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1 Introduction

Naive lattice discretization of quantum field theories can lead to a reduced symmetry group.
This is especially true if the symmetries in question have a mixed ’t Hooft anomalies. The
most familiar example is that of a massless free Dirac fermion in 2d and 4d, in which case the
symmetry group is U(1)V×U(1)A where the index stands for vector and axial. The two U(1)
symmetries famously have a mixed triangle anomaly, as well as a mixed axial-gravitational
anomaly, and the lattice discretization was for a long time taught to be impossible preserv-
ing the axial symmetry. Yet Lüscher [1], building on the works of Ginsparg and Wilson [2]
as well as Neuberger [3], constructed such a lattice action with the correct anomaly.

A closely related example is a compact scalar in 2d, which is a bosonized version of a
2d Dirac fermion. The usual way to discretize the compact boson is by an XY-model, but
this model has a reduced symmetry group. Namely the winding symmetry, under which
the winding charge Q = 1

2
∫
dx∂xφ of the compact scalar φ is not conserved, because the
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lattice theory contains dynamical vortices which can induce the famous Kosterlitz-Thouless-
Berezinskii transition. Another example are U(1) abelian gauge theories in 3 space-time
dimensions and higher, whose naive lattice discretization has dynamical monopoles which
violate a monopole symmetry. Such theories were discretized using Modified Villain Actions
in [4], in which a famous Villain model was modified to incorporate a no-defect (i.e. no-
vortex or no-monopole) constraint, and hence enhance the global symmetries. Such models
were applied to fracton models in [5] and for constructing non-invertible symmetries in [6].

In this paper we show that such U(1) theories have a natural Hamiltonian formulation
which we dub Villain Hamiltonians.1 The idea is to introduce integer-spectrum operators —
the Villain operators — which have a natural angle-valued (i.e. circle-valued) operator as its
canonical conjugate. Depending on the theory, the conjugate operator can be interpreted
as gauge field, and by imposing a gauge symmetry, a form of Gauss law constrains the
Villain operator, which exactly implements the no-defect constraint.

2 Compact scalar in 1 spatial dimension

Consider a natural lattice discretization Hamiltonian of a free massless discrete scalar
theory

H =
∑
x

( 1
2Jaπ

2
x + J

2a(φx+1 − φx)2
)
, (2.1)

with [φx, πy] = iδxy, and where J is dimensionless, while a has dimensions of length. The
constant a above is the only constant with dimension which sets the scale of the problem.
We want to promote φx to be a compact scalar, i.e. that φx ∼ φx + 2π. This is impossible
with the Hamiltonian above, as shift of φx by 2π on distinct sites is not a symmetry.
Instead we go to a Villain-type Hamiltonian

H =
∑
x

( 1
2Jaπ

2
x + J

2a(φx+1 − φx + 2πnx)2
)
, (2.2)

where nx is an operator with only integer eigenvalues. To such an operator one naturally
associates an angle-valued operator φ̃x, with canonical commutation relations

[φ̃x, ny] = iδxy . (2.3)

Further we will assume that [nx, φy] = [nx, πy] = [φ̃x, φy] = 0. The above implies that
ei2πnx φ̃xe

−i2πnx = φ̃x + 2π. Since this shift is supposed to be a gauge symmetry, the
Hilbert space is invariant, and hence ei2πnx |Ψ〉 = |Ψ〉, and so nx can take only integer
values. For this to be self-consistent we need also to have that e2πinx commutes with the
Hamitlonian, which is true by our assumption that φ̃x commutes with both πx and φx.

Now let us look for a transformation which shifts φx by 2πkx where kx are integers,
in such a way that it is an invariance of the Hamiltonian. The naive transformation

1After this draft was largely finished we found out that the upcoming publication [7] which has a
discussion on the Hamiltonian formulation of compact scalars. See also the discussion in [8] from a different
perspective, for some compact scalar models.
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ei2π
∑

x
kxπx does not do the job, as the Hamiltonian is not invariant under it. Indeed

ei2ππxHe−i2ππx =
∑
x

( 1
2Jaπ

2
x + J

2a(φx+1 − φx + 2π(kx+1 − kx + nx))2
)
. (2.4)

But now we want to shift nx → nx − (kx+1 − kx). To do that we use the operator

ei
∑

x
φ̃x(kx+1−kx) . (2.5)

The total operator which implements the shift of φx by 2πkx and is an invariance of the
Hamiltonian is

ei2π
∑

x
πxei

∑
x
φ̃x(kx+1−kx) . (2.6)

Note that kx can be arbitrary integers. Now since πx and φ̃y commute for any x, y, the
operator which shifts φx by 2πkx is given by

ei
∑

x
kx(2ππx+φ̃x−1−φ̃x) = I , kx ∈ Z (2.7)

where we demand that the operator must be acting trivially on the Hilbert space for any
kx ∈ Z, which implies

2ππx + φ̃x−1 − φ̃x = 2πñx , (2.8)

where ñx is some integer-valued operator. Expressing πx in terms of ñx we have

πx = 1
2π
(
φ̃x − φ̃x−1 + 2πñx

)
. (2.9)

To keep the canonical commutation relations [φx, πy] = iδxy we impose the relation
[φx, ñx] = iδxy. We also demand [πx, ny] = 0 for all x, y and so

[πx, ny] = 1
2π [φ̃x − φ̃x−1 + 2πñx, ny] = iδx,y − iδx−1,y

2π + [ñx, ny] = 0 (2.10)

so that
[nx, ñy] = i

δx,y − δx,y−1
2π . (2.11)

Expressing the Hamitonian now yields

H =
∑
x

[
1

2Ja(2π)2

(
φ̃x − φ̃x−1 + 2πñx

)2
+ J

2a (φx+1 − φx + 2πnx)2
]
, (2.12)

with the following commutation relations

[φx, ñy] = iδxy , [φ̃x, ny] = iδxy . (2.13)

[nx, ñy] = i
δx,y − δx,y−1

2π (2.14)

The above Hamiltonian and the canonical commutation relations are invariant under
the change

J → 1
(2π)2J

(2.15)

φ̃x → φx+1 , φx → φ̃x , (2.16)
ñx → nx , nx → ñx+1 . (2.17)
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This is the self-duality transformation. Note that the self-duality becomes a symmetry
when J = 1/(2π). However, rather than squaring to identity, it squares to a lattice
translation. So, self-duality at the special point is an extension of the translation symmetry.

Further, the spectrum of the above Hamiltonian can be solved exactly, as we show in
the appendix A. By expanding φx and nx into Fourier modes, we get that the Hamiltinian
reduces to

H = J(2π)2

2a N

(
Π̃
N

)2

+ N

2Ja

(Π
N

)2
+
∑
p

ωp
(
BpB

†
p +B†pBp

)
(2.18)

where the sum over p is over p = 2π
N ,

4π
N , . . . ,

2π(N−1)
N , Π is the conserved charge due to

the global shift symmetry φx → φx + constant, Π̃ is the charge due to the global shift
symmetry φ̃x̃ + constant, the operators Bp and B†p (defined only for p 6= 0 mod 2π) satisfy
the commutation relation [Bp, B†p′ ] = δp,p′ , with the dispersion relation being

ω2
p =

4 sin2 (p
2
)

a2 . (2.19)

The exact solution is a direct lattice analogue of the continuum compact scalar theory. The
nontrivial fact is that the zeromode contributions containing Π and Π̃ appear naturally.

We can look at the spatial correlator (A.41)〈
: eiφx :: e−iφy :

〉
= e
− 1

2JNa
∑

p 6=0
eip(x−y)

ωp , (2.20)

where :: indicates normal ordering of Bp and B†p operators. Now it is natural to interpret
a as the UV lattice size and take a continuum limit to be N → ∞ and a → 0 such that
L = Na is fixed. Then we define the dimensionful coordinate held fixed in the continuum
limit as xc = xa and obtain that

〈
: eiφ0 :: e−iφxca :

〉
→ e

− 1
2J
∑∞

p=1
e
i

2πpxc
L

2π|p| , (2.21)

which is the correct continuum finite-volume expression for the correlator.2

2.1 Going to a space-time lattice

Now consider the Hamiltonian (2.2), and let us construct the space-time lattice by writing

Z = tr e−εĤ × e−εĤ × · · · e−εĤ︸ ︷︷ ︸
Nt times

. (2.22)

We now want to insert complete sets of states. Since3 ˆ̃φx and π̂y commute for all x, y,
we can construct simultaneous eigenstates

∣∣∣{φ̃}, {π}〉. Similarily we can do the same for

2The continuum Lagrangian is L = J
2 (∂µφ)2, and the spatial correlator at finite volume L is given

by
〈
: eiφ(x) :: e−iφ(y) :

〉
= exp

(
− 2
J

1
L

∑∞
p=1

∫
dk0
2π

e
i

2πp(x−y)
L

k2
0+( 2πp

L )2

)
, which upon integration over k0, is equal

to (2.21).
3We insert hats for operators in this section to distinguish from their eigenvalues which are without hats.
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|{n}, {φ}〉 The inner product between the two is given by〈
{φ̃}, {π}|{n}, {φ}

〉
= 1

2πe
i
∑

x
nxφ̃x−i

∑
x
πxφx . (2.23)

We write
e−εH ≈

∏
y

e−
ε

2J π̂
2
y
∏
y

e−
Jε
2 (φ̂y+1−φ̂y+2πn̂y)2

, (2.24)

which is valid for sufficiently small ε. Now we insert complete sets of states and obtain

Z ≈
∫
DΦ

〈
{φ̃0}, {π0}

∣∣∣ e− ε
2J π̂

2
x

∣∣∣{n0}, {φ0}
〉〈
{n0}, {φ0}

∣∣∣ e−Jε2a (φ̂x+1−φ̂x+2πn̂x)2

×
∣∣∣{φ̃1}, {π1}

〉〈
{φ̃1}, {π1}

∣∣∣ e− ε
2Ja π̂

2
x

∣∣∣{n1}, {φ1}
〉〈
{n1}, {φ1}

∣∣∣ e−Jε2a (φ̂x+1−φ̂x+2πn̂x)2

· · · e−
ε

2Ja π̂
2
x

∣∣∣{nNt−1}, {φNt−1}
〉〈
{nNt−1}, {φNt−1}

∣∣∣ e−Jε2a (φ̂x+1−φ̂x+2πn̂x)2
∣∣∣φ̃Ntx , πNtx

〉
=
∫
DΦe−

∑
x,t[ ε

2Ja (πtx)2+Jε
2a (φtx+1−φ

t
x+2πntx)−intx(φ̃t+1

x −φ̃tx)+iφtx(πt+1
x −πtx)] . (2.25)

The measure DΦ is just a yet unspecified integration measure over φtx, φ̃tx, πtx and ntx which
we will fix in a moment. Note that the sum over x and t runs from x = 0, . . . Nt − 1 and
t = 0, . . . , N − 1 where we identify variables at x = 0 and x = N and at t = 0 and t = Nt.

