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ABSTRACT

The reconstruction of electrical excitation patterns through the unobserved depth of the tissue is essential to realizing the potential of com-
putational models in cardiac medicine. We have utilized experimental optical-mapping recordings of cardiac electrical excitation on the
epicardial and endocardial surfaces of a canine ventricle as observations directing a local ensemble transform Kalman filter data assimilation
scheme. We demonstrate that the inclusion of explicit information about the stimulation protocol can marginally improve the confidence
of the ensemble reconstruction and the reliability of the assimilation over time. Likewise, we consider the efficacy of stochastic modeling
additions to the assimilation scheme in the context of experimentally derived observation sets. Approximation error is addressed at both the
observation and modeling stages through the uncertainty of observations and the specification of the model used in the assimilation ensemble.
We find that perturbative modifications to the observations have marginal to deleterious effects on the accuracy and robustness of the state
reconstruction. Furthermore, we find that incorporating additional information from the observations into the model itself (in the case of
stimulus and stochastic currents) has a marginal improvement on the reconstruction accuracy over a fully autonomous model, while compli-
cating the model itself and thus introducing potential for new types of model errors. That the inclusion of explicit modeling information has
negligible to negative effects on the reconstruction implies the need for new avenues for optimization of data assimilation schemes applied to
cardiac electrical excitation.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0156314
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Typical cardiac electrophysiology experiments record excitation
data with optical cameras that are tuned to measure fluores-
cence of voltage-sensitive dyes and are only able to observe
excitation patterns on the surfaces of tissues. We know from
theoretical and computational evidence that the details of exci-
tation patterns through the depth of tissues are important for
prediction and control, while those observable on the surface
are a very small portion of the overall excitation structure.
These patterns may be pro-arrhythmic due to structures that
are unobservable near the surfaces of the tissue, which can pin
organizing features of the dynamics and thus simplify the exci-
tation patterns. As the interiors of the tissue are inaccessible
using traditional experimental means, we turn to reconstructing

the interior using computational methods—specifically, data
assimilation.

. INTRODUCTION

Experiments in cardiac excitation dynamics provide only a lim-
ited window into a very complex system. Micro-electrode recordings
trade spatial resolution for temporal resolution, electrocardiograms
eschew cellular detail for organ-level holism, and optical-mapping
experiments focus on the electrical excitations near the exposed
surfaces of a tissue whose internal dynamics may be much more
complex. Data assimilation (DA) promises to address the difficul-
ties of the latter; with a reliable dynamical model and sufficiently
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precise observations of the experimental state, the techniques of data
assimilation aim to reconstruct the unobserved interior dynamics
of the tissue, subject to the observations at the surface(s). Impor-
tantly, the techniques of data assimilation are robust with respect to
uncertainty as the uncertainty of the truth state and of the observa-
tion values, as well as of the specificity of model predictions, are all
ever-present when working with real experimental data.

Data assimilation has co-developed with the weather and cli-
mate forecasting communities for whom the tools are often special-
ized and well-tuned. Ensemble methods, in particular, are relative
newcomers to the application’ but are favored due to their sim-
pler relationship to nonlinear dynamical models. Numerous studies
have developed new data assimilation methods and compared them
to existing approaches;’~ developed innovations for improving the
performance®’ and robustness of results from data assimilation;'
defined fair scoring rules for the rigorous definition of “improving”
data assimilation results;''~'* and even considered such subtleties as
the connection between the observations, assimilation filter, and the
model."”~"

Significant efforts in the assimilation of cardiac excitation pat-
terns in three-dimensional tissue have focused on the foundational
aspects of the problem—data distributions, uncertainty quantifica-
tion, model error, and robustness with respect to noise'’~*'—in the
context of synthetic observations generated by a model, rather than
from an experiment. In previous work,”” we have found a sensitivity
to some parameter uncertainties in the accuracy of local ensem-
ble transform Kalman filter (LETKF) reconstructions, as well as
improved robustness and accuracy with stochastic formulations of
the underlying model. This work considers the efficacy of our recon-
struction schemes in the case of experimental data typical of the
field: periodic pacing of a tissue, with excitations captured by optical
mapping on the epicardial and endocardial surfaces of the tissue.

Throughout this paper, we will be using a dataset previously
published in experimental studies.”’~** The dataset corresponds to
activation patterns subject to a localized, periodic, current stimu-
lation in canine ventricular tissues. We will investigate the use of
both autonomous and non-autonomous models for the reconstruc-
tion of these experimental observations, and the effect of stochastic
model interventions on the accuracy of the reconstructions. Finally,
we investigate the effect of additional synthetic observations gener-
ated in the interior of the tissue on the robustness of the assimilation
and accuracy of the reconstruction of experimental dynamics.

Il. METHODS

In this section, we outline the mathematical details of the
dynamical model, the determination of reasonable model parame-
ters, the generation of observations from the experimental data, and,
finally, the local ensemble transform Kalman filter (LETKF) used
in the assimilation of the observations for the reconstruction of the
experimental dynamics.

A. Model

We use the Fenton-Karma three-variable model”” for the
electrophysiology, with anisotropic diffusion controlled by a fiber
orientation that rotates within the x, y-plane with depth, denoted by
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angle with respect to the x-axis, 6 (z). The evolution equations are
atu -V (D(X)Vu) = Istim — Iﬁ - Iso - Isi» (1)
3v =0, — w1 —v)/7, () — O — u)v/tf, (2)

aw = O, —w(l —w)/t, — O —u)w/t,} (3)

in conjunction with the no-flux boundary conditions, fi - D(x)V
u = 0. The currents and explicit relaxation scale for v are given by

Ii(u,v) = —vO(u — u)(1 — w)(u — u.) /74, (4)
Lo(w) =u® W, —u)/t, + O —u)/1, (5)
Li(u, w) = —w(1 + tanh(k(u — u)))/(21,), (6)
T, () = 7,0 (u — u,) + 7,0 (u, — u) 7)

save for the explicit stimulation current Iy, (f,x), which is zero
identically for autonomous dynamics and is specified in particular
assimilation experiments (see Sec. III A 3). The diffusive spatial cou-
pling is implemented using a finite-difference scheme that follows
in the original model description.” The diffusive coupling of the
tissue is subject to fiber orientation that rotates through the tissue
depth S, 6(2) = 6y + 86(—1/2 + z/S), where 0 < z < S, 6, and 80
are specified throughout this paper, with D; = 0.001 cm?/ms and
D; = 0.0002 cm?/ms, for an (diffusion) anisotropy ratio Dy/D,
= 5, which is relatively small compared to some ratios measured in
the cardiac tissue.”**

We use the model parameters defined in Ref. 26 for this model
and experimental dataset. These parameters are quite different from
other parameter sets used with this model for physically relevant
dynamics; cf. Ref. 27. However, for the present investigation, we
have opted to consider the smallest model errors to better determine
the effect of changing the model and observation properties.

In all experiments, we use a Rush-Larson time-stepping
scheme for the gating variables v and w combined with a forward-
Euler method for the transmembrane potential u.”” When we incor-
porate stochastic effects (cf. Sec. IIT A 4), we adapt the forward-Euler
method for the transmembrane potential u to an Euler-Maruyama
method. In this work, we do not incorporate stochastic terms in
the dynamics of the gating variables, as previous work demon-
strated that similar ensemble inflation effectiveness can be achieved
with only stochastic currents for this model,”” which makes the
implementation simpler and more performant.

B. Observation extraction

The experimental data comprises optical recordings of fluores-
cence (cf., Refs. 23 and 31 for details of the original preparation) cor-
responding to transmembrane potential, which have been smoothed
and denoised. The observations (y°) are a vector of tuples (y?) con-
taining a tag designating the observed field variable, coordinates in
the domain ([x;, ;, z:]), the observed field variable at these coordi-
nates [e.g., u; = u(x;, > z;)], and the uncertainty of the observation
value (n;) for each observation. The observed field values are also
normalized such that 0 < u; < 1. As the observations only cover the
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FIG. 1. Example of the experimental data used for the reconstruction experi-
ments. (a) Epicardial snapshot and (b) endocardial snapshot at time t = 5734 ms,
with (c) time traces of the recording at positions labeled by the + (epicardial) and
X (endocardial) markers. The thin black curve in (a) and (b) designates the bound-
ary of the opposing surface recording, and the thick black curve designates the
boundary of their mutual intersection. The inset dashed square has side-length
3 cm, aligned to the horizontal and vertical axes and shows the region selected to
extract observations for assimilation.

transmembrane potential u, we may use y{ and u; interchangeably to
denote the values of the observations. The recordings cover response
excitations for canine ventricle tissues subject to a periodic stimu-
lus applied from a single position, across a large range of stimulus
periods or basic cycle lengths (BCLs).

