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1 Introduction

Consistency of truncations, i.e. ensuring that any solution of a lower-dimensional theory
obtained via Kaluza-Klein (KK) reduction automatically satisfies the higher-dimensional
equations of motion, is of obvious practical interest. The spectrum of the lower-dimensional
theory is determined by linearized KK analysis. However, nonlinear modifications away
from the infinitesimal neighbourhood of the ground state are required in order to capture
the interactions in the reduced theory and ensure that all higher-dimensional equations of
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motion are satisfied. The problem has received much recent (and not so-recent) attention,
and many instances of consistent truncation have been elaborated in the literature. The
conditions for a given truncation to be consistent are relatively straightforward when the
reduction is on a group manifold, or a quotient theoreof: only the modes invariant under
the group action should be kept [1].1 However, the conditions for consistent truncation for
more general internal manifolds are significantly less well understood.

This paper is an attempt to present a unified and synthetic approach to the construction
of consistent truncations, based on the geometric properties of the fibre bundle employed
in the reduction. We shall discuss here only the cases of sphere reductions (collected in
table 1), where our formulae can be compared with known uplift results [4–35]. Our analysis
retains the gauge fields for the full nonabelian isometry group of the sphere as well as
scalar fields encoding its deformation. The justification and content of our approach can be
summarized in three main points:

1. The popular approach, mostly based on variants of exceptional field theory (see
e.g. [16, 31, 36–40]), solves the problem of combining the lower-dimensional fields
into their higher-dimensional progenitors using clever applications of representations
of duality symmetries. In contrast, the starting point of our analysis is a classical
geometric object — the global angular form [41] en on an n-sphere bundle over the
AdS space in question. The naive space of deformations on an n-sphere is given
by SL(n + 1,R)/SO(n + 1), and the only group-theoretic fact required is that the
denominator and the numerator of this coset embed maximally into the duality group
and its maximal compact subgroup, respectively.2 In other words, our approach
offers an alternative and in some ways simpler starting point for constructing a given
consistent truncation ansatz.
When restricted to each fibre, en is the generator of the top cohomology of the fibre,
i.e. the volume form. The pull-back of its exterior derivative gives the Euler class
of the sphere bundle (notably it vanishes for even n). More details can be found in
section 2.1. Crucially, for any given sphere consistent truncation, the flux threading
the internal sphere can be reconstructed from this object — or rather, as we shall see,
from an appropriate incarnation of it, which we denote e′n.

2. The embedding of e′n into the consistent truncation ansatz (see section 2) allows us to
see several important universal features.
First, the flux through the undeformed n-sphere bundle is always of the form

F̂n|no defs = e′n. (1.1)

This can be thought of as a common starting point for all the sphere consistent
truncations. Away from the vacuum solution, the sphere is deformed and the solution

1In some cases the truncation includes a larger set of modes. Notably, the NS-NS sector of supergravity
(and more generally the bosonic string) admits a consistent truncation on any group manifold G in which
one retains the full set of gauge fields of the G×G isometry group of the bi-invariant metric on G [2, 3].

2In case of IIB reductions, one needs to incorporate SL(2) and U(1) factors, respectively. However, they
can and will be ignored here.
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needs to accommodate the associated scalar modes, which are encoded in a symmetric
unimodular matrix, T . The inclusion of these scalars simply amounts to shifting
e′n by an exact form. On a case-by-case basis there can also be contributions from
extra fields.

While an exact shift to e′n would in principle still allow the addition of an infinite
number of new terms, we demonstrate that the ambiguity can be fixed by considering
the contributions of the kinetic terms for F̂n to the scalar potential. General super-
symmetry arguments tell us that the scalar potential is quadratic in T (see section 3
for details). The part of the integral of |F̂n|2 on the n-sphere that yields no-derivative
terms is not manageable, and in general is not polynomial in T . However this is not
the only contribution to the scalar potential. The other comes from the reduction of
the higher dimensional Hilbert-Einstein term. This contribution is even less pleasant,
but it admits a choice of parameters from the deformed higher-dimensional metric that
collects all non-polynomial (non-quadratic) contributions into the integral of a perfect
square, while still leaving a free parameter. This contribution can be cancelled against
the contribution from the flux kinetic term, provided the final free parameter is set
to zero. Remarkably, by choosing the values for these free parameters as described
above, we land precisely on the exact shift to e′n and on the values for n and D (the
dimension D of the full theory) which are required for consistent truncation.

As an aside, these statements can be compared with those in [36] based on the
generalised parallelizability of spheres. There trivial SO(n + 1) connections were
considered. In that case, e′n = voln, and the shift to (1.1) is indeed exact, while the
relevant parameters are fixed based on the requirement of off-shell supersymmetry, to
the same values found here. Note that arguments based on the scalar potential of the
lower-dimensional theory have also appeared in [42].

3. Equation (1.1) is already sufficient for obtaining lower-dimensional topological Chern-
Simons couplings.3 Hence one way of describing our approach would be by saying
that it provides a consistent completion of the reduction in the topological sector.
The latter in turn functions as a backbone for the full consistent Kaluza-Klein ansatz.
This perspective could offer a fruitful counterpart to approaches rooted in exceptional
duality groups, whose details are in general dependent on the dimensions and the
amount of supersymmetry.

For many AdS5 theories with less supersymmetry, where the lower-dimensional
symmetry based approaches are less powerful, the Chern-Simons couplings can and
have been obtained by suitable modifications of e′n [45–47]. In other words, in all
these cases a new starting point similar to (1.1) is already available. While there are
a number of technical challenges in completing to the full solution from this starting
point, better understanding the general construction of e′n with scalar deformations
and its embedding into the consistent truncation ansatz are worth exploring.

3This is true e.g. for AdS7 and AdS5 reductions, as in [43, 44]. In AdS4 the Chern-Simons couplings
involve scalar fields, and require extra care.
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Higher dimensional theory Sphere Flux F̂ Dilaton Gauge group Extra fields

bosonic sector of
D = 11 sugra S4 Ĝ4 no SO(5) 5 three-forms

bosonic sector of
D = 11 sugra S7 ∗̂Ĝ4 no SO(8) 35 pseudoscalars

SL(2,R) singlet sector of
D = 10 type IIB sugra S5 F̂5 no SO(6) none

bosonic sector of massive
D = 10 type IIA sugra S6 ∗̂F̂4 yes ISO(7) see section 2.3.4

(2.1) with p = 2 in D dim. S2 F̂2 yes SO(3) none

(2.1) with p = 3 in D dim. S3 F̂3 yes SO(4) 1 two-form

(2.1) with p = 3 in D dim. SD−3 ∗̂F3 yes SO(D − 2) none

Table 1. Consistent truncations on spheres considered in this section. For each case, the higher-
dimensional theory is indicated, as well as the dimensionality of the sphere used in the truncation.
The quantity F̂ denotes the D-dimensional flux that threads the sphere; in each case we indicate
which field strength (or Hodge dual thereof) in the D-dimensional theory is identified with F̂ . The
column ‘Dilaton’ indicates whether the kinetic term for F̂ in the D-dimensional theory comes with a
dilaton prefactor. We also indicate the gauge group of the lower-dimensional gauged model. Finally,
the column ‘Extra fields’ collects the bosonic fields that have to be added for consistency, in addition
to the gauge fields of SO(n+ 1) and the scalars parametrizing the coset SL(n+ 1,R)/SO(n+ 1).

2 Global angular forms and sphere truncations

In this section we consider the sphere consistent truncations listed in table 1. Notice that
for 11d supergravity on S4 and S7, for type IIB supergravity on S5, and for massive type
IIA supergravity on S6 the consistent truncation applies to the full content of the model,
including fermions. For simplicity, throughout this work we restrict to the bosonic sectors
(and, for type IIB, to the SL(2,R) singlet sector consisting of the Einstein frame metric
and the self-dual five-form flux). We use D to denote the spacetime dimension of the
higher-dimensional model, d for the dimension of the lower-dimensional, and n for the
dimension of the sphere (so that clearly D = d+n). We use a hat for fields in D dimensions.
The D-dimensional theory contains, among other fields, an n-form field strength that
threads the Sn, which we denote F̂n.

For the fourth, fifth, and sixth entry in table 1 the starting D-dimensional theory is a
bosonic model with action

S(D) =
∫ [

R̂∗̂1− 1
2dφ̂ ∧ ∗̂dφ̂−

1
2e
−aφ̂F̂p ∧ ∗̂F̂p

]
, (2.1)

where R̂∗̂1 is the standard Einstein-Hilbert term, φ̂ is a real scalar (dilaton), and F̂p is the
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closed field strength of a (p− 1)-form gauge potential. The positive constant a is given by

a2 = 4− 2(p− 1)(D − p− 1)
D − 2 = 4− 2(n− 1)(D − n− 1)

D − 2 , (2.2)

which is the value required for the consistent truncation to be possible [35]. In the second
step, we have observed that the dimensionality n of the sphere equals p if the flux threading
the sphere is F̂p, and D− p if it is its Hodge dual ∗̂F̂p. In both cases we get the same value
of a2 as a function of D, n.

In each case, the modes retained in the truncation include the following bosonic fields
in the d-dimensional supergravity theory:

• metric;

• gauge fields associated to the SO(n+ 1) isometry of the round sphere Sn;

• real scalars parametrizing the coset space SL(n+ 1,R)/SO(n+ 1);

• a real dilaton, if there is a ‘yes’ in the pertinent column of table 1.

Crucially, consistency of the truncation might require that we keep additional modes in d
dimensions, as reported in the last column of table 1.

Our main objects of interest are the uplift formulae for the D-dimensional metric,
dilaton, and n-form flux F̂n that threads the sphere. In particular, we focus on the parts of
the uplift formulae that only contain the SO(n+1) gauge fields and the SL(n+1,R)/SO(n+1)
scalars. We observe a simple regular pattern, described in detail below, which extends
the analysis of [36, 42] by considering simultaneously the SO(n+ 1) gauge fields and the
SL(n+ 1,R)/SO(n+ 1) scalars.

The detailed forms of the uplift formulae depend on the specific case considered; we
describe each case in turn in the following subsections. The general structure of the uplift
formulae, however, can be presented uniformly for all cases. The D-dimensional metric,
dilaton, and n-form flux F̂n take the form

dŝ2
D = Y c1(yTy)

n−1
D−2

[
ds2
d + g−2Y −

2
n+1

1
yTy

T−1
IJ Dy

IDyJ
]

+ (extra) , (2.3)

e
2s
a
φ̂ = Y c2(yTy)−1 × (extra) , (2.4)

F̂n = e′n + 1
Vnn!d

[
n

n− 1
1
yTy

εy(Ty)(Dy)n−1
]

+ (extra) , (2.5)

e′n = 1
Vnn!εy(Dy)n + 1

Vnn!

jmax∑
j=1

gj

j! (n/2)jεyF j(Dy)n−2j . (2.6)

Our notation is as follows. We use ds2
d for the metric in d dimensions, while Y is a positive

scalar that encodes the d-dimensional dilaton, if present (if absent, the above formulae are
understood with Y ≡ 1). The positive constant a was defined in (2.2) while the constants
c1, c2 are given by

c1 = 2n
(D − 2)(n+ 1) , c2 = 1

a2
4(D − n− 2)(n− 1)

(D − 2)(n+ 1) . (2.7)
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The quantity s is a sign, determined by how the D-dimensional dilaton enters the kinetic
term for the flux that threads the sphere, S(D) ∼

∫
e−saφ̂F̂n ∧ ∗̂F̂n + . . . . The symbol Vn

stands for the volume of the round sphere Sn of radius 1,

Vn = 2π n+1
2

Γ
(
n+1

2

) , (2.8)

while (n/2)j is the descending Pochhammer symbol, given by (n/2)0 := 1 and

(n/2)j = n

2

(
n

2 − 1
)(

n

2 − 2
)
. . .