Now to specify the integration measure we have to remember to implement the con-
straint that

e

∑
x
ikx

(
2ππ̂x+ˆ̃φx−1− ˆ̃φx

)
= I . (2.26)

To do that we pick an integration measure∫
dΦ =

∑
{n,k}

∫
Dφ

∫
Dφ̃

∫
Dπ ei

∑
x
ktx(2ππtx+φ̃tx−φ̃tx−1) , (2.27)

where the sum over integers ktx implements the appropriate constraint. The expression for
the partition function is then

Z ≈
∑
{n,k}

∫
Dφ

∫
Dφ̃

∫
Dπ (2.28)

× e−
∑

x,t[ ε
2Ja (πtx)2+Jε

2a (φtx+1−φ
t
x+2πntx)−intx(φ̃t+1

x −φ̃tx)−iπtx(φtx−φ
t−1
x +2πktx)−iktx(φ̃tx−φ̃tx−1)] .

Integrating over
∫
Dπ yields

Z≈
∑
n,k

∫
Dφ

∫
Dφ̃e

−
∑

x,t

(
Ja
2ε (φtx−φ

t−1
x +2πktx)2+Jε

2a (φtx+1−φ
t
x+2πntx)2−intx(φ̃t+1

x −φ̃tx)−iktx(φ̃tx−φ̃tx−1)

)
.

(2.29)
Now if we set a = ε and we relabel (n(x,t),1, n(x,t),2) = (ktx−1, n

t
x, ), we can write the

above action more concisely as

Z ≈
∑
n,k

∫
Dφ

∫
Dφ̃e

−
∑

x

∑
µ=1,2

(
J
2 (φtx+µ̂−φx+2πnx,µ)2−inx,µ(φ̃x+µ̂−φ̃x)

)
. (2.30)

which is just the modified Villain formulation [4, 5].
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3 The U(1) gauge theories

Here we will discuss U(1) gauge theories. We will start by discussing the ordinary (i.e. 1-
form gauge theories) in 2 and 3 spatial dimensions. Then we will discuss a general p-form
U(1) gauge field in arbitrary number of dimensions.

We find it convenient to introduce co-chain notation, which we review here. Our nota-
tion will follow that of the appendix of [4]. A lattice4 Λ in arbitrary number of dimensions
D has sites, which we will label with x or y (0-cells), links l (1-cells), plaquettes p (2-cells),
cubes c (3-cells), hypercubes h (4-cells) or in general r-cells cr. Since we discuss Hamiltoni-
ans in this work, our lattice is a spatial lattice only. r-cells of a the lattice can be formally
added together with arbitrary coefficients (which are typically taken to be integers) to form
an r-chain. The lattice is sometimes referred to as a cell-complex or CW complex in the
math literature. An r-chain then forms a group Cr(X), where X is the manifold on which
the lattice lives. Operators such as the boundary operator ∂ maps an r-cell cr into a linear
combination of (r−1)-cells — the boundary cells of the cr. Note that r-cells have an orienta-
tion. Two r-cells which are the same, but have a different orientation are taken to formally
differ by a sign in front. The orientation of the (r − 1)-cells in ∂cr is taken to be outward.

We can define a dual lattice Λ̃. Sites x̃ associated with the dual lattice are D-cells
of the original lattice, links of the dual lattice are D − 1 cells of the original lattice, and
so on. An r-cell cr of the lattice Λ intersects an D − r cell of the dual-lattice. Therefore
there is a natural map from Cr(X) to the C̃D−r(X) of the dual lattice, which we will label
?. The D − r cell c̃D−r = ?cr is taken to pierce cr such that the orientation of the direct
product of tangent space of cr and c̃D−r matches that of the tangent space X at the point
of intersection. We note that ?2cr = (−1)r(D−r)cr.

We can now compose the ?-operator and ∂ to construct the co-boundary operator ∂̂
which maps

∂̂ : Cr(X)→ Cr+1(X) (3.1)

where we define

∂̂cr ≡ (−1)(D−r−1)(r+1) ? ∂ ? cr . (3.2)

which is equvalent to the statement

? ∂̂ = ∂? (3.3)

Note that ∂2 = ∂̂2 = 0.

4Most of what we say here applies for any graph without any special symmetry properties.
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An explicit construction of the boundary, co-boundary and ?-operators of a cubic
lattice is given by

∂crx;i1,i2,...,ir =
∑
k

(−1)k+1
(
cr−1
x+îk;i1,i2,...

◦
ik...ir

− cr−1
x;i1,i2,...

◦
ik...ir

)
, (3.4)

∂̂crx,i1,i2,...,ir =
∑

j 6=i1,i2,...,ir
(cr+1
x,i1,i2,...,ir,k

− cx−ĵ,i1,i2,...,ir,k) , (3.5)

?crx,i1,i2,...,ir = 1
(D − r)!

∑
i′r+1,i

′
r+2,...,i

′
D

εi1,i2,...,ir,i′r+1,i
′
r+2,...,i

′
D
c̃D−r
x+ŝ−î′r+1−···−r̂

′
D,i
′
r+1,...,i

′
D

, (3.6)

?c̃rx̃,i1,i2,...,ir = 1
(D − r)!

∑
i′r+1,i

′
r+2,...,i

′
D

εi1,i2,...,ir,i′r+1,i
′
r+2,...,i

′
D
c̃D−r
x̃−ŝ+î′r+1+···+r̂′D,i

′
r+1,...,i

′
D

, (3.7)

where we labeled a cubic cr cell with one of its vertices, and the spatial directions
i1, i2, . . . , ir, with ik = 1, 2, . . . , r, and where îk is a unit lattice vector in the direction
ik, ŝ = 1̂+2̂+···+D̂

2 is the vector which translates a cubic lattice to its dual-lattice (also
cubic), while the ◦ indicates that the index is omitted.

Operators can live on these r-cells. Let Acr be an operator on an r-cell cr which we
will call an r-form operator (or an r-cochain operator). We can then define a map from an
r-form operator to an (r + 1)-form operator by an exterior derivative

(dA)cr+1 ≡
∑

cr∈∂cr+1

Acr . (3.8)

Note that d2 = 0. Similarly we define a divergence operator, which maps an r-form operator
to an (r − 1)-form operator

(δA)cr−1 ≡
∑

cr∈∂̂cr−1

Acr . (3.9)

We will also define a map ? which maps an operator Acr on cr into an operator (?A)c̃D−ron
c̃D−r as follows

(?A)c̃D−r ≡ A?c̃D−r . (3.10)

Let now Acr be an r-form on the lattice while Bc̃D−r−1 be an D − r − 1 form on the
dual-lattice. We have that, if X is a closed manifold∑

cr+1

(dA)cr+1B?cr+1 = (−1)r+1∑
cr
Acr(dB)?cr . (3.11)

We will also make use of the slightly modified version of the Kronecker delta

δcr,c′r =


1 if cr = c

′r

−1 if cr = −c′r

0 otherwise
(3.12)

Let us briefly rewrite the theory (2.2) in this notation. We define operators φx and nl
on the sites x and links l respectively. We write the Hamiltonian

H =
∑
x

1
2aJ π

2
x +

∑
l

J

2a((dφ)l + 2πnl)2 . (3.13)

– 7 –
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We define φ̃x̃ to be an operator on the dual lattice conjugate to nl, with the commutation
relations

[φ̃?l, nl′ ] = iδl,l′ . (3.14)

3.1 U(1) gauge theory in 2 spatial dimensions

We now consider a U(1) gauge theory on a spatial lattice. We define such a theory with
gauge fields Al on spatial links l of the 2d lattice Λ. We construct a Hamiltonian

H =
∑
l

1
2βa2π

2
l +

∑
p

β

2a2 [(dA)p + 2πnp]2 , (3.15)

where πl is the canonical momentum conjugate to Al, and where

(dA)p =
∑
l∈∂p

Al , (3.16)

is the exterior derivative. We also added an operator on the plaquette np with an integral
spectrum, which is needed to interpret Al as a compact gauge field. Indeed we must have
that Al → Al + 2πkl, for some integers kl to be a gauge symmetry. In addition, we impose
the Gauss law constraint

(δπ)x =
∑
l∈∂̂l

πl = 0 , (3.17)

where δ is the lattice divergence operator (3.9).
The introduction of np integer valued operator implies the existence of a conjugate op-

erator φx̃ which we take to live on the dual lattice site. We impose the commutation relation

[φx̃, np] = iδ?x̃,p = iδx̃,?p (3.18)

We impose the gauge symmetry

Al → Al + 2πkl , (3.19)
np → np − 2π(dk)p , (3.20)

which is generated by the operator

U [k] = e
i
∑

l
2ππlkl+i

∑
p
(dk)pφ?p = ei

∑
l
(2ππl+(dφ)?l)kl , (3.21)

The requirement that every physical state is invariant under U [k] implies that (the minus
sign on the r.h.s. is for convenience)

πl + (dφ)?l
2π = −m?l (3.22)

where ml̃ is an operator on the dual links with an integral spectrum. Since we assume that
φx̃ and Al commute, we must also impose

[Al,ml̃] = iδl,?l̃ = −iδ?l,l̃ , (3.23)

– 8 –
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i.e. ml now serves as the conjugate momentum of Al. Therefore∑
l

π2
l = 1

(2π)2

∑
l̃

[(dφ)l̃ + 2πml̃]
2 (3.24)

We finally get that the Hamiltonian is now

H =
∑
l̃

1
β(2π)2

(
(dφ)l̃ + 2πml̃

)2 +
∑
p

β

2 (Fp + 2πnp)2 . (3.25)

Note that we had that np commutes with πl, but since [φx̃, np] = iδx̃,?p we have that

[np, (dφ)l̃ + 2πml̃] = 0 . (3.26)

From the above equation we have that

[np,ml̃(x̃,ỹ)] = 1
2π i(δx̃,?p − δỹ,?p) (3.27)

where l̃(x̃, ỹ) denotes a dual link which starts at x̃ and ends at ỹ. Further, the Gauss law
constraint translates into

(dm)p̃ = 0 . (3.28)

We could further label Πx̃ = F?x̃+2πn?x̃
2π . Note that Πx̃ serves as the conjugate momentum

to φx̃, i.e.
[φx̃,Πx̃′ ] = [φx̃, n?x̃′ ] = iδx̃,x̃′ . (3.29)