For the purposes of this study, we have focused on a dataset
with stimulation period of 118 £ 2ms, as the patterns generated
with this short stimulation period are the most irregular, spatially
and temporally, and thus present the most challenging reconstruc-
tion task. An example of the recordings from this dataset is shown
in Fig. 1, detailing (a) the epicardial and (b) the endocardial sur-
face recordings, along with (c) temporal traces of the recording at
the center-points of the tissue surfaces. The figure likewise shows
an inset 3 cm square used for the generation of the observation sets
for the assimilation experiments, as well as the boundaries for the
epicardial and endocardial surfaces. The recording features a very
fast wavefront propagating from figure-upper-left to figure-lower-
right, nearly simultaneously on both surfaces [c.f. Fig. 1(c)] from a
stimulus current applied to the base of the endocardium.”

Over time, these data display the alternans typical of cardiac
tissue excitation paced faster than the normal rhythm, namely, varia-
tion in the duration and amplitude of the action potential. We gener-
ate observations from the dataset by constructing a cubic interpolant
over space with linear interpolation over time, for both the epicar-
dial and endocardial datasets, and sampling into this interpolant for
pre-specified coordinates corresponding to the inset domain shown
as dashed squares in Figs. 1(a) and 1(b). In the case of synthesized
observations generated for the interior of the domain (cf. Sec. 111
B 1), we linearly interpolate through the depth between the val-
ues of the observations at the projected positions on the surface to
determine the value of the synthesized observation in the interior.
This ensures that we are propagating information from the surfaces
into the mid-depth.

ARTICLE pubs.aip.org/aip/cha

Eachyy is likewise assigned an uncertainty n;, which we identify
as ) = 0.05 or 5% of the action potential amplitude range by default.
The value of n = 0.05 was estimated from the full-width at half-
maximum of the distribution of u°(f) — u°(t — 7) for the dataset,
with 7 the assimilation interval. See Fig. S2 for a detailed motivation
of this computation. In the case of synthetic observations interpo-
lated into the mid-depth of the tissue (cf. Sec. III B 1), we assign
a larger uncertainty, n; =7 = 0.5, to account for the perturbative
effect of these synthetic observations on the assimilated state since
the diagonal elements of the observation covariance are related to
the inverse, R; = n; Lie., they contain no new information from
the experimental data other than a highly uncertain suggestion that
the mid-plane is excited or unexcited at a particular place and time.
In the case of encoding uncertainty about the precise form of the
wavefronts (cf. Sec. III B 2), we perform a similar modification of
the observation uncertainty using a nonlinear function of the obser-
vation field value 5 (y7), which is bounded by [n,7] and peaks at
7 =0.5fory? = 0.5. B

C. LETKF

The ensemble transform Kalman filter (ETKF) finds best-fit
linear combinations of the prior states to match a set of observations
in a quadratic sense. The LETKF* transforms an ensemble repre-
senting the prior covariance and mean in accordance with the local
observations of the state to affect an ensemble representing the pos-
terior covariance and mean. We consider the classical Kalman filter
optimization functional™

Jx) =x-%) ) 'x-%)
+(y° —Hx) 'Ry — Hx)), ®)

where the prior ensemble of size M is the sum of the ensem-
ble deviation matrix (X?) and mean (X), x* = X" +%°[1,...]",
similarly for the decomposition of the posterior ensemble, x°.
The covariance of the prior ensemble is described by the matrix
PP = (M —1)"'X?(X") . The observations of the physical state are
collected in y° € R?, while the observation operator H : RY — R°
transforms from the state space to the observation space, and matrix
R € R9*© describes the covariance of the observations. The observa-
tion operator maps the state vector to the observations, with additive
noise per observation with variance 7, according to the uncertainty.
The minimizing solution to (8) is denoted by the analysis ensemble,
x’, which best approximates the truth state as observed by the data
y° and constituted from the background ensemble x°.

The ETKF applies the analysis update in the span of the
background ensemble states. The analysis ensemble covariance

- -1 -
is expressed as P* = [(M — 1)I/p + (Yb)TR“(Yb)] , where P €
RM*M and the analysis ensemble mean X* = x° + X"W*. The scalar
factor p > 1 is the (uniform, constant) multiplicative covari-
ance inflation factor. The mean weights are determined by
x4 = f-’“(Yb)TRfl(yo —?b). The weights of the analysis ensem-
ble mean deviations are similarly expressed in the basis of the
background mean deviations, W* = [(M — 1)?“]1/2 and x* =%
+ X"(W* + W?). This deviates from the error subspace transform
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Kalman filter (ESTKF),” which performs the transformation in the
(M — 1)-dimensional subspace corresponding to the span of X.

The LETKF extends this analysis update in the space of the
background ensemble locally—in the sense of observation influ-
ence and covariance. The inclusion of observation and covariance
localization applies the preceding analysis to each element of the
state vector, where the inclusion of observations for a particular
state vector element is determined by the localization procedure.
In this work, we use an isotropic localization weighting controlled
by multiplying the background covariance matrix P’ by a decaying
fifth-order function, which goes to zero at a distance of 2,/10/3 ,,
where we have retained o, = 6 (21.9 spatial units, or & 0.33 cm) for
consistency with our earlier work. We refer the reader to Refs. 20,
22, and 32 for further mathematical details of the implementation of
the localization procedure.

Finally, in lieu of an optimized multiplicative and additive
inflation scheme, we used multiplicative inflation only. The LETKF
utilizes multiplicative inflation of the analysis ensemble deviations
(X9 = x* — X") with a fixed value of p = 1.05. We did not utilize
additive inflation in this work, despite previous results that showed
it to be effective’ in the expectation that our stochastic approach
would similarly affect the ensemble while requiring substantially less
disk space.

Ill. RESULTS

We report results for several data-assimilation experiments. In
all experiments, we use an observation dataset derived from optical-
mapping recordings of periodic stimulation of a canine ventricle and
a fixed model integration time (equivalently, assimilation interval)
of T, = 2ms based on the data recording frequency. The assimila-
tion outputs are the background (x*) and analysis ensembles (x?),
their respective means X* = M! Z?,Ll X!, where m=1,...,M
indexes the ensemble and their ensemble spreads,

M 1/2
SPRD* = (M — 1)~ (Z‘ I, — x*|2) ; ©)
m=1

which is the variance of the ensemble state vectors. We have
used here the vector-of-vectors notation for the ensembles,
x* = [x},...,X},], but we may equivalently make the spatial (ijk),
variable (I), and ensemble (m) indices explicit in a five-index array,
x* = [x;;klm], where the indices (i, j, k, I) are linearized for the vector
form.

We report the root-mean-square-error (RMSE) of the recon-
struction by the point-wise error of the reconstructed state by
comparing the ensemble mean to the observations y°(f),

1/2

Nobs
RMSE" = (N(:bls Z |Y;) - i:f(i) |2) > (10)
i=1

where y7(f) is the ith observation and the index ¢(7) maps the cor-
responding observation index i to the corresponding element of the
state vector. Thus, the RMSE™ summation is restricted in our exper-
iments to the surfaces of the domain. Depth information is available
from SPRD*; by reducing over indices of the state vector corre-
sponding to the length and width, we find a measure of the spread
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through the depth of the domain for each state variable,

ny My
SPRD}; = | (mem) ' Y Y (SPRD},)’, (11)

i=1 j=1

where we have implicitly reshaped SPRD* from a vector to a four-
dimensional array with explicit spatial (i, j, k) and variable (/) indices.
In the experiments, this scalar field is computed for the background
ensemble x* and u field elements of the SPRD® over time and
reported as SPRDZ (t, 2).

The definition of (10) restricts its evaluation to the subset of the
domain where there are observations, which tells us nothing about
the consistency of the interior reconstructions. Canonical report-
ing of reconstruction consistency for unknown states is handled by
proper scoring rules, like the continuous ranked probability score
(CRPS) of the ensemble, which can be formulated solely in terms of
the ensemble states without (necessary) recourse to observations or
a “truth” state.” We refer to the kernel representation of the adjusted
CRPS,”

CRPS*(x",y) = i I, =yl i b, —xl )
Y=Ly ~ MM -1y’

with y = y° or y = x* as CRPS’ or CRPS", respectively, which has
desirable properties for exchangeable ensembles with i.i.d. members
irrespective of ensemble size M. In the above, the norm (|| - - - ||) cor-
responds to the 1-norm over the indices of the vector y. When y
references the observations y°, then the summation is over the obser-
vations (and thus surface-restricted); when y references the analysis
ensemble mean X’, the sum measures the consistency of the entire
background ensemble with respect to the best approximation of the
observations according to the LETKF, x?, over the entire state. We
encourage the reader to peruse the supplementary materials for a
closer look at the representative dynamics of the reconstruction over
time.