(
n

2 − j + 1
)
. (2.9)

The indices I, J , K = 1, . . . , n+ 1 are vector indices of SO(n+ 1). Unless otherwise
stated, they are raised and lowered with the SO(n+ 1) invariant tensor δIJ and its inverse
δIJ . The quantities yI are constrained coordinates on the sphere Sn. They are defined via
the standard embedding of the round unit Sn in flat Rn+1 in Cartesian coordinates, and
therefore satisfy

δIJy
IyJ = 1 . (2.10)

The 1-forms DyI are defined as

DyI = dyI + gAIJyJ , (2.11)

where the 1-forms AIJ = A[IJ ] are the external d-dimensional gauge fields of SO(n + 1),
and g is a constant parameter. The associated field strength reads

F IJ = dAIJ + gAIK ∧AKJ . (2.12)

The quantities TIJ are the entries of a symmetric, positive definite, unimodular matrix,

TIJ = TJI , detTIJ = 1 . (2.13)

The matrix T depends only on the external d-dimensional spacetime coordinates and
parametrizes the n(n+ 3)/2 real scalars of the coset SL(n+ 1,R)/SO(n+ 1).

In (2.3)-(2.6) we have introduced some shorthand notation used throughout this work.
First of all, we write

yTy = yIT
IJyJ , (Ty)I = T IJyJ . (2.14)

Secondly, we have suppressed I indices and wedge products of differential forms in expressions
involving the epsilon tensor of SO(n+ 1). For example,

εy(Ty)(Dy)n−1 = εIJK1...Kn−1y
I(Ty)JDyK1 ∧ · · · ∧DyKn−1 , (2.15)

εyF 2(Dy)n−4 = εLJ1K1J2K2I1...In−4y
LF J1K1 ∧ F J2K2 ∧DyI1 ∧ · · · ∧DyIn−4 . (2.16)

As mentioned above, the quantity F̂n is the flux threading the Sn. We normalize F̂n
so that its flux through Sn is one, ∫

Sn
F̂n = 1 . (2.17)
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The physical flux is in general an integer multiple of F̂n. We comment on the structure of
e′n in greater detail below. Interestingly, e′n does not contain the external scalars TIJ . The
latter enter F̂n only via the total derivative term in (2.5). This is an essential feature of
the presentation (2.5) of the uplift formula for the n-form flux. It has been derived in [36]
in the case in which the gauge fields of SO(n+ 1) are set to zero.4 Furthermore, we note
that the d-dimensional dilaton Y does not enter the uplift formula for F̂n.

As pointed out above, retaining only the metric, the gauge fields AIJ , the scalars T IJ ,
and the dilaton Y (if there is a ‘yes’ entry in table 1) in the lower-dimensional model might
not be consistent, and extra fields might be needed (see last column of table 1). When
extra fields are present, they generically enter the uplift formulae for dŝ2

D, φ̂, and/or F̂n.
We have used the notation (extra) in (2.3)–(2.5) as a reminder of this caveat.

The quantity e′n is closely related to the canonical global angular form for an Sn bundle.
Therefore, before proceeding, we briefly review the salient aspects of global angular forms.

2.1 Brief review of global angular forms

We follow [44], see also the textbook [41]. Let E be a real oriented vector bundle of rank
n + 1 over a base manifold B. Suppose E is equipped with a connection and a metric.
Let S(E) denote the associated unit-sphere bundle: if p ∈ B and we choose Cartesian
coordinates yI , I = 1, . . . , n+ 1 on the Rn+1 fiber of E at p, the sphere fiber of S(E) at p
is described by (2.10). We use E0 to denote the complement of the zero-section in E. One
can prove that there exists a globally defined n-form on E0, which we denote en,5 with the
following properties:

• The form en restricted to the fibers of S(E) reduces to the standard volume form on
Sn, normalized to integrate to 1, ∫

Sn
en = 1 . (2.18)

• The exterior derivative of en is given by

den =
{

0 if n is even,
−π∗χn+1(E) if n is odd. (2.19)

Here π∗ is the pullback by the projection π : E0 → B onto the base space. The
(n+1)-form χn+1(E) is a polynomial in the curvature of the bundle E, given explicitly
below in (2.22), that represents the Euler characteristic of E as a cohomology class in
Hn+1(B;Z).

4The relative factor between εy(Dy)n and 1
yT y

εy(Ty)(Dy)n−1 in (2.5), (2.6) is n
n−1 , correcting a typo in

equation (2.50) of [36] (the factor 2(d− 2)! in the denominator of A′ should be (d− 1)!).
5In the mathematics literature the global angular form is usually normalized in such a way that it

integrates to 2 on the sphere fibers, so that ehere
n = 1

2e
maths
n . For n even, the closed form emaths

n represents
an integral cohomology class.

– 7 –



J
H
E
P
0
5
(
2
0
2
3
)
1
5
6

We can exhibit an explicit local expression for en in terms of the constrained coordinates
yI and the components F IJ of the field strength of the SO(n+ 1) connection on E [44],

en = 1
Vnn!

bn/2c∑
j=0

gj

j! (n/2)jεyF j(Dy)n−2j . (2.20)

The unit sphere volume Vn and the Pochhammer symbols (n/2)j have been introduced
in (2.8), (2.9).

The term with j = 0 in (2.20) of schematic form εy(Dy)n describes the volume form
on the round Sn, normalized to integrate to 1. The derivative of the j = 0 term generates a
term with one F factor, schematically εyF (Dy)n−1. The relative coefficient between the
j = 0 and j = 1 term in (2.20) is engineered in such a way that this term linear in F cancels
in den, leaving behind only one term with two F ’s. This can be verfied with the help of
some Schouten identities and of the Bianchi identities

0 = DF IJ := dF IJ + gAIK ∧ FKJ + gAJK ∧ F IK , DDyI = gF IJyJ . (2.21)

The relative coefficient between the j = 1 and j = 2 terms in (2.20) is similarly engineered
to guarantee the cancellation of the terms with two F ’s in den, leaving behind only a term
with three F ’s. For even n this pattern of cancellations in den continues until we reach
den = 0. For odd n, the pattern of cancellations proceeds until we get a den that is purely
horizontal, i.e. without any Dy factors,

n = 2m− 1: de2m−1 = −π∗χ2m(E) , (2.22)

χ2m(E) = gm

2mm!(2π)m εI1J1...ImJmF
I1J1 ∧ · · · ∧ F ImJm = Pf

(
gF

2π

)
.

The quantity e′n that enters the uplift formula (2.5) is constructed out of the canonical
global angular form en. More precisely, depending on the specific case under examination
from table 1, we go from en to e′n by truncating the expansion of en in powers of the field
strenghts F IJ . In other words, e′n is obtained by truncating the sum over j in (2.20). The
details of the truncation are reported below for each case.

2.2 Interpretation of the uplift formula for F̂n

Let us comment on the form (2.5) of the uplift formula for the flux F̂n threading the sphere.
If the gauge fields of SO(n+ 1) are set to zero, and the scalar matrix TIJ is set to the

identity, the expression for F̂n clearly reduces to the volume form on the round Sn. This
is a closed form that represents the generator of the cohomology group Hn(Sn;Z). The
physical flux is given by an integer times this generator, by virtue of flux quantization.

Let us imagine to turn on the scalar fields TIJ , keeping the gauge fields zero for the
moment. Formula (2.5) states that, under the continuous deformation parametrized by TIJ ,
F̂n is shifted by an exact piece of the form d[(yTy)−1εy(Ty)(dy)n−1]. It follows that the de
Rham cohomology class of F̂n is unmodified. This is to be expected, since a continuous
deformation cannot change the integral value of the flux threading the sphere. The detailed
form of the exact deformation of F̂n when the scalars TIJ are turned on (but the gauge fields
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are zero) was derived in [36] using the notion of generalized parallelizability for spheres. In
section 3 below we offer a different argument (similar to the considerations of [42]) that
determines both the functional form and the numerical prefactor of the exact deformation.

We may alternatively start from the volume form on the round Sn and turn on the
SO(n+ 1) gauge fields, keeping TIJ fixed to be the identity matrix. In this case the total
D-dimensional spacetime should be regarded as a sphere fibration. The ‘naked’ volume
form εy(dy)n is no longer a well-defined n-form in spacetime. Rather, it must be promoted
by means of the replacement dyI → DyI . The resulting n-form εy(Dy)n is indeed globally
defined, yet it fails to be closed: its derivative takes the form εF (Dy)n−1. The terms in the
sum (2.6) with j = 1, 2, . . . , jmax can be interpreted as corrective terms: as discussed in the
previous section around (2.21), adding the term with j = 1 ensures that the non-closure of
e′n is of the form εF 2(Dy)n−3; further adding the term with j = 2 yields a non-closure of
the form εF 3(Dy)n−5; and so on.

Finally, let us comment on the case in which both the gauge fields of SO(n+ 1) and the
scalars TIJ are turned on. The uplift formula (2.5), based on all the explicit examples we
have studied, exhibits a particularly simple structure. Indeed, the dependence on the scalar
fields TIJ is entirely confined inside a total derivative, even after the gauge fields are activated.
Furthermore, the (n− 1)-form inside the total derivative is (yTy)−1εy(Ty)(Dy)n−1. This
quantity is obtained from the exact deformation when the gauge fields as zero by means of the
minimal replacement dyI → DyI inside the total derivative. A priori, additional terms could
have been added inside the total derivative after turning on the gauge fields, such as terms
proportional to εy(Ty)F (Dy)n−3. In all examples we have studied, however, we observe
that such terms are not generated. In section 4, in the case of D = 11 supergravity on S4,
we offer a different perspective on this fact, based on a formula of Bott and Cattaneo [48].

2.3 Detailed uplift formulae

Let us now examine each case in table 1 in turn.

2.3.1 D = 11 supergravity on S4

11d supergravity can be consistently truncated on S4 [4–6] to 7d maximal SO(5) gauged
supergravity [49]. The flux that threads the sphere is clearly the closed G4 flux of 11d
supergravity,

F̂4 ∝ Ĝ4 . (2.23)

Recall that, by definition, F̂4 is rescaled in such a way as to integrate to 1 on S4. In this
case there is no dilaton in the higher-dimensional theory, and thus no dilaton among the
modes that are kept in seven dimensions. The bosonic content of 7d maximal SO(5) gauged
supergravity consists of the metric, the SO(5) gauge fields, 20 real scalars parametrizing
the coset SL(5,R)/SO(5), and five 3-forms cI3, transforming in the vector representation of
SO(5). The latter are the ‘extra’ fields reported in the last column of table 1.
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The complete uplift formulae for this consistent truncation are given in [6], see also [50].
By applying some Schouten identities, they can be recast in the following form,

dŝ2
11 = (yTy)1/3

[
ds2

7 + g−2 1
yTy

T−1
IJ Dy

IDyJ
]
, (2.24)

F̂4 = e4 + 1
V44!d

[4
3

1
yTy

εy(Ty)(Dy)3
]

+ d(yIcI3) , (2.25)

e4 = 1
V44!

[
εy(Dy)4 + 2gεyF (Dy)2 + g2εyF 2

]
. (2.26)

We observe that in this case the quantity e′4 that enters the uplift formula for F̂4 is exactly
identified with the canonical global angular form e4. In other words, the sum over j in (2.20)
is not truncated. Moreover, let us point out that the extra three-forms cI3 do not enter the
uplift formula for the 11d metric, and enter the uplift formula for the 11d four-form flux in
a very simple way, via a total derivative.

2.3.2 D = 11 supergravity on S7

11d supergravity can be consistently truncated on S7 [7–18] to 4d maximal SO(8) gauged
supergravity [51, 52]. The flux that threads the sphere is now

F̂7 ∝ ∗̂Ĝ4 . (2.27)

The bosonic content of 4d maximal SO(8) gauged supergravity consists of the metric, the
SO(8) gauge fields, and 70 real scalars parametrizing the coset E7(7)/(SU(8)/Z2). Out of
these 70 scalars, 35 have positive intrinsic parity (proper scalars) and 35 have negative
intrinsic parity (pseudoscalars). The 35 proper scalars parametrize the coset SL(8,R)/SO(8).
From this point of view, the remaining 35 pseudoscalars are regarded as ‘extra’ fields in the
terminology of table 1.

The complete uplift formulae for the 11d metric and four-form flux for this consistent
truncation are given in [18], building on [7–17]. In order to verify the general formulae (2.3),
(2.5), the task at hand is: (i) turn off the 35 pseudoscalars, so that only the SL(8,R)/SO(8)
scalars remain; (ii) compute Ĝ7 by taking the Hodge dual of the Ĝ4 flux given in [18]. Some
steps of these computations are reported in appendix A.3. The result reads

dŝ2
11 = (yTy)2/3

[
ds2

4 + g−2 1
yTy

T−1
IJ Dy

IDyJ
]

+ (extra) , (2.28)

F̂7 = e′7 + 1
V77!d

[7
6

1
yTy

εy(Ty)(Dy)6
]

+ (extra) , (2.29)

e′7 = 1
V77!

