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Abstract. Missing values are common in real datasets, and what to do about them
is a large and challenging question. This column focuses on the easiest problems in
which a researcher is clear, or at least highly confident, about what missing values
should be instead, implying a deterministic replacement. The main tricks are
copying values from observation to observation and using the ipolate command.
Both may often be extended simply to panel or longitudinal datasets or to other
datasets with a group structure, such as data on individuals within families or
households. This column includes how to satisfy constraints that interpolation
is confined to filling gaps between values known to be equal or to observations
moderately close to a known value in time or in some other sequence or position
variable.
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1 Introduction
Missing values are common in real datasets, especially those with many variables or
observations. There are just so many reasons why a value may not be on hand. An
entry in a data cell of “not available” would often be a euphemism of some kind for
(say) person refused to answer, patient too ill, true conditions in that country are a
matter of guesswork, firm ceased trading, machine broke, gauge overtopped by flood,
observer forgot to write it down, or whatever. What to do about missing values is thus
a difficult and challenging question, with answers varying in complexity up to multiple
imputation. This column focuses on the easiest problems, in which a researcher knows,
or at least is highly confident about, what the answer should be as a nonmissing value.
The operations needed all have deterministic flavor, without a whiff of probabilistic
variation.

There are two main devices at this easy end to fill in missing values: copying down
or forward from observation to observation and using interpolation in its simplest form,
namely, linear interpolation as supported by ipolate (see [D] ipolate). Even brief
introductions to interpolation within texts on numerical analysis go much further (for
example, Morton [1964]; Wilkes [1966]; Hamming [1973]; Lancaster and Šalkauskas
[1986]; and Press et al. [2007]). If the topic of interpolation interests you, then you
should enjoy a splendidly detailed historical review by Meijering (2002).
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These problems arise commonly from the very start of anybody’s research with data
yet are rarely discussed in statistics texts or courses. One reason for that could be a
cultural divide between statistics and numerical analysis making it so that interpolation
as a deterministic problem is seen as beyond statistics. Early texts on combination
or calculus of observations (for example, Whittaker and Robinson [1924]) and a few
statistical texts (for example, Bowley [1901]; Yule [1911]; Davis [1973]; and Pollard
[1977]) do bridge the gap in various ways. Another reason could be that details about
data quality are somewhere between mildly irritating and highly embarrassing but either
way not of central interest. Yet another reason could be that the technique needed seems
too obvious or trivial to deserve discussion—once it is understood!

Three simple general points deserve emphasis right now.

Think about infilling graphically. Plotting the data and the results of replacement
can give an idea of what to do and of whether what you did makes sense.

Copy original data and work on a clone. When doing this for real with serious
datasets, work with copies of the original variables. clonevar (see [D] clonevar) is
convenient here. It copies information on variable and value labels, too, among other
details. Other way round, overwriting existing variables is dangerous because you might
mess them up and because it is always prudent to keep the original data as they came.
Some awkward supervisor or reviewer might insist on a comparison using those original
data. To keep code examples simple, we will not always do this in this column, but
good practice is a case of “do as we say, not as we do”.

Fix any problem with absent values first. The methods here do not themselves fix
implicit gaps in the data, a problem better described as one of absent values. Concretely,
suppose you have annual values for 2016 and 2020 and wish to infill values for 2017, 2018,
and 2019. Then first use a suitable command such as expand, fillin (see [D] expand,
[D] fillin) (Cox 2005), or tsfill (see [TS] tsfill) to add the extra observations with
missing values, which can then be replaced.

Related columns include Cox (2002, 2011) and Cox and Schechter (2019).

2 Copying within blocks
A good place to start is when observations occur in blocks but some variable, often an
identifier or category variable, is given only for the first observation in each block. Here
“observation” in Stata, as usual, means what in other software or from other points of
view is regarded as a record, row, or case. In, say, a spreadsheet, it can be tacit that
a value applies to rows below until the next such value. In Stata, and in statistical
software generally, such values need to be present explicitly.

Working backward, the technique to be explained can be exploited in advance, es-
pecially if you or someone working for you is typing in data.