Moreover Πx̃ commutes with ml̃. To see this, note that

[Πx̃,ml̃(ỹ,z̃)] = 1
2π [F?x̃,ml̃(ỹ,z̃)] + [n?x̃,ml̃(ỹ,z̃)] = 1

2π [F?x̃,ml̃(ỹ,z̃)] + i

2π (δỹ,x̃ − δz̃,x̃) . (3.30)

Now we write

[F?x̃,ml̃(ỹ,z̃)] =
∑
l∈∂?x̃

[Al,ml̃(ỹ,z̃)] = −i
∑
l̃′∈∂̂x̃

δl̃′,l̃(ỹ,z̃) = −iδx̃,ỹ + iδx̃,z̃ . (3.31)

In going from the second to the third step above we used the fact that l ∈ ∂ ? x̃ is the same
as ?l ∈ −∂̂x̃ and, writing Al = −A?(?l) we replaced the sum over l by the sum over l̃ = ?l.
So, combining the above with (3.30) we have that

[Πx̃,ml̃] = 0 (3.32)

The Hamiltonian then becomes

H =
∑
x̃

β(2π)2

2 Π2
x̃ +

∑
l̃

1
β(2π)2

(
(dφ)l̃ + 2πml̃

)2
, (3.33)

which is the Villain Hamiltonian of the compact scalar on the dual lattice. Note that we
have an additional constraint dñ = 0. This is a no-vortex constraint.
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The no-vortex constraint looks peculiar at first. Surely we could think of the above
Hamiltonian without this constraint. This theory has an integer-spectrum operator ml̃,
living on dual links. As such, its natural conjugate momentum is an angle-valued operator,
living on the dual links l̃ or, equivalently, living on original links l, which we label Al. Now
the constraint dm = 0 simply comes from demanding gauge invariance Al → Al + (dλ)l,
i.e. it is a Gauss-law constraint.

But what forces us to impose this gauge invariance? We could also consider the Villain
Hamiltonian of a compact scalar without such invariance of the link field Al? Notice
however that the equations of motion for ml̃ are

ṁl̃ = 0 . (3.34)

So the ñ operator is in a sense not dynamical, and if we have a state which has a vortex on
the dual plaquette (dm)p̃ 6= 0, then that vortex will be there for all other times. Hence the
Hilbert space of such a theory decomposes into superselection sectors. One can just as well
consider the theory to have a constraint (dm)p̃ = 0, and consider the other superselection
sectors as temporal (Wilson) line-operator insertions imposing a different superselection
sector.

3.2 U(1) gauge theory in 3 spatial dimensions and electric-magnetic duality

Now consider the Hamiltonian

H = 1
2β
∑
l

(πel)2 +
∑
p

β

2 ((dAe)p + 2πnp)2 , (3.35)

where the spatial lattice is three dimensional. We use the superscript e to label the electric
gauge field and its canonical momentum. The operator np again has an integral spectrum,
and hence we associate a canonical conjugate operator Am

l̃
, living on the dual lattice link

as follows
[Am?p, np′ ] = iδp,p′ . (3.36)

The operator Am
l̃

will be interpreted as the dual (magnetic) gauge field. We impose the
gauge invariance condition

Am
l̃
→ Am

l̃
+ (dλ)l̃ , (3.37)

where λx̃ is a gauge parameter on the dual-lattice site. The above transformation is im-
plemented by an operator

ei
∑

l̃
n?l̃(dλ)l̃ = e−i

∑
x̃
(dn)?x̃λx̃ . (3.38)

The above operator must be an identity operator on the physical states for any choice
of λx̃, so we must have that (dn)c = 0 on any cube c of the spatial lattice. This is the
no-monopole constraint. Similarly as before, if we wish to consider the temporal monopole
line operators, then the constraint should be modified to be different from zero at some
cubes c corresponding to the dual lattice sites x̃ where the static probe monopole lives.
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By the same argument for gauge symmetry of Ael , we have that (δπ)x = 0 — the Gauss
law constraint. Now we must implement the discrete gauge symmetry constraints

Ael → Ael + 2πkl , (3.39)
np → np − (dk)p . (3.40)

The above is implemented by

e
i
∑

l
2πklπl+i

∑
p
(dk)pAm?p , (3.41)

which, again, has to act as identity on the physical states. This implies that

πel = 1
2π (−(dAm)?l + 2πm?l) , (3.42)

where mp̃ is an operator on the dual plaquette with the integer spectrum. Moreover we
must have that

[Ael , πel′ ] = iδl,l′ ⇒ [Ael ,m?l′ ] = iδl,l′ . (3.43)

Similarly like before we note that since we assumed that πl commutes with np, we must
have that

[πe
?l̃
, np] = − 1

2π [(dAm)p̃, np] + [mp̃, np] = 0 (3.44)

so that
[mp̃, np] = 1

2π
∑
l̃∈∂p̃

[Am
l̃
, np] = 1

2π
∑
l̃∈∂p̃

iδ?l̃,p = iL(∂p, ∂p̃)
2π , (3.45)

where L(∂p, ∂p̃) is the linking number between the boundary of the plaquette p and the
boundary of the dual plaquette p̃. Moreover we define

πm
l̃

= 1
2π
(
(dAe)?l̃ + 2πn?l̃

)
. (3.46)

The operator above acts like a canonical momentum of Am
l̃

[Am
l̃
, πm

l̃′
] = iδl̃,l̃′ . (3.47)

Moreover πm
l̃

commutes with mp̃

[mp̃, π
m
l̃

] = 1
2π [mp̃, (dAe)?l̃] + [mp̃, n?l̃] . (3.48)

Indeed since
[mp̃, (dAe)p] = −i

∑
l∈∂p

δ?p̃,l = −iL(∂p, ∂p̃) , (3.49)

hence
[mp̃, π

m
l̃

] = 0 . (3.50)

Finally we have the dual form of the Hamiltonian

H =
∑
l̃

β(2π)2

2 (πm
l̃

)2 + 1
2β(2π)2

∑
p̃

((dAm)p̃ − 2πmp̃)2 . (3.51)
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Now assume that the lattice Λ is a hypercubic lattice, and define a translation map f which
maps the lattice Λ to its dual and Λ̃ to the Λ. We can then redefine the operators

A′l
e = −Amf(l) n′p = mf(p) (3.52)

A′
l̃

m = Ae
f(l̃) m′p̃ = −nf(p̃) (3.53)

Note now that models of this sort can be coupled to both magnetic as well as electric
matter in a standard way, just like in the space-time counterparts [4, 9].

3.3 p-form U(1) gauge theory in D dimensions

A p-form gauge theory consists of p-form (or a p-cochain) operator Acp living on a p-cell cp.
The canonical momentum to Acp is given by Πcp . In D spatial dimensions, we formulate
its Hamiltonian as

H =
∑
cp

1
2βaΠ2

cp +
∑
cp+1

β

2a((dA)cp+1 + 2πncp+1)2 , (3.54)

where ncp+1 is a p+ 1-form, integer valued operator, whose canonical dual (coordinate) we
will take to live on the dual lattice, i.e. Am

c̃D−p−1 , such that

[Am?cp+1 , nc′p+1 ] = i(−1)(p+1)(D−p−1)δcp+1,c′p+1 . (3.55)

or, equivalently

[Amc̃D−p−1 , ncp+1 ] = iδcp+1,?c̃D−p−1 = i(−1)(p+1)(D−p−1)δ?cp+1,c̃D−p−1, (3.56)

As before, the Kronecker delta is defined such that it is +1 if the two cells are the same
with the same orientation, −1 if they are the same with opposite orientation and 0 if they
are distinct. The Hamiltonian is invariant under a gauge transformation

Acp → Acp + (dλ)cp . (3.57)

which, when we impose the neutrality of the physical states under the transformation, leads
to a Gauss constraint

(δΠ)cp−1 = 0 . (3.58)

Similarly we can impose the gauge symmetry

Aecp → Acp + 2πkcp , (3.59)
ncp+1 → ncp+1 − (dk)cp+1 , (3.60)

which is implemented by an operator

e
i2π
∑

cp
kcpΠe

cp
+(−1)(p+1)(D−p−1)

∑
cp+1 (dk)cp+1Am

?cp+1 = ei
∑

cp
kcp (2πΠe

cp
+(−1)pD−D(dAm)?cp )

(3.61)
which leads to the constraint

Πcp = − 1
2π (−1)(p−1)D(dAm)?cp +m?cp , (3.62)
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where mc̃D−p is an integer spectrum operator, living on the D − p cells of the dual lattice.
Note that this means that

[Aecp ,m?c′p ] = iδcp,c′p ⇔ [Ae?c̃D−p ,mc̃′D−p ] = (−1)p(D−p)iδc̃D−p,c̃′D−p , (3.63)

which is the mirror image of (3.55) and can also be written as

[Aecp ,mc̃D−p ] = iδ?cp,c̃D−p = i(−1)p(D−p)δcp,?c̃D−p . (3.64)

Recall that we take Πcp to commute with the field ncp+1 , and hence

− (−1)(p−1)D[(dAm)c̃D−p , ncp+1 ] + 2π[mc̃D−p , ncp+1 ] = 0 (3.65)

or5

[mc̃D−p , ncp+1 ] = (−1)pD−D

2π
∑

c̃D−p−1∈∂c̃D−p
[Amc̃D−p−1 , ncp+1 ]︸ ︷︷ ︸

=i(−1)(p+1)(D−p−1)δ
c̃D−p−1,?cp+1

= (−1)p+1

2π
∑

c̃D−p−1∈∂c̃D−p
δc̃D−p−1,?cp+1 . (3.66)

Now recall that ?cp+1 is a D− p− 1-cell which pierces cp+1 cell in such a way that the
induced orientation on the D-cell which is obtained by the extension of cp+1 by c̃D−p−1 is
standard.6 In other words the Kronecker delta picks up a positive contribution whenever
D − p − 1-cell c̃D−p−1 pierces the cp+1 cell, such that cp+1 with c̃D−p−1 form a standard
orientation, and negative if the piercing is opposite. We can hence define the linking number
between the boundary two cells as

L(∂cp+1, ∂c̃D−p) =
∑

c̃D−p−1∈∂c̃D−p
δc̃D−p−1,?cp+1 . (3.67)

This means that
[ncp+1 ,mc̃D−p ] = (−1)p+1

2π L(∂cp+1, ∂c̃D−p) . (3.68)

Hence we can write the Hamiltonian as

H = 1
2β(2π)2

∑
c̃D−p

((dAm)c̃D−p − (−1)pD−D2πmc̃D−p)2 + β

2
∑
cp

((dAe)cp+1 + 2πncp+1)2 .