[
εy(Dy)7 + 7

2gεyF (Dy)5
]
. (2.30)

We notice that the 7-form e′7 that enters the uplift formula is now distinct from the canonical
global angular form e7 given by (2.20). In the canonical e7, we encounter terms with up to
three F ’s, schematically e7 ∼ εy(Dy)7 + εyF (Dy)5 + εyF 2(Dy)3 + εyF 3Dy. In this case
the base of the S7 fibration is 4d spacetime, and thus the F 3 term vanishes for dimensional
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reasons. The F 2 term in e7, however, survives on a 4d base space. It constitutes the
difference between the canonical e7 and its truncated counterpart e′7.

It is worth emphasizing that in this consistent truncation the extra fields (the 35 pseudo
scalars) enter both the uplift formula for the metric and seven-flux in non-trivial ways.
While the uplift formulae retaining all 70 scalars are known explicitly [18], we were not able
to recast them in a simple form in the same spirit as in (2.5). We leave this problem for
future research.

2.3.3 D = 10 type IIB supergravity on S5

10d type IIB supergravity can be consistently truncated on S5 [19–31] to 5d maximal SO(6)
gauged supergravity [53–55]. The flux that threads the sphere is the self-dual Ramond-
Ramond five-form flux F̂5. To discuss the uplift formula for F̂5, we find it convenient to
introduce a five-form F̂5 that satisfies

F̂5 + ∗̂F̂5 ∝ F̂5 . (2.31)

The bosonic content of 5d maximal SO(6) gauged supergravity consists of the metric, the
SO(6) gauge fields, 42 real scalars parametrizing the coset E6(6)/USp(8), and a collection of
twelve real two-form potentials BIα

2 , where I = 1, . . . , 6 is a fundamental index of SL(6,R)
and α = 1, 2 is a fundamental index of SL(2,R). Recall that SL(6,R)×SL(2,R) is a maximal
subgroup of E6(6). The SL(2,R) factor is identified with the global SL(2,R) symmetry of
classical type IIB supergravity in ten dimensions.

The complete uplift formulae for this consistent truncation are given in [31]. In this
work, however, we restrict our attention to a subset of the bosonic fields of the 5d gauged
supergravity, namely those that are inert under SL(2,R). In ten dimensions, the bosonic
fields that are singlets of SL(2,R) are the Einstein frame metric and the five-form flux.
They form a 10d consistent bosonic subsector of the full type IIB supergravity. This 10d
bosonic theory can be consistently truncated on S5 to the bosonic theory obtained from 5d
maximal SO(6) supergravity by discarding the fermions, the two-forms BIα

2 , and carving
out a scalar submanifold SL(6,R)/SO(6) out of the full E6(6)/USp(8) scalar manifold. The
uplift formulae for this truncation are given in [25] and can be rearranged to take the form6

dŝ2
10 = (yTy)1/2

[
ds2

5 + g−2 1
yTy

T−1
IJ Dy

IDyJ
]
, (2.32)

F̂5 = e′5 + 1
V55!d

[5
4εy(Ty)(Dy)4

]
, (2.33)

e′5 = 1
V55!

[
εy(Dy)5 + 5

2gεyF (Dy)3
]
. (2.34)

We notice that the 5-form e′5 that enters the uplift formula is again distinct from the
canonical global angular form e5 given by (2.20). In the canonical e5, we encounter terms
with up to two F ’s, schematically e5 ∼ εy(Dy)5 + εyF (Dy)3 + εyF 2Dy. The terms with two
F ’s is not identically zero on external 5d spacetime, yielding indeed a non-zero difference
between e5 and e′5.

6The quantity we denote F̂5 is denoted ∗̂Ĝ(5) in [25], where it is given in equation (4).

– 11 –



J
H
E
P
0
5
(
2
0
2
3
)
1
5
6

2.3.4 Massive D = 10 type IIA supergravity on S6

Massive type IIA supergravity can be consistently truncated on S6 to maximal dyonically
gauged ISO(7) supergravity [32–34]. The bosonic fields of this 4d theory consists of the
metric, electric gauge fields for the gauge group ISO(7) = SO(7) nR7 of dimension 21 + 7,
70 real scalars parametrizing the coset E7(7)/(SU(8)/Z2), as well as 7 magnetic gauge fields
and 7 2-form potentials. The presence of magnetic gauge fields and 2-form potentials is due
to a magnetic gauging of the R7 subgroup of ISO(7) [33, 56].

The full uplift formulae for this consistent truncation are given in [34]. We want to
study the terms in these formulae that contain the 4d metric, the electric gauge fields
associated to the SO(7) subgroup of ISO(7), as well as a subset of the scalar fields, consisting
of the scalars TIJ in the coset SL(7,R)/SO(7), together with one extra real scalar Y . All
other bosonic fields of the truncation as regarded as ‘extra’ in the terminology of table 1.
In analogy to the consistent truncations based on the bosonic action (2.1), discussed below
in section 2.3.5, we may think of Y as a 4d dilaton. The precise embedding of TIJ and Y
into E7(7)/(SU(8)/Z2) is described in appendix A.4.

Let us focus on the uplift formulae for the 10d Einstein frame metric, the 10d dilaton,
and the 10d flux that threads the S6. The latter is identified with

F̂6 ∝ e
1
2 φ̂∗̂F̂4 , (2.35)

where F̂4 is the Ramond-Ramond 4-form field strength. Notice the appearance of a
dilaton prefactor: it is due to the fact that the 10d equations of motion take the form
d(e 1

2 φ̂∗̂F̂4) = . . . . The proportionality constant in (2.35) is determined by our choice of
normalization for F̂6 (which integrates to 1 on S6).

The task at hand is to start from the uplift formulae of [34], in the simplified setting
in which we set to zero the 4d fields we are not keeping track of. After obtaining the
expression for F̂4, we can compute e 1

2 φ̂∗̂F̂4. Some details of this derivation are reported in
appendix A.4. We find the following uplift formulae,

dŝ2
10 = Y

3
14 (yTy)

5
8

[
ds2

4 + g−2Y
− 2

7

yTy
T−1
IJ Dy

IDyJ
]

+ (extra) , (2.36)

e4φ̂ = Y
20
7 (yTy)−1 × (extra) , (2.37)

F̂6 = e′6 + 1
V66!d

[6
5εy(Ty)(Dy)5

]
+ (extra) , (2.38)

e′6 = 1
V66!

[
εy(Dy)6 + 3gεyF (Dy)4

]
. (2.39)

Interestingly, all Y and dY terms eventually drop out from the expression for F̂6, which
only contains the SO(7) gauge fields and the SL(7,R)/SO(7) scalars. The quantity e′6 is
a truncation of the canonical global angular form e6 as given in (2.20). Indeed, on a 4d
base space the canonical e6 contains three terms, schematically e6 ∼ εy(Dy)6 + εyF (Dy)4 +
εyF 2Dy2, while e′6 lacks the F 2 term.

The powers of yTy and Y in (2.36), (2.37) are in agreement with the general expres-
sions (2.3), (2.4). The sign s is +1. This is due to the fact that we are adopting the
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conventions of [34] for the action of massive D = 10 type IIA supergravity — see (A.1)
therein. In particular, the kinetic term for the Ramond-Ramond 4-form flux is of the
form e+ 1

2 φ̂F̂4 ∧ ∗̂F̂4. In terms of the dual flux F̂6 ∝ e
1
2 φ̂∗̂F̂4, this term reads schematically

e−
1
2 φ̂F̂6 ∧ ∗̂F̂6, from which we infer s = +1.

2.3.5 Consistent truncations based on (2.1)

These three cases are discussed in [35], where the full uplift formulae are given. The uplift
formulae for the D-dimensional metric and dilaton take the form7

dŝ2
D = Y c1(yTy)

n−1
D−2

[
ds2
d + g−2Y −

2
n+1

1
yTy

T−1
IJ Dy

IDyJ
]
, e

2s
a
φ̂ = Y c2(yTy)−1 . (2.40)

The constants c1, c2 are as in (2.7). The sign s is +1 for the reductions on S2, S3 and
−1 for the reduction on SD−3. This can be seen from (2.1). For the reductions on S2, S3

the flux that threads the sphere is the ‘electric’ flux F̂p, whose kinetic term is of the form
e−aφ̂F̂p ∧ ∗̂F̂p. For the reduction on SD−3 the flux threading the sphere is the ‘magnetic’
flux e−aφ̂∗̂F̂3. Written in terms of e−aφ̂∗̂F̂3, the kinetic term for F̂p in (2.1) takes the form
e+aφ̂(e−aφ̂∗̂F̂3) ∧ ∗̂(e−aφ̂∗̂F̂3), from which we observe the anticipated flip in sign in the
exponent of the dilaton prefactor. We adopt the same normalization for Y as in [35]. The
kinetic term for Y in the lower-dimensional action takes the form

S(d) ⊃
∫
−1

2c5Y
−2dY ∧ ∗dY , c5 = 4(D − n− 2)

a2(D − 2)(n+ 1) . (2.41)

The canonically normalized lower-dimensional dilaton φ is related to Y by Y = e
1√
c5
φ.

Let us now discuss the uplift formulae for the flux threading the sphere, in each of the
three cases. For the reduction on S2, F̂2 ∝ F̂2 with

F̂2 = e2 + 1
V22!d

[
2 1
yTy

εIJKy
I(Ty)JDyK

]
, (2.42)

e2 = 1
V22!εIJKy

I(DyJ ∧DyK + gF JK) . (2.43)

The notation Vn was introduced in (2.8). This result is given in equation (55) of [35] in
terms of the quantity denoted T ij there, which corresponds to Y 1/3TIJ in our notation.
Remarkably, all occurrences of Y and its derivatives drop away from the expression for F̂2.
We also notice that e2 is the canonical global angular form (2.20), satisfying de2 = 0.

For the reduction on S3 we find similarly F̂3 ∝ F̂3 with

F̂3 = e3 + 1
V33!d

[3
2

1
yTy

εIJKLy
I(Ty)JDyK ∧DyL

]
+ f3 , (2.44)

e3 = 1
V33!εIJKLy

I
(
DyJ ∧DyJ ∧DyK + 3

2gF
JK ∧DyL

)
. (2.45)

The quantity f3 is the field strength of a 2-form potential in the d = D − 3 dimensional
theory. This 2-form potential is an extra field needed for the consistency of the truncation,

7The matrix T in our expressions is always unimodular. It corresponds to the matrix denoted T̃ in [35].
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see table 1. Up to normalization, f3 is the same as the field F(3) in the notation of [35].
We observe once more that all factors of Y and dY drop from the uplift formula for the
flux threading the sphere. The quantity e3 coincides in this case with the canonical (2.20).
Indeed, the derivative of e3 is purely horizontal,

de3 = − g2

8(2π)2 εIJKLF
IJ ∧ FKL . (2.46)

Recall that the D-dimensional flux F̂3 is closed. Its closure holds because the extra 2-form
potential with field strength f3 has a non-trivial Bianchi identity involving the SO(4) gauge
fields [35], with df3 exhibiting the same structure as the r.h.s. of (2.46). In fact, in computing
dF̂3 we verify an exact cancellation between de3 and df3.

We finally turn to the reduction on SD−3. The flux threading the sphere is in this case
given by

F̂D−3 ∝ e−aφ̂∗̂F̂3 . (2.47)
We have defined the dual flux F̂D−3 by including a suitable power of the D-dimensional
dilaton. This is motivated by the fact that the EOM for F̂3 derived from the action (2.1)
reads

d(e−aφ̂∗̂F̂3) = 0 . (2.48)
Thus, in D dimensions F̂3 is closed off-shell and F̂D−3 is closed on-shell.

The uplift formula for F̂D−3 is given in (47) of [35], which can be written as

F̂D−3 = e′D−3 + 1
VD−3(D − 3)!d

[
D − 3
D − 4

1
yTy

εy(Ty)(Dy)D−4
]
, (2.49)

e′D−3 = 1
VD−3(D − 3)!