Let’s assume that we are typing in data for some females and some males in blocks
of each. We have decided in advance that we will code the difference as 1 for female
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and 0 for male and will use female as the variable name. See Cox and Schechter (2019)
for a recycling of long-standing advice to name an indicator or dummy variable for the
category coded with 1. We are committed to define value labels in due course, but set
that aside. So we need to enter 1 and 0 just once each, and that gets us to a layout like
that produced as follows:

. set obs 10
Number of observations (_N) was 0, now 10.
. generate female = 1 in 1
(9 missing values generated)
. replace female = 0 in 6
(1 real change made)
. list female

female

1. 1
2. .
3. .
4. .
5. .

6. 0
7. .
8. .
9. .
10. .

In short, each nonmissing value is to be copied to replace the missing values below,
stopping at the next nonmissing value or at the end of the dataset. Here is a good
answer for this specific problem:

. replace female = 1 in 2/5
(4 real changes made)
. replace female = 0 in 6/L
(4 real changes made)

Note that L is worth remembering as a way to specify the last observation. Indeed, if
you thought of that, it would be fair to point out that something like

. generate female = 1 in 1/5
(5 missing values generated)
. replace female = 0 in 6/L
(5 real changes made)

would have been a better way to start. This method, however, does not generalize well.
The problem can be seen by imagining any more complicated setup with several such
blocks, so the same remedy would mean typing several such commands. That could be
error prone, tedious, and repetitive.

Now and henceforth: If your taste runs to abbreviating command names that can
be abbreviated, then you do not have to type out the full command name, generate.
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Curiously or otherwise, on the evidence I have seen, most experienced Stata users type
gen, evidently finding the minimal abbreviation g a little too cryptic, at least in code
intended to be easily readable by others. One well-known Stata user customarily writes
gene, but he did start out as a biologist.

There is a better and more general solution:

. replace female = female[_n - 1] if missing(female)

In this kind of statement, missing(female) would be replaced by female == . if
you needed that more restrictive condition. The difference is that missing(female)
includes any of the extended numeric missing values .a through .z as well as ., the
so-called system missing value. For more on missing values, start with help missing.

An advantage of the missing() syntax is that it carries over to missing string values,
namely, empty strings "".

Let’s back up. How does that command work? In the data segment just given, the
first missing value is in observation 2, so _n - 1 (observation number minus 1) is there
evaluated as 1, so the command is equivalent to

. replace female = female[1] in 2

So female[2] becomes a copy of female[1] with the same value, namely, 1. The next
observation with a missing value is in observation 3, so the command becomes equivalent
to

. replace female = female[2] in 3

But we just changed the value of female[2] to 1. So the value 1, just copied from
observation 1 to observation 2, is copied once more to observation 3. In short, because
Stata evaluates commands in observation order (Newson 2004), this sequence will con-
tinue within the first block of observations. What is more, the same kind of sequence
is repeated in the next block of observations. Copying is a cascading operation in this
sense, and there is automatically a loop over observations.

3 Panel data or other group data
The structure seen in the previous section is quite common, as is some kind of simple
twist on it in which observations are for a set of panels or other groups. Panel or
longitudinal datasets often have structures defined jointly by an identifier variable and
a time or sequence variable. Similar problems often arise with spatial data with one
spatial dimension—going up into the atmosphere, down below the surface, or along a
profile or transect. Other kinds of grouped data often have identifiers at two or more
distinct levels, say, family and individual.
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Our structure might resemble that from

. clear

. set obs 20
Number of observations (_N) was 0, now 20.
. egen id = seq(), block(10)
. egen time = seq(), to(10)
. generate value = _n if time == 1
(18 missing values generated)

If the problem is to copy the first value forward within each group, we need something
more like

. bysort id (time): replace value = value[1]
(18 real changes made)

or indeed

. bysort id (time): replace value = value[_n-1] if missing(value)

The tool of choice here is the by: prefix command. If this is unfamiliar, check out
the manual entry [D] by and its references, including Cox (2002).