A. Influence of model variations on reconstruction
accuracy

We have run several experiments for the reconstruction of
cardiac excitation patterns. In the simplest case, we compute the
baseline accuracy of the reconstruction procedure by incorporat-
ing information about the stimulus pattern in the observations into
the model dynamics, without any assimilation procedure. Addi-
tionally, we consider a strong assimilation process without this
stimulus information to assess the importance of modeling the
non-autonomous forcing inherent to the observation data for the
reconstruction accuracy. Finally, we incorporate the stimulus forc-
ing into the model dynamics in concert with a strong assimilation
procedure; this approach maximizes the information supplied to the
assimilation and provides a clear measure of the importance of non-
autonomous model information to the reconstruction reliability.

1. Free-run

To begin, we ask to what degree the assimilation procedure
may be responsible for the reconstruction of the state compared with
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the averaging procedure of the ensemble and the synchronization of
the ensemble states with the stimulus cadence. We solely assess the
uncontrolled dynamics of the ensemble members with the stimulus
forcing (as, in the absence of stimulus forcing, the ensemble member
states all return to quiescence) for the reconstruction problem. To
this end, we report the reconstruction results with the assimilation
update excised- —equivalently, the observations are not permitted
to affect any of the state variables—where the model is stimulated
periodically to match the stimulus observed in the observations.

In the free-run setting, we perform no assimilation by explicitly
filtering all observations from the analysis computation, so that the
LETKEF reduces to a scaling-permutation operator as the ensemble
index is not guaranteed to be preserved, and X* = x". The free-
run experiment serves as an effective method of distinguishing the
improvement due to the LETKF and the stimulus model in the
reconstruction over long assimilation times.

Additionally, to avoid the trivial solution, we include a stimulus
current forcing in the dynamical model for the free-run experiment.
Thus, in this setting, we are testing the accuracy of reproducing
the observations with only the model and stimulus information,
without recourse to the assimilation method. We constructed an
explicit stimulus current for the ensemble model using the obser-
vation data. We determined the period T, temporal offset #,, and
centroid position x, for the stimulus current assuming a model of
the form,

Luim (6,%) = I TT(1) e (G20 +0—50%) (13)

which affects the dynamics of u(t, x) by entering the evolution equa-
tions in addition to the autonomous currents I,, I, and I; present in
the dynamical model. The stimulus current is temporally modulated
by the “top-hat” function IT(f), which turns the stimulus current
“on” for a short interval t,, (IT(f) = 1) and otherwise leaves it “off,”
Liim =0 (H(t) = 0)

The experiment that produced the dataset used in this study
uses a periodic biphasic stimulation, applied outside of the assimi-
lated domain at the base of the endocardium. The stimulus current
model, Eq. (13), is monophasic and independent of depth, which is
not the same as the experimental stimulus current. Rather, the our
stimulus current model approximates the effect of the experimental
stimulus on the observations within the assimilated domain; i.e., it is
a data-driven model, and only approximates the observed effects. As
we only observe the effect of the experimental current some distance
from its direct point of application, we effectively filter the experi-
mental stimulus current through the tissue observations to construct
our stimulus current model. Throughout, we set Iy = 0.1 ms™!, with
the duration of the stimulus set to 7,, = 10 ms, and set the spatial
scale of the stimulus current to (k/h,)> = 5 x 107* to match that
observed in the observation data. The period between successive
stimuli is 118 ms, likewise matching the observation data. Tests were
performed to assess the impact of the stimulus current parameters
on the state, which were found to tall into two classes: (a) sub-critical
(non-excitatory) and (b) super-critical (excitatory) stimuli, which
showed no meaningful variation for physically realistic values within
each class. This critical excitation phenomenon is well-understood
in the one-dimensional case.”*~**
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FIG. 2. Free-run experiment results, depicting the (a) CRPS?(t) (line) and
CRPS(t) (band), (b) RMSE(t) (line) plus and minus one standard deviation
(band), and (c) SPRD’(t, z) (color) for the reconstruction using the Barone et al.
parameter set.

In Fig. 2, we show the CRPS*°(¢), the RMSE?(#), and the spread
through the depth of the tissue SPRD! (t, z) for the free-run exper-
iment using the Barone et al. parameter set. The CRPS°(f) and
CRPS*(#) indicate significant disagreement between the background
ensemble and the observations, as well as in comparison to the
analysis ensemble mean. The RMSE(#) indicates that the ensem-
ble does not accurately reconstruct the surface dynamics in the
absence of assimilation, as expected. Furthermore, the variability of
RMSE®(£) decreases over time as the forcing of the stimulus current
synchronizes the large-scale features of the ensemble states as the
information about the ensemble initialization is slowly lost. Like-
wise, the SPRDZ (t, 2) is nearly invariant with respect to z, indicating
that we correctly restore the z-invariance symmetry of the ensemble
states when the observations are not present in the reconstruction
procedure.

These results serve as a baseline for comparing with the exper-
iments to follow. For the free-run experiment, we have used our
unmodified observation set and standard ensemble initialization,
with the stimulus model and absent any assimilation. The ensem-
ble means therefore do not correspond to a reconstruction, as there
are no guiding observations, and so we do not show the mean fields.

2. Autonomous model

The first experiment uses an autonomous, deterministic, car-
diac excitation model for the ensemble members in the assimilation
of these observations to consider the significance of model error
arising from model parameters which may or may not effectively
reproduce the observed action potentials. Instead of adapting the
model to every stimulus protocol, it is dramatically simpler to use the
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properties of the Kalman filter to match the periodicity of the stimu-
lation without explicit recourse to a modeled stimulus pattern. This
approach has the obvious limitation that we have rejected a poten-
tial source of additional information and introduced latency into the
assimilation, as the ensemble can only react to the next stimulus after
it has already appeared in the observations. Given this restriction,
this experiment shows the worst-case, “low-information,” estimate
of the state of the system using the LETKF assimilation infrastruc-
ture. We refer to this experiment as “autonomous.”

Figure 3 shows the (a) CRPS*°(f), (b) RMSE’(s), and (c)
SPRD’ (%, z) metrics over time for the reconstruction using the Fen-
ton-Karma model with the Barone et al. parameter set. The assim-
ilation does a very good job of reconstructing the surfaces of the
state to match the observations after the initial transient, which
arises from the phase mismatch of the initial ensemble and the
observations, producing high initial error. The CRPS’(¢) is strongly
correlated with the RMSE?(¢), as expected, and CRPS*(#) remains
small over long time scales, growing slowly and oscillating due to
the underlying excitation period. This behavior is due to the lag
inherent to this assimilation experiment, due to the information of
the next excitation needing to propagate through the full LETKF
before affecting the background ensemble. The dominant contri-
bution to the RMSE’(f) corresponds to a peak occurring during
the full excitation of the domain, with fast relaxation of the error
as the excitation amplitude dissipates. One interpretation of this
contribution is that on the surfaces, the LETKF struggles with the
uncertainty of the wavefront and deviation of the recorded wave-
front shape from those generated by the nonlinear model for the
background ensemble (the model lags the observed wavefront, by
construction) but manages to reproduce the waveback accurately.
Indeed, the innovation of the LETKF is large during the propaga-
tion of the wavefront—the LETKF is correcting a slow CV in the
model to match the excitation pattern observed in the data—and rel-
atively smaller during the propagation of the waveback. The spread
for this parameter set begins small and quickly grows in the inte-
rior, representing the dominant contribution of the uncertainty of
the state of the system, as expected. As the information about the
excitation propagates from the surfaces toward the interior of the
domain, it is clear that the LETKF is unable to constrain the inte-
rior of the solution using only the surface observations. That said,
the maximum of the spread at z/d = 1/2 saturates after t &~ 250 ms,
indicating that this time period reflects the true uncertainty of the
interior.

