrical and Electronics Engineers,
Piscataway, NJ. DOI : https://doi.org/10.1109/ftxs54580.2021.00005

Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and Kailash Gopalakrishnan. 2018. Training deep neural
networks with 8-bit floating point numbers. In Advances in Neural Information Processing Systems, Vol. 31. Curran
Associates, 7675-7684. Retrieved from http://papers.nips.cc/paper/7994-training-deep-neural-networks-with-8-bit-
floating-point-numbers.pdf.

James Hardy Wilkinson. 1963. Rounding Errors in Algebraic Processes. (Notes on Applied Science No. 32). Her Majesty’s
Stationery Office.

Tianyi Zhang, Zhiqiu Lin, Guandao Yang, and Christopher De Sa. 2019. QPyTorch: A low-precision arithmetic simu-
lation framework. In Proceedings of the 5th Workshop on Energy Efficient Machine Learning and Cognitive Computing -
NeurIPS Edition. Institute of Electrical and Electronics Engineers, Piscataway, NJ, 11-13. DOIL: https://doi.org/10.1109/
emc2-nips53020.2019.00010

Received 13 May 2022; revised 22 October 2022; accepted 9 February 2023

ACM Transactions on Mathematical Software, Vol. 49, No. 2, Article 18. Publication date: June 2023.

https://doi.org/10.1145/2785965
https://doi.org/10.1109/ICMLA52953.2021.00161
https://doi.org/10.1109/ftxs54580.2021.00005
http://papers.nips.cc/paper/7994-training-deep-neural-networks-with-8-bit -floating-point-numbers.pdf
https://doi.org/10.1109/emc2-nips53020.2019.00010

