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ABSTRACT
Vector autoregressive (VAR) models are popularly adopted for modeling high-dimensional time series,
and their piecewise extensions allow for structural changes in the data. In VAR modeling, the number
of parameters grow quadratically with the dimensionality which necessitates the sparsity assumption in
high dimensions. However, it is debatable whether such an assumption is adequate for handling datasets
exhibiting strong serial and cross-sectional correlations. We propose a piecewise stationary time series
model that simultaneously allows for strong correlations as well as structural changes, where pervasive serial
and cross-sectional correlations are accounted for by a time-varying factor structure, and any remaining
idiosyncratic dependence between the variables is handled by a piecewise stationary VAR model. We
propose an accompanying two-stage data segmentation methodology which fully addresses the challenges
arising from the latency of the component processes. Its consistency in estimating both the total number and
the locations of the change points in the latent components, is established under conditions considerably
more general than those in the existing literature. We demonstrate the competitive performance of the pro-
posed methodology on simulated datasets and an application to U.S. blue chip stocks data. Supplementary
materials for this article are available online.
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1. Introduction

Vector autoregressive (VAR) models are popular for modeling
cross-sectional and serial correlations in multivariate, possibly
high-dimensional time series. With, for example, applications
in finance (Barigozzi and Hallin 2017), biology (Shojaie and
Michailidis 2010) and genomics (Michailidis and d’Alché Buc
2013). Within such settings, the importance of data segmenta-
tion is well-recognized, and several methods exist for detecting
change points in VAR models in both fixed (Kirch, Muhsal, and
Ombao 2015) and high dimensions (Safikhani and Shojaie 2022;
Wang et al. 2019; Bai, Safikhani, and Michailidis 2020; Maeng,
Eckley, and Fearnhead 2022).

VAR modeling quickly becomes a high-dimensional prob-
lem as the number of parameters grows quadratically with the
dimensionality. Accordingly, most existing methods for detect-
ing change points in high-dimensional, piecewise stationary
VAR processes assumes sparsity (Basu and Michailidis 2015).
However, it is debatable whether highly sparse models are appro-
priate for some applications. For example, Giannone, Lenza, and
Primiceri (2021) note the difficulty of identifying sparse predic-
tive representations for several macroeconomic applications.

We illustrate the inadequacy of the sparsity assumption on
a volatility panel dataset (see Section 5.3 for its description).
Figure 1(a) shows that as the dimensionality increases, the lead-
ing eigenvalue of the spectral density matrix at frequency 0
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(i.e., the long-run covariance) estimated from the data also
increases linearly. This indicates the presence of strong serial
and cross-sectional correlations that cannot be accommodated
by sparse VAR models. In Figure 1(b), we report the logged
and truncated p-values obtained from fitting a VAR(5) model to
the same dataset (truncation level chosen at log(3.858 × 10−6)
by Bonferroni correction with the significance level 0.1) via
ridge regression, see Cule, Vineis, and De Iorio (2011). Strong
dependence observed from most pairs of the variables further
confirms that we cannot infer a sparse pairwise relationship
from such data. On the other hand, Figure 1(c) shows that once
we estimate factors driving the strong correlations and adjust for
their presence, there is evidence that the remaining dependence
in the data can be modeled as being sparse. Together, the plots
(d), (e), (c), and (f) display that the relationship between a pair of
variables (after factor-adjustment) varies over time, particularly
at the level of industrial sectors. Here, the intervals are cho-
sen according to the data segmentation result reported in Sec-
tion 5.3. This example highlights the importance of (i) account-
ing for the dominant correlations prior to fitting a model under
the sparsity assumption, and (ii) detecting structural changes
when analyzing time series datasets covering a long period.

Motivated by the aforementioned characteristics of high-
dimensional time series data, factor-adjusted regression mod-
eling has increasingly gained popularity (Fan, Ke, and Wang
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Figure 1. (a) The two largest eigenvalues of the long-run covariance matrix estimated from the volatility panel analyzed in Section 5.3 (March 18, 2008–July 07, 2009,
n = 223) with subsets of cross-sections randomly sampled 100 times for each given dimension p ∈ {5, . . . , 72} (x-axis). (b) and (c): logged and truncated p-values from
fitting a VAR(5) model to the same dataset without and with factor-adjustment. (d)–(f ): logged and truncated p-values similarly obtained with factor-adjustment from the
same variables over different periods. In (b)–(f ), for each pair of variables, the minimum p-value over the five lags is reported. Corresponding tickers are given in x- and
y-axes and industrial sectors are indicated by the colors and boundaries drawn.

2020; Fan, Masini, and Medeiros 2021; Krampe and Margaritella
2021). The factor-adjusted VAR model proposed by Barigozzi,
Cho, and Owens (2022) assumes that a handful of common
factors capture strong serial and cross-sectional correlations,
such that it is reasonable to assume a sparse VAR model on the
remaining component to capture idiosyncratic, variable-specific
dependence. We extend this framework by proposing a new,
piecewise stationary factor-adjusted VAR model and develop
FVARseg, an accompanying change point detection methodol-
ogy. Below we summarize the methodological and theoretical
contributions made in this article.

1.1. Generality of the Modeling Framework

We decompose the data into two piecewise stationary latent pro-
cesses: one is driven by factors and accounts for dominant serial
and cross-sectional correlations, and the other models sparse
pairwise dependence via a VAR model. We adopt the most
general approach to factor modeling and allow both components
to undergo changes which, in the case of the latter, are attributed
to shifts in the VAR parameters. To the best of our knowledge,
such a general model simultaneously permitting the presence
of common factors and change points, has not been studied in
the literature previously. Accordingly, we are not aware of any
method that can comprehensively address the data segmentation
problem considered in this article.

1.2. Methodological Novelty

The idea of scanning the data for changes over moving windows,
has successfully been applied to a variety of data segmentation

problems (Preuss, Puchstein, and Dette 2015; Eichinger and
Kirch 2018; Chen, Wang, and Wu 2022). We propose FVARseg,
a two-stage methodology that combines this idea with statistics
carefully designed to have good detection power against differ-
ent types of changes in the two latent components. In Stage 1
of FVARseg, motivated by that dominant factor-driven corre-
lations appear as leading eigenvalues in the frequency domain,
see for example, Figure 1(a), we propose a detector statistic
that contrasts the local spectral density matrix estimators from
neighboring moving windows in operator norm, which is well-
suited to detect changes in the factor-driven component.

In Stage 2 for detecting change points in the latent piecewise
stationary VAR process, we deliberately avoid estimating the
latent process which may incur large errors. Instead, we make
use of (i) the Yule-Walker equation that relates autocovariances
(ACV) and VAR parameters, and (ii) the availability of local
ACV estimators of the latent VAR process after Stage 1. Combin-
ing these ingredients, we propose a novel detector statistic that
enjoys methodological simplicity as well as statistical efficiency.
Further, through sequential evaluation of the detector statistic,
the second-stage procedure requires the estimation of local VAR
parameters at selected locations only. Consequently it is highly
competitive computationally when both the sample size and the
dimensionality are large.

1.3. Theoretical Consistency

FVARseg achieves consistency in estimating the total number
and locations of the change points in both of the piecewise
stationary factor-driven and VAR processes. Our theoretical
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analysis is conducted in a setting considerably more general than
those commonly adopted in the literature, permitting depen-
dence across stationary segments and heavy-tailedness of the
data. We also derive the rate of localization for each stage of
FVARseg where we make explicit the influence of tail behavior
and the size of changes. In particular, under Gaussianity, the
estimators from Stage 1 nearly matches the minimax optimal
rate derived for the simpler, covariance change point detection
problem.

The rest of the article is structured as follows. Section 2
introduces the piecewise stationary factor-adjusted VAR model.
Section 3 describes the two stages of FVARseg, the proposed
data segmentation methodology, and Section 4 establishes its
theoretical consistency. Section 5 demonstrates the performance
of FVARseg empirically, and Section 6 concludes the article. R
code is available from https://github.com/haeran-cho/fvarseg.