[
εy(Dy)D−3 + D − 3

2 εyF (Dy)D−5
]
. (2.50)

We are adopting a compact notation analogous to that in (2.15). In analogy with the other
cases discussed in this section, we verify that all occurrences of Y and dY drop out from
the uplift formula for F̂D−3. In this case, we find generically a truncated version e′D−3 of
the canonical global angular form eD−3, because the sum over j in (2.20) is truncated after
the first term. (For D ≤ 6 the sum over j in the canonical global angular form eD−3 stops
anyway at 1; thus for D ≤ 6 we actually have e′D−3 = eD−3.) The fact that we truncate
the sum over j at j = 1 implies that, for general D, de′D−3 consists of one term quadratic
in F , of the schematic form εF 2(Dy)D−6. The lower-dimensional theory, however, lives in
d = D− (D− 3) = 3 dimensions, implying that de′D−3 = 0 for dimensional reasons. We this
conclude that the form of the uplift formula (2.49) is such that dF̂D−3 = 0 holds identically,
without use of the 3d equations of motion. The closure of F̂3, on the other hand, holds
after using them.

3 Reduction of the action and exact flux deformation

In this section we give an argument that explains the form of the exact piece in the
uplift formula (2.5) for the flux that threads the n-sphere. The argument is based on the
derivation of the scalar potential of the lower-dimensional model from the D-dimensional
action integrated on Sn (see also [42]).
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3.1 Models without dilaton

Let us first consider the cases in which, in the D-dimensional theory, the kinetic term for the
flux threading the sphere has no dilaton prefactor. The relevant terms in the D-dimensional
action are the Einstein-Hilbert term and the kinetic term for F̂n,

S(D) =
∫ [

R̂∗̂1− 1
2g2
F
F̂n ∧ ∗̂F̂n

]
. (3.1)

Recall that, in our conventions, F̂n is normalized to integrate to 1 on Sn. As a result, its
kinetic term is not necessarily canonically normalized in D-dimensions, but rather comes
with a coupling constant g−2

F . The following argument does not depend on the value of g−2
F .

We also notice that we have suppressed the overall D-dimensional Newton’s constant from
the action (3.1).

Our goal is to integrate (3.1) on Sn to derive couplings in the d-dimensional effective
action. More precisely, we seek to determine the potential for the scalars TIJ . To this
end, we may ignore the terms with the gauge fields of SO(n+ 1), and further consider the
simpler case in which the profile for the TIJ scalars in d dimensions is constant,

AIJ = 0 , dTIJ = 0 . (3.2)

To perform the dimensional reduction of the Einstein-Hilbert term in (3.1) we need an
ansatz for the D-dimensional metric, capturing the contributions of the TIJ scalars. We
use the ansatz

dŝ2
D = (yTy)b1

[
ds2
d + g−2(yTy)b2T−1

IJ dy
IdyJ

]
, (3.3)

where b1, b2 are constant parameters. In due course, they will be fixed to their expected
values b1 = (n−1)/(D−2), b2 = −1, cfr. (2.3). The D-dimensional Ricci scalar and volume
element of the metric (3.3) can now be evaluated by means of a straightforward computation.
We keep track of terms that contribute to the d-dimensional scalar potential and to the
d-dimensional Einstein-Hilbert term. Further details of the derivation are reported in
appendix B.1. The result reads∫

Sn
R̂∗̂1 ⊃ g−n

√
−gdR[gd]

∫
Sn
dnξ

√
◦
g(yTy)

1
2 b1(D−2)+ 1

2 b2n+ 1
2

+ g2−n√−gd
∫
Sn
dnξ

√
◦
g(yTy)

1
2 b1(D−2)+ 1

2 b2(n−2)+ 1
2G . (3.4)

Here ξm are local coordinates on Sn, gd, R[gd] are the determinant and Ricci scalar of the
d-dimensional metric, and ◦

g is the determinant of the metric on the round unit sphere. We
have introduced the shorthand notation

G = (TrT )2

yTy
− TrT 2

yTy
− 2 (TrT ) (yT 2y)

(yTy)2 + 2 yT 3y

(yTy)2 +K
[(yT 2y)2

(yTy)3 −
(yT 3y)
(yTy)2

]
, (3.5)

where the constant K is given in terms of D, n, b1, b2 by

K = −2b2b1(D − 2)(n− 1)− b21(D − 2)(D − 1)− b22(n− 2)(n− 1) . (3.6)

In the quantities yT 2y and yT 3y we are suppressing SO(n+ 1) indices as in (2.14).
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To perform the integration of the F̂n kinetic term in (3.1) over the n-sphere, we need
an ansatz capturing the dependence of F̂n on the scalars TIJ . Since we are working under
the simplifying assumptions (3.2), F̂n must be proportional to the volume form of the round
metric on Sn, where the proportionality factor may depend on yI and TIJ ,

F̂n = 1
n!f(y, T )εI0I1...Iny

I0dyI1 ∧ · · · ∧ dyIn . (3.7)

The reduction is reported in appendix B.1. The result reads∫
Sn
F̂n ∧ ∗̂F̂n = gn

√
−gd

∫
Sn
dnξ

√
◦
g(yTy)

b1D

2 −b1n−
b2n

2 −
1
2 f(y, T )2 . (3.8)

In the d-dimensional action the Einstein-Hilbert term should not be multiplied by a
non-trivial function of TIJ . This leads us to set the exponent of yTy in the first line of (3.4)
to zero,

1
2b1(D − 2) + 1

2b2n+ 1
2 = 0 . (3.9)

For the integrand in the second line of (3.4) we then find the quantity (yTy)−b2G. The
matrix TIJ is unimodular, but it is convenient to regard the quantities yTy and G as
functions of an arbitrary non-singular symmetric matrix. In this sense, we can formally
consider their behavior under a constant rescaling TIJ → λTIJ . We see that yTy and G
are homogeneous of degree 1 in T , implying that the combination (yTy)−b2G has degree
1− b2. We know, however, that the scalar potential of the d-dimensional theory should be
a quadratic function of T . This is known to be the case for all examples in table 1 with a
‘no’ in the dilaton column. These considerations lead us to set 1− b2 = 2. In combination
with (3.9) this fixes b1 and b2 to their expected values,

b1 = n− 1
D − 2 , b2 = −1 . (3.10)

The overall integrand in the second line of (3.4) then becomes (yTy)G.
To proceed, we observe that we are free to add to (yTy)G any total divergence on Sn,

without affecting the value of the integral. Exploiting this freedom, (3.4) can be brought to
the form (see appendix B.1 for details)∫

Sn
R̂∗̂1 ⊃ g−nVn

√
−gdR[gd] + g2−n√−gd

∫
Sn
dnξ

√
◦
g I ,

I = 2
[
yT 2y

yTy
− 4− k

8 TrT
]2
−
(

1 + k

2

)
Tr (T 2) +

(1
2 + k

4 −
k2

32

)
(TrT )2 , (3.11)

where we have introduced the shorthand notation

k := (n− 1)(D − n− 1)
D − 2 − 2 . (3.12)

Note that inside the integrand I all dependence on yI is now collected into a perfect square.
Moreover, using (3.10), (3.12) we can rewrite (3.8) in the form∫

Sn
F̂n ∧ ∗̂F̂n = gn

√
−gd

∫
Sn
dnξ

√
◦
g(yTy)2+kf(y, T )2 . (3.13)
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Upon integrating I against the volume form
√ ◦
g, we obtain a function of TIJ which

represents the contribution of the D-dimensional Einstein-Hilbert term to the d-dimensional
scalar potential. The resulting function of TIJ is manifestly homogeneous of degree 2 under
TIJ → λTIJ . It is not, however, a quadratic function. In fact, it is not a rational function
of the entries of TIJ . This is due to the contribution from the square [ yT 2y

yTy −
4−k

8 TrT ]2 in
the integrand. This is point is clarified in appendix B.3. Non-quadratic contributions to the
scalar potential must drop out when the Einstein-Hilbert contribution is added to (3.13).
Comparison of (3.11), (3.13) immediately suggests a simple and natural mechanism to
achieve this goal: the term [ yT 2y

yTy −
4−k

8 TrT ]2 in I is cancelled against (yTy)2+kf(y, T )2

in (3.13) at the level of the integrand. The remaining terms in I are a y-independent
quadratic function of T .

For the rest of this section, the aforementioned cancellation between [ yT 2y
yTy −

4−k
8 TrT ]2

and (yTy)2+kf(y, T )2 is our working assumption. Therefore, we set

f(y, T ) = 2gFg1−n(yTy)−
k
2

[
yT 2y

(yTy)2 −
4− k

8
TrT
yTy

]
. (3.14)

A necessary condition for the identification (3.14) to hold is that the integral of the
r.h.s. on Sn with measure

√ ◦
g be independent of T . Indeed, the integral of the l.h.s. must be

independent of T , because turning on T must deform F̂n by an exact piece (the quantized
flux through Sn cannot be modified by a continuous deformation). In appendix B.2 we
prove that a necessary condition for the integral of the r.h.s. of (3.14) to be independent of
T is

k = 0 . (3.15)

Crucially, this condition is also sufficient to ensure that the integral of f(T, y) is independent
of T . This follows from the observation that

εy(dy)n + d

[
n

n− 1
1
yTy

εy(Ty)(dy)n−1
]

= − 2
n− 1

[
yT 2y

(yTy)2 −
1
2

TrT
yTy

]
εy(dy)n . (3.16)

The integral of the l.h.s. over Sn is manifestly independent of T by virtue of Stokes’ theorem.
To summarize, our assumptions are: (1) turning on T deforms the flux by an exact piece;

(2) the perfect square in the Einstein-Hilbert and the contribution from the kinetic term for
F̂n cancel against each other at the level of the Sn integrand. Under these assumptions,
we determine uniquely the form of f(y, T ) and therefore of F̂n via (3.7), up to the overall
normalization. The latter is readily fixed by requiring

∫
Sn F̂n = 1. The result is

F̂n = 1
Vnn!εy(dy)n + 1

Vnn!d
[

n

n− 1
1
yTy

εy(Ty)(dy)n−1
]
, (3.17)

in perfect agreement with (2.5) and [36]. Both the functional form of the exact deformation of
the flux, as well as its numerical coefficient relative to the undeformed flux, are determined.8

Remarkably, in the process of our derivation we have found the condition k = 0, which
is a constraint on the possible values of n, D. In fact, this condition selects precisely the

8More precisely, the (n− 1)-form inside the total derivative is completely fixed up to shifts by closed
(n− 1)-forms, which clearly would not modify the expression for F̂n.
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values for n, D for which a consistent truncation is possible with the field content we are
considering. Setting (3.12) equal to zero, one finds that the only integer solutions with
n < D are given by

(n,D) = (1, 2), (4, 11), (5, 10), (7, 11) . (3.18)

While the first of these would describe reduction on a circle from 2d to 1d, the remaining
three correspond to familiar consistent truncations. This is a striking result. Based on the
requirement that the d-dimensional scalar potential be quadratic in the scalars TIJ and that
the flux be deformed by an exact piece, we are able to back out the possible dimensions of
the sphere and the lower-dimensional model. Similar conclusions were drawn in [42] based
on slightly different arguments.9

3.2 Models with dilaton

The analysis of the previous section can be repeated for the cases in which the kinetic term
for F̂n comes with a non-trivial dilaton prefactor. The relevant terms in the D-dimensional
action are now

S(D) =
∫ [

R̂∗̂1− 1
2g2
F
e−saφ̂F̂n ∧ ∗̂F̂n −

1
2dφ̂ ∧ ∗̂dφ̂

]
, (3.19)

where a is a positive constant and s is a sign. Below we will see how the value (2.2) for a
is selected. Notice that the D-dimensional dilaton φ̂ has a canonically normalized kinetic
term. Our goal is to determine the scalar potential of the d-dimensional theory. As a result,
we may work under the simplifying assumptions

AIJ = 0 , dTIJ = 0 , dY = 0 , (3.20)

where Y encodes the d-dimensional dilaton.
The metric ansatz must be modified, to take into account Y . We adopt the following

modification of (3.3),

dŝ2
D = (yTy)b1Y b′1

[
ds2
d + g−2(yTy)b2Y b′2T−1

IJ dy
IdyJ

]
, (3.21)

where b1, b2, b′1, b′2 are constant parameters, to be fixed momentarily. The reduction of the
D-dimensional Einstein-Hilbert term can be performed analogously to the previous section.
The result reads∫

Sn
R̂∗̂1 ⊃ g−nY

b′1D

2 +
b′2n

2 −b
′
1
√
−gdR[gd]

∫
Sn
dnξ

√
◦
g(yTy)

1
2 b1(D−2)+ 1

2 b2n+ 1
2

+ g2−nY
b′1D

2 +
b′2n

2 −b
′
1−b
′
2
√
−gd

∫
Sn
dnξ

√
◦
g(yTy)

1
2 b1(D−2)+ 1

2 b2(n−2)+ 1
2G , (3.22)

with the same G as in (3.5).
9Compared to [42], our argument is based on a cancellation at the level of the integrand on Sn. Thus,

we do not have to evaluate explicitly Sn integrals of rational functions of y, T , which in general yield
non-rational functions of the entries of T , see the example (B.41) in appendix B.1.
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The reduction of the kinetic term for F̂n is also analogous to the previous case. We
adopt the same ansatz for the flux as (3.7), except that now we allow f to be a function of
Y , too,

F̂n = 1
n!f(y, T, Y )εI0I1...Iny

I0dyI1 ∧ · · · ∧ dyIn . (3.23)

We also use the following ansatz for the D-dimensional dilaton,

esφ̂ = (yTy)b3Y b′3 , (3.24)

where b3, b′3 are real constant parameters. Reducing the kinetic term for F̂n yields∫
Sn
e−saφ̂F̂n ∧ ∗̂F̂n = (3.25)

= gnY
b′1D

2 −b
′
1n−

b′2n

2 −ab
′
3
√
−gd

∫
Sn
dnξ

√
◦
g(yTy)

b1D

2 −b1n−
b2n

2 −
1
2−ab3f(y, T, Y )2 .