What may look to be a different problem—copying one particular value to the rest
of a group—turns out to have a very similar solution. We just need to sort that value
to a known position, say, so that it becomes the first or last observation in each group.
Then we have an easier problem. Suppose that we have family data and want to copy
the mother’s age to all observations for a family; we might want to find out how much
older or younger everyone else is. A good step forward is to have or get an indicator
variable for being a mother.

To make this concrete, consider this toy dataset with family identifier fam_id, in-
dividual identifier ind_id, age, and role, where for the last variable 1 means father,
2 means mother, and 3 means child. If you have ever worked with such data or just
thought about families you know, you will realize that real data can be much more
complicated, but we need to start somewhere. If you wish to experiment yourself, the
dataset is bundled with the media for this column.

. use family_example, clear

. list

fam_id ind_id age role

1. 1 1 45 1
2. 1 2 42 2
3. 1 3 18 3
4. 1 4 15 3
5. 1 5 13 3

6. 2 1 29 2
7. 2 2 26 1
8. 2 3 5 3
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First, get an indicator with values 0 and 1:

. generate is_mother = role == 2

If we sort on that indicator variable within families, each mother is sorted to last, and
we have a way to refer to such observations.

. bysort fam_id (is_mother) : generate mother_age = age[_N] if is_mother[_N]

Look at the results:

. list

fam_id ind_id age role is_mot~r mother~e

1. 1 3 18 3 0 42
2. 1 5 13 3 0 42
3. 1 4 15 3 0 42
4. 1 1 45 1 0 42
5. 1 2 42 2 1 42

6. 2 2 26 1 0 29
7. 2 3 5 3 0 29
8. 2 1 29 2 1 29

The code gestures toward more complicated setups by adding if is_mother[_N],
equivalent to if is_mother[_N] == 1 in practice. If no mother is present in a family,
the indicator value will be 0 for all observations in that family.

If you are puzzled here by the use of _N, the principle is that when using by:, _N
refers to the number of observations in each block and thus to the last observation in
each block. If there are five observations in a block, the last is the fifth observation.

A trick you may prefer is to have an indicator with values −1 for true and 0 for
false. Then, on sorting, the “true” observations go first. Alternatively, you might like
to think about using gsort to sort the observation for each mother to the top of each
block.

Naturally, there are yet other ways to solve the problem. From Cox (2011), you can
see that

. egen mother_age = max(cond(is_mother, age, .)), by(fam_id)

gets you there in one. Other way round, we stop short here of what to do if there are
two or more mothers in each family.

4 Reversing time or other order: Negate the key variable
Occasionally, the reverse problem arises—wanting to carry the last value back in time
or backward in some other order. At first sight, this goal is frustrated by Stata’s default
of implementing commands in observation order—until you realize that reversing time
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just needs a negated time or sequence variable used temporarily in sorting the data, as
in

. generate rev_time = - time

If this seems a little puzzling, we will see an example shortly. The device is obvious
once you know but is worth the flag of a section title.

5 Adding caution
The spirit of this column is that a researcher knows, or at least is highly confident,
what a missing value should be. Confidence is often tempered with caution, as when
you want to fill in values if (and only if) known values on either side of a gap are equal
or only within a relatively short interval after the last known value. Let’s take these
variations in turn.

5.1 Interpolating only between equal known values

Wanting to build a bridge only between equal values implies that a sequence 1 . . . 1
should be filled in with values of 1, while 1 . . . 2 should be left as is. Here dots or
periods once more represent missing values. The example best fits, but is not quite
limited to, variables that encode categories. The sequence 1 . . . 2 implies—or leads us to
guess—that at some point between the first and the last value, the state jumped from
1 to 2, but we cannot say certainly when that happened.

Here you need contextual information on what is possible, or what is likely, to guide
a decision on whether what you do is defensible. If someone was reported as a university
graduate in 2016 and in 2020, it is safe to assume that such a person was a graduate
in between. We rule out some bizarre scenario in which someone was first stripped of
a degree but then got another one anyway. If someone was reported as employed, or
employed by a particular company, in 2016 and 2020, but values are missing in between,
filling in the gaps is a riskier change. The same would apply to, say, owning a car in
between.