1.4. Notation

Let I and O denote an identity matrix and a matrix of zeros
whose dimensions depend on the context. For a random vari-
able X and ν ≥ 1, denote ‖X‖ν = (E|X|ν)1/ν . Given A =
[aii′ , 1 ≤ i ≤ m, 1 ≤ i′ ≤ n], we denote by A∗ its
transposed complex conjugate. We define its element-wise �∞,
�1 and �2-norms by |A|∞ = maxi,i′ |aii′ |, |A|1 = ∑

i,i′ |aii′ |
and |A|2 =

√∑
i,i′ |aii′ |2, and its spectral and induced L1, L∞-

norms by ‖A‖, ‖A‖1 = max1≤i′≤n
∑m

i=1 |aii′ | and ‖A‖∞ =
max1≤i≤n

∑m
i′=1 |aii′ |, respectively. For positive definite A, we

denote its minimum eigenvalue by ‖A‖min. For two real num-
bers, a ∨ b = max(a, b) and a ∧ b = min(a, b). For two
sequences {an} and {bn}, we write an � bn if, for some constants
C1, C2 > 0, there exists N ∈ N such that C1 ≤ anb−1

n ≤ C2 for
all n ≥ N.

2. Piecewise Stationary Factor-Adjusted VAR Model

2.1. Background

A zero-mean, p-variate process ξ t follows a VAR(d) model if it
satisfies

ξ t = A1ξ t−1 + · · · + Adξ t−d + (�)1/2εt , (1)

where A� ∈ R
p×p, 1 ≤ � ≤ d, determine how future values

of the series depend on their past. The p-variate random vector
εt = (ε1t , . . . , εpt)� has εit which are iid for all i and t with
E(εit) = 0 and var(εit) = 1. The positive definite matrix � ∈
R

p×p is the covariance matrix of the innovations for the VAR
process.

A factor-driven component exhibits strong cross-sectional
and/or serial correlations by “loading” finite-dimensional
factors linearly. Among many, the generalized dynamic factor
model (GDFM, Forni et al. 2000, 2015) provides the most
general approach (see Appendix D for further discussions), and
defines the p-variate factor-driven component χ t as

χ t = B(L)ut =
∞∑

�=0
B�ut−�. (2)

For fixed q, the q-variate random vector ut = (u1t , . . . , uqt)�
contains the common factors which are shared across the vari-
ables and time, and ujt are assumed to be iid for all j and t with
E(ujt) = 0 and var(ujt) = 1. The matrix of square-summable
filters B(L) = ∑∞

�=0 B�L� with the lag-operator L and B� ∈
R

p×q, serves the role of loadings under (2).
Barigozzi, Cho, and Owens (2022) propose a factor-adjusted

VAR model, where the observations are assumed to be decom-
posed as a sum of the two latent components ξ t and χ t in (1)–
(2), with pervasive correlations in the data are accounted for
by χ t and the remaining dependence captured by ξ t . In the
next section, we introduce its piecewise stationary extension
where both the factor-driven and VAR processes are allowed to
undergo structural changes.

2.2. Model

We observe a zero-mean, p-variate piecewise stationary process
Xt = χ t + ξ t where⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

χ t = χ
[k]
t = B[k](L)ut

for θχ ,k + 1 ≤ t ≤ θχ ,k+1, 0 ≤ k ≤ Kχ ,

ξ t = ξ
[k]
t = ∑d

�=1 A[k]
� ξ t−� + (�[k])1/2εt

for θξ ,k + 1 ≤ t ≤ θξ ,k+1, 0 ≤ k ≤ Kξ .

(3)

Here, θχ ,k, 1 ≤ k ≤ Kχ , denote the change points in the
piecewise stationary factor-driven component χ t such that at
each θχ ,k, the filter of loadings B[k](L) undergoes a change. We
permit the factor number to vary over time as qk ≤ q, with
the factor u[k]

t ∈ R
qk associated with χ

[k]
t being a sub-vector

of ut ∈ R
q. Similarly, θξ ,k, 1 ≤ k ≤ Kξ , denote the change

points in the piecewise stationary VAR process ξ t at which the
VAR parameters undergo shifts; we permit the VAR innovation
covariance matrix to vary as �[k] but our interest lies in detecting
changes in VAR parameters, and the VAR order may vary over
time as dk ≤ d with A[k]

� = O for � ≥ dk + 1. By convention,
we denote θχ ,0 = θξ ,0 = 0 and θχ ,Kχ+1 = θξ ,Kξ +1 = n. In line
with the factor modeling literature, we assume that χ t and ξ t are
uncorrelated through having E(ujtεit′) = 0 for any i, j, t and t′.

The model (3) does not require that the change points in χ t
and ξ t are aligned, or that Kχ = Kξ . Our goal is to estimate
the total number and locations of the change points for both
of the piecewise stationary latent processes. Importantly, we
allow {ξ [k]

t , t ∈ Z} (resp. {χ [k]
t , t ∈ Z}) to be dependent

across k through sharing the innovations εt (resp. ut). This
makes our model considerably more general than those found
in the literature on (high-dimensional) data segmentation under
VAR models (Wang et al. 2019; Safikhani and Shojaie 2022; Bai,
Safikhani, and Michailidis 2022) which assume independence
across the segments. Data segmentation under factor models has
been considered by Barigozzi, Cho, and Fryzlewicz (2018) and
Li, Li, and Fryzlewicz (2023) but they adopt a static approach to
factor modeling.

2.3. Assumptions

We introduce assumptions that ensure the (asymptotic) iden-
tifiability of the two latent processes in (3) which are framed

https://github.com/haeran-cho/fvarseg
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in terms of spectral properties, as well as controlling the
degree of dependence in the data. Denote by �[k]

χ (�) =
E(χ

[k]
t−�(χ

[k]
t )�) the ACV matrix of χ

[k]
t at lag � ∈ Z, and

its spectral density matrix at frequency ω ∈ [−π , π ] by
�[k]

χ (ω) = (2π)−1∑∞
�=−∞ �[k]

χ (�)e−ι�ω with ι = √−1. Then,
μ

[k]
χ ,j(ω), 1 ≤ j ≤ qk, denote the real, positive eigenvalues of

�[k]
χ (ω) ordered by decreasing size. We similarly define �

[k]
ξ (�),

�
[k]
ξ (ω) and μ

[k]
ξ ,j (ω) for ξ

[k]
t .

Assumption 2.1. For each 0 ≤ k ≤ Kχ , the following holds:
There exist a positive integer p0 ≥ 1, pairs of functions ω �→
α

[k]
j (ω) and ω �→ β

[k]
j (ω) for ω ∈ [−π , π ] and 1 ≤ j ≤ qk,

and rk,j ∈ (0, 1] satisfying rk,1 ≥ · · · ≥ rk,qk such that for all
p ≥ p0,

β
[k]
1 (ω) ≥ μ

[k]
χ ,1(ω)

prk,1
≥ α

[k]
1 (ω) > · · · > β[k]

qk
(ω)

≥ μ
[k]
qk (ω)

prk,qk
≥ α[k]

qk
(ω) > 0.

If rk,j = 1 for all 1 ≤ j ≤ qk as frequently assumed in the
literature (Fan, Liao, and Mincheva 2013; Forni et al. 2015), we
are in the presence of qk factors which are equally pervasive for
the whole cross-sections of χ

[k]
t . If rk,j < 1 for some j, we permit

the presence of ‘weak’ factors. Since our primary interest lies in
change point analysis, we later introduce a related but distinct
condition on the size of change in χ t in Assumption 4.2.

Assumption 2.2. (i) det(
∑d

�=1 A[k]
� z�) �= 0 for all |z| ≤ 1 and

0 ≤ k ≤ Kξ .
(ii) mε ≤ min0≤k≤Kξ

‖�[k]‖min ≤ max0≤k≤Kξ
‖�[k]‖ ≤ Mε for

some constants 0 < mε ≤ Mε .
(iii) Consider the Wold decomposition ξ

[k]
t = ∑∞

�=0 D[k]
�

(�[k])1/2εt−� where D[k]
� = [D[k]

�,ij, 1 ≤ i, j ≤ p]. Then, there
exist constants  > 0 and ς > 2 such that we have Cij, 1 ≤
i, j ≤ p, satisfying max{max1≤j≤p

∑p
i=1 Cij, max1≤i≤p

∑p
j=1 Cij,

max1≤i≤p
√∑p

j=1 C2
ij} ≤  with which max0≤k≤Kξ

|D[k]
�,ij| ≤

Cij(1 + �)−ς for all � ≥ 0.
(iv) min0≤k≤Kξ

infω∈[−π ,π ] μ[k]
ξ ,p(ω) ≥ mξ for some fixed con-

stant mξ > 0.