Finally, we have to take into account the contributions to the d-dimensional scalar
potential originating from the kinetic term for φ̂. We have

−1
2

∫
Sn
dφ̂ ∧ ∗̂dφ̂ = 2g2−nb23Y

b′1D

2 −b
′
1+

b′2n

2 −b
′
2× (3.26)

×
√
−gd

∫
Sn
dnξ

√
◦
g (yTy)

b1D

2 −b1+ b2n

2 −b2+ 1
2

[(yT 2y)2

(yTy)3 −
(yT 3y)
(yTy)2

]
.

In order to get a canonical Einstein-Hilbert term in d dimensions from (3.22), we set

1
2b1(D − 2) + 1

2b2n+ 1
2 = 0 , b′1D

2 + b′2n

2 − b
′
1 = 0 . (3.27)

Exactly as in the previous section, we can examine how the second line of (3.22) scales with
T , impose an overall scaling of degree 2, and thus obtain another linear relation between b1
and b2. The net result is to fix these parameters as before, see (3.10). Based for instance on
the results of [35], we know that the scalar potential, written as a function of unimodular T
and Y , is also homogeneous in rescalings of Y , with degree 2/(n+ 1). We may alternatively
regard this condition as a way of (partially) fixing ambiguities related to redefinitions of Y .
If we demand that the second line of (3.22) be homogeneous of degree 2/(n+ 1) in Y we
get a second linear relation in b′1, b′2, which combined with (3.27) gives us

b′1 = 2n
(D − 2)(n+ 1) , b′2 = − 2

n+ 1 . (3.28)

These values guarantee that (3.21) matches with our previous expression (2.3).
Having fixed b1, b2 according to (3.10), we can mimick the same steps as in the previous

section. By adding a suitable total divergence on Sn, we can eliminate the yT 3y terms from
the sum of (3.22) and (3.26), obtaining the simpler form∫

Sn

[
R̂∗̂1− 1

2dφ̂ ∧ ∗̂dφ̂
]

= g−nVn
√
−gdR[gd] + g2−nY

2
n+1
√
−gd

∫
Sn
dnξ

√
◦
g Ĩ ,

Ĩ = 2
[
yT 2y

yTy
− 4− k̃

8 TrT
]2
−
(

1 + k̃

2

)
Tr (T 2) +

(1
2 + k̃

4 −
k̃2

32

)
(TrT )2 , (3.29)

– 19 –



J
H
E
P
0
5
(
2
0
2
3
)
1
5
6

where we have introduced

k̃ = (n− 1)(D − n− 1)
D − 2 − 2 + 2b23 . (3.30)

Remarkably, the functional form of the integrand in (3.29) is exactly the same as in (3.11),
up to the replacement k → k̃.

Making use of (3.10), (3.28), and (3.30), the contribution (3.25) from the flux kinetic
term takes the form

− 1
2g2
F

∫
Sn
e−saφ̂F̂n ∧ ∗̂F̂n =

= − 1
2g2
F
gnY

2n(D−n−1)
(D−2)(n+1)−ab

′
3
√
−gd

∫
Sn
dnξ

√
◦
g(yTy)2+k̃−ab3−2b2

3f(y, T, Y )2 . (3.31)

Once again, a natural simple mechanism suggests itself to eliminate non-rational
functions of T originating from the square in Ĩ in (3.29): a cancellation against f2 at the
level of the integrand. We thus proceed assuming

f(y, T, Y ) = 2gFg1−nY
ab′3

2 + D−Dn+n2+n−2
(D−2)(n+1) (yTy)−

k̃
2 + 1

2ab3+b2
3

[
yT 2y

(yTy)2 −
4− k̃

8
TrT
yTy

]
. (3.32)

As in the previous section, we assume that f(y, T, Y ) originates from an exact deformation
of the round volume form on Sn. A necessary condition for the identification (3.32) to be
possible is therefore that the Sn integral of the r.h.s. with measure

√ ◦
g be independent of T

and Y . Independence on Y is easily established by tuning the value of b′3,

b′3 = 2(n− 1)(D − n− 2)
a(D − 2)(n+ 1) . (3.33)

This value guarantees that (3.24) agrees with our previous expressions (2.4), (2.7). In
appendix B.2 we study when the integral of (3.32) becomes independent of T , as we vary
the parameters k̃, 1

2ab3 + b23. We identify two possibilities.
The first possibility is to set

k̃ = 0 , 1
2ab3 + b23 = 0 . (3.34)

For these values of k̃, 1
2ab3 + b23 the r.h.s. of (3.32) becomes the same as in the case without

dilaton (3.14) with k = 0. We already know from the discussion around (3.16) that the
integral is independent of T , for any symmetric matrix T , unimodular or not.

As observed above, in the cases without a dilaton the condition k = 0 fixes the allowed
values of D, n. In the present context, we can solve the conditions (3.34) in terms of the
parameters a and b3. We find

a = −2b3 , a2 = 4− 2(n− 1)(D − n− 1)
D − 2 . (3.35)

This is in agreement with (2.2): we have thus found a different argument that singles out
the value of a2 for which the truncation is possible [35]. Moreover, the relation b3 = −a/2
ensure the compatibility of (3.24) with our previous formula (2.4).
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Let us now turn to the second possible choice for k̃, 1
2ab3 + b23 that renders the integral

of (3.32) independent of T ,

k̃ = 4(n+ 1)
n+ 3 ,

1
2ab3 + b23 = −(n− 1)(n+ 1)

2(n+ 3) . (3.36)

This case is qualitatively different from (3.34): as discussed in appendix B.2, if we
choose (3.36) the integral of (3.32) becomes a constant times (detT )− 1

2 , hence a con-
stant for unimodular T , but not for a generic symmetric T . The values (3.36) are not
compatible with the uplift formulae recorded earlier and checked against the literature. The
interpretation of (3.36) seems more elusive and is left for future investigation.

4 Bott-Cattaneo formula and S4 truncation

In the previous section we have studied a simplified setting in which the SO(n+ 1) gauge
fields are set to zero, and the T scalars to a constant. We have demonstrated that F̂n must
contain an exact term given by the derivative of the (n− 1)-form (yTy)−1εy(Ty)(dy)n−1,
with the appropriate numerical prefactor. Let us now suppose we turn on the SO(n+ 1)
gauge fields, and we relax the assumption that T is constant. Gauge invariance requires the
replacement dy → Dy, leading to establish that the exact deformation of F̂n must contain
the term (yTy)−1εy(Ty)(Dy)n−1. A priori, additional terms might be generated inside
the exact deformation, proportional to F and/or DT . The explicit analysis of the uplift
formulae in all examples collected in table 1, however, shows that this does not happen.
While we cannot furnish a first-principle proof of this fact, we can point out an interesting
connection with some results of Bott and Cattaneo [48] regarding the fiber integrals of
global angular forms for even-dimensional spheres.

Reminder on the Bott-Cattaneo formula. Recall from section 2.1 that the canonical
global angular form en for an n-sphere with n even is a closed form in the total space of an
Sn fibration over a base space B. In this setting, we can consider the kth power of en and
fiber-integrate it along the Sn directions to obtain a closed n(k− 1)-form on the base space
B. The result of this operation is the content of the Bott-Cattaneo formula [48],∫

S2m
(e2m)2s+2 = 0 ,

∫
S2m

(e2m)2s+1 = 2−2s(pm)s , s = 0, 1, 2, . . . (4.1)

Here n = 2m is the dimension of the sphere, and pm denotes the mth Pontryagin form
constructed with the curvature F IJ of the SO(n + 1) gauge fields. This is a polynomial
in F IJ of degree m, a closed 4m-form on the base space B with integral periods. Its
cohomology class corresponds to an element of H2m(B;Z).

Application to the reduction of D = 11 supergravity on S4. In this case, the
flux F̂4 that threads the S4 is the Ĝ4 flux of 11d supergravity. The 11d action contains
a Chern-Simons term Ĉ3Ĝ4Ĝ4. We are interested in analyzing the 7d couplings that are
generated by fiber-integrating this Chern-Simons term along S4. Following [43, 44], this is
most easily performed by regarding 11d spacetime as the boundary of an auxiliary 12d space,
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which is an S4 fibration over an 8d base B8. The physical 7d spacetime is the boundary of
B8. We can consider the formal 12-form Ĝ3

4, do the fiber-integration to get an 8-form on
B8, and consider its restriction to the 7d boundary of B8.

We know that Ĝ4 ∝ F̂4 takes the form

F̂4 = e4 + dω3 , (4.2)

where ω3 is a globally-defined 3-form. We thus can write∫
S4
F̂3

4 =
∫
S4

(
e3

4 + dω11
)

=
∫
S4
e3

4 + d

∫
S4
ω11 = 1

4p2 + d

∫
S4
ω11 . (4.3)

In the previous expressions we have defined the 11-form

ω11 = 3e2
4 ∧ ω3 + 3e4 ∧ ω3 ∧ dω3 + ω3 ∧ (dω3)2 , (4.4)

and we have used the fact that fiber-integration and exterior derivative commute. In the
final step of (4.3) we have applied the Bott-Cattaneo formula (4.1).

The r.h.s. of (4.3) is an 8-form that encodes topological couplings in the 7d action. The
term with p2 in the 8d bulk corresponds to a Chern-Simons form on the 7d boundary. Such
coupling is indeed found in the action of 7d maximal SO(5) gauged supergravity [49].

The term d
∫
S4 ω11 in (4.3) is an exact deviation from the Bott-Cattaneo formula. At

the level of cohomology classes, the Bott-Cattaneo relation persists, but it is no longer valid
at the level of differential forms. The term d

∫
S4 ω11 in the 8d bulk can generate additional

topological couplings
∫
S4 ω11 on the 7d boundary.

We may now observe the following. We know that the consistent truncation selects the
following form for ω3,

ω3 = 1
V44!

4
3

1
yTy

εy(Ty)(Dy)3 . (4.5)

Plugging this ω3 into (4.4), we verify that the 7-form
∫
S4 ω11 vanishes identically.10 Thus,

the Bott-Cattaneo relation persist at the level of differential forms, and no additional
topological couplings are generated in the 7d action.

This remarkable property is generically lost if we consider a more general ω3. For
example, we can imagine adding a term with one field strength F , of the form

ω3 = 1
V44!