(3.69)
Further we can also define the dual momentum Πm

c̃D−p−1 of Am
cD−p−1 as

Πm
c̃D−p−1 = (dAe)?c̃D−p−1 + 2πn?c̃D−p−1 . (3.70)

We can check the commutation relations of Πm
c̃D−p−1 with mc̃D−p . We have that

[Πm
?cp+1 ,mc̃D−p−1 ](−1)(p−1)(D−p−1) = 1

2π [dAecp+1 ,mc̃D−p ] + [ncp+1 ,mc̃D−p ]

= 1
2π [dAecp+1 ,mc̃D−p ]− i(−1)pL(∂cp+1, ∂c̃D−p) . (3.71)

5We used δ?c̃D−p−1,cp+1 = δ?2c̃D−p−1,?cp+1 = (−1)(D−p−1)(p+1)δc̃D−p−1,?cp+1 .
6By a standard orientation we mean the orientation given by the ordering of the lattice coordinates

1, 2, 3, . . . D.
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Since

[(dAe)cp+1 ,mc̃D−p ] =
∑

cp∈∂cp+1

[Aecp ,mc̃D−p ]︸ ︷︷ ︸
i(−1)p(D−p)δ

cp,?c̃D−p

= i(−1)p(D−p)L(∂c̃D−p, ∂cp+1) = i(−1)pL(∂cp+1, ∂c̃D−p) (3.72)

where we used that L(∂cp+1, ∂c̃D−p) = (−1)pDL(∂c̃D−p, ∂cp+1) shown in the appendix B.

3.4 Comments on the BF theories

We finally give brief comments on the BF theories. Such theories have a zero Hamiltonian,
but a nontrivial algebra. We consider a general case of a p-form operator Acp and its
counterpart Bc̃D−p . We impose the following commutation relations

[Acp , Bc̃D−p ] =
i2πδcp,?c̃D−p

N
, (3.73)

where N is a positive integer. We further impose a gauge symmetry Acp → Acp + (dλ)cp
with λ− cp−1 a real, (p− 1)-form gauge parameter. This symmetry is implemented by an
operator

e
iN
2π
∑

cp
(dλ)cpB?cp = I , (3.74)

which results, upon partial integration, in the constraint (dB)c̃D−p+1 = 0, i.e. B is a
flat operator. Similarily by imposing the gauge symmetry of B → B + dλ, we get
that (dA)cp+1 = 0. Further, we also want to impose that Acp → Acp + 2πkcp , and
Bc̃D−p → Bc̃D−p + 2πkc̃D−p with kcp , kc̃D−p ∈ Z we get that

eiNAcp = eiNBc̃D−p = I , (3.75)

which indicates that Acp and Bc̃D−p are ZN gauge fields. Moreover note that the constraint
on dB and dA should now be interpreted as a mod 2π constraint, i.e. as

ei(dB)
c̃D−p+1 = ei(dA)cr+1 = I . (3.76)

It is now easy to see that Wilson sheets of A and B have anyonic statistics

e
iq1
∑

cp∈C1
Acpe

iq2
∑

c̃D−p∈C2
B
c̃D−p = e

−q1q2
∑

cp,c̃D−p [Acp ,Bc̃D−p ]
e−i

2π
N
I(C2,C1) (3.77)

where I(C2, C1) is the intersection number of the hyper surface C1 with C2 defined as

I(C2, C1) =
∑

cp∈C1,c̃D−p∈C2

δcp,?c̃D−p . (3.78)

A surface operator in space time ei
∮
A which winds in the temporal direction must modify

the Gauss constraint as follows. Firstly, note that the component of A which points in time
would naturally be intepreted as an object living on the cp−1 of the lattice. The operator
ei
∮
A which spans in time for a fixed spatial p−1 hyper-surface S can be seen as modifying

the Hilbert space as follows

ei(dB)?cr−1 = e
−i 2πq1

N

∑
c
′r−1∈S δcr−1,c′r−1 . (3.79)

This will guarantee the topological correlation functions between “loops” of B and the
surface S.
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3.5 Coupling to gauge fields, anomalies and the Ising duality

Let us now discuss 1+1d theories with scalars coupled to gauge fields. This is well known
to be solvable in continuum and we will see that we can construct lattice models which
are also solvable. Moreover we will explore the ’t Hooft anomaly which arises, and discuss
why gauging some of the symmetries may be inconsistent.

Let us start with the simplest model: the compact boson Hamiltonian (2.2). We
introduce the gauge fields Al on links gauging the φx → φx + α shift symmetry

H = 1
2J
∑
x

π2
x + J

2
∑
l

(dφ+ 2πn+ qA)2
l +

∑
l

e2

2

(
Πl + θ

2π

)2
, (3.80)

where we have decided to gauge the symmetry with a charge q, and where Πl is the con-
jugate momentum to Al. We also introduced the θ-angle. What about the shift symmetry
φ̃x̃ → φ̃x̃ + α̃? Since we have the commutation relation

[φ̃x̃, n?ỹ] = iδx̃,ỹ , (3.81)

naively the conserved charge that implements the shift symmetry of φ̃x̃ is just given by∑
l nl. This however is not gauge invariant under the new discrete symmetry7 Al →

Al + 2πkl and nl → nl − qkl. So the conserved charge should be

Q̃ =
∑
l

(
nl + q

Al
2π

)
. (3.82)

The above charge, however, is no longer conserved. Indeed we have that
˙̃Q = i[H, Q̃] = qe2∑

l

Πl . (3.83)

The equations of motion for Al however also give that

Ȧl = i[H,Al] = qe2Πl , (3.84)

so we can write
˙̃Q = q∂t

∑
l

Al , (3.85)

This is the famous mixed anomaly between the momentum and winding symmetries. Before
continuing to solve this gauged model,8 let us consider gauging only the ZN subgroup of
the U(1) symmetry. To do this we let the Hamiltonian be

H = 1
2J
∑
x

π2
x + J

2
∑
l

(dφ+ 2πn+A)2
l , (3.86)

where now we have that Al is the ZN gauge field discussed in section 3.4. The conserved
dual charge is given by

Q̃ =
∑
l

(
nl + Al

2π

)
(3.87)

7We could just not impose this symmetry, but then Al would be and R gauge field, not a U(1) gauge field.
8This is a bosonized version of the charge q Schwinger model which has been of interest in some recent

literature [10–12].
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which is now still conserved. But notice that it is not an integer, so there is still an anomaly
between a discrete ZN momentum symmetry and the U(1) winding symmetry. Now let us
try to preserve only a subgroup ZM of the U(1) winding symmetry. Before gauging the
ZN momentum symmetry, the generator of the ZM winding symmetry was

GM = ei
2π
M

∑
l
nl . (3.88)

Upon gauging the ZN momentum symmetry the above is not gauge invariant under Al →
Al − 2πkl and nl → nl + kl. We want to attach an improperly quantized Wilson line
ei
pN
M

∑
l
Al with p ∈ Z so that we preserve the property GM = I. So let’s define

G = e
i
M

∑
l
(2πnl+pNAl) . (3.89)

Now the above combination must be gauge invariant under nl → nl + kl and Al − 2πkl
which can only be true if pN = 1 mod M . This condition can only be solved for p if
GCD(N,M) = 1. This is indeed what one expects in the continuum.9

The story can be repeated for p-form gauge fields in arbitrary dimensions, where the
two U(1) symmetries are p-form and the (D− p− 1)-form, with a mixed ’t Hooft anomaly
between them. Again one can show that two discrete subgroup ZN and ZM do not have a
mixed anomalies only if GCD(N,M) = 1.

Now let’s go back the discussion of the theory (3.80). Notice that the transformation

nl → nl + qkl Al → Al − 2πkl (3.90)

is a gauge symmetry, and hence the operator which implements it must be an identity
operator

ei
∑

l
kl(2πΠl+qφ̃?l) = I (3.91)

so that
Πl = M?l −

qφ̃?l
2π , (3.92)

where M?l is an integer valued operator, which must have the commutation relation

[Al,M?l′ ] = iδl,l′ . (3.93)

In addition the usual Gauss law says that

(δΠ)x = −qπx , (3.94)

which translates into
πx = (dφ̃)?x

2π − (dM)?x
q

. (3.95)

9In the continuum, one can put the background ZN gauge fields Ã for the ZN subgroup of the winding
symmetry by the minimal coupling term 1

2π

∫
Ã ∧ dφ in the action. Now upon putting background ZM

gauge field for the φ shift symmetry, the minimal coupling term becomes 1
2π

∫
Ã∧(dφ+A). This renders the

term no longer gauge invariant under the large gauge transformations of Ã because
∫

(dφ+A) is quantized
in units of 2π/M . One can however introduce a counter-term pN

∫
A ∧ Ã, which does not spoil the gauge

invariance of A, and p can be picked so that it fixes the gauge non-invariance of Ã if GCD(M,N) = 1.
See [13–15] for related discussions.
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On the other hand we know that

πx = (dφ̃)?x
2π + ñ?x , (3.96)

so that
(dM)l̃ = −qñl̃ . (3.97)

Note that the above equation says that M is constant in space mod q. Meaning that
ei2πMx̃/q does not depend on x̃. As we will see M will label q degenerate vacua. Finally
we define a gauge invariant canonical momentum p̃x̃ to φ̃x̃ as

p̃x̃ = π̃x̃ + qA?x̃ , (3.98)

which obeys the following non-zero commutation relations

[φ̃x̃, p̃ỹ] = iδx̃,ỹ , (3.99)
[p̃x̃,Mỹ] = qiδx̃,ỹ (3.100)

so the Hamiltonian can then be written as

H = J

2
∑
x̃

p̃2
x̃ + 1

2J(2π)2

∑
l̃

(
(dφ̃)l̃ + 2πñl̃

)2
+
∑
l

e2q2

2(2π)2

(
φ̃x̃ −

2πMx̃

q
+ θ

q

)2
. (3.101)

Firstly note that the θ term can just be absorbed into the anomalous shift of φ̃x̃ as
expected. Further, Mx̃ commutes with the Hamiltonian, and can hence be set to a
numerical value. The same is true for ñl̃. We must further impose the constraint that
ñl̃ = − (dM)l̃

q . But if ñl̃ is a total derivative, we can absorb it in the shift of φ̃x̃. The
remaining model is then a gapped lattice scalar with mass eq

√
J

2
√

2π . Notice however that

the model has q vacua which are distinguished by the operator ei
2πN
q = e

i
2πMx̃
q , which

is space-independent and defines an integer M , well defined mod q, which labels the
vacua. The q vacua correspond to the degenerate universes associated with the ZN 1-form
symmetry. Now let us consider the model with dynamical vortices, which are described
by operators e±iφ̃x̃ . In particular we have a Hamiltonian

H = J

2
∑
x̃

p̃2
x̃+ 1

2J(2π)2

∑
l̃

(
(dφ̃)l̃+2πñl̃

)2
+
∑
x̃

[
e2q2

2(2π)2

(
φ̃x̃−

2πMx̃−θ
q

)2
+mcos(φ̃x̃)

]
.