Assumption 2.3. There exist constants  > 0 and ς > 2 such
that for all � ≥ 0,

max
0≤k≤Kχ

max
1≤i≤p

|B[k]
�,i·|2 ≤ (1 + �)−ς and

max
0≤k≤Kχ

√√√√ qk∑
j=1

|B[k]
�,·j|2∞ ≤ (1 + �)−ς .

Assumption 2.2(i)–(ii) are standard conditions in the lit-
erature (Lütkepohl 2005; Basu and Michailidis 2015). Under
condition (iii) and Assumption 2.3, we have time-varying serial
dependence in Xt (across all segments) decay at an algebraic

rate. Assumption 2.2(iii) allows for mild cross-correlations in
ξ

[k]
t while ensuring that μ

[k]
ξ ,1(ω) is uniformly bounded:

Proposition 2.1. Under Assumption 2.2, uniformly over all ω ∈
[−π , π ], there exists some Mξ > 0 depending only on Mε , 

and ς such that max0≤k≤Kξ
supω∈[−π ,π ] μ

[k]
ξ ,1(ω) ≤ Mξ .

Remark 2.1. Proposition 2.1, together with Assumption 2.2(iv),
establishes the boundedness of the eigenvalues of �[k]

ξ (ω), which
is commonly assumed in the high-dimensional VAR literature
for the consistency of Lasso estimators. Assumption 2.2(iv)
holds if there exists some constant  < ∞ satisfying
max(max1≤j≤p

∑d
�=1 |A[k]

�,·j|1, max1≤i≤p
∑d

�=1 |A[k]
�,i·|1) ≤ 

(Basu and Michailidis 2015). When d = 1, we have D[k]
� =

(A[k]
1 )� such that if |A[k]

1 |∞ ≤ γ < 1, Assumption 2.2(iii) is
readily satisfied with max(‖D[k]

� ‖1, ‖D[k]
� ‖∞) ≤ γ �−1.

From Assumption 2.1 and Proposition 2.1, the latent
components in (3) are asymptotically identifiable as p → ∞,
thanks to the gap between μ

[k]
χ ,qk(ω) diverging with p and

μ
[k]
ξ ,1(ω) which is uniformly bounded, which agrees with the

phenomenon observed in Figure 1(a).

3. Methodology

3.1. Stage 1: Factor-Driven Component Segmentation

3.1.1. Change Point Detection
The spectral density matrix of χ t is given by �[k]

χ (ω) =
(2π)−1B[k](e−ιω)(B[k](e−ιω))∗ for θχ ,k + 1 ≤ t ≤ χχ ,k+1,
that is it varies over time in a piecewise constant manner with
change points at θχ ,k, 1 ≤ k ≤ Kχ . By Weyl’s inequality,
Assumption 2.1 and Proposition 2.1 jointly indicate a gap in the
eigenvalues of (time-varying) spectral density matrix of Xt , that
is, those attributed to the factor-driven component diverges with
p while the remaining ones are bounded for all p. This suggests
an approach that looks for changes in χ t from the behavior of
Xt in the frequency domain which we further justify below.

Example 3.1. Suppose that χ t contains a single change
point at t = θχ ,1 at which a new factor is introduced,
that is χ

[0]
t = B[0](L)u[0]

t and χ
[1]
t = B[1](L)u[1]

t =
B[0](L)u[0]

t + b(L)vt with u[1]
t = ((u[0]

t )�, vt)�, which leads
to �[1]

χ (ω) − �[0]
χ (ω) = b(e−ιω)b∗(e−ιω)/(2π). Then, from

the uncorrelatedness between χ t and ξ t and Proposition 2.1,
the time-varying spectral density of Xt , �x,t(ω), satisfies
‖∑θχ ,1

t=1 �x,t(ω)/θχ ,1 − ∑n
t=θχ ,1+1 �x,t(ω)/(n − θχ ,1)‖ =

‖b(e−ιω)b∗(e−ιω)‖/(2π) + O(1). That is, the change in the
spectral density of χ t is detectable as a change in time-varying
spectral density matrix of Xt in operator norm, with the size of
change diverging with p as ‖(b(e−ιω))∗b(e−ιω)‖ does so under
Assumption 2.1.

Thus, we detect changes in χ t by scanning for any large
change in the spectral density matrix of Xt measured in oper-
ator norm, and propose the following moving window-based
approach. Given a bandwidth G, we estimate the local spectral
density matrix of Xt by
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�̂x,v(ω, G) = 1
2π

m∑
�=−m

K
(

�

m

)
�̂x,v(�, G) exp(−ι�ω)

for G ≤ v ≤ n, (4)

where K(·) denotes the Bartlett kernel, m = Gβ the kernel
bandwidth with β ∈ (0, 1), and

�̂x,v(�, G) = 1
G

v∑
t=v−G+1+�

Xt−�X�
t for � ≥ 0, and

�̂x,v(�, G) = �̂
�
x,v(−�, G) for � < 0. (5)

Then the following statistic

Tχ ,v(ω, G) = ∥∥�̂x,v(ω, G) − �̂x,v+G(ω, G)
∥∥ , G ≤ v ≤ n − G,

(6)

serves as a good proxy of the difference in local spectral density
matrices of χ t over Iv(G) = {v − G + 1, . . . , v} and Iv+G(G) =
{v+1, . . . , v+G}. To make it more precise, let �χ ,v(ω, G) denote
a weighted average

∑Kχ

k=0 wχ ,k(v)�[k]
χ (ω) with weights wχ ,k(v)

corresponding to the proportion of χ t , t ∈ Iv(G), belonging to
χ

[k]
t (see F.1). Then, T∗

χ ,v(ω, G) = ‖�χ ,v(ω, G)−�χ ,v+G(ω, G)‖,
as a function of v, linearly increases and then decreases around
the change points with a peak of size ‖�[k]

χ (ω) − �[k+1]
χ (ω)‖

formed at v = θχ ,k for all 1 ≤ k ≤ Kχ , provided that the
bandwidth G is not too large (in the sense of Assumption 4.2(ii)).
The detector statistic Tχ ,v(ω, G) is designed to approximate
T∗

χ ,v(ω, G) when χ t is not directly observed, and thus is well-
suited to detect and locate the change points therein. Unlike
other methods for detecting changes in the factor structure (e.g.,
Li, Li, and Fryzlewicz 2023), we do not require the number of
factors, either for each segment or for the whole dataset, as an
input for the construction of Tχ ,v(ω, G).

Once Tχ ,v(ωl, G) is evaluated at the Fourier frequencies
ωl = 2π l/(2m + 1), 0 ≤ l ≤ m, we adapt the maximum-
check of Eichinger and Kirch (2018) for simultaneous detection
of the multiple change points. Taking the pointwise maximum
over the frequencies at each given location v, we check if
Tχ ,v(ω(v), G) exceeds some threshold κn,p where ω(v) denotes
the frequency at which Tv(ωl, G) is maximized, that is ω(v) =
arg maxωl : 0≤l≤m Tv(ωl, G). If so, it provides evidence that a
change point θχ ,k is located near the time point v, but some
care is needed to avoid detecting duplicate estimators, since the
detector statistic is expected to take a large value over an interval
containing θχ ,k. Therefore, denoting by I ⊂ {G, . . . , n − G} the
set containing all time points at which Tχ ,v(ω(v), G) > κn,p,
we regard θ̂ = arg maxv∈I Tχ ,v(ω(v), G) as a change point
estimator if it is a local maximizer of Tχ ,v(ω(θ̂), G) within an
interval of radius ηG centered at θ̂ with some η ∈ (0, 1), that
is Tχ ,̂θ (ω(θ̂), G) ≥ maxθ̂−ηG<v≤θ̂+ηG Tχ ,v(ω(θ̂), G). Once θ̂ is
added to the set of final estimators, say �̂χ , in order to avoid the
risk of duplicate estimators, we remove the interval of radius G
centered at θ̂ from I , and repeat the same procedure with the
maximizer of Tχ ,v(ω(v), G) at time points v remaining in I until
the set I is empty. Algorithm 1 in Appendix C outlines the steps
of Stage 1 of FVARseg.

3.1.2. Post-Segmentation Factor Adjustment
Following the detection of change points in χ t , we are able to
estimate the segment-specific quantities related to χ

[k]
t . In view

of the second-stage of FVARseg detecting change points in ξ t ,
we describe how to estimate �[k]

χ (�) with which we can estimate
the ACV of ξ t .