On the surfaces, after an excitation, the next action potential
(AP) is driven by the assimilation perturbing the state in an appro-
priate region to cause a new propagating wave that matches those in
the observations, as expected. Additionally, as the different param-
eter sets generate APs with different wave speeds ( ¢ &~ /D, /74),
the assimilation continually corrects the propagation directly ahead
of the wavefront. When the wave is slightly too slow, this correction
is effective as the region preceding the wavefront is expected to be
excitable; thus, small perturbations ahead of the wave create a new
front that connects to the existing lagged wavefront before the next
assimilation time. When the wave is slightly too fast, this correction
is ineffective as reducing the value of u by a small amount on the
wavefront does not significantly hinder the propagation—doing so
requires a larger, quenching, perturbation related to the gap between

ARTICLE pubs.aip.org/aip/cha

(@) 19
2 0.5
=
O B s ot ottt el et et et e el Pt
0.0 | | T
® 1o
2 05
=
= ulMMMMMMhN
0.0 | | 1
(c) 1.0 1.0
N»
< 05+ - 053
=
&
0.0 , , , 0.0
0.0 0.5 1.0 15 2.0
t[s]

FIG. 3. Autonomous experiment results, depicting the (a) CRPS?(t) (line) and
CRPS(t) (band), (b) RMSE(t) (line) plus and minus one standard deviation

(band), and (c) SPRD’(t, z) (color) for the reconstruction using the Barone et al.
parameter set.

the middle unstable nullcline of I; and the rest state. This asymmetry
in effective control is apparent on the surfaces because of the pres-
ence of observations, and likewise means uncontrolled wave speed
errors propagate in the interior.

The phenomenology of the assimilation dynamics is exempli-
fied by Fig. 4, which shows z-slices of the background ensemble
mean X' at fixed depths for three sample times from the autonomous
experiment. Near the beginning of a new excitation in the observa-
tions, cf. Fig. 4(a), the ensemble mean is a very good approximation
of the distribution of the excitation at the surfaces (z/d = 0.0, 1.0)
while the interior slices are not reasonable approximations of an
interpolating function through the depth. Rather, the interior is too
uncertain to match the propagation of a wave across the domain,
which we expect to pass uniformly in z, in time with the surfaces.

Furthermore, these slices highlight a significant contribution
to the model error: the timing of the front in the ensemble is lagged
compared to the observation data. This behavior is due to the inter-
action of three phenomena related to the timing of the periodicity of
the observations and how these synchronize the ensemble dynamics.

The first and most significant is the slower conduction veloc-
ity of the model than the observation data. Despite being manually
tuned to the data,’® the parameter set is unable to adequately match
the observed front speed without a significant overestimate of the
tissue conductivity (cf. Ref. 26, their oy =9 x D) and 0, = 15 x
D, )" and thus any timing of the excitation wave in the ensem-
ble with the observations becomes a significant, ongoing, correction
for the LETKF. Previous in silico studies have found the LETKF to
adequately address a variety of systemic model errors in 3D, includ-
ing fiber angle rotation, tissue conductivity, and the explicit time
scales of the model.”-?> Ahead of the wavefront, the LETKF can
readily excite the leading edge of quiescent tissue in the ensemble
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FIG. 4. Slices of the u-field of the observations (u°) and the back-
ground ensemble mean (i) at depths z/d = 0.0, 0.2, 0.5, 0.8, 1.0 and times
t =700, 708, 716, 756, 772 ms for (a)—(e), respectively.

member states, speeding up the front to match the excitation propa-
gation in the observations, provided there are ensemble members
that are already excited in that leading region. Due to the slower
conduction velocity, this scenario is rarely the case as the ensem-
ble members synchronize their phase with the observations due to
the driving of the LETKF.

The second contributor to the model error is the lag inherent to
the propagation into the interior of the domain for the autonomous
model. The interior dynamics are lagged by at least T ~ ¢, d/2, the
time it takes information on the surfaces to propagate to the inte-
rior for a transverse wave speed of ¢, . Thus, even when the surfaces
correctly estimate the distribution of the excitation in the observa-
tions, the interior distribution is dominated by the dynamics from
several assimilation steps ago. These discrepancies are systematic
errors in the reconstruction that are largely invisible to the RMSE”
metric, as it relies on the surface observations, but should affect
CRPS” if the ensemble members differ in the interior, and likewise
SPRD!(t, 2).

The third contributor is the lag associated with the autonomous
model dynamics due to the lack of stimulus information. During
quiescence, the next excitation wave is observed at time #; these
observations are used in the LETKF and their influence appears
in the analysis ensemble states at time f. These analysis ensemble
states form new initial conditions for the dynamical model, and the
effect of this perturbation due to the initial observations appears in
the next background ensemble, at ¢ 4 T, thereby introducing a lag
between the background ensemble and the observations of no less
than the assimilation interval time. If the threshold for excitation
is not met for the analysis ensemble state, then the lag between the
observed excitation stimulus and the resulting wave will be larger,
which is typically the case as the initial observations of an excitation
are, by definition, small, and likely sub-threshold.

Finally, we must note several features of the observations and
reconstruction that will become relevant in later results. The obser-
vations smoothly interpolate from quiescent (u(t,x,y,z) = 0) to
fully excited (u(t, x, y, z) & 1) across the wavefront, cf. Fig. 4(a). Such
blunted fronts represent a configuration not achievable with the
model at hand—this model exhibits a threshold, such that the wave-
front is sharply defined; i.e., u(t, x, y, z) is very likely to be close to 0
or close to 1, and the probability that u(t, x, y, z) is near 0.5 along the
wavefront is exceptionally small. The observations suggest that, at
this particular time, u° has a significant probability of being close to
0.5. This tension between the spatially smooth data and the sharp
features of the model forms a significant impediment to reliable
reconstruction.

Additionally, the dynamics of the model with the chosen
parameter set—despite being manually tuned for this dataset—tends
to overshoot the action potential amplitude (APA) of the obser-
vations, cf. Figs. 4(a)-4(c). This behavior is caused, first, by the
analysis step of the LETKF over-correcting the ensemble states. The
effect then persists due to the relatively short model integration
interval (T, = 2ms), which is not sufficient for the state to relax
onto the slow manifold. This effect may also be observed in the
free-run experiment due to the relatively high frequency of the stim-
ulus current (not shown). Notably, the effect of the high-frequency
pacing stimulus current and the overshoot of the analysis step are
not additive.
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FIG. 5. Stimulus experiment results, depicting the (a) CRPS?(t) (line) and
CRPS(t) (band), (b) RMSE®(t) (line) plus and minus one standard deviation
(band), and (c) SPRD’(t, 2) (color) for reconstruction using the Barone et al.
parameter set.

3. Explicit stimulus current modeling

This experiment considers the effect of including a non-
autonomous, spatially localized, explicit stimulation current in the
dynamics of the model that is tuned both spatially and temporally
to qualitatively match the stimulation observed in the experimen-
tal dataset, and the potential for catastrophic synchronization of the
ensemble in the presence of this explicit modeling choice. The stim-
ulus current used is the same as that used in the free-run results
(Sec. IIT A 1). We refer to this experiment as “stimulus.”

The results for the model are shown in Fig. 5, where the recon-
struction is largely insensitive to the inclusion of the stimulus cur-
rent. Several small changes appear in the RMSE"(f) compared to the
autonomous results. The reconstruction error exhibits smaller peaks
during the excitation phase, where the stimulus current triggers the
excitation wave ahead of the lag associated with the observation-
LETKF-model path in the autonomous experiment. After t = 1.5,
drift in the timing of the stimuli leads to an early stimulus, which
is corrected by the LETKF on the surfaces, effectively constrain-
ing the timing error. These early stimuli appear as small (< 0.1)
increases in the RMSE' (£) from the baseline outside of the dominant
contributions from the excitation wave in Fig. 5(a)—the short-lived
effect on the surface error is also an indication that the reconstruc-
tion procedure is robust with respect to errors in the specification
of the stimulus period, a prime concern due to the timing-related
contributions covered in the autonomous reconstruction.

In Fig. 6, we show the (a) RMSE’(#) for the autonomous,
stimulus, and free-run experiments over time (left), and the
marginal density plots of the surface errors (right) for reconstruc-
tion using Fenton-Karma and the Barone ef al. parameter set. The
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FIG. 6. (a) RMSE"(f) and (b) depth-average SPRD’(t) for the free-run,
autonomous, and stimulus experiments, with the distribution of (right, top) surface
errors and (right, bottom) ensemble spread over time.

improvement of the RMSE’ over the free-run experiment is sig-
nificant, but the surface errors for the autonomous and stimulus
experiments are comparable, both overall and over time. The most
significant correction of the RMSEL () for the stimulus results over
the autonomous model is a shorter initial transient as the first
excitation (f & 125 ms) reaches a lower amplitude error on the sur-
faces, and thus, the ensemble synchronizes to the true stimulus
rhythm more quickly. The RMSE’ makes it clear that the inclu-
sion of the LETKF effectively lowers the expectation value of the
surface error overall. For both the autonomous and stimulus exper-
iments, the surface error is nearly identical—it appears that the
inclusion of stimulus information into the model dynamics has a
minimal impact on the surface reconstruction error over long times,
save for the minor advantages noted above. The depth-averaged
SPRD!(t) for the free-run experiment is larger than in either the
autonomous experiment or stimulus, reflecting the low-confidence
of the reconstruction in the absence of the LETKF. Indeed, the
depth-averaged SPRD(#) is nearly identical for the autonomous
and stimulus results, with a subtle bias in the latter toward larger
variation over time, cf. Fig. 6(b).