(3.102)
Diagonalizing Mx̃ we have that the Hamitlonian splits into q sectors labeled by the integer
M = 0, 1, . . . , q − 1

HM = J

2
∑
x̃

p̃2
x̃+ 1

2J(2π)2

∑
l̃

(dF̃ )2
l̃
+
∑
x̃

[
e2q2

2(2π)2 F̃
2
x̃ +m cos

(
F̃x̃ + 2πM − θ

q

)]
, (3.103)

where F̃x̃ is related to φ̃x̃ as
F̃x̃ = φ̃x̃ −

2πMx̃ − θ
q

. (3.104)
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Now notice that for generic values of θ and q, all vacua labeled by M have a distinct
Hamiltonian, and hence a different ground state. When θ = π however, notice that charge
conjugation symmetry C which takes F̃x̃ → −F̃x̃ acts on M as

M → −M + 1 mod q (3.105)

Now if the above symmetry is leaving the vacuum labeled by M invariant, we would have

2M − 1 = 0 mod q , (3.106)

which is only possible if q is odd. Hence for even q, all vacua transform under the C
symmetry, and, in particular, the ground state must be degenerate. This is the reflection
of the mixed anomaly between the C-symmetry and the Zq 1-form symmetry at θ = π [13].

When q = 1, there will be an Ising transition at θ = π as m is dialed. If m is large and
positive, the Hilbert space is projected onto the states with F̃x̃ = 0, which does not break
the C-symmetry. When m is large and negative, F̃x̃ is forced to be either +π or −π, and
the C-symmetry is broken.10

We can also construct another model in the same universality class as the one above.
Namely let us consider the following analogous model to (3.86)

H = 1
2J
∑
x

π2
x − J

∑
l

cos((dφ)l + qAl) +
∑
l

e2

2

(
Πl + θ

2π

)2
. (3.107)

The model above differs from (3.80) in that the Villain form was replaced by the more
conventional XY-model/Wilson type. Because of this, the model will not have the winding
symmetry, and is hence in the same universality class as (3.102). We want to study this
model in the limit of strong gauge coupling at θ = π. In that case we have that the last
term enforces a constraint that Πl can take only two values Πl = 0, 1. We therefore label
Πl →

1−σ3
?l

2 , where σ3
x̃ is the 3rd sigma matrix living on the dual sites x̃. Since the Gauss

law states that (δΠ)x = −qπ2
x, we can replace π2

x → 1
q24(dσ3)2

?x. Since (dσ3)l̃(x̃,ỹ) = σ3
ỹ−σ3

x̃,
where l̃(x̃, ỹ) is the link starting at dual site x̃ and ending at the dual site ỹ, we have that∑

x

π2
x → −

1
2q2

∑
x̃

σ3
x̃+1σ

3
x̃ + constant terms , (3.108)

which is just the Ising coupling.
Finally the term cos((dφ)l+qAl) always takes the state with Πl = 0, 1 into a state with

different Πl, if q > 1, and acts as a zero operator on the projected Hilbert space. Πl = 0, 1.
Hence we have that the Hamiltonian exactly becomes that of the Ising model

He2→∞,q>1 = − 1
4Jq2

∑
x̃

σ3
x̃+1σ

3
x̃ (3.109)

which of course has two ground states. If however q = 1, then the cosine term does not act
as a zero operator. Instead it acts as a σ1

x̃ operator, and the resulting Hamiltonian is

He2→∞,q=1 = − 1
4J
∑
x̃

σ3
x̃+1σ

3
x̃ −

J

2
∑
x̃

σ1
x̃ . (3.110)

10Notice that unlike φ̃x̃, F̃x̃ is not a compact operator, and F̃x̃ = π and F̃x̃ = −π are distinct values of
the field.
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This is known as the transverse field Ising model, and it is exactly solvable, with a transition
occurring when the ratio of the coefficients of the second term and the first term is equal
to 1, i.e. at J = 1/

√
2. If J < 1/

√
2, there are two vacua related by the spin flip symmetry

(i.e. C symmetry). If J > 1/
√

2 the ground state is unique. This is what we expected from
the analysis of (3.102) with q = 1.

Finally we comment that the quantum Ising model can also be obtained in arbitrary
dimensions from the generalization of the above story to D spatial dimensions. To that
end, let us consider D − 1-form gauge field AcD−1 and couple it to a D-form gauge filed
BcD as follows

H = 1
2J

∑
cD−1

π2
cD−1 −

J

2
∑
l

cos(dA+ qB)2
cD +

∑
cD

e2

2 (ΠcD + θ

2π )2 , (3.111)

where πcD−1 is a conjugate momentum to AcD−1 , ΠcD is the conjugate momentum to BcD .
When θ = π we again, by very similar reasoning, get the Ising model in the limit e2 →∞.
The Ising spins σ3

x̃ lives on the dual lattice sites. The Hamiltonian is given by

He2→∞ = − 1
2Jq2

∑
〈x̃,ỹ〉

σ3
x̃σ

3
ỹ − δq,0

J

2
∑
x̃

σ1
x̃ (3.112)

This is the Hamiltonian version of the strong-coupling duality [16].

4 Exotic theories

In this section we study some exotic fracton models which have subsystem symmetries. In
particular we will consider a version of the XY-plaquette model [17]. Much like the XY
model is an analogue of a compact scalar model, the XY-plaquette model can be seen as
an analogue of a model described in the continuum by a Minkowski Lagrangian11

L = µ0
2 (φ̇)2 − 1

µ1
(∂1∂2φ)2 . (4.1)

This model has a subsystem symmetry associated with the shift φ(x1, x2) → φ(x1, x2) +
f(x1) + g(x2) where f and g can be arbitrary functions of x1 and x2 respectively. This we
will call the momentum subsystems symmetry, in analogy to the compact scalar symmetry.
The model has also a winding subsystem symmetry associated with the conserved dipole
charges12 Q1(x1) = 1

2π
∫
dx1(∂1∂2φ) and Q2(x2) = 1

2π
∫
dx1(∂1∂2φ) [5, 18–28]. The winding

symmetry can only be emergent in the XY-plaquette model, just like the winding symmetry
of the XY-model in (1+1)d only emerges in a particular regime. In [5] a space-time lattice
model was constructed which has an exact winding dipole symmetry. Models discussed
here are the Hamiltonian analogues of these.

11The “continuum” theory here is subtle because of the UV/IR mixing, which was the main focus of the
works of Seiberg and Shao [18–21].

12The charges can be nontrivial because ∂1φ and ∂2φ are only well defined mod 2π. These subtleties of
the continuum theory have been the central theme of the works of Seiber and Shao [18–20].
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4.1 XY-plaquette model with exact winding symmetries

Consider now the Hamiltonian

H =
∑
x

( 1
2Jaπ

2
x + J

2a (∆1∆2φx + 2πnx)2
)
. (4.2)

where x is a position vector on the 2d lattice, and ∆iφx = φx+î − φx, with î being a unit
lattice vector in the spatial direction i = 1, 2. Note a has dimensions of length and J is
dimensionless. The operator nx has an integer spectrum, with a canonical conjugate ϕx

[ϕx, ny] = iδx,y . (4.3)

Now we note that the transformation

φx → φx + 2πkx , (4.4)
nx → nx −∆1∆2kx , (4.5)

with k an integer, is an invariance. We want to make the above into a gauge symmetry.
The above transformation is generated by an operator

ei
∑

x
2πkxπx−i

∑
x
(∆1∆2k)xϕx . (4.6)

we use the “partial integration” formula∑
x

(∆if)xgx =
∑
x

(fx+î − fx)gx =
∑
x

fx(gx−î − gx) = −
∑
x

fx(∆ig)x−î , (4.7)

so we rewrite the generator as

ei
∑

x
2πkxπx−i

∑
x
kx∆1∆2ϕx−1̂−2̂ . (4.8)

The above must be an identity operator on the Hilbert space, so we impose a constraint

πx =
∆1∆2ϕx−1̂−2̂

2π +mx , (4.9)

where mx has an integral spectrum. Moreover since [nx, πy] = 0 we have that

[nx,my] = i

2π
(
δx,y − δx,y−2̂ − δx,y−1̂ + δx,y−1̂−2̂

)
. (4.10)

The Hamiltonian takes the form

H =
∑
x

{
1

2Ja(2π)2

(
∆1∆2ϕx + 2πmx+1̂+2̂

)2
+ J

2a (∆1∆2φx + 2πnx)2
}
. (4.11)

The Hamitlonian is invariant under the replacement

φx → ϕx , nx → mx+1̂+2̂ , (4.12)
ϕx → φx+1̂+2̂ , mx → nx . (4.13)
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along with J →
(

1
2π

)2 1
J . This is the self-duality of the model. The reader can check that

the commutation relations

[φx,my] = iδx,y , [ϕx, ny] = iδx,y , (4.14)

[nx,my] = i

2π
(
δx,y − δx,y−1̂ − δx,y−2̂ + δx,y−1̂−2̂

)
, (4.15)

are invariant under self-dual transformation. Note that, as in the 1+1d counterpart, the
square of the self-dual transformation is not identity, but a diagonal lattice translation.
The model clearly enjoys two winding symmetries, as the shifts φx → φx + f2(x1) + f2(x2)
and ϕx̃ + g1(x1) + g2(x2) where f1,2 and g1,2 are arbitrary functions of x1,2 respectively.
The model is also exactly solvable, as we show in the appendix A.3 and matches nicely the
continuum discussion of [18].

4.2 2+1d tensor model and the quantum Ising model duality

Now we want to consider gauging the tensor symmetry which is specified by the current
J0,x, J

12
x . We introduce the tensor gauge field Ax,0 and Ax,12 with a gauge symmetry

Ax,0 → Ax,0 + ∂0φx , (4.16)
Ax,12 → Ax,12 + ∆1∆2φx . (4.17)

We want to construct a theory in which we can identify Ax,12 ∼ Ax,12 +2π. Let us consider
the Gauge invariant field strength

Fx,0,12 = ∂0A12 −∆1∆2A0 . (4.18)

The (real-time) Lagrangian is given by

L =
∑
x

βa

2 F 2
x,0,12 . (4.19)

The Hamiltonian is

H =
∑
x

(( 1
2aβΠ2

x,12 + (∆1∆2Ax,0)Πx,12

))
. (4.20)

where πx,12 as a conjugate momentum to Ax,12. The conjugate momentum πx,0 of Ax,0 is
zero (primary constraint in the Dirac constraint classification [29]), so πx,0 must commute
with the Hamitlonian. This condition gives us, upon “partial integration” the secondary
constraint, or Gauss law

∆1∆2Πx,12 = 0 . (4.21)

Since πx,0 and πx,12 have a zero Poisson bracket, the constraints are first class. This is
exactly like in the ordinary U(1) gauge theory.

