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1 Introduction

Computing gravitational scattering amplitudes using standard Feynman diagram techniques
is a formidable task due to the enormous number of terms that arise. On the other
hand, modern approaches make use of a remarkable relation known as the double copy,
which allows one to reduce gravitational calculations to much simpler calculations in gauge
theory [2–11]. Roughly speaking, it relates gravitational amplitudes to the square of gauge
theory amplitudes. The double copy was first discovered in string theory, but applies to
general theories of gravity coupled to matter, providing deep theoretical insights into the
mathematical structure of gauge theory and gravity as well as powerful new computational
tools which have important applications to the study of gravitational waves. For a review
of recent developments, see [12, 13].

By comparison, the study of perturbative gravitational observables analogous to scat-
tering amplitudes is far less understood in curved backgrounds. Of particular interest are
boundary correlators of gravitons in Anti-de Sitter space (AdS) and de Sitter space (dS),
which play a prominent role in the AdS/CFT correspondence [14] and cosmology [15–20],
respectively. In the context of cosmology, these quantities are known as wavefunction
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coefficients [21] and cosmological correlators (or in-in correlators) can be obtained by
squaring wavefunctions and computing expectation values [17, 22]. While there has been
impressive progress in computing supergravity correlators in AdS using conformal bootstrap
techniques [23, 24], it is not straightforward to adapt these methods to more realistic models
in four dimensional de Sitter space (dS4). Moreover, perturbative calculations in (A)dS
encounter similar difficulties to those in flat space but are even more challenging due to the
intrinsic complexity of working in curved backgrounds. Indeed, the tree-level wavefunction
of four gravitons in dS4 was only determined in full generality about four months ago [1]
(see for [25] for earlier partial results). Despite the fact that Witten diagrams give hundreds
of thousands of terms, the final result was only about a page in length. This simplification
was achieved by using a powerful set of constraints including the flat space limit [15, 26],
Cosmological Optical Theorem (COT) [27, 28] and Manifestly Local Test (MLT) [29],
which are part of a broader arsenal of techniques collectively known as the cosmological
boostrap [30]. Recent developments in this direction include geometric approaches [31, 32],
and methods based on factorisation [33–36], unitarity [27–29, 37–39], Mellin-Barnes repre-
sentations [40, 41], recursion relations [42–44], color/kinematics duality [45–52], scattering
equations [53–56], and the double copy [57–64].

In this paper, we will combine the boostrap techniques used in [1] with the double
copy, leading to a further reduction of the 4-graviton wavefunction down to only a few
lines. Starting with the tree-level wavefunction for four gluons, we will apply a squaring
procedure inspired by the double copy for flat space amplitudes. The resulting formula
for the s-channel contribution to the wavefunction in (4.7) can be written in two lines and
satisfies the flat space limit, COT, and MLT. Moreover it captures the vast majority of the
hundreds of thousands of terms that arise from Witten diagrams. The full result for the
s-channel contribution to the graviton wavefunction in (4.8) can then be obtained by noting
that the double copy ansatz contains spurious poles which can be cancelled by adding a
simple two-line correction whose structure is fixed by the MLT. Morever, this correction
can be deduced by looking at scalars exchanging a graviton. Using the double copy as a
starting point, no new corrections arise after generalising this example to the gravitational
case. Hence, while we do not yet have a systematic understanding of the double copy in
(A)dS, it appears to be a very useful tool in the study of gravitational correlators.

This paper is organised as follows. In section 2 we review some basics about the double
copy and cosmological correlators. In section 3 we derive the wavefunction for scalars
exchanging a graviton starting from scalars exchanging a gluon. In section 4 we generalise
this procedure to derive a compact new formula for the wavefunction of four gravitons. In
section 5 we discuss our conclusions and future directions. We also provide two appendices
summarising our notation and providing details on conformal time integrals.

2 Review

In this section, we will review some facts about scattering amplitudes and cosmological
correlators which will be useful later on.
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2.1 Double copy

Let us first review the double copy for scattering amplitudes in flat space. For simplicity,
we will focus on tree-level 4-point amplitudes. A 4-point color-dressed gluon amplitude can
be written as

A4 = nscs
s

+ ntct
t

+ nucu
u

, (2.1)

where we have set the gluon coupling to one, s, t, u are Mandelstam variables:

s = (k1 + k2)µ (k1 + k2)µ = 2kµ1 k2µ,

t = (k1 + k4)µ (k1 + k4)µ = 2kµ1 k4µ,

u = (k1 + k3)µ (k1 + k3)µ = 2kµ1 k3µ,

(2.2)

ni are kinematic numerators, and ci are color factors obeying the Jacobi relation:

cs + ct + cu = 0. (2.3)

If we express ct in terms of cs and cu using (2.3), then (2.1) can be written as

A4 = csA1234 − cuA1342, (2.4)

where the color-ordered amplitudes are given by

A1234 = ns
s
− nt

t
,

A1324 = nt
t
− nu

u
.

(2.5)

The numerators are related by exchanges:

nt = −ns
∣∣
2↔4, nu = −ns

∣∣
2↔3, (2.6)

and obey an analogue of the Jacobi relation in (2.3):

ns + nt + nu = 0, (2.7)

which is known as the kinematic Jacobi relation and encodes color/kinematics duality [4].
The double copy states that gravitational amplitudes can be obtained from color-dressed
gluon amplitudes by replacing the color factors with kinematic numerators:

M4 = n2
s

s
+ n2

t

t
+ n2

u

u
, (2.8)

where we have set the gravitational coupling to 1. The double copy has been shown to hold
for any multiplicity at tree-level [7, 8] and to a very high order at loop level [9–11].