[4
3

1
yTy

εy(Ty)(Dy)3 + ξ2
1
yTy

εy(Ty)FDy
]
, (4.6)

where ξ2 is a constant coefficient. Notice that the new term goes to zero if we set T = I.
We can repeat the computation of

∫
S4 ω11 with the new ω3 in (4.6). The result is non-zero,

of the schematic form∫
S4
ω11 ∼ S(T )I1...I8DT

I1I2 ∧ F I3I4 ∧ F I5I6 ∧ F I7I8 . (4.7)

10In fact, this is true as soon as ω3 is proportional to DyI∧DyJ∧DyK , since it is easy to verify that, in this
case, no term in ω11 has four factors Dy, which is necessary to yield a non-zero result upon fiber-integrating
over S4.
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Here S(T )I1...I8 stands for a tensor with 8 free SO(5) indices, constructed with T . A non-zero∫
S4 ω11 implies that the Bott-Cattaneo formula is no longer valid at the level of forms.

To summarize, the consistent truncation selects an exact deformation with precisely
three Dy legs. Such a deformation is non-generic, in that it ensures that the Bott-Cattaneo
relation persists at the level of differential forms. A deviation from a term with three Dy’s
generically induces topological terms in the 7d action of the form (4.7).11

5 Outlook

In this work we have made progress towards a unified approach to consistent truncations on
spheres, centered around the classical geometric notion of global angular form. The latter
is a mathematical object defined for an n-sphere bundle over a base space. In applications
to consistent truncations, the base space is the spacetime of the lower-dimensional theory,
and the sphere fiber is the internal space used in the compactification.

Our main results are equations (2.3)–(2.5). They describe universal features of the
consistent Kaluza-Klein ansätze that are common to all the cases listed in table 1. In
particular, our formulae capture the contributions of the SO(n + 1) gauge fields, the
SL(n+ 1,R)/SO(n+ 1) scalars describing the naive deformation space of Sn, and of the
dilaton (when present). The ansatz (2.5) for the flux threading the sphere takes a particularly
compact form, with the SL(n + 1,R)/SO(n + 1) scalars entering only via an exact shift.
We have also shown how this exact shift is determined by computing the scalar potential of
the lower-dimensional model by dimensional reduction, and imposing mild constraints on
its functional dependence on the scalars.

An important problem that deserves further investigation is the analysis of the ‘extra
fields’ that are required for consistency of the truncation in some cases (see last column
of table 1). In particular, it is desirable to identify a way of detecting the necessity of
extra fields based on the uplift formulae (2.3)–(2.5), without relying on the structure
of supersymmetry multiplets in the lower-dimensional supergravity theory, and without
performing a full explicit check that the lower-dimensional equations of motion imply the
higher-dimensional ones. Progress in this direction would be particularly useful in light
of applications to consistent truncations with less-than-maximal supersymmetry. In this
context, matter supermultiplets can appear in the lower-dimensional model, making it more
challenging to identify which modes should be retained for consistency of the reduction. It
would also be beneficial to try to uncover general patterns in the way in which extra fields,
when present, modify the uplift formulae (2.3)–(2.5), with the aim to learn lessons to be
applied to more general setups with less supersymmetry.

In our approach, it is convenient to regard the construction of the consistent Kaluza-
Klein ansatz for the flux as a two-step procedure. The first step is the identification of

11Such terms have four derivatives. This is more than the three derivatives in the supergravity action
built by the Noether procedure from the Einstein-Hilbert term. (The term with three derivatives is the
Chern-Simons term d−1p2.) In a maximal supergravity theory, the first higher-derivative corrections are
expected to emerge at eight derivatives. These naive considerations suggest that terms such as (4.7) might
be incompatible with supersymmetry.
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the flux with the relevant (truncated) global angular form e′n, see (1.1). At this stage we
capture the SO(n+ 1) gauge fields related to the isometry of the sphere. As observed in
the introduction, this stage is sufficient for the determination of the Chern-Simons terms in
the lower-dimensional supergravity (for the AdS7 and AdS5 cases). The second step is the
analysis of the effect of turning on scalar deformations.

The analog of the starting point (1.1) is available for more general setups, in which
the internal space is not necessarily a sphere and the d-dimensional theory has less than
maximal supersymmetry. In fact, we may consider replacing Sn with a compact internal
space Mn, which is then fibered over a base space Bd, Mn ↪→ Xd+n → Bd. If Mn has
a continuous isometry group G, we turn on G-connections on the bundle Xd+n. They
correspond to gauge fields with gauge group G in the d-dimensional theory formulated on
Bd. In this context, an important task is the identification of globally defined forms on
the total space Xd+n which reduce to a given closed form on Mn if restricted to the fiber
directions.12 In [45–47] this problem has been studied systematically to compute anomalies
in brane engineering and holography (see also [61]). The methods and results of [45–47]
could also provide starting points for the construction of consistent Kaluza-Klein ansätze.13
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A Analysis of uplift formulae

A.1 Conventions for round spheres

The unit round Sn is defined by the equation

δIJy
IyJ = 1 (A.1)

in Rn+1 with Cartesian coordinates yI , I = 1, . . . , n + 1. Throughout this appendix we
raise/lower I indices with δ. We use ξm, m = 1, . . . , n for local coordinates on Sn, with
∂m = ∂/∂ξm. The round metric on Sn reads

◦
gmn = δIJ∂my

I∂ny
J . (A.2)

12Mathematically, this is related to promoting an element of H•(Mn;R) to a G-equivariant cohomology
class in H•G(M6;R). This process can be obstructed [57]. The physical interpretation of such obstructions
involves the Stückelberg mechanism for p-form gauge fields [58] (see also [59, 60] for an analysis of this
phenomenon in 4d QFTs engineered with M5-branes).

13For instance, M6 could be an S4 bundle over a Riemann surface. See [62, 63] for consistent truncations
with such an internal space.
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It admits the Killing vectors

KmIJ = ◦
gmn(yI∂nyJ − yJ∂nyI) , (A.3)

where ◦gmn is the inverse of ◦gmn. A useful identity is

◦
gmn∂my

I∂ny
J = δIJ − yIyJ . (A.4)

The quantities yI , regarded as a set of n+ 1 scalar functions on Sn, satisfy
◦
∇m

◦
∇nyI = −yI ◦gmn , (A.5)

where
◦
∇m denotes the Levi-Civita connection associated to ◦gmn. As a consequence of (A.5),

the quantities yI are eigenfunctions of the Laplacian constructed with the round metric,

◦
gmn

◦
∇m

◦
∇nyI = −nyI . (A.6)

A.2 Formulae for Hodge stars

Let us consider a D-dimensional metric of the form

dŝ2
D = e2Ads2

d + gmnDξ
mDξn , (A.7)

where ξm, are local coordinates on the n-sphere with constrained coordinates yI . The
1-forms Dξm are related to the 1-forms DyI in (2.11) by

DyI = ∂my
IDξm , Dξm = dξm − 1

2gA
IJKmIJ , (A.8)

with KmIJ as in (A.3). The relation (A.4) is useful in verifying the compatibility between (A.8)
and (2.11). We allow the quantities e2A and for gmn in (A.7) to depend both on the external
coordinates and on the coordinates on Sn.

Suppose α is a q-form with legs along the external spacetime ds2
d only. The following

identity holds,

∗̂(α ∧DyI1 ∧ · · · ∧DyIp) = (−)p(d−q)e(d−2q)A
√
g√ ◦
g

(∗α)∧ (A.9)

∧ 1
(n− p)!εJ0J1...JpK1...Kn−py

J0QI1J1 . . . QIpJpDyK1 ∧ · · · ∧DyKn−p .

The symbol ∗̂ on the l.h.s. denotes the Hodge star with respect to the metric (A.7), while ∗
on the r.h.s. is the Hodge star with respect to the external metric ds2

d. The quantities g, ◦g
are the determinants of gmn, ◦gmn, respectively. The symmetric tensor QIJ is defined as

QIJ = gmn∂my
I∂ny

J , (A.10)

where gmn is the inverse of gmn in (A.7).
The formula (A.9) takes a simpler form if specialized to a metric gmn of the form

gmn = e2A′T−1
IJ ∂my

I∂ny
J , (A.11)
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where A′ is an arbitrary function of external and internal coordinates and TIJ is a symmetric
unimodular matrix, independent on the coordinates on Sn. In this case, the inverse gmn of
gmn can be written in closed form in terms of the Killing vectors (A.3),

gmn = e−2A′ 1
2(yTy)T

IJTKLKmIKKmJL , (A.12)

as it may be verified using (A.4). Plugging this expression into the Q tensor (A.10) and
using again (A.4) we obtain

QIJ = e−2A′
[
T IJ − (Ty)I(Ty)J

yTy

]
. (A.13)

The determinant of gmn in (A.11) can also be written in closed form (see e.g. [36]),

det gmn = e2A′n(yTy) det ◦gmn ,
√
g√ ◦
g

= eA
′n(yTy)1/2 , (A.14)

where we recalled that T is unimodular.
Let us close this section by sketching the derivation of (A.9). We can write the

metric (A.7) in the form

dŝ2
D = e2Ads2

d + δm̄n̄e
m̄en̄ , em̄ = em̄pDξ

p , (A.15)

where a bar denotes a flat index of Sn and the vielbein components em̄p satisfy δm̄n̄em̄pen̄q =
gpq. Note that em̄p depends in general on both internal and external coordinates. By using
the inverse em̄p of em̄p we can write

α ∧DyI1 ∧ . . . DyIp = ∂m1y
I1 . . . ∂mpy

Ipen̄1
m1 . . . en̄p

mpα ∧ en̄1 ∧ · · · ∧ en̄p . (A.16)

The Hodge star of α∧en̄1∧· · ·∧en̄p splits into the wedge product of ∗α and ∗g(en̄1∧· · ·∧en̄p),
where ∗g is the Hodge star with respect to gmn. In the splitting, we generate a suitable
power of the warp factor A, and the sign factor (−)p(d−q) from a reordering of indices.

We may now evaluate the quantity

∂m1y
I1 . . . ∂mpy

Ipen̄1
m1 . . . en̄p

mp ∗g (en̄1 ∧ · · · ∧ en̄p) =

= 1
(n− p)!∂m1y

I1 . . . ∂mpy
Ipen̄1

m1 . . . en̄p
mpεn̄1...n̄r̄1...r̄n−per̄1 ∧ · · · ∧ er̄n−p . (A.17)

Here the epsilon symbol with flat indices takes values in the set {0,±1}. Making use of
em̄ = em̄pDξ

p we can also recast the same quantity in a way that does not make explicit
reference to the vielbein,

∂m1y
I1 . . . ∂mpy

Ipen̄1
m1 . . . en̄p

mp ∗g (en̄1 ∧ · · · ∧ en̄p) =

= 1
(n− p)!∂m1y

I1 . . . ∂mpy
Ipgm1s1 . . . gmpspεs1...spr1...rn−pDξ

r1 ∧ · · · ∧Dξrn−p . (A.18)

Now the epsilon tensor with lower curved indices stands for the volume form of the metric
gmn and therefore takes values in the set {0,±√g}.

– 26 –



J
H
E
P
0
5
(
2
0
2
3
)
1
5
6

The final step is to relate the epsilon tensor of the metric gmn to that of the round
metric ◦gmn, and write the latter in terms of the contrained coordinates yI ,

εm1...mn =
√
g√ ◦
g

◦
εm1...mn =

√
g√ ◦
g
εI0I1...Iny

I0∂m1y
I1 . . . ∂mny

In . (A.19)

Plugging this into (A.18) and making use of ∂myIDξm = DyI and the definition (A.10) of
the tensor QIJ , we arrive at the desired formula (A.9).