Suppose we decided to fill in anyway, so long as values are the same on either side of a
gap. One way to do this is to interpolate forward and backward and use the interpolated
values only if methods agree. That is, 1 . . . 1 is interpolated as 1 1 1 1 1 either way,
but 1 . . . 2 is mapped to 1 1 1 1 2 by forward copying and to 1 2 2 2 2 by backward
copying, so methods disagree. Another way to do it is to use linear interpolation as well
as forward copying and again to accept interpolated values if and only if methods agree.

Let’s make that concrete. Like much in school mathematics, these problems charac-
teristically appear trivial when solved but tricky before you have gotten there. If you
wish to experiment yourself, the dataset is bundled with the media for this column.
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. use gap_example, clear

. list

id year value

1. 1 2016 1
2. 1 2017 .
3. 1 2018 .
4. 1 2019 .
5. 1 2020 1

6. 2 2016 1
7. 2 2017 .
8. 2 2018 .
9. 2 2019 .
10. 2 2020 2

. generate negyear = - year

. clonevar value_f = value
(6 missing values generated)
. bysort id (year) : replace value_f = value_f[_n-1] if missing(value_f)
(6 real changes made)
. clonevar value_b = value
(6 missing values generated)
. bysort id (negyear) : replace value_b = value_b[_n-1] if missing(value_b)
(6 real changes made)
. by id: ipolate value year, gen(value_l)
. sort id year
. list

id year value negyear value_f value_b value_l

1. 1 2016 1 -2016 1 1 1
2. 1 2017 . -2017 1 1 1
3. 1 2018 . -2018 1 1 1
4. 1 2019 . -2019 1 1 1
5. 1 2020 1 -2020 1 1 1

6. 2 2016 1 -2016 1 1 1
7. 2 2017 . -2017 1 2 1.25
8. 2 2018 . -2018 1 2 1.5
9. 2 2019 . -2019 1 2 1.75
10. 2 2020 2 -2020 2 2 2

This worked example raises some crucial points.

ipolate is Stata’s long-standing command for linear interpolation. If the term is
new to you, this is just what you did as a child, either frivolously with puzzle pictures or
more seriously with line graphs of data. You joined points or dots in a two-dimensional
space (perhaps on a sheet of paper) with straight line segments. As a secondary school
student in the 1960s, I used interpolation to get an extra decimal place out of printed
tables for logarithmic or other functions, a minor skill that quickly became redundant
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with the advent of inexpensive electronic calculators. More generally, reading “between
the lines” of published tables was a major motivator for interpolation methods.

Most pertinently here, ipolate’s linear segments will be flat or constant in the
interpolated variable if and only if values are equal on either side of a gap, which is
what we want here.

Note that needing to interpolate separately within groups or blocks of observations
is only a little more challenging than if the dataset is in effect one group or block. Both
replace and ipolate work with a by: prefix. In the case of replace, observations
need to be in a good sort order because otherwise you can easily copy the wrong
values. For ipolate, the command interpolates with respect to the second variable
named, regardless of initial sort order.

A historical aside: ipolate allows use of a by() option instead of a by: prefix. This
was the original syntax, still supported but now undocumented, and so you may see
examples of its use.

More importantly, you will see that ipolate takes the variable to be interpolated
literally, which is to say numerically. The command has no notion of whether answers
with fractional parts are sensible or acceptable; this decision is up to the user, who
should know.