Generalised dimensional reduction [65] of the above gluon and graviton amplitudes
implies a double copy for scalars exchanging gluons and gravitons, respectively. The basic
idea is that d-dimensional scalars arise from (d+ 1)-dimensional polarisation vectors which
point along the internal direction and are therefore orthogonal to d-dimensional momenta.

– 3 –



J
H
E
P
0
8
(
2
0
2
3
)
2
0
6

In particular, writing the gravity polarisations in terms of polarisation vectors and taking
the polarisation vectors to satisfy εµaεb,µ = 1 and kµa εb,µ = 0 (where a 6= b are particle labels),
the first line of (2.5) reduces to

A1234
φ = t− u

s
− u− s

t
, (2.9)

which describes massless adjoint scalars exchanging a gluon. From this expression and (2.6)
we can then read off that ns = t− u, nt = u− s, and nu = s− t. Squaring the numerators
according to (2.8) and noting that s+ t+ u = 0 then gives

Mφ
4 = −4

(
tu

s
+ us

t
+ st

u

)
, (2.10)

which describes massless scalars exchanging a graviton and agrees with the generalised
dimensional reduction of (2.8). Note that the scalar amplitudes live in the same spacetime
dimension as the gluon and graviton amplitudes, which is why we refer to this as generalised
dimensional reduction.

2.2 dS correlators

Let us now switch our attention to cosmological correlators. We will work in the Poincaré
patch of dS4 with unit radius:

ds2 = (1/η)2(−dη2 + d~x2), (2.11)

where −∞ < η < 0 is the conformal time and ~x denotes the Euclidean boundary directions,
with individual components xi, i = 1, 2, 3. Cosmological correlators (or in-in correlators)
can be computed as follows:〈

φ(~k1) . . . φ(~kn)
〉

=
´
Dφφ(~k1) . . . φ(~kn) |Ψ [φ]|2´

Dφ |Ψ [φ]|2
, (2.12)

where φ represents the value of a generic bulk field in the future boundary Fourier transformed
to momentum space, ~ka are boundary momenta, and Ψ [φ] is the cosmological wavefuntion,
which is a functional of φ. For simplicity, we are considering a scalar field but in general,
we should integrate over the boundary values of all the bulk fields, including the metric.

The wavefunction can be perturbatively expanded as follows:

ln Ψ [φ] = −
∞∑
n=2

1
n!

ˆ n∏
i=1

ddki
(2π)dψn

(
~k1, . . . ~kn

)
φ(~k1) . . . φ(~kn), (2.13)

where the wavefunction coefficients ψn can be expressed as

ψn = δd(~kT ) 〈〈O (~p1) . . .O (~pn)〉〉 , (2.14)

where ~kT = ~k1 + . . . + ~kn and the object in double brackets can be treated as a CFT
correlator in the future boundary [15, 33–35, 66–69]. Note that momentum is conserved
along the boundary but the total energy defined as

E =
n∑
a=1

ka, (2.15)
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where ka = |~ka|, is not conserved. The wavefunction coefficients in (2.14) can be computed
by analytically continuing AdS Witten diagrams and will be our main focus in this paper.
In practice, we will drop the momentum conserving delta function when referring to
the wavefunction coefficients. We will also analytically continue to Euclidean AdS when
performing conformal time integrals.

For spinning fields we define the wavefunction coefficients in the helicity basis,

ln Ψ [γ] = −
∞∑
n=2

1
n!

ˆ n∏
i=1

ddki
(2π)dψ

h1...hn
n

(
~k1, . . . ~kn

)
γh1(~k1) . . . γhn(~kn), (2.16)

where ha are helicities and are summed over. In order to apply the bootstrap methods
outlined later in this section it is necessary to additionally define the so called “trimmed”
wavefunction coefficients [70],

ψh1...hn
n (~k1 . . . ~kn) =

∑
contractions

[
εh1
1 . . . εhn

n

(
~k1
)α1

. . .
(
~kn
)αn

]
ψ̃n(~k1, . . . , ~kn), (2.17)

where
(
~ka
)αa

denotes the tensor product of αa copies of ~ka, whose indices contract with those
of the polarisation tensors on the left. The sum tells us that generically each wavefunction
coefficient will contain several such trimmed terms and each one of these must be determined
individually in the bootstrap approach. In the next two subsections we will describe how to
compute wavefunction coefficients using Witten diagrams and boostrap techniques.