For each k = 0, . . . , K̂χ , we first estimate the spectral density
of Xt over the segment {θ̂χ ,k +1, . . . , θ̂χ ,k+1} by �̂

[k]
x (ω) as in (4)

using the sample ACV computed from the segment (we use
the same kernel bandwidth m for simplicity). Then noting that
the spectral density matrix of χ

[k]
t is of rank qk under (3), we

estimate it from the eigendecomposition of �̂[k]
x (ωl) by retaining

only the qk largest eigenvalues, say μ̂
[k]
x,j (ωl), and the associated

eigenvectors ê[k]
x,j (ωl), and then estimate the ACV of χ

[k]
t by

inverse Fourier transform, that is

�̂
[k]
χ (ωl) =

qk∑
j=1

μ̂
[k]
x,j (ωl )̂e[k]

x,j (ωl)
(̂

e[k]
x,j (ωl)

)∗
and

�̂
[k]
χ (�) = 2π

2m + 1

m∑
l=−m

�̂
[k]
χ (ωl)eιωl�. (7)

The estimators in (7) require the factor number qk as an input.
We refer to Hallin and Liška (2007) for an information criterion
(IC)-based estimator of qk that make use of the postulated
eigengap in the spectral density matrix of Xt .

3.2. Stage 2: Piecewise VAR Process Segmentation

Applying the existing VAR segmentation methods in our set-
ting requires estimating the np elements of the latent piecewise
stationary VAR process ξ t , which introduces additional errors
and possibly results in the loss of statistical efficiency. In addi-
tion, as discussed in Appendix A.2, the existing methods tend
to be computationally demanding, for example by evaluating
the Lasso estimators O(n2) times in a dynamic programming
algorithm, or solving a large fused Lasso objective function
of dimension np2d. Instead, since we can estimate the local
ACV of ξ t from the post-segmentation factor-adjustment in
Stage 1, our proposed methodology for segmenting the latent
VAR component avoids estimating ξ t directly. Also, as described
below, the proposed method evaluates the local VAR parameters
at carefully selected locations only, and thus is computationally
efficient.

Specifically, our approach makes use of the Yule-Walker
equation (Lütkepohl 2005). Let β[k] = [A[k]

1 , . . . , A[k]
d ]� ∈

R
(pd)×p contain all VAR parameters in the kth segment. Then,

it is related to the ACV matrices �
[k]
ξ (�) = E(ξ

[k]
t−�(ξ

[k]
t )�) as

G[k]β[k] = g[k], where

G[k] =

⎡⎢⎢⎣
�

[k]
ξ (0) �

[k]
ξ (−1) . . . �

[k]
ξ (−d + 1)

. . .
�

[k]
ξ (d − 1) �

[k]
ξ (d − 2) . . . �

[k]
ξ (0)

⎤⎥⎥⎦

and g[k] =

⎡⎢⎢⎣
�

[k]
ξ (1)

...
�

[k]
ξ (d)

⎤⎥⎥⎦ , (8)
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with G[k] being invertible due to Assumption 2.2(iv). We pro-
pose to use this estimating equation in combination with the
local ACV estimators of ξ t obtained as described below.

For a given bandwidth G and the interval Iv(G) = {v −
G + 1, . . . , v}, we estimate the ACV of ξ t for t ∈ Iv(G), by
�̂ξ ,v(�, G) = �̂x,v(�, G) − �̂χ ,v(�, G). Here, �̂x,v(�, G) is defined
in (5) and �̂χ ,v(�, G) is a weighted average of �̂

[k]
χ (�), 0 ≤ k ≤

K̂χ , the estimators of ACV of χ
[k]
t in (7), with the weights given

by the proportion of Iv(G) covered by the kth segment (see F.16
for the precise definition). Replacing �

[k]
ξ (�) with �̂ξ ,v(�, G),

we obtain Ĝv(G) estimating a weighted average of G[k], and
similarly ĝv(G). Then, we propose to scan Tξ ,v(β̂ , G) =
|||(Ĝv(G)β̂ − ĝv(G)) − (Ĝv+G(G)β̂ − ĝv+G(G))||| with some
inspection parameter β̂ ∈ R

(pd)×p and a matrix norm
|||·|||. We motivate this statistic by considering T∗

ξ ,v(β̂ , G) =
|||(Gv(G)β̂ − gv(G)) − (Gv+G(G)β̂ − gv+G(G))|||, its popu-
lation counterpart. With appropriately chosen G (see Assump-
tion 4.4(ii)), T∗

ξ ,v(β̂ , G) = 0 if v is far from all the change points
in ξ t , that is mink |v − θξ ,k| ≥ G, while it is tent-shaped near the
change points with a local maximum at v = θξ ,k, provided that

G[k−1](β̂ − β[k−1]) �= G[k](β̂ − β[k]). (9)

For the inspection parameter, we adopt an �1-regularized
Yule-Walker estimator which, at some v◦ ∈ {G, . . . , n}, solves
the following constrained �1-minimization problem

β̂v◦(G) = arg minβ∈Rpd×p |β|1 subject to∣∣Ĝv◦(G)β − ĝv◦(G)
∣∣∞ ≤ λn,p, (10)

with a tuning parameter λn,p > 0. Assuming stationarity, a
similar approach has been proposed for the estimation of high-
dimensional VAR in Han, Lu, and Liu (2015), and extended to
the case where the VAR process of interest is latent in Barigozzi,
Cho, and Owens (2022). The �∞-constraint in (10) naturally
leads to the choice |||·||| = | · |∞, resulting in the following
detector statistic:

Tξ ,v(β̂ , G) = ∣∣(Ĝv(G)β̂ − ĝv(G)
)− (Ĝv+G(G)β̂ − ĝv+G(G)

)∣∣∞ .

For good detection power, the condition in (9) suggests using an
estimator of β[k−1] or β[k] in place of β̂ for detecting θξ ,k. There-
fore, we propose to evaluate Tξ ,v(β̂v◦(G), G) for v ≥ G, with
β̂v◦(G) updated sequentially at locations strategically selected as
below.

First we estimate β[0] by β̂ = β̂G(G) in (10) with v◦ = G
and scan the data using Tξ ,v(β̂ , G), v ≥ v◦. When Tξ ,v(β̂ , G)

exceeds some threshold, say πn,p, at v = θ̌ for the first time,
it signifies that a change has occurred in the neighborhood.
Reducing the search for a change point to {θ̌ , . . . , θ̌ + G},
we identify a change point estimator as the local maximizer
θ̂ξ ,1 = arg max

θ̌≤v≤θ̌+G Tξ ,v(β̂ , G). Then updating β̂ with
β̂v◦(G) obtained at v◦ = θ̂ξ ,1 + (η + 1)G for some η ∈ (0, 1]
(i.e., only using an interval of length G located strictly to
the right of θ̂ξ ,1 for its computation), we continue screening
Tξ ,v(β̂ , G), v ≥ v◦, until it next exceeds πn,p. These steps of
screening Tξ ,v(β̂ , G) and updating β̂ are repeated iteratively
until the end of the data sequence is reached. Algorithm 2 in
Appendix C outlines the steps of the Stage 2 methodology.

Figure 2 illustrates that although ξ t is latent, at each iteration,
β̂v◦(G) does as well as its oracle counterpart (obtained as
in (10) with the sample ACV of ξ t replacing �̂ξ ,v(�, G)).
Computationally, this strategy benefits from that the costly
solution to the �1-minimization problem in (10) is required
(at most) Kξ + 1 times with an appropriately chosen threshold
πn,p (see Theorem 4.3). We further demonstrate numerically
the competitiveness of Stage 2 as a standalone method for
VAR time series segmentation in Section 5.2, and provide
an in-depth comparative study with the existing methods in
Appendix A.2.

4. Theoretical Properties

4.1. Consistency of Stage 1 of FVARseg

We carry out our theoretical investigation under two different
regimes with respect to the tail behavior of ut and ξ t ; in partic-
ular, the weaker condition in Assumption 4.1(i) permits heavy-
tailed innovations, while the existing literature on (piecewise sta-
tionary) VAR modeling in high dimensions, commonly adopts
the Gaussianity as in (ii).

Assumption 4.1. We assume either of the following conditions.

(i) There exists ν > 4 such that max
{

E(|ujt|ν), E(|εit|ν)
} ≤

μν < ∞.
(ii) ut ∼iid Nq(0, I) and εt ∼iid Np(0, I).