In addition to the reconstruction error of the field, it is worth
considering the error in physiologically relevant quantities, which
are derived from the state, e.g., those which inherit from the struc-
ture of the action potential, including the action potential duration
(APD) and amplitude (APA). We report the temporal trace of the
autonomous reconstruction for a randomly selected position in
the observations in Fig. 7(a). After an initial transient, which lasts
less than two BCL (< 250 ms), the reconstruction at this point is
excellent, with minor errors appearing in the apex of the action
potential and, thus, contributing to a poor estimate of the true
APA, cf. Fig. 7(b). The distribution of APD between the observation
and reconstruction traces matches exceptionally well as expected
because the predominant error in the reconstruction appears far
from the threshold value (uy,, = 0.1). Similar calculations for all
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FIG. 7. (a) Temporal trace for the autonomous experiment and associated obser-
vations, sampled on the epicardium (z/d = 0) at (x, y) = (0.825, 0.42) cm and
(b) corresponding action potential durations (APD) and amplitudes (APA) (upn =
0.1).

LETKF-driven reconstructions are included in the supplementary
material, cf. Fig. SI.

4. Stochastic current model effects

This experiment incorporates stochasticity into the model to
investigate the efficacy on the accuracy of state reconstruction in
the context of uncontrolled model errors. We have previously intro-
duced these stochastic model effects for the assimilation of observa-
tions generated from state sequences generated by a model, subject
to model uncertainty.”” These techniques improved the reconstruc-
tion of the state over LETKF in concert with a deterministic ensem-
ble model, occasionally by significant margins; their introduction for
assimilating experimental observations may help recover the state
dynamics when the model error is due to the model being unable
to perfectly reproduce experimental data. For this work, we will
introduce a stochastic current (SDE-u) and stochastically selected
time-scale parameters (SMP-7) into the model. The SDE-u formu-
lation introduces a new stochastic current I, in the role of Iy, in
the dynamics of the voltage variable u in (1),

Isto = S) 5 ~ N(O: U;)a (14)

while the SMP-7 affects the selection of all the explicit time-scales of
the model,

1. ~ N(%,, (T.0,)"), (15)

where 7, is the baseline parameter value. We refer to this experiment
as “stochastic.” We consider fixed standard deviations (o, = 0.04
and 0, = 0.04) for both stochastic effects.

In Fig. 8(a), we show the surface errors RMSE? (¢) of the recon-
struction for the Fenton-Karma model with Barone et al. parameter
set, with the current-based SDE and SMP-t stochastic effects. For
these relatively low-amplitude stochastic effects, we find very minor
changes to the surface reconstruction error—an effective smoothing

ARTICLE pubs.aip.org/aip/cha
@
2 0.5
=
@)
0.0 | T T
b1
205 n
=
=
0.0 | T |
© 19 1.0 _
Nﬁ
< 05 ' 05 A
=
%
0.0 | I I 0.0
0.0 0.5 1.0 1.5 2.0

t[s]

FIG. 8. Stochastic experiment results, depicting the (a) CRPS?(t) (line) and
CRPS°(t) (band), (b) RMSE® (t) (line) plus and minus one standard deviation
(band), and (c) SPRD(t, 2) (color) for the reconstruction using the Barone et al.
parameter set.

of the peaks of RMSE’ (£) corresponding to the excitation wavefront
and waveback, which is expected from a uniformly stochastic effect.
Analogously with the stimulus result, the transient in the RMSE" (t)
is slightly worsened by the inclusion of the stochastic effects; the
excitation near ¢ &~ 125 ms exhibits a larger peak error.

In the previous work, we showed that the stochastic additions
were capable of permitting the ensemble to better approximate the
local degrees of freedom of the true dynamics by effectively inflat-
ing the spread for a given ensemble size. In this experiment, we
find no such effect. We find that the addition of the stochastic
current accelerates the depth-averaged SPRD! (), leading to faster
average spread growth over the initial phase, before switching to
a conservative effect over the long-term reconstruction, suppress-
ing short-lived variations in the spread. Indeed, what this behavior
indicates is that the addition of stochastic processes to the model
may enhance synchronization of the ensemble in some scenarios,
lessening the ensemble spread or suppress total decoherence for the
ensemble.

Comparing the surface errors RMSE"(#) corresponding to the
autonomous (Fig. 3), stimulus (Fig. 5), and stochastic (Fig. 8) model
experiments, we find that the inclusion of the stimulus current or
stochastic effects has a small effect on the overall reconstruction
error. We may interpret this as, at best, a marginal improvement
in the accuracy of the surface reconstruction with the inclusion
of the stochastic or stimulus current into our dynamical model.
Alternatively, we may interpret the autonomous result as achiev-
ing reconstruction errors lower than expected and with confidence
comparable to these more informed model approaches. Likewise,
due to the slow drift of the timing of the stimulus current in the
observations and model, we may be confident in the robustness of
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the reconstruction with respect to model errors related to stimulus
timing.

B. Influence of observation perturbations on
reconstruction accuracy

If modifications to the model have only subtle effects on the
reconstruction of the state dynamics, then perhaps the tuning of
experimental observations will have more significant effect. In these
experiments, we perturb the observations from the experimental
data to better model the uncertainty associated with the physical
processes involved in the recordings or to buttress the highly-
sparse observations with some intermediate information based on
the apparent temporal structure of the data. Likewise, this investi-
gation presents an opportunity to ensure that our reconstruction is
robust for the type of data available to the cardiac researcher.

1. Addition of synthetic observations

In this experiment, we explore the generation of mid-depth
synthetic observations, in addition to those on the surfaces, for use in
the assimilation process. The role of these synthesized observations
is to gently constrain the ensemble spread in the interior of the tis-
sue, which we have previously identified as a predominant source of
error in the reconstruction of the state in this system.”” The synthe-
sized interior observations are interpolated between the observation
values from their projections onto the epicardial and endocardial
surfaces. The synthetic observations are appended to the real obser-
vations, the former having fixed point-wise uncertainty estimates of
n = 0.50 and the latter having fixed point-wise uncertainty estimates
of n = 0.05. Different spatial distributions of mid-depth observa-
tions can have a significant effect on the robustness and accuracy of
the reconstruction. A full arrangement of observations that sample
the (x, y)-grid in the same positions as on the surfaces led to imme-
diate ensemble collapse due to strong contraction of the analysis step
(not shown). We use a relatively sparse arrangement where 64 obser-
vations were distributed uniformly in an 8 x 8 grid, which did not
collapse the ensemble.

We add these synthesized observations due to the spatiotem-
poral pattern of the underlying excitations, where the wave on
the surfaces passes nearly uniformly over (x,y) and in time. We
thus treat the observations on each surface as strongly coupled and
thus amenable to interpolation through the depth, i.e., between the
surface sets. We report the impact the 64 additional observations
(a 0.7% increase in the total number of observations) has on the
reconstruction fidelity.

The results of the assimilation with the synthetic mid-depth
observations are depicted in Fig. 9. Immediately, we note that while
CRPS*(#) is not significantly affected, CRPS’(f) now peaks signifi-
cantly higher than any other assimilation experiment, cf. Fig. 9(a).
This finding immediately indicates a significant deviation from the
observations but does not reveal whether this discrepancy is due to
the interior, synthesized observations or the “true” surface observa-
tions. The contribution is distinguished by RMSE(#), which like-
wise peaks significantly higher than any other assimilation experi-
ment, cf. Fig. 9(b), and is computed over the surface observations
only for consistency with the other reconstruction experiments.
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FIG. 9. Synthetic observation experiment results, depicting (a) CRPS?(t) (line)
and CRPS°(¢) (band), (b) RMSE(#) (line) plus and minus one standard deviation

(band), and (c) SPRD’(t, z) (color) for the reconstruction using the Barone et al.
parameter set.