2.2.1 Witten diagrams

Our goal in this paper will be to deduce gravitational wavefunction coefficients from gluonic
ones, so let us describe how to compute the latter in more detail. We will use Feynman rules
in axial gauge in AdS momentum space first derived in [20, 71]. For notational simplicity, we
will adopt conventions where factors of i will not appear in the Feynman rules. See [72–74]
for recent four- and five-point calculations using these Feynman rules. In axial gauge, gluons
have the following bulk-to-boundary and bulk-to-bulk propagators in momentum space:

GAij(z, z′,~k) = −
ˆ ∞

0
ωdω

z
1
2J 1

2
(ωz)J 1

2
(ωz′)(z′)

1
2

k2 + ω2 Hij , (2.18)

where ~k is the momentum flowing through the propagator along the boundary directions,
k = |~k|, Jν is a Bessel function of the first kind, and

Hij = ηij + kikj
ω2 , (2.19)

where ηij is the Euclidean boundary metric. Note that we have Wick rotated η → iz,
where 0 < z <∞, in order to make conformal time integrals manifestly convergent. The
bulk-to-boundary propagator is given by

GAi (z,~k) = εi

√
2k
π
z

1
2K 1

2
(kz), (2.20)

– 5 –



J
H
E
P
0
8
(
2
0
2
3
)
2
0
6

where ~k and ~ε are the boundary momentum and polarisation vector, respectively, which
satisfy ε · ε = ε · k = 0 (where the dot denotes an inner product of 3-vectors), and Kν is a
modified Bessel function of the second kind.

The color-ordered Feynman vertices for gluons have the same structure as in flat space
but the indices only run over the boundary directions in axial gauge. In more detail, the
three and four-point vertices are

Vjkl(~k1,~k2,~k3) =
(
ηjk(~k1 − ~k2)l + ηkl(~k2 − ~k3)j + ηlj(~k3 − ~k1)k

)
,

Vjklm = 2ηjlηkm − (ηjkηlm + ηjmηkl) ,
(2.21)

where we have set the gluon coupling g =
√

2 for convenience. When computing color-
ordered 4-point wavefunctions, it will be convenient to split the 4-point contact diagram into
an s and t-channel contribution. After dressing the second line of (2.21) with polarisations
we then get the following quantities:

V s
c = ε1 · ε3ε2 · ε4 − ε1 · ε4ε2 · ε3,
V t
c = ε1 · ε2ε3 · ε4 − ε1 · ε3ε2 · ε4.

(2.22)

Finally, we note that for each interaction vertex, we must perform an integral over the AdS
radius along with the measure

√
det g = z−4. In practice there will be additional factors of

z coming from the inverse metrics used to contract indices.
Although we will not need them in this paper, the bulk-to-boundary and bulk-to-bulk

propagators for gravitons in axial gauge are given by

Gγij(z,~k) = εij

√
2
π
z−2(kz)

3
2K 3

2
(kz), (2.23)

Gγij,kl

(
z, z′, ~k

)
= − (zz′)−

1
2

2

ˆ ∞
0

dωJ 3
2
(ωz)J 3

2

(
ωz′
) ω (HikHjl +HilHjk −HijHkl)

k2 + ω2 ,

(2.24)

where εij = εiεj is a graviton polarisation. The Feynman rules for scalars coupled to gluons
and gravitons can then be deduced by setting εa · εb = 1 and εa · kb = 0, where a 6= b and
the polarisations correspond to external scalars. For example, the scalar bulk-to-boundary
propagator is

Gφ(z,~k) =
√

2
π
z3/2kνKν(kz), (2.25)

where ν = 1/2 for conformally coupled scalars (which descend from gluons) and ν = 3/2
for massless scalars (which descend from gravitons). Moreover, the three-point scalar-
scalar-gluon vertex can be deduced from the first line of (2.21) by dressing two of the
legs with polarisations and performing the generalised dimensional reduction procedure
described above:

vi(~k1,~k2,~k3) = (k1 − k2)i, (2.26)

where leg three is a gluon with index i.
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2.2.2 Bootstrap

While it is relatively straightforward to compute 4-point gluon wavefunctions using Witten
diagrams, doing so for gravitons is very challenging due to the large number of terms that
arise. It was shown in [1] that the graviton trispectrum is completely fixed up to arbitrary
(non-local) field redefinitions by the combination of the flat space limit [15, 26], the Cosmo-
logical Optical Theorem (COT) [27, 28] and the Manifestly Local Test (MLT) [29]. These
tools have been established over the last few years as key ingredients in the Cosmological
Bootstrap [30]. A consequence of this is that any expression that satisfies the COT and has
the correct flat space limit can be combined with the MLT to give the graviton trispectrum.
To aid the reader we will briefly review these three tests.

Fields in the Bunch-Davies vacuum in the infinite past of de Sitter behave just like flat
space fields. As a result, wavefunction coefficients contain the flat space amplitude within
them as the residue of the total energy pole. For Einstein gravity (being a two derivative
theory) this means that

lim
E→0

ψγ4 ∝
k1k2k3k4
E3 M4, (2.27)

where E = k1 + k2 + k3 + k4 andM4 is the 4-graviton amplitude. While a naive squaring
of the tree-level 4-point gluonic wavefunction satisfies the correct flat space limit [45], it
does not satisfy the COT, which we describe in the next paragraph. To remedy this, we
will instead consider squaring the numerators in the conformal time integrand.

As a consequence of unitary time evolution in the bulk de Sitter space time, all
wavefunction coefficients satisfy the so-called COT. This relationship relates exchange
diagrams to simpler diagrams involving one fewer exchanged particle. In the case of gravity,
this relationship can be expressed as

ψh1h2h3h4
4 (k1, k2, k3, k4, ks, kt) + ψh1h2h3h4

4 (−k1,−k2,−k3,−k4, ks,−kt)∗

=
∑
h

P h(ks)
[
ψh1h2h

3 (k1, k2, ks)− ψh1h2h
3 (k1, k2,−ks)

]
×
[
ψh3h4h

3 (k3, k4, ks)− ψh3h4h
3 (k3, k4,−ks)

]
, (2.28)

where ks = |~k1 + ~k2| and kt = |~k1 + ~k4|. Note that the kt dependence in the left-hand-side
is encoded by the polarisation sum on the right-hand-side. We also note that there will be
some dependence on the directions of the momenta through the polarisation tensors but
this has been left implicit due to the convention that they are unchanged when we adjust
the energies [39]. As was noticed in [29] this is sufficient to fix all of the partial energy
poles and so any result satisfying both this and the flat space limit will be equal to the full
answer up to sub-leading total energy poles.