A.3 D = 11 supergravity on S7

The complete uplift formulae for this consistent truncation are given in [18], including
all scalars from the coset E7(7)/(SU(8)/Z2). The latter enter the uplift formulae via the
symmetric matrices MMN , IΛΣ, RΛΣ. Here M,N = 1, . . . , 56 are indices of the 56 of
E7(7), Λ,Σ = 1, . . . , 28 are indices of the 28 of SL(8,R). A Λ index is equivalent to pair
of antisymmetrized fundamental indices [IJ ] of SL(8,R). In terms of SL(8,R) ⊂ E7(7), a
lower M index splits into a lower Λ index, and an upper Λ index. The matrixMMN can
be written in block form as

MMN =
(
MΛΣ MΛ

Σ

MΛ
Σ MΛΣ

)
. (A.20)

The four blocks ofMMN and the matrices IΛΣ, RΛΣ are related by (see e.g. [33])

MΛΣ = −(I +RI−1R)ΛΣ , MΛ
Σ =MΣ

Λ = (RI−1)Λ
Σ , MΛΣ = −(I−1)ΛΣ . (A.21)

On the r.h.s. of the previous relations, Λ indices are contracted according to matrix
multiplication.14 The matrix IΛΣ is invertible and negative definite. If we set to zero the
35 pseudoscalars, and only retain the 35 proper scalars, we have

RΛΣ = 0 , IΛΣ = I[IJ ][KL] = −T−1
IKT

−1
JL + T−1

IL T
−1
JK . (A.22)

The quantity T−1
IJ is the inverse of the symmetric unimodular matrix parametrizing the 35

proper scalars of SL(8,R)/SO(8).
The specialization (A.22) implies considerable simplifications in the general uplift

formulae of [18]. The expressions for the internal metric and the warp factor are given in
(24) and (26) of [18] and can be unpacked with the help of the expressions (C.3) in [33] for
the generators of SL(8,R) ⊂ E7(7). The result is

dŝ2
11 = (yTy)2/3ds2

4 + g−2(yTy)−1/3T−1
IJ Dy

IDyJ , (A.23)

with (yTy) and DyI as in (2.3), (2.11).
The uplift formula for Ĝ4 is (27) in [18] (where the 4-form flux is denoted F̂(4)). Thanks

to (A.22), the term dA drops away. The quantities HIJ(4), H(3)I
J , H̃(2)IJ in (27) of [18] can

be evaluated using (16) in [18]. The components of the X tensor that appears there can
14When we identify a Λ index with an antisymmetric pair [IJ ], we insert a factor 1/2 for each con-

tracted pair. For instance, (RI−1)[I1I2]
[J1J2] = 1

2R[I1I2][K1K2](I−1)[K1K2][J1J2] and (II−1)[I1I2]
[J1J2] =

1
2I[I1I2][K1K2](I−1)[K1K2][J1J2] = I[I1I2]

[J1J2] := 2δJ1
[I1
δJ2

I2].
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be found for instance in (C.9), (C.10) of [33] (for the SO(8) gauging, plug θAB = δAB and
ξAB = 0 in those equations). We arrive at the following expression for the 4-form flux (in
our notation),

Ĝ4 = − 1
2g2 (∗F )JL ∧DyI ∧DyKT−1

IJ T
−1
KL −

1
g
T JKyKDy

I ∧ ∗DT−1
IJ

+ gvol4
[
(TrT )(yTy)− 2(yTTy)

]
. (A.24)

Here yTTy = yIT
IJTJKy

K and vol4 is the volume form of the external metric ds2
4. We may

now compute the Hodge star of Ĝ4 with the help of the identities collected in section A.2
and verify that the resulting Ĝ7 takes the form (2.29) given in the main text.

A.4 Massive D = 10 type IIA supergravity on S6

In this subsection, we use A, B = 1, . . . , 8 for fundamental indices of SL(8,R), reserving I,
J = 1, . . . , 7 to fundamental indices of SL(7,R) or SO(7). The full set of scalar fields in
four dimensions is again parametrized in terms of the matricesMMN , IΛΣ, RΛΣ as above.
Now, we identify Λ indices with antisymmetrized pairs [AB]. In a first step, we freeze to
zero all pseudoscalar modes, so that

RΛΣ = 0 , IΛΣ = I[AB][CD] = −T −1
ACT

−1
BD + T −1

ADT
−1
BC . (A.25)

The quantity T is a symmetric unimodular 8 × 8 matrix. Notice that (A.25) is nothing
but (A.22), written in a slightly different notation that is better suited to discuss the
problem at hand.

Next, let us perform the index splitting A → (I, 8). We restrict the matrix T AB to
take the following block-diagonal form,

T AB =
(
T IJ T I8

T 8J T 88

)
=
(
Y 1/7T IJ 0

0 Y −1

)
. (A.26)

Here Y is a positive real scalar and T IJ is the symmetric unimodular matrix that
parametrizes SL(7,R)/SO(7).

The uplift formulae for the metric and the dilaton can be extracted from (3.14), (3.18),
(3.23) in [34]. Since we only keep a subset of the scalars, the quantities denoted Am, Bmn,
Amnp there are all zero. One may then readily reproduce the formulae (2.36), (2.38) given
in the main text.

Next, we turn to the evaluation of the Ramond-Ramond 4-form field strength. It is
denoted F̂(4) in [34] and it is given by (A.4) therein in terms of the p-form potentials of type
IIA. Using (3.12) in [34], keeping in mind that Am = Bmn = Amnp = 0 for us, we confirm
that F̂(4) takes the same form as in (3.27) in [34], with the terms implicit in the ellipses
being zero in our simplified setting. This step can be checked making use of the relations
(2.7), (2.8), (2.9) in [33]. The next task is then to evaluate the quantities HIJ(4), H(3)I

J ,
H̃(2)IJ in (3.27) of [34]. This can be done using (2.23), (2.21), (2.19) in [33]. The latter can
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be unpacked using (C.3), (C.9) in the same reference, keeping in mind that for the dyonic
gauging at hand the correct values of θAB, ξAB are given in (C.15) of [33]. We obtain

H(3)I
J = −T−1

IK ∗DT
KJ + 1

7δI
JT−1

KL ∗DT
LK , (A.27)

H̃(2)IJ = −Y −
2
7T−1

IKT
−1
JL ∗ H

KL
(2) , (A.28)

HIJ(4) = Y
2
7
[
T IJTrT − 2(TT )IJ

]
. (A.29)

Here HKL(2) is the notation of [33] for the field strengths FKL. Interestingly, all Y and dY
factors drop away from H(3)I

J .
Once F̂(4) is computed, we may turn to e 1

2 φ̂∗̂F̂(4), which may be evaluated with the
help of the identities of section A.2. Taking the Hodge star with respect to the metric (2.36)
generates additional powers of Y . These conspire with the powers of Y in (A.27)–(A.29)
to ensure that ∗̂F̂(4) has a single overall power of Y , which is precisely cancelled by the
prefactor e 1

2 φ̂. We thus confirm that e 1
2 φ̂∗̂F̂(4) does not contain Y . Finally, we verify that

e
1
2 φ̂∗̂F̂(4) takes the form specified in (2.38), (2.39), up to an overall constant normalization

factor.

B Scalar potential from reduction of the D-dimensional action

B.1 Reduction of the action: cases without dilaton

Reduction of the Einstein-Hilbert term. We find it convenient to write the metric
ansatz (3.3) in the form

dŝ2
D = (yTy)b1ds̄2

D , ds̄2
D = ds2

d + ds̃2
n , ds̃2

n = g−2(yTy)b2γmndξ
mdξn . (B.1)

Here ξm are local coordinates on Sn, and we have introduced the notation

γmn = T−1
IJ ∂my

I∂ny
J . (B.2)

Geometrically, γmn describes an ellipsoid, whose principal axes are determined by the
eigenvalues of the matrix TIJ .

Our first task is the evaluation of the Ricci scalar of the metric dŝ2
D. In a first step, we

express the Ricci scalar of dŝ2
D in terms of that of ds̄2

D, making use of the fact that these
two D-dimensional line elements are related by a Weyl rescaling by the factor (yTy)b1 . Let
µ̂, ν̂ be curved indices in D dimensions. The following formula is useful,

if ĝµ̂ν̂ = e2ϕḡµ̂ν̂ ,

R[ĝµ̂ν̂ ] = e−2ϕ
[
R[ḡµ̂ν̂ ]− 2(D − 1) ḡµ̂ν̂ ∇µ̂∇ν̂ϕ− (D − 1)(D − 2) ḡµ̂ν̂ ∇µ̂ϕ∇ν̂ϕ

]
. (B.3)

The symbol ∇µ̂ denotes the Levi-Civita connection of the D-dimensional metric ds̄2
D. We

apply (B.3) with e2ϕ = (yTy)b1 .
Next, we observe that the metric ds̄2

D is a direct product between the d-dimensional
metric ds2

d = gµνdx
µdxν and the n-dimensional metric ds̃2

n = g̃mndξ
mdξn. (We have
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introduced µ, ν, which are curved indices in d dimensions.) This holds because we are
working under the simplifying assumptions (3.2) of no gauge fields and constant T . As a
result, we have the simple formula

R[ḡµ̂ν̂ ] = R[gµν ] +R[g̃mn] . (B.4)

Furthermore, the D-dimensional Levi-Civita connection ∇µ̂ also splits in a trivial way,

∇µ̂ = (∇µ,∇m) = (∇µ, ∇̃m) . (B.5)

Here ∇µ is the Levi-Civita connection of gµν and ∇̃m is that of g̃mn. The conformal factor
e2ϕ = (yTy)b1 in (B.3) depends on the Sn coordinates only (because we are assuming T is
constant). As a result, we can write

R[ĝµ̂ν̂ ] = e−2ϕ
[
R[gµν ]+R[g̃mn]−2(D−1) g̃mn ∇̃m∇̃nϕ−(D−1)(D−2) g̃mn ∇̃mϕ ∇̃nϕ

]
.

(B.6)

We may now proceed by writing quantities associated to g̃mn in terms of quantities
associated to γmn. The two metrics are related as g̃mn = e2ϕ′γmn with e2ϕ′ = g−2(yTy)b2 .
For the Ricci scalar R[g̃mn] we can use a formula completely analogous to (B.3). We also
have immediately ∇̃mϕ = ∂mϕ. The Laplacian term g̃mn ∇̃m∇̃nϕ can be addressed with
the help of the identity

if g̃mn = e2ϕ′γmn , g̃
mn ∇̃m∇̃nϕ = e−2ϕ′

[
γmn∇(γ)

m ∇(γ)
n ϕ+ (n− 2)γmn∂mϕ∂nϕ′

]
. (B.7)

We have introduced the notation ∇(γ)
m for the Levi-Civita connection of γmn.

Retracing all the steps outlined above, we arrive at the following formula for the Ricci
scalar of the D-dimensional metric dŝ2

D,

R[ĝµ̂ν̂ ] = (yTy)−b1 R[gµν ] + g2 (yTy)−b1−b2

[
R[γmn] +K(L) γ

mn∇(γ)
m ∇(γ)

n log(yTy)

+K(G) γ
mn ∂m log(yTy)∂n log(yTy)

]
. (B.8)

We have introduced the constants

K(L) = b1 − b1D + b2 − b2n ,

K(G) = −b
2
1
4 (D − 1)(D − 2)− b22

4 (n− 1)(n− 2)− b1b2
2 (D − 1)(n− 2) . (B.9)

The volume form of the D-dimensional metric dŝ2
D is written in terms of the d-dimensional

metric gµν and the n-dimensional metric γmn as√
−ĝD = g−n (yTy)b1D/2+b2n/2√−gd

√
γ . (B.10)

The D-dimensional Einstein-Hilbert Lagrangian
√
−ĝDR[ĝµ̂ν̂ ] is readily written by combin-

ing (B.8) and (B.10).
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We are free to add to
√
−ĝDR[ĝµ̂ν̂ ] any total divergence on Sn, of the form√γ∇(γ)

m (. . . )m,
because we are interested in the integral of the D-dimensional action over Sn. If we add a
term of the form

√
γ∇(γ)

m

(√
−gdγmn∇(γ)

n (yTy)
b1D

2 −b1+ b2n

2 −b2

)
(B.11)

with the appropriate constant prefactor, we eliminate the Laplacian term
γmn∇(γ)

m ∇(γ)
n log(yTy). We thus get the simpler expression√

−ĝDR[ĝµ̂ν̂ ] = g−n(yTy)−b1+b1D/2+b2n/2√−gd
√
γR[gµν ] (B.12)

+ g−n+2 (yTy)−b1−b2+b1D/2+b2n/2√−gd
√
γ

[
R[γmn] +K′(G) γ

mn ∂m log(yTy)∂n log(yTy)
]
,

where the new constant K′(G) is given by

K′(G) = K(G) −K(L)

(
b1D

2 − b1 + b2n

2 − b2
)
. (B.13)

In a final step, we rewrite the quantities expressed in terms of the ellipsoid metric γmn
in terms of the round metric ◦gmn defined in (A.2). The following identities are useful,

√
γ = (yTy)1/2

√
◦
g , γmn ∂m(yTy)∂n(yTy) = 4 (yT 3y)− 4 (yT 2y)2

yTy
. (B.14)

We also need the expression of the Ricci scalar of the ellipsoid metric [42],

R[γmn] = (TrT )2

yTy
− TrT 2

yTy
− 2 (TrT ) (yT 2y)

(yTy)2 + 2 yT 3y

(yTy)2 . (B.15)

Combining all the above ingredients, we finally arrive at the result quoted in (3.4), (3.5).
As explained in the main text, the values of the parameters b1, b2 are fixed according

to (3.10). After that, we find it convenient to add another total divergence on Sn. More
precisely, we add a constant multiple of

√
γ∇(γ)

m

(√
−gdγmn∇(γ)

n (yTy)1/2
)

=

= 2
√
−gd

√
◦
g

[(yT 2y)2

(yTy)2 −
(yT 3y)
yTy

+ 1
2 Tr(T 2)− (TrT ) (yT 2y)

2 (yTy)

]
. (B.16)

Adding this total divergence allows us to cancel the terms with yT 3y and complete a perfect
square, thus arriving at the result (3.11) quoted in the main text.