Notably, the RMSE’ () may be decomposed into contributions from
the surfaces and the synthetic observations in the interior; doing so
would provide a direct estimate of the error of the reconstruction in
the interior provided our interpolation Ansatz is correct and reason-
able. However, we have no rigorous way to assess the interpolation
Ansatz and so cannot assert the correctness of the reconstruction in
the interior using this method. So, we conclude that the inclusion
of the interior synthetic observations interpolated from the sur-
face observations leads to significantly worse reconstructions on the
surfaces, despite the high uncertainty of the synthetic observations.

The resolution of this puzzle may appear from a consideration
of the ensemble spread. While additional mid-depth observations
are extremely good at restricting the uncertainty of the reconstruc-
tion in the mid-depth of the domain, cf. Fig. 9(c), as information
from the surface observations can affect the interior layers of the
solution, this effect is not always desirable. By constraining the inte-
rior, we limit the spread of states used in the reconstruction of the
surfaces, as well. This now-restricted ensemble of states may not
adequately cover the physical instabilities present in the observed
surface dynamics, limiting the accuracy of the reconstruction for
observations for which we are confident (those on the surface) for
the sake of observations for which we are not (those in the interior).
Tuning the uncertainty and distribution of the interior observa-
tions compared to the surface observations to critically constrain
the ensemble thus presents an additional window for optimization,
although it is beyond the scope of this work.

2. Observation uncertainty modeling for fronts

For this experiment, we seek to infuse the observational data
with uncertainties based on our knowledge of the physical and
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FIG. 10. Uncertain wavefront experiment results, depicting the (a) CRPS?(t)
(line) and CRPS°(t) (band), (b) RMSE?(t) (line) plus and minus one standard

deviation (band), and (c) SPRD’(t, z) (color) for the reconstruction using the
Barone et al. parameter set.

numerical filtering of the experimental data and the dynamics of
the model. To this end, we identify the slow dynamics of u near
the rest state (u &~ 0) and in the excited state (u ~ 1), and note that
while the model produces sharp wavefront features, the observation
data are relatively smooth. In practice, this assigns an observa-
tion uncertainty that depends on the observation value, ; = n(y?),
and specifically on the value of u < u < u, where u = 0.1 corre-
sponds to a threshold marking the boundary of quiescence and
u = 1.0 — u marks the boundary of the fully excited state. The non-
linear uncertainty function takes the form of a scaled and truncated
Gaussian,

n(y)) =n+ @ —n)exp (=K — @+uw/20?),  (16)

where n = u/2 = 0.05 and 77 = 0.50 are lower and upper bounds
for the uncertainty, and k is chosen so that 7(0.0) = n(1.0) = n
and n((u + u)/2) = 7. The simplest interpretation of the wavefront
uncertainty maximum 7 is that anywhere along the wavefront, the
smoothing of the observation data makes it unclear whether an
ensemble member should be in a fully excited or quiescent state at
the same pointin time, i.e., |ﬁb —y?| ~ U(=7, +7%). In principle, this
approach encourages the growth of the ensemble spread along the
wavefront, so that the ensemble mean is a good approximation to
the observation data while the individual ensemble members retain
their sharp wavefront features. Tuning the precise distribution of
uncertainty, whether through a different (7, ) pairing or differently
motivated nonlinear function 7(y°) altogether, is beyond the scope
of this work; in the present investigation, we seek to perturb the
existing observation data to determine if the reconstruction accuracy
may be improved.
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FIG. 11. (a) RMSE®(t) and (b) SPRDs(t) for the autonomous, wave uncertainty,
and synthetic observations experiments, with the distribution of (right, top) surface
errors and (right, bottom) ensemble spread over time.

In Fig. 10, we report the effects of the wavefront uncertainty
experiment. We find that the additional uncertainty along the wave-
fronts and wavebacks in the observation data leads to a small, but
consistent, increase in the RMSE’(¢) near the end of the wavefront
and likewise increases the surface error during the end of the wave-
back, introducing a set of smaller peaks in RMSE®(f) between the
usual set associated with the end of the wavefront. As we are encour-
aging deviations in the ensemble members near the beginning and
end of the excitation wave, this finding is not unexpected—exactly in
the transition between excited and unexcited, the spread is increased
slightly, and it makes the most significant relative contribution to the
surface error where and when the error is already low. Additionally,
as the observations are synchronizing forces for the ensemble sub-
ject to the inverse observation covariance weighting, R, a higher
uncertainty for the observations should lead to less synchronization
overall and higher ensemble spread. We observe faster initial growth
of the SPRDZ (t, z) compared to the autonomous experiment, but the
long-term maximum is not significantly altered.

In Fig. 11, we show the RMSE’(f) and SPRDz(t) for the
autonomous, wavefront uncertainty, and synthesized observations
experiments. Both the wavefront uncertainty and synthesized obser-
vations experiments lead to larger surface reconstruction errors
(RMSE?) overall compared to the autonomous experiment, though
their relative contribution over time is highly non-uniform. While
the autonomous experiment reconstruction manages to match the
APD and DI of the observation data, the synthesized observation
experiment reconstruction undergoes large deviations from accu-
rate reconstructions, frequently lasting longer than the APD of
the observations. Likewise, while the wavefront uncertainty exper-
iment explicitly makes a trade-off between confidence about the
precise position of the wavefronts for the robustness of higher
ensemble spreads, this robustness never materializes in practice;
the autonomous experiment spread is comparable to that from the
wavefront uncertainty experiment.
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IV. DISCUSSION

In all results, the unobserved interior layers that are not driven
by the LETKF analysis ensemble update form the dominant contri-
bution to the reconstruction error, as expected from previous results
using surface observations generated from model runs.”” However,
previous experiments focused on dynamics that are autonomous
and (on the large scale) structured by topological features, i.e., the
dynamics of scroll waves are organized around their filaments; in
the present work, we have focused on experimental results that are
necessarily non-autonomous and driven by external stimuli, as these
conditions are endemic to experimental investigations of cardiac tis-
sue excitation. In the present scenario, all the dynamics are driven by
the observations and thus the LETKF update of the analysis ensem-
ble, save the free-run experiment which corresponds to the absence
of any observations, without such topological constraints on the
dynamics.

A. Model error interactions with the assimilation

Several considerations have an outsized impact on the accu-
racy and stability of the reconstruction for this dataset. The first is
the model error due to, primarily, misparameterization. For exam-
ple, when the refractory period is sufficiently long, then subsequent
excitations generated by the LETKF develop into a conduction block
due to the refractory behavior of the model. The blocked wavefronts
then prevent accurate reconstruction in the next assimilation step.
Additionally, the propagation speed of the wave is important to
match the model parameterization; slow waves rely on the assimi-
lation scheme to excite the tissue ahead of the wavefront to match
the observations, while fast waves rely on the assimilation scheme
to suppress the propagation of waves in the model to match the
observed wavefront. That the asymmetry between the ignition and
quenching problems has significance for the reliability of the state
reconstruction is surprising, at first glance. However, this effect mir-
rors our understanding of critical transitions for excitable media:
the ignition problem relies only on the local threshold response of
the excitable medium, while the quenching problem is sensitive to
the particular pattern of the excitation and is thus a more nonlinear
process.

The parameterization of the model can also affect the dynami-
cal range of the ensemble states, such that the analysis may drive the
fields beyond the range of the observations, i.e., “overshoot.” In our
present problem, the action potentials of the Fenton-Karma model
are only weakly bounded to the same domain as the observations,
i, 0 < u < 1, whereas the assimilation step utilizes a strict bound
for the analysis states 0 < 4 < 1.5. Due to the short model integra-
tion times (T, = 2.0 ms) and the overshoot of the analysis step, the
state cannot relax sufficiently quickly to account for the overshoot,
resulting in anomalously large field values, which likewise must be
accounted for in the next assimilation step. This model-assimilation
feedback cycle presents further opportunities for assimilation filter
investigations.

One possible way to improve the robustness of the recon-
struction process is by extending the reconstruction to the model
parameters in addition to the state vector. This approach is espe-
cially useful for model (parameter) identification in the absence of a
known model (parameter set). We have opted to reserve this avenue
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of investigation for future work, both because a published model
parameter set for this dataset and model exists”” and because our
stochastic model inflation techniques have previously been shown
to be adept at accounting for model errors (specifically those arising
from mis-parameterizations).”” A thorough study of the identifica-
tion of model parameters for cardiac electrical excitation models
using data-assimilation techniques may provide useful advances in
clinical applications.