Finally, any four-point1 interaction arising from a Lagrangian with no inverse Lapla-
cian acting on single fields (such as that arising from Einstein gravity) must generate a

1Equivalent results exist for more general interactions but the expression given here is explicitly for a
4-point wavefunction coefficient.
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1 2 3 4

ψϕ,A = + 2 ↔ 4

Figure 1. Witten diagrams for conformally coupled scalars exchanging a gluon.

wavefunction coefficient that satisfies the so-called MLT:

lim
k1→0

∂k1ψ̃4(k1, k2, k3, k4, ks, kt) = 0, (2.29)

which is true even away from physical momentum configurations (unlike, for example, the
soft theorems). The tilde indicates that this applies to the trimmed wavefunction coefficients
as the kinematics of the polarisation tensors can introduce poles in the wavefunction that
violate the assumptions that go into the MLT. As we will see later, our double copy
prescription will satisfy the flat space limit, COT, and MLT, but will contain spurious poles
requiring us to add a simple correction whose structure will be fixed by the MLT.

3 Scalar wavefunctions

In this section, we will derive a compact new formula for the 4-point wavefunction of
minimally coupled scalars exchanging a graviton starting from the wavefunction for con-
formally coupled scalars exchanging a gluon. This will be a warm-up for obtaining the
4-point graviton wavefunction from the gluonic one in the next section. Indeed, the scalar
wavefunctions we derive in this section can be obtained via generalised dimensional reduction
of the spinning ones.

3.1 Ansatz

Let us begin with conformally coupled scalars exchanging a gluon. We will consider the
color-ordered wavefunction analogous to the first line of (2.5) in flat space and take the
scalars to be in the adjoint representation of the gauge group. Using the Feynman rules
in 2.2.1, the s-channel Witten diagram depicted in figure 1 is given by

ψ
(s)
φ,A =

ˆ
dω ω

k2
s + ω2dz dz

′ (KKJ)1/2
12 (z)(KKJ)1/2

34 (z′)Nφ
s , (3.1)

where the integrals over ω, z, and z′ are from zero to infinity, ks = |~k1 + ~k2|,

Nφ
s = vi12v

j
34Hij , (3.2)

vi12 = (~k1 − ~k2)i, Hij = ηij +
~ki

12
~kj

12
ω2 , and ~kab = ~ka + ~kb. The KKJ integrals are given by

(KKJ)νab = 2
π

(kakbz)νzKν(kaz)Kν(kbz)Jν(ωz). (3.3)

We have also dropped the overall factor of i.
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The numerator Nφ
s can be thought of as the analogue of the kinematic numerator ns

in (2.5). By analogy to (2.8) a natural guess for the double copy is

ψ
(s)
φ,DC

?=
ˆ

dω ω

k2
s + ω2dz dz

′ (KKJ)3/2
12 (z)(KKJ)3/2

34 (z′)
(
Nφ
s

)
2, (3.4)

where we have replaced ν = 1
2 Bessel functions with ν = 3

2 Bessel functions, as expected
for mininimally coupled scalars and gravitons, and squared the numerator. While this
guess has the correct flat space limit, it does not satisfy the COT in (2.28). Looking at the
graviton bulk-to-bulk propagator in (2.24) then motivates the following ansatz:

ψ
(s)
φ,DC =

ˆ
dω ω

k2
s + ω2dz dz

′ (KKJ)3/2
12 (z)(KKJ)3/2

34 (z′)
((
Nφ
s

)
2 − 1

2 ṽ
ij
12Hij ṽ

kl
34Hkl

)
, (3.5)

where ṽij12 = vi12v
j
12. While the second term in parenthesis is similar in structure to the third

term in (2.24), it is constructed from scalar-scalar-gluon vertices. We will say more about
the double copy origin of this term in section 4.2. In appendix B, we evaluate the integrals
in (3.5) and obtain a more explicit formula:

ψ
(s)
φ,DC = 1

3k
4
sf2,2Π2,2 −

1
3k

2
sk12k34f2,1Π2,1 + 1

2f2,0
k2

12α
2k2

34β
2

k4
s

− 1
2f2,1

((
k2

12 + α2 − k2
s −

k2
12α

2

k2
s

)
k2

34β
2

k2
s

+ k2
12α

2

k2
s

(
k2

34 + β2 − k2
s −

k2
34β

2

k2
s

))
,

(3.6)

where kij = ki + kj , α = k1 − k2, β = k3 − k4, Π2,2 and Π2,1 are polarisation sums given
in (A.7), and f2,2, f2,1, and f2,0 are conformal time integrals given in (B.4).