Reduction of kinetic term for the flux. The kinetic term for F̂n is proportional to
the quantity √

−ĝD|F̂n|2 = 1
n!
√
−ĝDF̂µ̂1...µ̂nF̂ν̂1...ν̂n ĝ

µ̂1ν̂1 . . . ĝµ̂nν̂n . (B.17)

The ansatz (3.7) for F̂n implies that the only non-zero components of F̂n are

F̂p1...pn = f(y, T )◦εp1...pn , (B.18)
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where ◦
ε is the volume form of the round metric ◦

gmn on Sn. In a first step, we can
rewrite (B.17) in terms of theD-dimensional metric ds̄2

D, generating an overall yTy prefactor,
√
−ĝD|F̂n|2 = 1

n! (yTy)b1D/2−b1n
√
−ĝDF̂µ̂1...µ̂nF̂ν̂1...ν̂n ĝ

µ̂1ν̂1 . . . ĝµ̂nν̂n . (B.19)

Next, we use the fact that ds̄2
D is a direct product metric, ds̄2

D = ds2
d + ds̃2

n, and that F̂n
has only internal legs,√

−ĝD|F̂n|2 = 1
n! (yTy)b1D/2−b1n

√
−gd

√
g̃F̂p1...pnF̂q1...qn g̃

p1q1 . . . g̃pnqn . (B.20)

We proceed by trading the metric g̃mn with the ellipsoid metric γmn and using (B.18),
√
−ĝD|F̂n|2 = 1

n!g
n(yTy)b1D/2−b1n−b2n/2√−gd

√
γf2 ◦εp1...pn

◦
εq1...qnγ

p1q1 . . . γpnqn . (B.21)

To compute the contraction of two round volume forms ◦ε with the ellipsoid inverse metric,
we use det γmn = (yTy) det ◦gmn (valid for unimodular T ) to write

◦
εp1...pn

◦
εq1...qnγ

p1q1 . . . γpnqn = (yTy)−1ε(γ)
p1...pn

ε(γ)
q1...qn

γp1q1 . . . γpnqn = n!(yTy)−1 , (B.22)

where ε(γ) is the volume form of the ellipsoid metric γmn. We thus reproduce the result (3.13)
quoted in the main text.

B.2 Integrals on Sn and independence on T

Our goal is to determine under which conditions the following quantity has an integral over
Sn that is independent of T (provided detT = 1),

h(T, y) = (yTy)−k/2+u
[
yT 2y

(yTy)2 −
4− k

8
TrT
yTy

]
. (B.23)

We have included two independent constant parameters k, u, in order to be able to apply
the present argument to the case with a dilaton.

We consider a T matrix of the form TIJ = exp(t)IJ , with Tr t = 0, so that detT = 1.
We can expand h(et, y) in a power series around t = 0. The integral over Sn can be
performed order by order with the help of identities∫

Sn
dnξ

√
◦
gyI1 . . . yI2p = (2p− 1)!! δ(I1I2δI3I4 . . . δI2p−1I2p)

(n+ 1)(n+ 3) . . . (n+ 2p− 1) , p = 1, 2, 3, . . . (B.24)

For simplicity, let us first freeze u = 0, keeping k as only free parameter. This is enough
for applications to the cases without dilaton. We find

1
Vn

∫
Sn
dnξ

√
◦
gh(et, y) = 1

8((k − 4)n+ k + 4) (B.25)

+ k
(
k2(n+ 1)− kn(n+ 2) + 7k + 4(n− 3)(n+ 1)

)
32(n+ 1)(n+ 3) Tr(t2)

− k(k − n− 1)
(
2k2(n+ 1) + k(19− (n− 2)n) + 4(n− 7)(n+ 1)

)
96(n+ 1)(n+ 3)(n+ 5) Tr(t3) +O(t4) .
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We see that the only way to ensure that the result is independent of t, without imposing
any restriction on t (except tracelessness), is to select

k = 0 . (B.26)

We know that (B.23) with (k, u) = (0, 0) is related to a total derivative, thanks to the
identity (3.16), repeated here for convenience,

εy(dy)n + d

[
n

n− 1
1
yTy

εy(Ty)(dy)n−1
]

= − 2
n− 1

[
yT 2y

(yTy)2 −
1
2

TrT
yTy

]
εy(dy)n . (B.27)

This relation demonstrates that

(k, u) = (0, 0) ⇒
∫
Sn
dnξ

√
◦
gh(y, T ) = −n− 1

2 Vn , (B.28)

which is indeed non-zero for n ≥ 2 and independent of T .
Let us now repeat the analysis keeping both k and u as independent parameters, as

required for applications to the cases with a dilaton. We have studied the integral of (B.23)
up to fourth order in t. By collecting the coefficients of the Tr(t2), Tr(t3), Tr(t4), and
[Tr(t2)]2 structures, and setting them to zero, we obtain a set of relations among k, u, n,
which admit the following solutions,

(k, u) = (0, 0) , (k, u) = ( 4(n−1)
n+1 ,− (n−3)(n−1)

2(n+1)

)
, (k, u) = ( 4(n+1)

n+3 ,− (n−1)(n+1)
2(n+3)

)
. (B.29)

These three options are the only possible values of (k, u) for which the integral of (B.23)
has a chance of being independent of T , for unimodular T . We now study each case and
prove that the integral has indeed this property.

We have already encountered the case (k, u) = 0, and we have already demonstrated
in (B.28) that for these values of k, u the integral of h is indeed independent of T .

For the case (k, u) = ( 4(n−1)
n+1 ,− (n−3)(n−1)

2(n+1) ) we use the relation

d

[
(yTy)−

n+1
2 εy(Ty)(dy)n−1

]
= −n+ 1

n
(yTy)1−n+1

2

[
yT 2y

(yTy)2 −
1

n+ 1
TrT
yTy

]
εy(dy)n .

(B.30)
We conclude that

(k, u) = ( 4(n−1)
n+1 ,− (n−3)(n−1)

2(n+1)

)
⇒

∫
Sn
dnξ

√
◦
gh(y, T ) ≡ 0 . (B.31)

While indeed independent of T , a flux that is identically zero is not acceptable, because it
does not reproduce the non-zero flux of the case T = I.

The third option in (B.29) requires a more careful analysis. We start from√
◦
g
◦
∇m

◦
∇m(yTy)λ =

√
g
[
2λ (yTy)λ−1 TrT − 2λ (n+ 1) (yTy)λ

+ 4λ (λ− 1) (yTy)λ−2 (yT 2y)− 4λ (λ− 1) (yTy)λ
]
, (B.32)
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where
◦
∇m

◦
∇m is the scalar Laplace operator constructed with the round metric on Sn and

λ is a real constant. If we specialize to λ = −(n+ 1)/2, we obtain

√
◦
g
◦
∇m

◦
∇m(yTy)λ = (n+ 1)(n+ 3)

√
◦
g(yTy)−

n+1
2

[
yT 2y

(yTy)2 −
1

n+ 3
TrT
yTy

− 2
n+ 3

]
. (B.33)

Since the l.h.s. is a total divergence, we conclude that

(k, u) = ( 4(n+1)
n+3 ,− (n−1)(n+1)

2(n+3)

)
⇒

∫
Sn

√
◦
gh(y, T ) = 2

n+ 3

∫
Sn
dnξ

√
◦
g(yTy)−

n+1
2 . (B.34)

The integral on the r.h.s. can be evaluated as follows. We start from the standard Gaussian
integral ∫

Rn+1
dn+1xe−

1
2xTx = (2π)

n+1
2 (detT )−

1
2 , (B.35)

where xI are Cartesian coordinates on Rn+1. We introduce polar coordinates xI = ryI ,
with yIyI = 1. We can then write∫

Rn+1
dn+1xe−

1
2xTx =

∫
Sn
dnξ

√
◦
g

∫ ∞
0

drrne−
1
2 r

2(yTy)

=
∫
Sn
dnξ

√
◦
g2

n−1
2 (yTy)−

n+1
2 Γ(n+1

2 ) . (B.36)

Comparing (B.35) and (B.36) and recalling (2.8), we find∫
Sn
dnξ

√
◦
g(yTy)−

n+1
2 = Vn(detT )−

1
2 . (B.37)

Using (B.34) we conclude

(k, u) = ( 4(n+1)
n+3 ,− (n−1)(n+1)

2(n+3)

)
⇒

∫
Sn

√
◦
gh(y, T ) = 2

n+ 3Vn(detT )−
1
2 . (B.38)

The result is not identically zero and depends on T . The dependence on T , however, drops
out after imposing the unimodularity constraint.

To summarize: the integral of h in (B.23) is independent of T for unimodular T if and
only if one of the following three cases is realized:

• (k, u) = (0, 0): the integral of h is non-zero and independent of T without using the
condition detT = 1;

• (k, u) = ( 4(n−1)
n+1 ,− (n−3)(n−1)

2(n+1) ): the integral of h is identically zero for any symmetric T
without using the condition detT = 1;

• (k, u) = ( 4(n+1)
n+3 ,− (n−1)(n+1)

2(n+3) ): the integral of T is a non-zero constant times (detT )− 1
2 ,

and thus independent of T using detT = 1.

– 34 –
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B.3 Features of non-trivial integrals over Sn

The reduction of the Einstein-Hilbert term yields the integrand I in (3.11). The terms with
a non-trivial y dependence are collected in the perfect square [ yT 2y

yTy −
4−k

8 TrT ]2. This is a
rational function of y, T , homogeneous of degree 2 under a formal rescaling TIJ → λTIJ .
(In the present discussion, we relax the unimodularity constraint on T and study integrals
of expressions such as yT 2y

yTy as functions of an arbitrary symmetric T .) If we integrate
[ yT 2y
yTy −

4−k
8 TrT ]2 over Sn with measure

√ ◦
g, we get a function of TIJ which is manifestly

homogeneous of degree 2. It is not, however, a quadratic function, nor a rational function
of the entries of T .

This can be verified explicitly in the example n = 2, choosing for simplicity a diagonal
T of the form

TIJ = diag(t, t, s) , (B.39)

where t, s are positive parameters. The constrained coordinates yI may be parametrized in
terms of an interval coordinate −1 ≤ µ ≤ 1 and an angle φ with period 2π,

y1 =
√

1− µ2 cosφ , y2 =
√

1− µ2 sinφ , y3 = µ . (B.40)

The round metric on S2 in these coordinates reads d ◦s2 = dµ2

1−µ2 + (1− µ2)dφ2 and therefore√ ◦
g = 1. We also check that the quantity [ yT 2y

yTy −
4−k

8 TrT ]2 is independent of φ, due to
the fact that the first two diagonal entries of T are equal. We are thus left to compute an
integration in the variable µ only. Considering for definiteness the case s > t, we find15

1
2π

∫
S2

√
◦
g

[
yT 2y

yTy
−4− k

8 TrT
]2

= st+((k + 4)s+ 2kt)2

32 −
s((k + 2)s+ 2kt) arctan

√
s
t − 1

2
√

s
t − 1

.

(B.41)
The r.h.s. is homogeneous of degree 2 under a simultaneous rescaling (t, s)→ (λt, λs), but
it is not a rational function of t, s.
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