In establishing the consistency of Stage 1, we opt to measure
the size of changes in χ t using �χ ,k(ω) = �[k]

χ (ω)−�[k−1]
χ (ω),

1 ≤ k ≤ Kχ , the difference in spectral density matrices
of χ t from neighboring segments. As �χ ,k(ω) is Hermitian,
we can always find the jth largest (in modulus), real-valued
eigenvalue of �χ ,k(ω) which we denote by μj(�χ ,k(ω)), with
μ1(�χ ,k(ω)) = ‖�χ ,k(ω)‖. Recall that m = Gβ for some
β ∈ (0, 1), denotes the bandwidth used in local spectral density
estimation, see (4).

Assumption 4.2. (i) For each 1 ≤ k ≤ Kχ , the following holds:
There exist a positive integer p0 ≥ 1 and pairs of functions ω �→
a[k]

j (ω) and ω �→ b[k]
j (ω) for ω ∈ [−π , π ] and j = 1, 2, and

r′
k,1 ∈ (0, 1] and r′

k,2 ∈ [0, 1] satisfying r′
k,1 ≥ r′

k,2, such that

b[k]
1 (ω) ≥ μ1(�χ ,k(ω))

pr′
k,1

≥ a[k]
1 (ω) > b[k]

2 (ω)

≥ μ2(�χ ,k(ω))

pr′
k,2

≥ a[k]
2 (ω) ≥ 0

for all p ≥ p0. Besides, we assume that the functions ω �→
p−r′

k,1μ1(�χ ,k(ω)) are Lipschitz continuous with bounded Lips-
chitz constants. Then for �χ ,k = maxω∈[−π ,π ] μ1(�χ ,k(ω)), we
have max1≤k≤Kχ

�−1
χ ,k · p(ψn ∨ m−1) = o(1), where

ψn =
⎧⎨⎩

n2/νm log2+2/ν (G)

G ∨
√

m log(n)

G under Assumption 4.1(i),√
m log(n)

G under Assumption 4.1(ii).
(11)
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Figure 2. Illustration of Stage 2 applied to a realization from (M1) of Section 5.2 with G = 300 and d = 1. Top: The solid curve represents Tξ ,v(β̂ , G), v◦ ≤ v ≤ θ̌ + G,
computed at the three iterations of Steps 1–3 of Algorithm 2. At each iteration, we use β̂ = β̂v◦ (G) estimated from each of the sections the data highlighted in the x-axis
(left to right); the corresponding estimators are plotted in the bottom panel and for comparison, we also plot the estimators obtained in the oracle setting where ξ t is
observable (all plots have the identical z-axis range). The locations of v◦ , θ̌ and θ̂ in Algorithm 2, and θξ ,k are denoted by the vertical long-dashed, dot-dashed, dotted and
dashed lines, respectively. The horizontal line represents πn,p chosen as described in Section 5.1.

(ii) The bandwidth G = Gn satisfies Gn → ∞ as n → ∞ while
fulfilling

min
{

min
0≤k≤Kχ

(θχ ,k+1 − θχ ,k), min
0≤k≤Kξ

(θξ ,k+1 − θξ ,k)

}
≥ 2G.

(12)

Assumption 4.2 specifies the detection lower bound which
is determined by mink �χ ,k and mink(θχ ,k+1 − θχ ,k) (through
G), for all Kχ change points χ t to be detectable by Stage 1. In the
literature on change point detection in factor models, a common
assumption is that the change is large enough to appear as extra
“factors” (Duan, Bai, and Han 2022), in light of which the condi-
tion (i) is a reasonable one. It further requires μ1(�χ ,k(ω)) to be
distinct from the rest. In fact, the remaining μj(�χ ,k(ω)), j ≥ 2,
are allowed to be exactly zero, which is the case in Example 3.1;
here, we have �χ ,1 = maxω(2π)−1‖(b(e−ιω))∗b(e−ιω)‖ where
b(z) is a p-variate vector of factor loading filters. The rate p(ψn ∨
m−1) represents the bias-variance tradeoff when estimating the
local spectral density matrix of χ t by �̂x,v(G, ω) (see Proposition
F.6). It is possible to find the rate of kernel bandwidth m that
minimizes this rate depending on the tail behavior of Xit (e.g.,
m � (G/ log(n))1/3 under Gaussianity), but we choose to
explicitly highlight the role of this tuning parameter on our
results.

Theorem 4.1. Suppose that Assumptions 2.1–2.3, 4.1, and 4.2
hold. Let κn,p satisfy

2Mp
(

ψn ∨ 1
m

∨ 1
p

)
< κn,p <

1
2

min
1≤k≤Kχ

�χ ,k

− Mp
(

ψn ∨ 1
m

∨ 1
p

)
for some constant M > 0. Then, there exists a set Mχ

n,p with
P(Mχ

n,p) → 1 as n, p → ∞, such that the following holds for

�̂χ = {θ̂χ ,k, 1 ≤ k ≤ K̂χ : θ̂χ ,1 < · · · < θ̂χ ,K̂χ
} returned by

Stage 1 of FVARseg, on Mχ
n,p for large enough n and p:

(a) K̂χ = Kχ and max1≤k≤Kχ
|θ̂χ ,k − θχ ,k| ≤ ε0G for some

ε0 ∈ (0, 1/2) with η ∈ (2ε0, 1].
(b) There exists a constant c0 > 0 such that for all 1 ≤ k ≤ Kχ ,
|θ̂χ ,k − θχ ,k| ≤ c0ρ

[k]
n,p where

ρ
[k]
n,p =

(
�χ ,k

p

)−2

×
{

m
ν

ν−2 (GKχ )
2

ν−2 under Assumption 4.1(i),
m log(GKχ ) under Assumption 4.1(ii).

Remark 4.1. (i) In Theorem 4.1(b), ρ
[k]
n,p reflects the difficulty

associated with estimating the individual change point θχ ,k
manifested by (p−1�χ ,k)

−2. In the Gaussian case (Assump-
tion 4.1(ii)), the localization rate ρ

[k]
n,p is always sharper than G

due to Assumption 4.2(i). Considering the problem of covari-
ance change point detection in independent, sub-Gaussian
random vectors in high dimensions, Wang, Yu, and Rinaldo
(2021) derive the minimax lower bound on the localization rate
in their Lemma 3.2, and ρ

[k]
n,p matches this rate up to m log(n);

here, the dependence on the kernel bandwidth m is attributed
to that we consider a time series segmentation problem, that is
a change may occur in the ACV of χ t at lags other than zero.
If heavier tails are permitted (Assumption 4.1(i)), ρ

[k]
n,p can be

tighter than ε0G, for example when �χ ,k � p, Kχ is fixed and
m � Gβ for some β ∈ (0, 1 − 4/ν).
(ii) Empirically, replacing θ̂ with θ̃ = arg maxv∈I avglTχ ,v
(ωl, G) returns a more stable location estimator, where avgl
denotes the average operator over l = 0, . . . , m. We can derive
the localization rate for θ̃ similarly as in Theorem 4.1(b) with
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�̃χ ,k = π−1 ∫ π

0 ‖�χ ,k(ω)‖dω in place of �χ ,k. Our numerical
results in Section 5.2 are based on this estimator.

Next, we establish the consistency of �̂
[k]
χ (�) in (7) estimating

the segment-specific ACV of χ
[k]
t under the following assump-

tion on the strength of factors.

Assumption 4.3. Assumption 2.1 holds with rk,j = 1 for all 1 ≤
j ≤ qk and 0 ≤ k ≤ Kχ .

Theorem 4.2. Suppose that Assumption 4.3 holds in addition
to the assumptions made in Theorem 4.1, and define ρn,p =
max1≤k≤Kχ

min(ε0G, ρ[k]
n,p). Also let

ϑn,p =
⎧⎨⎩

m(np)2/ν log7/2(p)

G ∨
√

m log(np)

G under Assumption 4.1(i),√
m log(np)

G under Assumption 4.1(ii).

Then on Mχ
n,p defined in Theorem 4.1, for some finite integer

d ∈ N, we have

max
0≤k≤Kχ

max
0≤�≤d

∣∣∣�̂[k]
χ (�) − �[k]

χ (�)

∣∣∣∞
= Op

(
ϑn,p ∨ 1

m
∨ ρn,p

G
∨ 1√p

)
.