3.2 Corrections

While the ansatz in (3.5) has the correct flat space limit and satisfies the COT, after
integration we find that it contains spurious poles in k12 and k34. These can be cancelled
by adding the following simple correction:

ψ(s)
sp = −1

2

(
2k1k2k3k4

(k12 + k34)2

(
α2

k34
+ β2

k12

)
+ α2k3k4

k34
+ β2k1k2

k12

)
. (3.7)

In fact, this is the unique correction which cancels the spurious poles without affecting the
flat space limit or COT, modulo adding terms which do not contain spurious poles. This
ambiguity can be fixed by the MLT, which is satisfied by (3.5) but not (3.7).

Following the procedure in [1], we will construct an ansatz for the missing terms and fix
it by enforcing the MLT. As was shown in [75, 76], the most general tree-level wavefunction
coefficient for interactions involving Einstein gravity is a rational function of the energies.
Moreover, the correction terms can have at worst E−2 poles and no other singularities so
as not to affect the flat space limit or COT.2 Scale invariance also forces any correction

2We are free to add in some non-local field redefinitions with ks poles, as was shown in [1], but these are
always present and so will be ignored in our ansatz.

– 9 –



J
H
E
P
0
8
(
2
0
2
3
)
2
0
6

term to scale like momentum cubed so the most general correction must have the form

ψ
(s)
MLT = Poly(5)(k1, k2, k3, k4, ks, kt, ku)

E2 , (3.8)

where Poly(5) is a general polynomial with homogeneity degree 5 under rescaling momenta.
We can simplify this by noting that we are only adjusting the s-channel and so anything that
we add must respect the s-channel symmetries. To encode the k1 ↔ k2 and k3 ↔ k4 exchange
symmetry we express this polynomial as a function of the combinations k12, k1k2, k34, k3k4
and k2

s . The remaining dependence on kt and ku can only be through the combination
k2
t −k2

u, which picks up a minus sign under k1 ↔ k2 and so must be multiplied by something
else that also behaves in this way. Therefore,

ψ
(s)
MLT = Poly(5)(k12, k1k2, k34, k3k4, k

2
s) +A1αβ(k2

t − k2
u)E +A2(k2

t − k2
u)2E

E2

+
(
~k1, ~k2

)
↔
(
~k3, ~k4

)
, (3.9)

where the contribution at the end is required to recover the s-channel symmetry that is not
explicit in the construction of this polynomial. This ansatz has a total of 17 free coefficients.

On fixing the free coefficients such that (3.9) combines with (3.7) to satisfy the MLT
we find

ψ
(s)
MLT =A(k3

1 +k3
2 +k3

3 +k3
4)+ 1

2E
(
(k1k3 +k2k4)(k1k4 +k2k3)−2(α2k1k2 +β2k3k4)

+(α2k3k4 +β2k1k2)−3(k2
34k1k2 +k2

12k3k4)+2(k2
12k1k2 +k2

34k3k4)+6k1k2k3k4

+k12k34(E2−2(k1k2 +k3k4))
)
, (3.10)

where A is a free coefficient that corresponds to the field redefinition φ→ φ+Aφ3, where
φ is the external scalar field. Choosing A = −7/2 then gives the compact form

ψ
(s)
MLT = 5k1k2k3k4

E
+E

2 (k12k34−4k1k2−4k3k4)− 1
E

(k1k2−k3k4)(α2−β2)−3(α2k12+β2k34).
(3.11)

In summary, we find that the s-channel contribution to the wavefunction for minimally
coupled scalars exchanging a graviton can be written as

ψ
(s)
φ,γ = ψ

(s)
φ,DC + ψ(s)

sp + ψ
(s)
MLT, (3.12)

where the three terms on the right-hand-side are given by (3.5), (3.7), and (3.11). The
full wavefunction can then be obtained by summing over all three channels, where the
contributions from the t and u channels can be obtained from (3.12) by exchanging 2↔ 3
and 2↔ 4. More explicitly, plugging in (3.6) we obtain

ψ
(s)
φ,γ = 1

3k
4
sf2,2Π2,2 −

1
3k

2
sk12k34f2,1Π2,1 + 1

2k12k34(k12k34 + k2
s)f2,1

(
−α

2 + β2

k2
s

+ 3α
2

k2
s

β2

k2
s

)

− 1
2
k2
s

E
(k1k2 + k3k4 + E2)α

2

k2
s

β2

k2
s

− 1
2E (k1k2 − k3k4)(α2 − β2)− 5

2(k12α
2 + k34β

2)

+ 5k1k2k3k4
E

+ E

2 (k12k34 − 4k1k2 − 4k3k4) . (3.13)
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1 2 3 4 1 2 3 4

ψA = + 2 ↔ 4 +

Figure 2. Witten diagrams for four-point gluon wavefunction coefficient.

This agrees up to field redefinition with the result previously obtained in [1] using bootstrap
methods.

4 Spinning wavefunctions

In this section, we will generalise the procedure in the previous section to deduce the
tree-level 4-point graviton wavefunction from gluons, arriving at a compact new formula.

4.1 Ansatz and corrections

Let us start with the s-channel contribution to the 4-point color-ordered gluon wavefunction,
depicted in figure 2. Using the Feynman rules in section 2.2.1 we obtain

ψ
(s)
A =

ˆ
dzdz′dωω

(k2
s + ω2) (KKJ)1/2

12 (z) (KKJ)1/2
34 (z′)V i

12HijV
j

34

+
ˆ
dzdz′δ(z − z′) (KK)1/2

12 (z)V s
c (KK)1/2

34 (z′)
(4.1)

where (KK)1/2
ab (z) =

√
kakbzK1/2 (kaz)K1/2 (kbz),

V i
ab = εa · εb (~ka − ~kb)i + 2εa · ~kbεib − 2εb · ~kaεia,
V s
c = ε1 · ε3 ε2 · ε4 − ε1 · ε4 ε2 · ε3.