Implementing the Gauss constraint the Hamiltonian becomes

H =
∑
x

e2

2 Π2
x,12 , (4.22)
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with the constraint (4.21). We could also derive the Gauss constraint by imposing the
gauge invarinace Ax,12 → Ax,12 + ∆1∆2φx on the Hilbert space of the above Hamiltonian
directly. The operator which implement this transformation must act as identity on the
physical Hilbert space for any choice φx, and so

ei
∑

x
∆1∆2φxΠx,12 = I⇒ ∆1∆2Πx,12 = 0 , (4.23)

In addition we require that Ax,12 → Ax,12 + 2πkx,12 for any choice of integers kx,12. This
yields that πx,12 has an integer spectrum. We can further introduce a θ-term

H =
∑
x

e2

2

(
Πx,12 −

θ

2π

)2
. (4.24)

The model is solved by diagonalizing Πx,12, and the ground state is given as any state of
integer eigenvalues mx,12 of Πx,12 which obey the constraint

∆1∆2mx,12 = 0 . (4.25)

The ground state when −π < θ < π is simply mx,12 = 0 everywhere, while at θ = π, the
ground state is given by any configuration mx,12 = c(x1), or mx,12 = c(x2) where c(x1,2) is
constrained to be zero or unity. The degeneracy of the ground state is 2N1 + 2N2 − 2.

Note that this model has a large symmetry given by the operator equations

∂0Πx,12 = 0 (4.26)

along with the Gauss law ∆1∆2Πx,12 = 0. In other words every Πx,12 is conserved point-
wise. This is an exotic 1-form symmetry of the model, where the Gauss law is modified to
allow Πx,12 to be nonconstant, and depend on either only on x1 or only on x2.

The model allows for a coupling to the scalar field theory we discussed previously. We
can write

H =
∑
x

1
2Jaπ

2
x + J

2a (∆1∆2φx +Ax,12 + 2πnx)2 +
∑
x

1
2βa

(
Πx,12 −

θ

2π

)2
. (4.27)

The Gauss law in this case reduces to

∆1∆2Πx,12 = πx+1̂+2̂ (4.28)

Alternatively we may choose to couple the gauge fields as an XY-plaquette model
instead

H =
∑
x

1
2Jaπ

2
x −

J

a
cos (∆1∆2φ+Ax,12) +

∑
x

e2

2βa

(
Πx,12 −

θ

2π

)2
. (4.29)

Let us now consider the strong gauge coupling limit e2 →∞ at fixed a, and also take
θ = π. Then Πx,12 must be 0 or 1, as other values have infinite energy. The Hilbert space of
the gauge field momentum Πx,12 gets truncated to only two states, the rest being separated
by an infinite energy gap of the order 1/(βa). We can hence replace Πx,12 → σ3

x+1
2 , where
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Figure 1. A schematic depiction of the J1 − J2 2d Ising model.

σ3
x is the 3rd Pauli matrix on the site x. Moreover we have that πx = ∆1∆2Πx−1̂−2̂,12 →

1
2∆1∆2σ

3
x. Finally we can write cos(∆1∆2φ+Ax,12) = 1

2e
i∆1∆2φ+iAx,12 + 1

2e
−i∆1∆2φ−iAx,12 .

The first of these two changes the eigenvalue of Πx,12 by +1 and the second changes it by
−1. So we should replace them by σ+

x and σ−x respectively, i.e. we can write

cos (∆1∆2φ+Ax,12)→ 1
2(σ+

x + σ−1
x ) = 1

2σ
1
x . (4.30)

Finally since
∑
x(∆1∆2σx)2 = 2

∑
(σxσx+1̂+2̂−2σxσx+1̂−2σxσx+2̂ +σx+1̂σx+2̂)+ . . . where

the dots indicate an operator proportional to identity, our model reduces to

H → Heff =
∑
x

1
4Ja

(
σ3
xσ

3
x+1̂+2̂ − 2σ3

xσ
3
x+1̂ − 2σ3

xσ
3
x+2̂ + σ3

x+1̂σ
3
x+2̂

)
−
∑
x

J

2aσ
1
x , (4.31)

where we dropped the irrelevant constant terms. We can also write the above as

Heff = −J1
∑
〈xy〉

σ3
xσ

3
y + J2

∑
⟪xy⟫

σ3
xσ

3
y − h

∑
x

σ1
x , (4.32)

with J1 = 1
2aJ , J2 = J1/2 and h = J

2a , and where
∑
〈xy〉 signifies the sum over next-

negboring sites x and y, while the ⟪x, y⟫ signifies the sum over next-next-neighboring sites
(i.e. along diagonals of the square lattice) (see figure 1). This model is sometimes called the
transverse field J1 − J2 Ising model. The phase diagram of such models has been studied
in13 [30–33].

In particular we are interested in J1 = 2J2 case. Let us discuss the h → 0 limit. In
this case the ground state of the model is highly degenerate, as any state which has all
the spins along any row (or column) constant is a ground state of the system. This limit
corresponds precisely to a J → 0, which is the free tensor gauge field limit, that also has

13Note that, since the square lattice is bipartite, we can flip the spins on one sublattice and hence
effectively flip J1 → −J1. Hence the model with both couplings anti-ferromagnetic is equivalent to the J1

ferromagnetic and J2 anti-ferromagnetic.

– 23 –



J
H
E
P
0
5
(
2
0
2
3
)
0
1
7

Figure 2. A graphical depiction of two degenerate states in the J1 = 2J2 limit of the h = 0 J1−J2
Ising model.

a degeneracy even at finite gauge coupling. Some degeneracy is guaranteed by the fact
that the conserved charge qx = σ3

x gets flipped under the charge conjugation symmetry
qx → −qx. Since the ground states are labeled by some configuration of conserved charges
{qx}, then a state with {−qx} is also a ground state. Furthermore, since qx can only be
±1, we cannot have that qx and −qx are equal, and so the two states are distinct. This
can be viewed as a mixed anomaly between the symmetry generated by qx = σ3

x and the
charge conjugation generated by C =

∑
x σ

1
x.

How do we understand the huge degeneracy at the point J1 = 2J2? Recall that the
model arose from the expansion of (∆1∆2σ

3
x)2. The ground state needs to minimize this

term, which can be thought of as the energetically imposed exotic gauss law (4.21). But this
Gauss law allows a huge number of solutions, rendering the ground state very degenerate.
Changing the Gauss law by setting J1 6= 2J2 will lift a lot of degeneracy, but not all,
because of the mixed ’t Hooft anomaly between the local symmetry generated by σ3

x and
charge conjugation. Indeed if J1 > 2J2 the system goes into the striped phase, and when
J1 < 2J2 it goes into the anti-ferromagnetic Néel phase. Both of these break the charge
conjugation symmetry and hence are consistent with the ’t Hooft anomaly.

However once h 6= 0 then σ3
x is no longer conserved, and the reasoning of the above

paragraph is violated. A priori there is nothing that prevents the degenerate vacua from
lifting. Let us consider two such degenerate states |α〉 and |β〉 at h = 0, which are depicted
in figure 2. They differ only by the spins in one of the (i.e. second) columns. If we make
the lattice finite, then the leading contribution to the transition probability

〈
α
∣∣∣e−iHt∣∣∣β〉

from one to the other is (h/J1)N2 , where N2 is the number of lattice sites in the 2-direction
of the spatial lattice. Hence in the thermodynamic limit, the two states have no overlap
when h/J1 � 1 and we do not expect degeneracy to be lifted by small fields.14 If the two
degenerate states are even more different and where they differ by K columns, then the
splitting is even more suppressed, i.e. by (h/J1)N2K . On the other hand when h � J1
we expect a unique ground state polarised in the σ1

x = 1 direction. A minimal conjecture
14Note that our conclusion is in disagreement with some of the literature [31, 34].
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is then to assume that there is one phase transition and that in the low field phase we
have exponential number of degenerate ground states. The nature of the transition is not
clear (see [31, 33–35]). In [34] a transition at the value h/J1 ≈ 0.5, which translates to
J ≈

√
2 ≈ 1.41. On the other hand in, when e2 → 0 the model effectively reduces to

the ungauged XY-model studied in [17]. Unfortunately this work only discussed the XY
plaquette model with a chemical potential of the form

HXY−plaquette =
∑
x

(
U

2 (πx − n̄)2 −K cos(∆1∆2φx)
)
, (4.33)

where U,K are dimensionful constants and µ = Un̄ serves as a chemical potential. The
reference [17] studies a model with n̄ = 1/2 and finds the transition at U/K ≈ 2.4. For
our gauged model the chemical potential would not do anything, as a finite gauge charge is
projected out by the Gauss constraint (4.28). At any rate the gauged XY-plaquette model
is expected to have a similar transition at zero gauge coupling e2 = 0, but potentially
of the different nature than the e2 6= 0 transition. This happens in the gauged 1+1d
compact scalar, where e2 = 0 has a BKT transition, while for e2 6= 0 an Ising transition is
expected [13, 16, 36].

We are unaware of numerical studies of the XY-plaquette model with zero chemical
potential so we have no way of estimating the J for which the transition is to occur. The
phase diagram of our model (4.29) is shown in figure 3.

5 Conclusions

In this work we have discussed the construction of Villain Hamiltonians. The construction
allows many models to be written down keeping the correct global symmetry and anomaly
structures. Moreover, such models reduce to the Modified Villain Action models [4] and [5]
when the theory is placed on a finite time Euclidean lattice. The Villain Hamiltonian
models on the lattice can also be made manifestly self-dual, a feature lacking in both the
continuum as well as the Modified Villain Actions. Further, for models which are exactly
self-dual, the duality is manifestly a symmetry of the Hamiltonian, although it is embedded
into lattice translations in a nontrivial way.

Further, we have shown that coupling the compact scalar models in 1+1d and the
exotic fracton compact scalar model in 2+1d to the relevant gauge fields with a θ = π term
reduces to the quantum Ising model in a transverse field in 1 and 2 spatial dimensions
respectively when the gauge coupling is sent to infinity. This is especially interesting in
the case of the gauged XY-plaquette model, where the phase structure of the model could
be understood by studying the simpler corresponding Ising model.