It is possible to work under the weaker Assumption 2.1
and trace the effect of weak factors or bound estimation errors
measured in different norms. Corollary E.16 of Barigozzi, Cho,
and Owens (2022) derives such results in the stationary set-
ting, where an additional multiplicative factor of p2(1−mink rk,qk )

appears in the OP-bound in Theorem (4.2). We work under
the stronger Assumption 4.3 as it simplifies the presentation of
Theorem 4.2 which plays an important role in the investigation
into Stage 2 of FVARseg. Also, for the factor number estimator
of Hallin and Liška (2007) which achieves consistency under
the general dynamic factor model we adopt in (3), it is required
that rk,qk = 1 for all 0 ≤ k ≤ Kχ . Forni et al. (2004) argue
that this assumption is a natural one requiring the influence of
the common shocks to be, in some sense, “stationary along the
cross-sections,” and also it is compatible with the cross-sectional
ordering being completely arbitrary.

4.2. Consistency of Stage 2 of FVARseg

Suppose that the tuning parameter for the �1-regularized Yule-
Walker estimation problem in (10), is set with some constant
M > 0 and ϑn,p and ρn,p defined in Theorem 4.2, as

λn,p = M
(

max
0≤k≤Kξ

‖β[k]‖1 + 1
)(

ϑn,p ∨ 1
m

∨ ρn,p

G
∨ 1√p

)
.

(13)

This choice reflects the error in �̂ξ ,v(�, G) estimating the local
ACV of ξ t over all v and �.

The following assumption imposes conditions on the size
of the changes in VAR parameters and the minimum spacing
between the change points.

Assumption 4.4. (i) For each 1 ≤ k ≤ Kξ , let �ξ ,k =
G[k](β[k] − β[k−1]). Then,

max
1≤k≤Kξ

(1 ∨ ‖G[k](G[k−1])−1‖1)λn,p

|�ξ ,k|∞ = o(1).

(ii) The bandwidth G fulfils (12), that is min0≤k≤Kξ
(θξ ,k+1 −

θξ ,k) ≥ 2G.

Remark 4.2. We choose to measure the size of change using
|�ξ ,k|∞. From Assumption 2.2(iv), we have �ξ ,k = O iff
β[k] − β[k−1] = O. In the related literature, the �2-norm
|β[k] − β[k−1]|2 scaled by the global sparsity (given by the
union of the supports of all β[k], 0 ≤ k ≤ Kξ ), is used to
measure the size of change where this global sparsity may be
much greater than that of �ξ ,k when Kξ is large, see Appendix
A.2. In some instances, we have G[k](G[k−1])−1 = I, for
example, when d = 1 and A[k]

1 = −A[k−1]
1 such that Assump-

tion 4.4(i) becomes λn,p = o(mink |�|∞). More generally,
bounding ‖G[k](G[k−1])−1‖1 implicitly assumes (approximate)
sparsity on the second-order structure of ξ t . When d = 1, we
have G[k] = ∑∞

�=0(A[k]
1 )��[k][(A[k]

1 )�]� such that the bound-
edness of ‖G[k]‖1 and ‖(G[k])−1‖1 follows when A[k]

1 and �[k]
are block diagonal with fixed block size (Wang and Tsay 2022).
For general d ≥ 1, we have ‖G[k](G[k−1])−1‖1 bounded if
G[k] are strictly diagonally dominant (see Definition 6.1.9 of
Horn and Johnson (1985) and Han, Lu, and Liu (2015)), which
is met for example, when A[k]

� are diagonal with their diagonal
entries fulfilling γ

[k]
ξ ,ii(0) > 2

∑d−1
�=1 |γ [k]

ξ ,ii(�)| (where �
[k]
ξ (�) =

[γ [k]
ξ ,ii′(�)]i,i′); this trivially holds when d = 1.

Theorem 4.3. Suppose that Assumption 4.4 holds in addition
to the assumptions made in Theorem 4.2. With λn,p chosen as
in (13), we set πn,p to satisfy

2λn,p < πn,p <
1
2

min
1≤k≤Kξ

|�ξ ,k|∞.

Then, there exists a set Mξ
n,p with P(Mξ

n,p) → 1 as n, p → ∞,
such that the following holds for �̂ξ = {θ̂ξ ,k, 1 ≤ k ≤ K̂ξ :
θ̂ξ ,1 < · · · < θ̂ξ ,K̂ξ

} returned by Stage 2 of FVARseg, on Mξ
n,p

for large enough n:

(a) K̂ξ = Kξ and max1≤k≤Kξ
|θ̂ξ ,k − θξ ,k| ≤ ε0G for some ε0 ∈

(0, 1/2) with η ∈ (ε0, 1].
(b) There exists a constant c0 > 0 such that for all 1 ≤ k ≤ Kξ

satisfying {θξ ,k − 2G + 1, . . . , θξ ,k + 2G} ∩ �χ = ∅, we have
|θ̂ξ ,k − θξ ,k| ≤ c0�

[k]
n,p, where

�
[k]
n,p = |�ξ ,k|−2∞

(
1 + max

0≤k≤Kξ

‖β[k]‖1

)

×

⎧⎪⎪⎨⎪⎪⎩
(GKξ p)

2
ν−2 log

3ν
ν−2 (p)

under Assumption 4.1(i),
log(GKξ p)

under Assumption 4.1(ii).

Due to the sequential nature of FVARseg, the success of
Stage 2 is conditional on that of Stage 1 which occurs on an
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asymptotic one-set, see Theorem 4.1. Theorem 4.3(a) establishes
that Stage 2 of FVARseg consistently detects all Kξ change points
within the distance of ε0G where ε0 can be made arbitrarily small
as n, p → ∞ under Assumption 4.4(i). Theorem 4.3(b) shows
that a further refined localization rate can be derived for θξ ,k
when it is sufficiently distanced away from the change points
in the factor-driven component. If, say, θξ ,k lies close to θχ ,k′ ,
a change point in χ t , the error from estimating the local ACV
of ξ t due to the bias in θ̂χ ,k′ , prevents applying the arguments
involved in the refinement to such θξ ,k. The refined rate �

[k]
n,p is

always tighter than G under Gaussianity.
It is of independent interest to consider the cases where χ t

is stationary (i.e., Kχ = 0) or where we directly observe the
piecewise stationary VAR process (i.e., Xt = ξ t). Consistency of
the Stage 2 of FVARseg readily extends to such settings and the
improved localization rates in Theorem 4.3(b) apply to all the
estimators. Also, further improvement is attained in the heavy-
tailed situations (Assumption 4.1(i)) if ξ t is directly observable.
For the full statement of the results, we refer to Corollary A.1
in Appendix A where we also provide a detailed comparison
between Stage 2 of FVARseg and existing VAR segmentation
methods (that do not take into the possible presence of factors),
both theoretically and numerically.

5. Empirical Results

5.1. Numerical Considerations

5.1.1. Multiscale Extension
The bandwidth G is required to be large enough to provide a
good local estimators of spectral density of χ t (Stage 1) and
VAR parameters (Stage 2). However, if G is too large, we may
have windows that contain two or more changes when scanning
the data for change points, which violates Assumptions 4.2(ii)
and 4.4(ii). Cho and Kirch (2022) note the lack of adaptivity of
a single-bandwidth moving window procedure in the presence
of multiscale change points (a mixture of large changes over
short intervals and smaller changes over long intervals), and
advocates the use of multiple bandwidths. Accordingly we also
propose to apply FVARseg with a range of bandwidths and
prune down the outputs using a “bottom-up” method (Messer
et al. 2014; Meier, Kirch, and Cho 2021). Let �̂(G) denote the
output from Stage 1 or 2 with a bandwidth G. Given a set of
bandwidths G = {Gh, 1 ≤ h ≤ H : G1 < · · · < GH},
we accept all estimators from the finest G1 to the set of final
estimators �̂ and sequentially for h ≥ 2, accept θ̂ ∈ �̂(Gh)

iff min
θ̌∈�̂

|θ̂ − θ̌ | ≥ G/2. In simulation studies, we use Gχ =
{[n/10], [n/8], [n/6], [n/4]} for Stage 1, and Gξ generated as an
equispaced sequence between [2.5p] and [n/4] of length 4 for
Stage 2. The choice ofGξ is motivated by the simulation results of
Barigozzi, Cho, and Owens (2022) under the stationarity, where
the �1-regularized estimator in (10) was observed to perform
well when the sample size exceeds 2p.