(4.2)

The second term in (4.1) arises from a bulk contact interaction so we have written it as
integral over two bulk points with a delta function. To combine it with the first term, use
the orthogonality of Bessel functions

δ(z − z′) =
ˆ
dω ω

(
zz′
)1/2

J1/2 (ωz) J1/2
(
ωz′
)
. (4.3)

We then obtain

ψ
(s)
A =

ˆ
dω ω

k2
s + ω2dz dz

′ (KKJ)1/2
12 (z)(KKJ)1/2

34 (z′)Ns, (4.4)

where the numerator Ns is

Ns = V i
12HijV

j
34 + V s

c (ω2 + k2
s). (4.5)

By analogy with the scalar double copy ansatz in (3.5), a natural guess for gravitons is

ψ
(s)
γ,DC

?=
ˆ

dω ω

k2
s + ω2dz dz

′ (KKJ)3/2
12 (z)(KKJ)3/2

34 (z′)
(
N2
s −

1
2 Ṽ

ij
12Hij Ṽ

kl
34Hkl

)
, (4.6)
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where Ṽ ij
ab = V i

abV
j
ab. While this ansatz satisfies the COT, the second term spoils the flat

space limit. This can be remedied by adding one more term to the integrand:

ψ
(s)
γ,DC =

ˆ
dω ω

k2
s + ω2dz dz

′ (KKJ)3/2
12 (z)(KKJ)3/2

34 (z′)

×
(
N2
s −

1
2 Ṽ

ij
12Hij Ṽ

kl
34Hkl + 1

2(ε1 · ε2)2(ε3 · ε4)2(ω2 + k2
s)2
)
.

(4.7)

In the next subsection, we will explain how the second and third terms arise from the
double copy.

As before, we must add terms to cancel spurious poles and satisfy the MLT. Remarkably,
these turn out to be identical to the scalar case after dressing with polarisations. In the end,
we find that the s-channel contribution to the 4-point graviton wavefunction is given by

ψ(s)
γ = ψ

(s)
γ,DC + (ε1 · ε2)2 (ε3 · ε4)2

(
ψ(s)

sp + ψ
(s)
MLT

)
, (4.8)

where the terms on the right-hand-side are given in (4.7), (3.7), and (3.11). The full
wavefunction can then be obtained by summing over all three channels, where the contri-
butions from the t and u channels can be obtained from (4.8) by exchanging 2 ↔ 3 and
2↔ 4. This non-trivially agrees with the result previously obtained in [1] using bootstrap
methods, but now provides a more compact expression which exposes the underlying double
copy structure.

In appendix B we evaluate the integrals in (4.7) to obtain the following more explicit
formula:

ψ(s)
γ = (ε1 · ε2)2(ε3 · ε4)2ψ

(s)
DC +

(
8(ε1 · ε2)(ε3 · ε4)Wsk

2
sΠ1,1 + 16W 2

s

)
f2,2

− (ε1 · ε2)(ε3 · ε4)k12k34 (8WsΠ1,0 + αβV s
c ) f2,1 +

(
(V s
c )2 + 1

2(ε1 · ε2)2(ε3 · ε4)2
)
fa

+
(
(ε1 · ε2)(ε3 · ε4)(~k1 − ~k2) · (~k3 − ~k4) + 4Ws

)
V s
c fb, (4.9)

where fa and fb are given in (B.6), V s
c is given in (4.2), and the other tensor structure is

given by

Ws = (ε1 ·ε2) [(k1 ·ε3)(k2 ·ε4)−(k2 ·ε3)(k1 ·ε4)]+(ε3 ·ε4) [(k3 ·ε1)(k4 ·ε2)−(k4 ·ε1)(k3 ·ε2)]
+[(k2 ·ε1)ε1−(k1 ·ε2)ε2]·[(k4 ·ε3)ε4−(k3 ·ε4)ε3] .

(4.10)

Notice that the tensor structure (ε1 · ε3)(ε3 · ε2)(ε2 · ε4)(ε4 · ε1), which appeared in the
result presented in [1], is absent in (4.9) but this merely reflects a different choice of
tensors to represent the answer. This contribution is instead captured by the (V s

c )2 and
V s
c (ε1 · ε2)(ε3 · ε4) terms as well as a modification to the (ε1 · ε2)2(ε3 · ε4)2 term.

4.2 Double copy structure

The simple ansatz in (4.7) captures most of the terms in the 4-point graviton wavefunction.
Comparing this to (2.8), we see that the analogue of the graviton numerator in the
s-channel is

Nγ
s = N2

s −
1
2 Ṽ

ij
12Hij Ṽ

kl
34Hkl + 1

2 (ε1 · ε2)2 (ε3 · ε4)2
(
k2
s + ω2

)2
, (4.11)
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where Ns is the s-channel gluon numerator:

Ns = V
i

12V
j

34Hij +
(
k2
s + ω2

)
ε
ij

12ε
kl
34ηi[kηl]j , (4.12)

where εij12 = ε
i
1ε
j

2 and we have added an underscore to indices associated with the left side
of the s-channel Witten diagrams, i.e. legs 1 and 2.