The models discussed here can be used to construct Hamiltonian counterparts of mod-
els with exact electric magnetic self-duality, which may allow for nontrivial interacting fixed
points, like it was done on space-time lattices [4, 9], or to construct Hamiltonian versions of
the 3d U(1) gauge theories relevant for the search of Néel to VBS deconfined criticality [37–
40] which is a yet unsettled question. Villain Hamiltonians may provide a simpler testbeds
for the existence of deconfined criticality. On the other hand some bosonic compact scalar
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exponential degeneracy

unique ground state

Figure 3. A phase diagram of the model (4.29). The limit e2 →∞ is the J1−J2 Ising model limit,
which reportedly has a phase transition at h/J1 ≈ 0.5, which gives J ≈

√
2. The other extreme

should have an ungauged XY-plaquette model transition (4.33), which was studied in [17] but only
at finite chemical potential, where it has a transition for U/K ≈ 2.4. We conjecture that the nature
of the phase transition is the same, save for the limit e2 = 0.

models have fermionic duals [41, 42] in the continuum, and it is an interesting question
whether such duals can be constructed exactly on the lattice, perhaps shedding light into
the lattice construction of chiral gauge theories (see [43–46] for some recent works on this
problem).
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A Solutions to compact scalar models

Here we discuss the solutions of the model (2.2) and (4.2). We will start with the con-
ventional compact scalar model (2.2) and then discuss the fracton model of (4.2). Other
p-form models can also be solved along similar lines.
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A.1 Solution to the U(1) scalar in 1 spatial dimension

We have that the equations of motion coming from the Hamiltonian (2.2) are given by

φ̇x = i[H,φx] = πx
Ja

, (A.1)

π̇x = i[H,πx] = J

a

(
φx+1 − 2φx + φx−1 + 2π(nx − nx−1)

)
, (A.2)

˙̃φx = i[H, φ̃x] = 2πJ
a

(φx+1 − φx + 2πnx) , (A.3)

ṅx = i[H,nx] = 0 , (A.4)
˙̃nx = i[H, ñx] = 0. (A.5)

The first two equations can be combined to give

φ̈x = 1
a2 (φx+1 − 2φx + φx−1 + 2π(nx − nx−1)) . (A.6)

Now going into momentum space we have

φx =
∑
p

eixpap , nx =
∑
p

eixpmp . (A.7)

where p takes values p = 0, 2π
N , · · · ,

2π(N−1)
N . From the equations of motion we have that

ap obeys
äp + ω2

pap = 2π
a2 (1− e−ip)mp , (A.8)

with ωp = 2| sin p
2 |

a the constraint ap = a†−p and mp = m†−p. Note also that ω2
p = 1

a2 (1 −
eip)(1 − e−ip). Now note that because of the e.o.m for nx, mp is constant in time. So we
can solve the above equation easily. To do this let us define15

bp(t) =
√

2aNJωp

(
ap(t)−

1− e−ip

ω2
pa

2 2πmp

)
, p 6= 0 (A.9)

We have that the equation of motion in terms of bp(t) are simply

b̈p(t) + ω2
pbp(t) = 0 , (A.10)

with a Hermitean solution

bp(t) = eiωptB†p + e−iωptB−p , for p 6= 0 (A.11)

where Bp is a constant operator. For p = 0 we have from (A.8) that

a0 = Φ + 1
Ja

Πt . (A.12)

where Φ and Π are operators constant in time. We will see later that Π is the conjugate
momentum to Φ.

15The constant
√
Nωp in front is there for later convenience.
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Now note that

φx = Φ+ 1
Ja

Πt
N

+
∑
p 6=0

√
1

2NaJωp

(
B†pe

iωpt+ipx+Bpe
−iωpt−ipx

)
+
∑
p 6=0

eipx

1−eip 2πmp , (A.13)

πx = Π
N

+
∑
p 6=0

√
Jωp
2Nai

(
B†pe

iωpt+ipx−Bpe−iωpt−ipx
)
. (A.14)

We now want to impose canonical commutation relations [φx, πy] = iδxy. We can take Bp
to commute with mp because φx was taken to commute with nx. So

[φx, πy] = 1
N

[Φ,Π] + J
∑
p 6=0

√
ωp

2NaJ i
( 1
N

[Π, Bp]e−iωpt+ipx −
1
N

[Π, B†p]eiωpt−ipx
)

(A.15)

+
∑
p 6=0

√
1

2NaJωp

(
[Bp,Π]e−iωpt+ipx + [B†p,Π]eiωpt−ipx

)

+ 1
2Na

∑
p,p′ 6=0

√
ωp′

ωp
i

[
[Bp, Bp′ ]ei(ωp+ωp′)t+ipx+ip′y − [B†p, B

†
p′ ]e
−i(ωp+ωp′)t−ipx−ip′y

− [Bp, B†p′ ]e
i(ωp−ωp′ )t+ipx−ip′y + [B†p, Bp′ ]ei(ωp−ωp′ )t−ipx+ip′y

]
= iδxy ,

where we assumed that mp commutes with all Bp and Π. To satisfy the above we must
take [Bp, Bp′ ] = [Π, Bp] = 0 (as otherwise the expression would be time-dependent) and
[Bp, B†p′ ] = δp,p′ , [Φ,Π] = i, to reproduce the Kronecker delta. As promised, Π is a
conjugate momentum to Φ.

Now, note that

φx+1−φx+2πnx=
∑
p

(
(eip−1)ap+2πmp

)
eixp=2πm0+

∑
p 6=0

√
1

2NJaωp
(eip−1)bp(t)eixp

=2π Π̃
N

+
∑
p

√
1

2NJaωp

(
(eip−1)B†pe−iωpt+ipx+(e−ip−1)Bpeiωpt−ipx

)
, (A.16)

where in the last step we identified m0 = 1
N

∑
x nx = Π̃

N , where Π̃ is a “spatial winding
number”.16 As we will see, this will also play the role of the momentum operator conjugate
to Φ̃ — the zeromode of φ̃x operator, so that the Hamiltonian becomes

H = 1
2Ja

∑
x

π2
x + J

2a
∑
x

(φx+1 − φx + 2πnx)2

= J(2π)2

2a N

(
Π̃
N

)2

+ N

2Ja

(Π
N

)2
+ 1

2
∑
p 6=0

ωp
(
BpB

†
p +B†pBp

)
. (A.17)

Notice that the equations of motion imply

π̇x = 1
2π ( ˙̃φx − ˙̃φx−1)⇒ πx = 1

2π (φ̃x − φ̃x−1 + K̂x) . (A.18)

16This idenification comes from defining Π̃ = 1
2π
∑

x
(φx+1 − φx + 2πnx), which is the lattice variant of

Π̃ = 1
2π

∫
dx∂xφ.

– 28 –



J
H
E
P
0
5
(
2
0
2
3
)
0
1
7

where K̂ is a constant operator. Now imposing the constraint (2.7) we must have K̂x =
2πñx where ñx has an integer spectrum. Let us now in analogy to what we done before write

φ̃x =
∑
p

ãpe
ixp , (A.19)

ñx =
∑
p

m̃pe
ixp . (A.20)

Then

φ̃x − φ̃x−1 + 2πñx = 2πm̃0 +
∑
p 6=0

(1− e−ip)
(
ãp + 2π m̃p

1− e−ip
)

︸ ︷︷ ︸
= 2π

√
J√

2Naωp
b̃p

eixp

= 2πm0 + 2π
√
J
∑
p 6=0

1− e−ip√
2Naωp

b̃pe
ixp . (A.21)

Further, e.o.m. also imply

πx = aJφ̇x = Π
N

+ J
∑
p 6=0

ḃp√
2NJaωp

eixp . (A.22)

On the other hand we have by the constraint (2.7) that

πx = m̃0 +
√
J
∑
p 6=0

1− e−ip√
2Naωp

b̃pe
ixp . (A.23)

m̃0 = Π
N

b̃p = 1
1− e−ip ḃp , p 6= 0 . (A.24)

Note that
∑
x ñx = Nm0 = Π is the dual-winding charge, which is, of course, the

momentum.
Differentiating b̃p relation w.r.t. time twice, we have that

¨̃bp = −ω2
p

1
1− e−ip ḃp = −ω2

p b̃p , (A.25)

where we used the e.o.m.-s (A.10) for bp. Hence b̃p also satisfies the harmonic oscillator
equations and can be written as

b̃p = B̃pe
−iωpt + B̃†−pe

iωpt . (A.26)

Now we have a relation
B̃p = −iωp

1− eipBp . (A.27)

It is easy to check that
[B̃p, B̃†p′ ] = δp,p′ . (A.28)

Finally, we want to show that the winding number Π̃ =
∑
x nx is the dual momentum. To

do this we must show that ã0 = Φ̃ + (2π)2

JN Π̃t, where Φ̃ is the canonical conjugate to Π̃.
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Firstly, it is obvious that ˙̃a0 = (2π)2

JN Π, from the (A.3), which is checked by summing that
equation w.r.t. x. Further, we compute [ã0, Π̃] commutator

[ã0, Π̃] = 1
N

∑
x,y

[φ̃x, ny]︸ ︷︷ ︸
iδx,y

= i , (A.29)

hence a0 = Φ̃ + (2π)2

JN Π̃.

A.2 Correlators

Let us now compute the equal-time correlator
〈
eiφxe−iφy

〉
of the ground state. To do this

we will normal order the operators eiφx by putting all the creation operators B†p to the left
of Bp anihilation operators. Let us write φx as

φx = φ+
x + φ−x + φ0

x , (A.30)

where

φ0
x = Φ + Πt

JN
+
∑
p 6=0

eipx

1− eip 2πmp , (A.31)

φ+
x =

∑
p

1√
2NaJωp

B†pe
iωpt+ipx , (A.32)

φ−x =
∑
p

1√
2NaJωp

Bpe
−iωpt−ipx . (A.33)

Now let us write ∑
p 6=0

eipx

1− eipmp = 1
N

∑
y

∑
p 6=0

eip(x−y)

1− eip ny . (A.34)

Since we have that ∑
p 6=0

eipx

1− eip = lim
ε→0

∑
p 6=0

eipx

1− eip−ε , (A.35)

where the limit ε→ 0 is approached from above, we have that

1
1− eip−ε =

∞∑
s=0

eisp−sε . (A.36)

Then, since,
∑
p 6=0 e

ip(x+s) =
∑
p e

ip(x+s) − 1 = N
∑
q∈Z δx+s,qN − 1, we have that

∑
p 6=0

eipx

1− eip−ε =
∞∑
s=0

N ∞∑
q=−∞

δx+s,qN − 1

 e−sε
= N

∑
q≥ x

N

e−(Nq−x)ε − 1
1− e−ε = Ne(x̃−N(1−δx̃,0))

1− e−Nε − 1
1− e−ε , (A.37)

where x̃ is the remainder of the division of x by N . So∑
p 6=0

eipx

1− eip = x̃− N + 1
2 , (A.38)
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and hence ∑
p 6=0

eipx

1− eipmp = 1
N

∑
z

˜(x− z)nz −
(1

2 + 1
2N

)
Π̃ . (A.39)

where we wrote Π̃ =
∑
x nx.

eiφ
0
x−iφ0

y = e
i
N

(x−y)Π̃ (A.40)

Now we look at the expectation value〈
: eiφx :: e−iφy :

〉
=
〈
eiφ
−
x e−iφ

+
y ei2π

1
N

(x−y)Π̃
〉

= e−[φ−x ,φ+
y ] = e

− 1
2JNa

∑
p 6=0

eip(x−y)
ωp , (A.41)

where we used the fact that for the ground state Π̃ = 0.