B. Observation interactions with the model dynamics

Observation processing is also a more subtle art than it first
appears. Optical mapping recordings effectively blur the position of
the wavefront by recording fluorescence not only from the top-most
layer of cells in the tissue, but the transferred fluorescing of excited
layers of cells below the surface. This blurring manifests as, instead
of a sharp wavefront, a leading edge that smoothly transitions from
quiescent to excited across a width as large as 1cm. Numerical
post-processing to improve the signal-to-noise ratio of the data is
typically achieved with a spatiotemporal convolution, which exac-
erbates this smoothing of the sharp features of the wavefront into a
distribution of marginally excited cells. However, as the experimen-
tal data we use during constant pacing reaches steady state, stacking
was used,"” which increases the signal-to-noise ratio without further
spatial smoothing. This distribution of marginally excited cells can-
not be reconstructed by a threshold excitable model—we rely on
the assimilation scheme to effectively interpret the steep wavefronts
generated by the ensemble models for a given smooth observed
wavefront. We have considered the blurring of the state observa-
tions y? by an observation operator which does not merely sample
the field at particular positions but computes the local average of
the field through a fixed-width box-filter convolution. We antic-
ipated that the convolution length scale would compete with the
length scale of the localization process and likewise the convolu-
tion filter would compete with the filtering step of the LETKF, and
expected an overall reduction in informational content about the
ensemble as the elements of the I-dimensional y® are now substan-
tially more correlated, harming the reconstruction by introducing an
error into the ensemble observations which is essentially uncontrol-
lable. We found that, in practice, the difference from the sampling
based observation operator used in this work is minimal—cf. Fig. S3
in the Supplement for further details and results.

Likewise, the estimation of observation uncertainty for cardiac
experimental recordings is an important topic that we have treated
only superficially in this work. As the optical-mapping record-
ings and post-processing involve a spatial averaging that essentially
smooths the steep wavefronts endemic to real excitable models, we
may heuristically assign a nonlinear uncertainty to the observation
data based on the approximate value of the observation, as in Sec. I11
B 2. Because there are effectively three “slow” states observed in
the data for the transmembrane potential—quiescent, marginally
excited, and fully excited—and we suppose the middle state is an
apparent figment due to the measurement scheme, we may estimate
the probability that the observation of a cell in that state should
remain in that same state by the next observation time, equivalently,
assimilation interval, and interpret this proportionality factor for
the uncertainty of the observed transmembrane potential. For the
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Fenton-Karma model, we may map these observed slow states based
on the range of u and model parameters, specifically u, < u;(t) < uf
representing the marginally excited state. The uncertainty of obser-
vations outside this range should be determined by the noise floor of
the observations. As the frue values of u. and u are undefined but
may be assumed to be close to those used in this work, the smooth
extension to all observation values is needed; heuristics for nonlin-
ear observation uncertainty depending on the state leads to a lesser
weighting (higher uncertainty) for observations of the wavefront
and waveback. Precisely constructing these estimates requires build-
ing a statistical model of the observations, which is beyond the scope
of this work. Our initial experimentation based on heuristics that
smoothly increase the uncertainty of observations in the marginally
excited region suggest that this subtle modification of uncertainty
can have significant impacts on the accuracy and robustness of state
reconstructions.

Finally, while we have focused on a particular dataset for the
reconstruction task, we have computed reconstruction with related
data (BCL = 234 + 2 ms) and different model parameter sets. For a
slower BCL the conclusion is the same: the propagation of excitation
information from the observations to the ensemble state vectors is
slow and requires consistent work from the LETKF to correct, which
manifests as peaked errors in the surface reconstructions which
match each new excitation. For alternative model parameters, the
periodicity is still matched but the difference in wave shape results
in significant increases in reconstruction error. These experiments
suggest that our approach is robust to peculiarities of the dataset and
model specification. Further details are available in the Supplement,
see Figs. 54-88.

C. Assimilation interactions with the observation
uncertainty

The specification of the LETKF includes several numerical
parameters that we found to influence the efficacy of the assimila-
tion program. The first is a floating-point parameter named “gross
error,” designated by Ogs which controls whether an observation is
sufficiently deviant from the background mean X’ to be truncated,
with the goal of maintaining a “light touch” for the assimilation
and enhancing the stability of the scheme in the presence of large-
deviations from the observations. For an observation-uncertainty
pair (y?, n;) and corresponding value of the background mean field
ﬁf’(t), if [y?(t) — E?(t)| > 0, 1);, then the corresponding element of
(y° — H(x")) is overwritten by 0, i.., the update of the analysis
ensemble is invariant with respect to this observation. As the range
of 0 < u¥ < 1 and the minimum of the uncertainty of the surface
observations 1 = 0.05 are fixed, when Oy 2 20 every observation is
used in every assimilation step. However, we find that setting the
parameter below this saturation value (e.g., o, = 10) can signifi-
cantly affect the results, producing maximal surface reconstruction
errors nearly 25% lower than those in the saturated case (o, = 20).
For this reason, we set oy =10 for all experiments in this work.
In program logs, it is clear that fewer than 5% of observations are
ignored by assimilation step 50 (100 ms) for the autonomous exper-
iment, which suggests that we are only filtering truly extreme values,
and only in the initial iterations of the assimilation. In principle,
controlling this parameter is akin to inflation — it is a measure
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of our relative confidence in the observations and the background
ensemble members. It is not clear a priori what value this parameter
should take, and because it affects the accuracy of the reconstruction,
characterizing its effects should be a priority in future investigations.

Further, we have used n = 0.05 throughout this work, which
was estimated from the full-width at half-maximum of the distri-
bution of the observation values. While we found some sensitiv-
ity to the precise value of the uncertainty (e.g., experiments with
n =0.025 and 1 =0.10 produced reconstructions with higher

RMSE" overall), they are qualitatively similar to the presented
results. A rigorous estimation of the observation uncertainty from
the statistical properties of the dataset is beyond the scope of the
present work but may reveal that the accuracy of the reconstruc-
tion may be improved through better estimation of the observation
covariance matrix.

In this work, we have used “strongly coupled” DA (in analogy
to the same term used in domain-decomposed models in weather
forecasting) for the analysis update to the state variables for all
experiments. We permit observations of the state u to affect the anal-
ysis update of the v and w fields. In contrast, “weakly coupled” DA
communicates information between the state variables only through
the model evaluation. Strongly coupled DA is expected to be able to
extract more information from the same observations than weakly
coupled DA."" Strongly coupled DA permits more significant cor-
rections to the state for our relatively sparse observation pattern, at
the risk of over-driving the corrections to v and w in ways that are
atypical for cardiac excitations. Restricting the analysis update due
to observations of the u variable to the u variable only reduces the
efficacy of the assimilation by preserving more ensemble state infor-
mation in the analysis, while permitting larger ensemble spreads due
to the uncontrolled dynamics of v and w. In numerical experiments,
we found that in some scenarios we could drive the gating variables
to their rest state values during the assimilation, when in model sim-
ulations of comparable dynamics the gating variables never attain
their rest values. Open questions include whether the relatively weak
coupling of the cardiac model is sufficient to ameliorate some of the
challenges to robustness strongly coupled DA is expected to expose,
or whether a weakly coupled DA approach unacceptably degrades
the accuracy of the reconstructions. A systematic analysis of strongly
and weakly coupled DA in the cardiac context would clarify the
effect this choice has on robustness and accuracy and should be a
focus of future work.

Relatedly, when we found that the LETKF was over-driving
the gating variables and leading to physically unlikely values, we
bounded the gating variables between their explicitly known limit
values, 0 <%, w* < 1. This bounding prevents the assimilation
from creating unreachable analysis states that have little to do with
the true dynamics—a hazard for what is effectively an initial condi-
tion for the model. Additionally, we found that a similar effect could
be found in u%, where some ensemble members would be driven to
exceedingly large-valued and hyper-localized corrections of the state
leading to anomalously large ensemble spreads (i.e., SPRD? > 4.0),
which should not be possible for typical values of u. To suppress
this growth, we bounded —0.1 < u* < 1.5, which has the positive
effect of bounding the ensemble spread. Further, while the lim-
its on u® are sufficiently strong to bind the ensemble spread, they
are not strong enough to prevent overshoot such that u* > 1 > u°.
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However, it is presently unclear whether this is an innocuous adden-
dum to the assimilation procedure to account for numerical instabil-
ities in the model-LETKF interaction or symptomatic of a limitation
of our approach. Nor are the constraints on the initial conditions
to the model sufficiently well-defined mathematically to say these
limits need never be adjusted for this or another model.