Naively squaring the gluon numerator gives tensors which contract indices on the left
with indices on the right:

N2
s = Ṽ

ij

12 Ṽ
kl

34Tijkl + 2
(
k2
s + ω2

)
ε
ij

12V
k

12ε
lm
34 V

n
34Tijklmn +

(
k2
s + ω2

)2
ε
ij

12ε
kl
12ε

mn
34 ε

pq
34Tijklmnpq,

(4.13)
where

Tijkl = HikHjl,

Tijklmn = ηi[lηm]jHkn,

Tijklmnpq = ηi[mηn]jηk[pηq]l.

(4.14)

On the other hand, we can also consider an alternative prescription for squaring the tensor
structures where indices on the left are never contracted with indices on the right:

Ñ2
s ≡ Ṽ

ij

12 Ṽ
kl

34 T̃ijkl + 2
(
k2
s + ω2

)
ε
ij

12V
k

12ε
lm
34 V

n
34T̃ijklmn +

(
k2
s + ω2

)2
ε
ij

12ε
kl
12ε

mn
34 ε

pq
34T̃ijklmnpq,

(4.15)
where

T̃ijkl = HijHkl,

T̃ijklmn = 0,

T̃ijklmnpq = ληijηklηmnηpq.

(4.16)

Note that λ in the third line is an unfixed relative coefficient and the second line vanishes
because there are an odd number of indices with or without underscores so there is no way
to contract all of them.

Hence we find that there are two ways to define the double copy of the gluon numerator.
Moreover, consistency with the flat space limit and the COT implies that both are required.
Indeed, (4.11) can be written as

Nγ
s = N2

s −
1
2Ñ

2
s , (4.17)

where we set λ = −1 in (4.16). This can be also written in terms of asymmetric products
of deformed numerators:

Nγ
s = 1

2
(
N−12N

+
34 +N+

12N
−
34

)
, (4.18)

where

N±12 = Ns + i√
2
ε1 · ε2ε3 · ε4

(
ω2 + k2

s

)
± 1√

2
Ṽ ij

12Hij ,

N±34 = Ns −
i√
2
ε1 · ε2ε3 · ε4

(
ω2 + k2

s

)
± 1√

2
Ṽ ij

34Hij .

(4.19)
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It would be interesting to explore if these numerators encode some analogue of
color/kinematics duality.

This story can easily be adapted to the case of external scalars using generalised
dimensional reduction, i.e. setting εa · kb = 0 and εa · εb = 1 for a 6= b. Indeed, dimensional
reduction of the gluon numerator in (4.12) gives

Nφ
s = v

i
12v

j
34Hij , (4.20)

which agrees with (3.2). Applying the two double copy prescriptions described above then
gives (

Nφ
s

)2
= ṽ

ij

12ṽ
kl
34Tijkl,

(
Ñφ
s

)2
= ṽ

ij

12ṽ
kl
34T̃ijkl. (4.21)

Note that generalised dimensional reduction of the third term in (4.15) gives
(
k2
s + ω2)2, but

this doesn’t affect the COT or flat space limit after summing over all three channels, so this
can be discarded. After doing so, we obtain the second term in (4.21). The scalar-graviton
numerator in (3.5) can then be written as

Nφ,γ
s =

(
Nφ
s

)2
− 1

2
(
Ñφ
s

)2
, (4.22)

which can in turn be expressed in terms of deformed numerators as follows:

Nφ,γ
s = 1

2
(
Nφ−

12 N
φ+
34 +Nφ+

12 N
φ−
34

)
, (4.23)

where
Nφ±

12 = Nφ
s ±

1√
2
ṽij12Hij , N

φ±
34 = Nφ

s ±
1√
2
ṽij34Hij . (4.24)

5 Conclusion

In this paper we derive a compact new expression for the tree-level wavefunction of four
gravitons in dS4. The starting point is to write the s-channel contribution to the 4-point
wavefunction for gluons as a conformal time integral, square the numerator while replacing
ν = 1/2 Bessel functions with ν = 3/2 Bessel functions, and sum over all three channels.
While this guess has the correct flat space limit, we need to add two more terms to the
numerator in order to satisfy the COT while preserving the flat space limit. These two terms
can be derived from an alternative double copy prescription, as we explain in section 4.2.
The final double copy ansatz in (4.7) satisfies the flat space limit, COT, and MLT but
contains spurious poles after integration. This is fixed by adding two simple correction
terms: one to cancel the spurious poles and another to restore the MLT. After doing so,
we obtain a four-line formula for the s-channel contribution to the graviton wavefunction
in (4.8) which agrees with the much lengthier result previously obtained in [1], up to
field redefinitions. As a warm-up we first carried out this procedure for massless external
scalars exchanging a graviton starting from conformally coupled scalars exchanging a gluon.
Remarkably, the corrections required by spurious pole cancellation and the MLT in that
case directly carry over to external gravitons without any additional corrections.
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In summary, the double copy leads to significant simplifications of the 4-point graviton
wavefunction in dS4, although we do not yet have a systematic understanding of how it
works. In particular, it would be interesting to see if there is some modification of our double
copy prescription which doesn’t give rise to spurious poles, and to understand the role of
color/kinematics duality in our construction. In general, four-point kinematic numerators
in (A)dS momentum space do not satisfy a kinematic Jacobi relation unless one performs
generalised gauge transformations which modify the flat space limit [45, 46], but progress
along these lines can be made by working in Mellin space [47, 77]. It is worth noting that our
double copy ansatz can be written in terms of asymmetric products of deformed numerators,
as shown in (4.18) and (4.19), and we believe that this will be a generic feature of the
double copy for non-superymmetric theories in (A)dS4. Indeed, self-dual gravity in AdS4
can also be derived from an asymmetric double copy with a deformed numerator [78], so it
is conceivable that this extends beyond the self-dual sector. Another promising direction
would be to translate our approach into differential notation [48, 50, 51, 53–55, 63, 79],
which provides a way to uplift flat space formulae to (A)dS, but becomes complicated for
spinning correlators.