A.3 Solution to the 2+1d XY-plaquette compact scalar fracton model

Here we discuss the Hamiltonian (4.2). The equations of motion are given by

φ̇x = i[H,φx] = 1
aJ
πx , (A.42)

π̇x = i[H,πx] = −J
a

(
∆2

1∆2
2φx−1̂−2̂ + 2π∆1∆2nx−1̂−2̂

)
, (A.43)

ϕ̇x = i[H,ϕx] = −2πJ
a

(∆1∆2φx + 2πnx) , (A.44)

ṅx = 0. (A.45)

We proceed similarly to the case of compact scalar in 2d. We write

φx =
∑
p

ape
ixp , (A.46)

nx =
∑
p

qpe
ixp , (A.47)

and, by combining the e.o.m. for φ̇x and π̇x we get

φ̈x + 1
a2 (∆2

1∆2
2φx−1̂−2̂ + 2π∆1∆2nx−1̂−2̂) = 0 (A.48)

from where it follows that

äp + ω2
pap = −2πqp

a2 (1− e−ip1)(1− e−ip2) . (A.49)

where ωp = 4
a | sin

p1
2 || sin

p2
2 |. When neither p1 nor p2 are zero we can define

bp = cp

(
ap + 2π

(1− eip1)(1− eip2)qp
)
, (A.50)

where cp are some constants and bp now satisfies the equation

b̈p + ω2
pbp = 0 , (A.51)

with the general solution
bp = B†pe

iωpt +B−pe
−iωpt . (A.52)
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On the other hand, when either p1 or p2 is zero, we have that the e.o.m. for φx is either
purely a function of x1 or purely a function of x2. We therefore get

φx = Φ0 +Φ1(x1)+Φ2(x2)+−Π0/(N1N2)+Π1(x1)/N2 +Π2(x2)/N1
aJ

t (A.53)

+
∑

p1 6=0 ,p2 6=0

1
cp

(
B†pe

iωpt+ix·p+Bpe
−iωpt−ix·p

)
−

∑
p1 6=0 ,p2 6=0

2πeix·p

(1−eip1)(1−ep2)qp

πx = −Π0
N1N2

+ Π1(x1)
N2

+ Π2(x2)
N1

+
∑

p1 6=0 ,p2 6=0

Jaωpi

cp

(
B†pe

iωpt+ix·p−Bpe−iωpt−ix·p
)
. (A.54)

Note that we have captured the zero modes by three pieces: a piece only dependent on
x1, only dependent on x2 and a constant piece. This is redundant, as the constant piece
is already captured by the pieces which depend on x1 and x2, but it will be convenient.
Imposing the commutation relation [φx, πy] = iδx,y is equivalent to demanding that

[Φ1(x1),Π1(y1)] = iδx1,y1 , [Φ2(x2),Π2(y2)] = iδx2,y2 , (A.55)

[Φ0,Π0] = i , [Bp, B†p′ ] =
c2
p

2N1N1aJωp
δp,p′ , (A.56)

with all other commutator combinations being zero. If we set cp =
√

2N1N1Jaωp the last
commutator simplifies to [Bp, B†p′ ] = δp,p′ . As we noted before, the decomposition into
Φ0,Φ1(x1) and Φ2(x2) is ambiguous, because we could shift these operators as follows

Φ0 → Φ0 + δ ,

Φ1(x1)→ Φ1(x1) + δ1 ,

Φ2(x1)→ Φ2(x1) + δ2 ,

such that δ + δ1 + δ2 = 0 , (A.57)

where δ, δ1 and δ2 are constants. The above invariance enforces a constraint∑
x1

Π1(x1) =
∑
x2

Π2(x2) = Π0 . (A.58)

Further we also can shift
Π0 → Π0 +N1N2Λ ,

Φ1(x1)→ Φ1(x1) +N2Λ1 ,

Φ2(x1)→ Φ2(x1) +N1Λ2 ,

such that −Λ + Λ1 + Λ2 = 0 . (A.59)

which enforces a constraint

N2
∑
x1

Φ1(x1) = N1
∑
x2

Φ2(x2) = −N1N2Φ0. (A.60)

Now let us write

∆1∆2φx =
∑

p1 6=0 ,p2 6=0

1√
2N1N2Jaωp

×
[
(eip1 − 1)(eip2 − 1)Bpeip·x+iωpt + (e−ip1 − 1)(e−ip2 − 1)B†pe−ip·x−iωpt

]
− 2π

∑
p1 6=0 ,p2 6=0

eix·pqp . (A.61)
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Now we write ∑
p1 6=0 ,p2 6=0

qpe
ix·p = nx −

1
N1

∑
x1

nx −
1
N2

∑
x2

nx + 1
N1N2

∑
x

nx , (A.62)

so the Hamiltonian is given by

H = 1
2JaN2

1N
2
2

∑
x

(
Π0 −N1Π1(x1)−N2Π2(x2)

)2

+ J

2aN2
1N

2
2

∑
x

(
Π̃0 −N1Π̃1(x1)−N2Π̃2(x2)

)2

+
∑
p

ωp

(
B†pBp + 1

2

)
. (A.63)

We can simultaneously diagonalize Π0,Π1,2(x1,2) and their tilde counter-parts, along with
B†pBp, to obtain the spectrum.

The model also has a tensor symmetry. The symmetry current is given by

J0,x = πx , J12 = −J
a

(
∆1∆2φx−1̂−2̂ + 2πnx−1̂−2̂

)
. (A.64)

We have that
∂0J

0
x −∆1∆2J

12
x = 0 , (A.65)

by the equations of motion, which means that charges

Q1(x1) =
∑
x2

J0,x , (A.66)

Q2(x2) =
∑
x1

J0,x (A.67)

are conserved. Indeed since we have
∑
xi J0,x =

∑
xi πx = Πi(xi) as can be easily checked

by plugging πx from equation (A.54) and using the fact that
∑
xi Πi(xi) = Π0.

B Linking number

Consider an Euclidean manifold MD of dimension D, two submanifold of MD, ΣD−p and
Σ′p+1 of dimensions D − p and p+ 1, respectively. We will take that ΣD−p and Σ′p+1 have
a boundary which are, respectively, D − p − 1 and p dimensional. We want to define the
linking number of the boundaries ∂ΣD−p and ∂Σ′p+1.

We sketch the situation in figure 4. Let Xµ
Σ(σ1, σ2, . . . , σD−p) be the local coordi-

nates in MD describing Σ, and σi, i = 1, . . . , D − p are parameters parametrizing Σ (i.e.
world-volume coordinates). Similarly we have Xµ

Σ′(σ
′1, . . . , σ

′p+1) describing Σ′. Now let
us choose world-volume coordinates such that σi = 0 is the point P on Σ where ∂Σ′

pierces Σ, and σ′i = 0 is the point Q on Σ′ where the boundary of ∂Σ pierces Σ′. Fur-
ther, we will take that the line where Σ and Σ′ intersect is described by Xµ

Σ(σ1, 0, . . . , 0)
and Xµ

Σ(σ′1, 0, . . . , 0), where Xµ
Σ(0, . . . , 0) and Xµ

Σ′(1, 0, . . . , 0) describe the point P and
Xµ

Σ′(0, . . . , 0) and Xµ
Σ(1, 0, . . . , 0) describe the point Q.
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Figure 4. Sketch of the intersection between the two submanifolds of MD, ΣD−p and Σ′p+1.

Now we define the linking number of the boundaries ∂Σ and ∂Σ′ as the number of times
that ∂Σ′ intersects Σ, where we take the sign of the contribution to be determined as follows.
If ∂Σ′ intersects Σ in such a way that the product of their tangent spaces (TΣ)P ×(T∂Σ′)P
at point P , has the same orientation as the tangent space of (TM)P , then we will take
point P to contribute with a positive sign to the linking number. So we define

L(∂Σ, ∂Σ′) = I(Σ, ∂Σ′) (B.1)

where I(Σ, ∂Σ′) is the net intersection number between ∂Σ′ and Σ in the sense described
above.

Let us now show that

L(∂Σ, ∂Σ′) = (−1)(D−p−1)(p−1)L(∂Σ′, ∂Σ) . (B.2)

To do this we consider the tangent space TΣ
∣∣∣
P
. It is given by the bases(

∂

∂σ1 ,
∂

∂σ2 , . . .
∂

∂σD−p

)
. (B.3)

On the other hand the tangent space T∂Σ′
∣∣∣
P
is given by the basis(

∂

∂σ′2
,
∂

∂σ′3
, . . .

∂

∂σ′p+1

)
. (B.4)

The (TΣ)P × (T∂Σ′)P is given by the basis(
∂

∂σ1 ,
∂

∂σ2 , . . .
∂

∂σD−p
,
∂

∂σ′2
,
∂

∂σ′3
, . . .

∂

∂σ′p+1

)
. (B.5)

On the other hand we have that the tangent space of (TΣ′)Q × (T∂Σ)Q is given by(
∂

∂σ′1
,
∂

∂σ′2
, . . .

∂

∂σ′p+1 ,
∂

∂σ2 ,
∂

∂σ3 , . . .
∂

∂σD−p

)
. (B.6)

In fact both of these tangent spaces are well defined on the curve joining the two points P
and Q. On this curve we have that the vector ∂

∂σ1 is equal to − ∂
∂σ′1

, so we can write the
above as (

− ∂

∂σ1 ,
∂

∂σ′2
, . . .

∂

∂σ′p+1 ,
∂

∂σ2 ,
∂

∂σ3 , . . .
∂

∂σD−p

)
. (B.7)

Now the basis above on the curve connecting P and Q differs from (B.5) by a sign17

(−1)Dp+1.
17We need to push all primed vectors to the right in (B.7), which gives (−1)p(D−p−1) = (−1)Dp. In

addition, since the first vector of (B.5) and (B.7) differ by a sign, the net contribution is (−1)Dp+1.
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