The observation localization is controlled by two parameters
for space and one for time; the latter is set so that only the current
time affects the assimilation as this is compatible with the clinical
application and is computationally efficient. The spatial localiza-
tion scales are isotropic, and we have not investigated the choice
of different localization scales or anisotropies. In principle, given
the density and low noise of surface observations, it may be com-
putationally advantageous for their influence to extend through the
depth of the tissue while retracting their overlap on the surface.
However, this perspective is difficult to justify physically—indeed,
it assumes a surface-dominant dynamics of the interior that is, at an
abstract level, the phenomenological question we are considering in
this work. Physically, the influence of each observation may extend
to the spatial region that may be excited by the propagation of exci-
tation information in the time between observations—that is, o,;
¢;T, o +/D; for a quiescent state—making it wholly anisotropic, and,
in fact, shortening the extent of influence on the thickness of the tis-
sue compared to the effect along the surfaces, as D, = D, < D),
by design. The corresponding fiber-informed localization scales are
then related by the inverse conductivity anisotropy ratio, o, =
(Dy/Dy)0o,,1, and vary with spatial position. Likewise, this scaling
informs the observation distribution—while we are limited to sur-
face recordings of electrofluoresence, a consideration of localization
from the properties unique to cardiac excitation may benefit the
cardiac researcher.

D. Accuracy measurement in the absence of “truth”
states

Finally, we have focused on the surface error of the state recon-
structions and appealed to CRPS for a measurement of ensemble
consistency in the absence of interior observations or a “truth” state.
The choice of this measure is motivated by its convergence proper-
ties with respect to ensemble size and its simple interpretation rather
than its particular relevance to cardiac state reconstruction. Alterna-
tive error measures have been used in other works, e.g., threshold-
based error,”’ which makes reference to an unknown truth state, a
prescribed threshold value, and knowledge of the dynamical proper-
ties of the model. Constructing a fair (in the sense of CRPS) measure
of unknown state feature error requires the construction of a statisti-
cal model of the dynamics of the state itself, against which we might
compare the expectations of the reconstructed state. This effort
would also aid in physically motivated estimation of observation
uncertainties, as mentioned above.

The creation of a statistical model of the dynamics for the
state reconstruction problem is precisely the approach taken by
researchers in the machine-learning literature, which has shown
promising results. Ref. 42 investigated the use of a long short-
term memory recurrent neural network, autoencoder, and diffusion
artificial neural network (ANN) models for the 3D reconstruction
problem for a simple excitable model, while varying the history
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available to the model and the layer depth of the reconstruction.
The central results of this approach are encouraging, especially
for shallow depths (close to the observations) and long histories.
Notably, considering the parsimony of their observations (I/N =~
T-8.3 x 1073, for 1 < T < 32) compared to this work (I/N ~ 1.5 x
1073), the authors found similar reconstruction limitations to our
approach for a remarkably different dynamical model and geome-
try. Ref. 43 investigated the reconstruction problem for the Aliev-
Panfilov model using a U-net architecture ANN with similar con-
siderations to the informational content of the observations as our
work. In particular, the authors found that simultaneous observa-
tions of both the top and bottom layers of the excitable medium
produced more reliable reconstructions than single-surface obser-
vations, but that “projection” observations—those integrating over
the depth of the tissue—worked even better. Their results using the
U-net ANN architecture in the “laminar” dynamics regime (an iso-
lated scroll wave with size comparable to the depth of the tissue) are
comparable to previous in silico results for a similar dynamical pat-
tern produced by a different cardiac excitation model in conjunction
with LETKF and stochastic inflation.”” The authors also found that
the encoding of depth information into the observations was essen-
tial for the success of their methods, which limits its application to
ventricular fibrillation."

The combination of statistical model (machine-learning) and
dynamical model (data assimilation) approaches to reconstruction
is an active avenue of research. One of the central pragmatic lim-
itations of ensemble data assimilation approaches is that storage
requirements grow as O(MN) while computation (for LETKF*)
grows as O(M?N); replacing some of the ensemble members with a
pre-trained machine learning model could reduce both costs. Like-
wise, machine-learning models require training and do not offer
an estimate of their prediction uncertainty; coordination within a
data assimilation framework could alleviate the latter issue with
existing infrastructure, while hot-swapping dynamical models with
machine-learning models could provide relief for the former. In
particular, we have found that it may take up to 250 ms for the
ensemble to settle into a good approximation of the true uncertainty
of this system; machine learning may provide an accelerated conver-
gence path through better estimates for the initial state covariance,
or ensemble state initial conditions based on extensive training data.

V. CONCLUSION

In this work, we have performed several assimilation experi-
ments using physical data with variations to the model and observa-
tions. We have found that the assimilation of experimental observa-
tions for cardiac reconstruction brings unique challenges compared
to the assimilation of model-produced observations. The leading
contributors to difficulty for state reconstruction are the type of
dynamics under study, i.e., non-autonomous stimulated dynamics,
model error due to mis-parameterization, the presence of synchro-
nizing inputs (ie., the stimulus current), and the estimation of
uncertainties for experimental observations.

When the model generates fundamentally different types of
dynamics compared to that described by the experimental data,
we rely on significant corrections from the LETKF. These large
corrections, in turn, increase the likelihood of generating
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physically unrealizable states. In the cardiac context, unphysical
behavior may manifest as an excitation that spreads significantly
faster than the model permits for our parameter setting—thus, the
reproduction of the wave speed by the model is an important feature
for the reproduction of the state dynamics.

An important issue, only briefly touched upon in this paper,
is the tuning of model parameters to account for data features.
Particularly relevant for this dataset is the ability to reproduce
alternans—both in the duration (APD) and amplitude (APA) of
excitations. While APD alternans are readily reproducible with the
Fenton-Karma model, APA alternans are not a common feature
in this model. Modifications to the dynamics or model parameters
to reproduce APA alternans in the Fenton-Karma model may be
designed but are outside the scope of the present work.

Model error forms a dominant contribution to the reconstruc-
tion error on the surfaces and has a significant effect on the interior
spread of the ensemble and the confidence in the reconstruction of
the interior. The CRPS” may give an overly optimistic estimate of
the confidence in the reconstruction accuracy in the interior due to
synchronization from the periodicity of the observations over time.
Further methods of assessing reconstruction performance without
recourse to observations are necessary.

Our data assimilation scheme, while effective for reconstruct-
ing the state from model-derived observations with the same dis-
tribution pattern in use in the present study, struggles with the
experimental data in use in this work. We suspect that this diffi-
culty reflects a fundamental difference between our previous three-
dimensional reconstruction efforts and the current dataset, which is
the non-autonomous nature of the observed dynamics. Data assimi-
lation experiments with experimental data showcasing autonomous
dynamics—i.e., a spiral or scroll wave—would present an interesting
and informative extension of this study.

In conclusion, we have found that we can reliably reconstruct
the surface dynamics of a driven excitable state from experimental
observations on the surfaces but that reliable reconstruction of the
interior requires further efforts to understand our dataset and how it
interacts with the dynamics of excitable models. We have found that
while the inclusion of explicit modeling of the stimulation current
or stochastic effects may yield subtle improvements to the recon-
struction, the coupling of the LETKF, observations, and the model
is sufficiently close that it does not correct the leading error caused
in the reconstruction of this dataset. On the surfaces, these errors
are dominated by poor model fit to the excitation wavefronts and
wavebacks. In the interior, it is the lack of propagation of informa-
tion from the surfaces, such that the interior becomes a fount of
uncertain excitation. Likewise, we have determined that incorporat-
ing additional modeling insight into the features of the observations,
whether through the identification of a coherent wave pattern and
using it to constrain the uncertainty of the interior dynamics or
through modeling of the uncertainty associated with the observa-
tions, is subtle and produces new challenges which, at this initial
stage, do not appear to improve on the low-information approach.

SUPPLEMENTARY MATERIAL

We have included two video files in the supplementary
material. The first, aut o_ensmeans . mp4, displays the dynamics
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of ﬁb(t, x,¥,2) and u’(t,x,y,2) for z/d = 0,0.2,0.4,0.6,0.8,1.0 and
emphasizes the difference due to the assimilation, u* — 7, and the
observations u° for the autonomous model experiment. The second,
auto_b.mp4, displays the dynamics of @’ (t, x,y,2), V' (t, x, y, 2),
and Wh(t, X, y,z) over time for z/d = 0,0.2,0.4,0.6,0.8,1.0 for the
autonomous model experiment. We have also included a short
supplement that includes results for a number of experiments ref-
erenced throughout the text.
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