In sum, checking that interpolation is acceptable only when it yields constants can
be done by checking copying forward, either with copying backward or with linear
interpolation. Either way, if the results are the same, you are good, as with id 1 in this
example; otherwise, you are not, as with id 2. So we could finish with something like

. generate wanted = value_f if value_f == value_b
(3 missing values generated)

or

. generate wanted = value_f if value_f == value_l

5.2 Interpolating only for shorter periods

Caution often exercised is to fill in missing values only if the last known value was close
in time or close as measured some other way. In homely terms, the notion is that one
might stretch evidence but only so far. Quite what the cutoff or threshold should be
is up to the researcher and can be anything from a wild guess to something reflecting
knowledge or understanding of a process. Let’s revisit our previous example and invoke
a rule that we will copy for at most two years. That is, we have to tell Stata when to
stop the cascade of replacements.
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. use gap_example, clear

. list

id year value

1. 1 2016 1
2. 1 2017 .
3. 1 2018 .
4. 1 2019 .
5. 1 2020 1

6. 2 2016 1
7. 2 2017 .
8. 2 2018 .
9. 2 2019 .
10. 2 2020 2

A solution grows out of keeping track of when we last knew a value. Again, this can
be calculated using our trick of copying forward.

. generate last_known = year if !missing(value)
(6 missing values generated)
. bysort id (year): replace last_known = last_known[_n-1] if missing(last_known)
(6 real changes made)
. list

id year value last_k~n

1. 1 2016 1 2016
2. 1 2017 . 2016
3. 1 2018 . 2016
4. 1 2019 . 2016
5. 1 2020 1 2020

6. 2 2016 1 2016
7. 2 2017 . 2016
8. 2 2018 . 2016
9. 2 2019 . 2016
10. 2 2020 2 2020

Now we copy downward within our cautious limit:

. clonevar copy = value
(6 missing values generated)
. bysort id (year) : replace copy = copy[_n-1] if missing(copy) &
> (year - last_known) <= 2
(4 real changes made)
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. list

id year value last_k~n copy

1. 1 2016 1 2016 1
2. 1 2017 . 2016 1
3. 1 2018 . 2016 1
4. 1 2019 . 2016 .
5. 1 2020 1 2020 1

6. 2 2016 1 2016 1
7. 2 2017 . 2016 1
8. 2 2018 . 2016 1
9. 2 2019 . 2016 .
10. 2 2020 2 2020 2

A little thought shows that this method also works with an irregularly spaced time
or other position or sequence variable, as would be typical of much data on patients
seen at various times and indeed in many other examples.

Modification to copy backward once more just requires a reversing of time or of the
relevant variable.

6 Increasing or decreasing linear sequences
A different case in which we can be clear what the missing value should be is when a
variable should increase linearly. If we wanted to type in a sequence of years, we could
type

. generate year = 2001 in 1

and follow with

. replace year = year[_n-1] + 1 if missing(year)

That will be recognized as just a variation on the now familiar trick of copying
downward. Adding 1 is what to do if you need it; adding 10 could make sense for a
series of census years given the common practice of holding a census once a decade.

This solution does not exclude others, naturally, such as

. generate year = 2000 + _n

or use of the range (see [D] range) command or of the seq() function within the egen
command.

All of these devices extend naturally to datasets with group structure, such as panel
or longitudinal data.

A related problem has to do with people’s ages, which unsurprisingly (should) in-
crease by 1 each year. Hence, missing values on age can be interpolated with reference
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to a yearly date variable. There can be small stuff to reckon with, such as people forget-
ting or being less than candid on how old they are or survey waves being implemented
at differing times of year and so before or after people’s birthdays in each year. For
these and other reasons, plotting age against year is often a good idea, although doing
that for many different people can be a challenge.

The section title mentions decreasing sequences, just a variation in principle, if less
common in practice.

7 Conclusion
Missing values are common in real datasets. What to do about them is a large and chal-
lenging question. This column has surveyed the easiest problems in which a researcher is
clear, or at least highly confident, about what missing values should be instead, implying
a deterministic replacement.

Major tricks and tips include

• copying values from observation to observation, exploiting the fact that replace
works in observation order;

• using a by: prefix and controlling sort order to replace within groups of obser-
vations (panel or longitudinal data, family or household data, and so forth);

• being willing to negate time or some other position or sequence values to copy
backward in a dataset;

• satisfying constraints that interpolation is confined to filling gaps between known
equal values or to observations within a certain distance between known values in
time or some other sequence or position variable; and

• adapting these ideas to increasing or decreasing sequences to be used in infill.
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