5.1.2. Speeding Up Stage 1
The computational bottleneck of FVARseg is the computation
of Tχ ,v(ωl, G) in Stage 1, which involves singular value decom-
position (SVD) of a p × p-matrix at multiple frequencies and
over time. We propose to evaluate Tχ ,v(ωl, G) on a grid v ∈

{G + abn : 0 ≤ a ≤ �(n − 2G)/bn�} with bn = �2 log(n)�. This
may incur additional bias of at most bn/2 ≤ log(n) in change
point location estimation which is asymptotically negligible in
view of Theorem 4.1, but reduce the computational load by the
factor of bn.

5.1.3. Selection of Thresholds
The theoretically permitted ranges of κn,p and πn,p (see Theo-
rems 4.1 and 4.3) depend on constants which are not accessible
or difficult to estimate in practice. This is an issue commonly
encountered by data segmentation methods which involve local-
ized testing, and often a reasonable solution is found by large-
scale simulations, an approach we also take. We use simulations
to derive a simple rule for selecting the threshold as a function
of n, p, and G. For this, we (i) propose a scaling for each of the
two detector statistics adopted in Stages 1 and 2 which reduces
its dependence on the data generating process, and (ii) fit a linear
model for an appropriate percentile of the scaled detector statis-
tics obtained from simulated datasets. Specifically, we simulate
B = 100 time series following (3) with Kχ = Kξ = 0 using the
models considered in Section 5.2, and record the maximum of
the scaled detector statistics T◦

χ ,v(G) and T◦
ξ ,v(G) over v on each

realization. Here, the scaling terms are obtained from the first G
observations only, as

T◦
χ ,v(G) = max

0≤l≤m

Tχ ,v(ωl, G)

Tχ ,G(ωl, G)
and

T◦
ξ ,v(G) = Tξ ,v(β̂G(G), G)

max0≤�≤d |�̂ξ ,[ G
2 ](�, [G

2 ]) − �̂ξ ,G(�, [G
2 ])|∞

.

Generating the data with varying (n, p, q, d) and repeating the
above procedure with multiple choices of G, we fit a linear
model to the 100(1 − τ)th percentile of log(maxv T◦

χ ,v(G)) with
log log(n) and log(G) as regressors (R2

adj = 0.9651), and use
the fitted model to derive a threshold for given n and G that is
then applied to the similarly scaled T◦

χ ,v(ωl, G). Analogously, we
regress the 100(1 − τ)th percentile of log(maxv T◦

ξ ,v(G)) onto
log log(n), log log(p) and log(G) (R2

adj = 0.985), and find a
threshold applied to the scaled T◦

ξ ,v(β̂ , G) given n, p, and G from
the fitted model. The choice of the regressors is motivated by
the definitions of ψn and ψn,p which appear in Theorems 4.1
and 4.3. The high values of R2

adj indicate the excellent fit of the
linear models and consequently, that the threshold selection rule
is insensitive to the data generating processes. When Stage 2
is used as a standalone method for segmenting observed VAR
processes, a smaller threshold is recommended which is in line
with Corollary A.1, and we find that πn,p = 1 works well with
the proposed scaling.

5.1.4. Other Tuning Parameters
While data-adaptive methods exist for selecting the kernel win-
dow size m in (4) (Politis 2003), we find that setting it simply
at m = max(1, �G1/3�) for given G, works well for the purpose
of data segmentation. The results are not highly sensitive to the
choice of η in Stage 1 and use η = 0.5 throughout. In Stage 2,
we find that not trimming off the data when estimating the VAR
parameters by setting η = 0, does not hurt the numerical per-
formance. In factor-adjustment, we select the segment-specific



10 H. CHO ET AL.

Table 1. Data generating processes for simulation studies.

n p χ t (d, β) �χ �ξ

(M1) 2000 50, 100, 150 (C1) (1, 1) ∅, {[n/4], [n/2], [3n/4]} {[3n/8], [5n/8]}
(M2) 2000 50, 100, 150 (C2) (1, 1) ∅, {[n/3], [2n/3]} {[n/3], [2n/3]}
(M3) 2000 50, 100, 150 0 (1, 0.6), (2, 0.8) ∅ ∅, {[3n/8], [5n/8]}

factor number qk using the IC-based approach of Hallin and
Liška (2007). Krampe and Margaritella (2021) propose to jointly
select the (static) factor number and the VAR order using an
IC but generally, the validity of IC is not well-understood for
VAR order selection in high dimensions. In our simulations,
following the practice in the literature on VAR segmentation, we
regard d as known but also investigate the sensitivity of FVARseg
when d is misspecified. In analyzing the panel of daily volatilities
(Section 5.3), we use d = 5 which has the interpretation of
the number of trading days per week. Finally, we select λn,p
in (10) via cross validation as in Barigozzi, Cho, and Owens
(2022).

5.2. Simulation Studies

In the simulations, we consider the cases when the factor-driven
component is present (χ t �= 0) and when it is not (χ t = 0).
For the former, we consider two models for generating χ t with
q = 2. In the first model, referred to as (C1), χ t admits a static
factor model representation while in the second model (C2), it
does not; empirically, the task of factor structure estimation is
observed to be more challenging under (C2) (Forni et al. 2017;
Barigozzi, Cho, and Owens 2022). We generate ξ t as piecewise
stationary Gaussian VAR(d) processes with d ∈ {1, 2} and a
parameter β that controls the size of the change (with smaller
β indicating the smaller change). We refer to Appendix B.1 for
the full descriptions of simulation models and Table 1 for an
overview of the 24 data generating processes which also contains
information about the sets of change points �χ and �ξ ; under
each setting, we generate 100 realizations. Below we provide a
summary of the findings from the simulation studies, and Tables
B.1–B.2 reporting the results can be found in Appendix B.2.

To the best of our knowledge, there does not exist a method-
ology that comprehensively addresses the change point problem
under the model (3). Therefore under (M1)–(M2), we compare
the Stage 1 of FVARseg with a method proposed in Barigozzi,
Cho, and Fryzlewicz (2018), referred to as BCF hereafter, on
their performance at detecting changes in χ t . While BCF has a
step for detecting change points in the remainder component, it
does so nonparametically unlike the Stage 2 of FVARseg, which
may lead to unfair comparison. Hence, we separately consider
(M3) with Xt = ξ t where we compare the Stage 2 method with
VARDetect (Safikhani, Bai, and Michailidis 2022), a block-wise
variant of Safikhani and Shojaie (2022).

5.2.1. Results under (M1)–(M2)
Overall, FVARseg achieves good accuracy in estimating the total
number and locations of the change points for both χ t and ξ t
across different data generating processes. Under (M1) adopting
the static factor model for generating χ t , FVARseg shows similar

performance as BCF in detecting �χ when the dimension is
small (p = 50), but the latter tends to over-estimate the number
of change points as p increases. Also, FVARseg outperforms the
binary segmentation-based BCF in change point localization.
BCF requires as an input the upper bound on the number of
global factors, say q′, that includes the ones attributed to the
change points, and its performance is sensitive to its choice. In
(M1), we have q′ ≤ 3q(Kχ + 1) (which is supplied to BCF)
while in (M2), χ [k]

t does not admit a static factor representation
and accordingly such q′ does not exist (we set q′ = 2q for
BCF). Accordingly, BCF tends to under-estimate the number
of change points under (M2). Generally, the task of detecting
change points in ξ t is aggravated by the presence of change
points in χ t due to the sequential nature of FVARseg, and the
Stage 2 performs better when Kχ = 0 both in terms of detection
and localization accuracy, which agrees with the observations
made in Corollary A.1(a).

Between (M1) and (M2), the latter poses a more challenging
setting for the Stage 2 methodology. This may be attributed to
(i) the difficulty posed by the data generating scenario (C2),
which is observed to make the estimation tasks related to the
latent VAR process more difficult (Barigozzi, Cho, and Owens
2022), and (ii) that �χ = �ξ where the estimation bias from
Stage 1 has a worse effect on the performance of Stage 2 com-
pared to when �χ and �ξ do not overlap, see the discussion
below Theorem 4.3.

5.2.2. Results under (M3)
Table B.2 shows that the Stage 2 of FVARseg outperforms
VARDetect in all criteria considered, particularly as p increases.
VARDetect struggles to detect any change point when the
change is weak (recall that β = 0.6 is used when d = 1
which makes the size of change at θξ ,2 small) or when d = 2.
FVARseg is faster than VARDetect in most situations except for
when (d, p, Kξ ) = (1, 50, 0), sometimes more than 10 times for
example when d = 2 and there is no change point in the data.
Additionally, Stage 2 of FVARseg is less sensitive to the over-
specification of the VAR order (d = 2 is used when in fact d =
1). When it is under-specified, there is slight loss of detection
power as expected. Generally, an increase in VAR order brings
in an increase in the number of VAR parameters which
impacts the empirical performance. Compared to the results
obtained under (M1)–(M2), the localization performance of the
Stage 2 method improves in the absence of the factor-driven
component, even though the size of changes under (M3) tends
to be smaller. This confirms the theoretical findings reported
in Corollary A.1 (b) in Appendix A. Although not reported
here, when the full FVARseg methodology is applied to the data
generated under (M3), the Stage 1 method does not detect any
spurious change point estimators as desired.
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Table 2. Sets of change point estimators returned by FVARseg.

�̂χ returned by Stage 1 �̂ξ returned by Stage 2

2002-06-06 2007-12-10 2008-09-12 2008-12-16 2002-02-04 2003-03-18 2003-11-25 2006-06-07 2008-03-17 2009-07-07
2009-05-11 2020-02-18 2020-05-20 2011-07-28 2013-05-30 2015-06-25 2017-10-03 2020-02-27

Table 3. Estimated number of factors q̂k from {Xt , θ̂χ ,k + 1 ≤ t ≤ θ̂χ ,k+1}, k =
0, . . . , 7.

Segment k 0 1 2 3 4 5 6 7

q̂k 3 4 2 7 2 5 1 2

5.3. Application: U.S. Blue Chip Data

We consider daily stock prices from p = 72 U.S. blue chip
companies across industry sectors between January 3, 2000 and
February 16, 2022 (n = 5568 days), retrieved from the Whar-
ton Research Data Services; the list of companies and their
corresponding sectors can be found in Appendix E. Following
Diebold and Yılmaz (2014), we measure the volatility using
σ 2

it = 0.361(phigh
it − plow

it )2 where phigh
it (resp. plow

it ) denotes the
maximum (resp. minimum) log-price of stock i on day t, and set
Xit = log(σ 2

it ).
We apply FVARseg to detect change points in the panel of

volatility measures {Xit , 1 ≤ i ≤ p; 1 ≤ t ≤ n}. With n0 = 252
denoting the number of trading days per year, we apply Stage 1
with bandwidths chosen as an equispaced sequence between
[n0/4] and 2n0 of length 4, implicitly setting the minimum
distance between two neighboring change points to be three
months. Based on the empirical sample size requirement for
VAR parameter estimation (see Section 5.1), we apply Stage 2
with bandwidths chosen as an equispaced sequence between
2.5p and 2n0 of length 4. The VAR order is set at d = 5 which
corresponds to the number of trading days in each week, and
the rest of the tuning parameters are selected as in Section 5.1.
Table 2 reports the segmentation results.

Stage 1 detects four change points around the Great Financial
Crisis between 2007 and 2009, and the last two estimators from
Stage 1 correspond to the onset (2020-02-20) and the end (2020-
04-07) of the stock market crash brought in by the instability
due to the COVID-19 pandemic. Given the clustering of change
points between 2007 and 2009, an alternative approach is to
adopt a locally stationary factor model as in Barigozzi et al.
(2021). However, such a model does not allow for the number
of factors to vary over time, whereas we observe the contrary to
be the case when applying the IC-based method of Hallin and
Liška (2007) to each segment defined by �̂χ , see Table 3. This
supports that it is more appropriate to model the changes in the
factor-driven component of this dataset as abrupt changes rather
than as smooth transitions.

The estimators from Stage 2 are spread across the period
in consideration. Figure 1(c)–(f) illustrate how the linkages
between different companies vary over the four segments
identified between 2003 and 2011 particularly at the level of
industrial sectors, although this information is not used by
FVARseg.

To further validate the segmentation obtained by FVARseg,
we perform a forecasting exercise. Two approaches, referred to

Table 4. Mean and standard errors of FEavg
t and FEmax

t for t ∈ T where |T | =
1600.

FEavg FEmax

Forecasting method Mean SE Mean SE

(F1) Restricted 0.7671 0.3729 0.9181 0.1898
Unrestricted 0.7746 0.4123 0.9204 0.2007

(F2) Restricted 0.7831 0.4011 0.9217 0.1962
Unrestricted 0.8138 0.4666 0.9279 0.2008

as (F1) and (F2), are adopted to build forecasting models where
the difference lies in how a sub-sample of {Xu, u ≤ t − 1}, is
chosen to forecast Xt . Simply put, (F1) uses the observations
belonging to the same segment as Xt only, for constructing the
forecast of χ t (resp. ξ t) according to the segmentation defined
by �̂χ (resp. �̂ξ ), while (F2) ignores the presence of the most
recent change point estimator. We expect (F1) to give more accu-
rate predictions if the data undergoes structural changes at the
detected change points. On the other hand, if some of the change
point estimators are spurious, (F2) is expected to produce better
forecasts since it makes use of more observations. We select T ,
the set of time points at which to perform forecasting, such that
each t ∈ T does not belong to the first two segments (i.e.,
t ≥ max(θ̂χ ,2, θ̂ξ ,2)+1), and there are at least n0 of observations
to build a forecast model separately for χ t and ξ t , respectively.
Denoting by L̂χ (v) = max{0 ≤ k ≤ K̂χ : θ̂χ ,k + 1 ≤ v}
the index of θ̂χ ,k nearest to and strictly left of v and similarly
defining L̂ξ (v), this means that min(̂Lχ (t), L̂ξ (t)) ≥ 2 and
min(t − θ̂χ ,̂Lχ (t), t − θ̂ξ ,̂Lξ (t)) ≥ n0 for all t ∈ T . We have |T | =
1600. For such t ∈ T , we obtain X̂t(N) = χ̂ t(N1) + ξ̂ t(N2) for
some N = (N1, N2), where χ̂ t(N1) denotes an estimator of the
best linear predictor of χ t given Xt−�, 1 ≤ � ≤ N1, and ξ̂ t(N2) is
defined analogously. The difference between the two approaches
we take lies in the selection of N.

(F1) We set N1 = t − K̂χ ,̂Lχ (t) − 1 and N2 = t − K̂ξ ,̂Lξ (t) − 1.
(F2) We set N1 = t−K̂χ ,̂Lχ (t)−1 −1 and N2 = t−K̂ξ ,̂Lξ (t)−1 −1.

Barigozzi, Cho, and Owens (2022) propose two methods for
estimating the best linear predictors of χ t and ξ t under a
stationary factor-adjusted VAR model, one based on a more
restrictive assumption on the factor structure (“restricted”)
than the other (“unrestricted”); we refer to the paper for their
detailed descriptions. Both estimators are combined with the
two approaches (F1) and (F2). Table 4 reports the summary of
the forecasting errors measured as FEavg

t = |Xt − X̂t(N)|22/|Xt|22
and FEmax

t = |Xt − X̂t(N)|∞/|Xt|∞, obtained from combining
different best linear predictors with (F1)–(F2). According to
all evaluation criteria, (F1) produces forecasts that are more
accurate than (F2) regardless of the forecasting methods, which
supports the validity of the change point estimators returned by
FVARseg.
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6. Conclusions

We consider the problem of high-dimensional time series seg-
mentation under a piecewise stationary, factor-adjusted VAR
model which, adopting the most general approach to time series
factor modeling, permits pervasive cross-sectional and serial
correlations in the data as well as accommodating structural
changes. The FVARseg proceeds in two stages, detecting change
points in the factor-driven component and the idiosyncratic
VAR process separately, and fully addresses the challenges aris-
ing from the presence of latent factors. Theoretical consistency
of FVARseg is established under general conditions permitting
heavy tails and dependence across the stationary segments, and
we derive the estimation rates that make explicit the influence
of the tail behavior and the size of changes. It is competitive
both theoretically and computationally in comparison with the
existing methods that are proposed for special instances of the
proposed factor-adjusted VAR model.

Supplementary Materials

In the supplement, Section F contains preliminary lemmas and all proofs
for theoretical results stated in the paper. Section B presents further infor-
mation on simulation studies and Section A includes further discussions on
Stage 2 of FVARseg.
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