Another interesting future direction would be to extend our calculations to higher points
and loop-level, where expect color/kinematics duality to play an essential role. Indeed, for
flat space gluon amplitudes with more than four external legs one must perform generalised
gauge transformations in order to obtain numerators which obey kinematic Jacobi relations
before squaring them to obtain graviton amplitudes. Evidence for color/kinematics duality
at higher points was recently found for certain supersymmetric theories in AdS5 [80]. It
may therefore be useful to generalise our method to supersymmetric theories in AdS5 and
compare it to recent results obtained in [47, 61], as well as to supersymmetric theories
in AdS4 which are currently challenging to analyze using other approaches. Since we
work with general polarisations, it should be straightforward to generalise our analysis
to other dimensions. Moreover the COT in (2.28) and the MLT in (2.29) may naturally
extend to supermomentum space, although it remains to be seen if this provides useful
constraints on superwavefunctions. It would also be of phenomenological interest to extend
our construction to theories of gravity coupled to massive scalars, mimicking the flat space
results in [81–83], and to incorporate boost-breaking effects [70, 84, 85]. Finally, once
we have a more systematic understanding of the double copy in curved background it
would be of great interest to generalise the KLT bootstrap recently developed for effective
field theories in flat space [86, 87] to (A)dS4, as this would complement other approaches
to computing string theory corrections to AdS correlators such as conformal bootstrap
methods and may even provide a useful new perspective on the UV completion of gravity
in de Sitter space.
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A Notation and conventions

In this appendix we will summarise our conventions and collect various useful definitions that
are used throughout the paper. When performing conformal time integrals, we Wick-rotate
to Euclidean AdS4 with unit radius, whose metric is given by

ds2 = (1/z)2(dz2 + d~x2), (A.1)

where 0 < z < ∞ is the radial coordinate and xi with i ∈ {1, 2, 3} are the boundary
coordinates. This is obtained from (2.11) by taking η → iz and dropping an overall minus
sign. Moreover, we Fourier transform wavefunction coefficients to momentum space along
the boundary directions and our Fourier convention is

f(~x) =
ˆ d3~k

(2π)3 f(~k)ei~k·~x ≡
ˆ
~k
f(~k)ei~k·~x. (A.2)

We use Greek indices, µ, ν . . . to label the components of 4-vectors and Latin indices
from the middle of the alphabet, i, j . . . to label the components of 3-vectors. Latin
letters from the start of the alphabet, a, b . . . are reserved for labeling particles. The
three-momenta ~ka have components kia and norms ka = |~ka|. The corresponding massless
four-momenta have components kµa = (ka, kia). We define kab = ka + kb as well as

ks = |~k1 + ~k2|, kt = |~k1 + ~k4|, ku = |~k1 + ~k3|. (A.3)

Using three-momentum conservation
∑4
a=1

~ka = 0, these satisfy

k2
s + k2

t + k2
u = k2

1 + k2
2 + k2

3 + k2
4. (A.4)

We also define several combinations of these energies:

E = k12 + k34, EL = ks + k12, ER = ks + k34, α = k1 − k2, β = k3 − k4. (A.5)

We work in axial gauge where polarisation tensors only have components along boundary
directions. The polarisation vectors for gluons are denoted as εi and satisfy εa ·εa = εa ·ka = 0,
where the dot denotes the product of three-vectors using the Euclidean boundary metric
ηij . Graviton polarisations can then be written in terms of polarisation vectors as εij = εiεj ,
which automatically encodes the transverse and traceless conditions. Waveunctions with
external scalars can be obtained from spinning wavefunctions by the taking polarisations to
satisfy εa · εb = 1 and εa · kb = 0 with a 6= b. The resulting scalar wavefunctions still live in
the boundary of dS4, so we refer to this procedure as generalised dimensional reduction.
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We use the following formulae for gluon polarisation sums, which were first defined
in [35]:

Π1,1 = (k2
1 − k2

2)(k2
3 − k2

4) + k2
s(k2

u − k2
t )

k4
s

,

Π1,0 = (k1 − k2)(k3 − k4)
k2
s

.

(A.6)

The analogous formulae for gravitons are

Π2,2 = 3
2k4

s

(~k1 − ~k2)i(~k1 − ~k2)j(πilπjm + πimπjl − πijπlm)(~k3 − ~k4)l(~k3 − ~k4)m,

Π2,1 = 3
2k2

sk12k34
(~k1 − ~k2)i(~k1 − ~k2)j(πilk̂j k̂m + πjmk̂ik̂l + πimk̂j k̂l + πjlk̂ik̂m)

× (~k3 − ~k4)l(~k3 − ~k4)m,

(A.7)

where πij = ηij − k̂ik̂j and k̂i = (~k1+~k2)i

ks
. Note that (A.6) and (A.7) are defined in the

s-channel. The equivalent expressions in the t- and u-channels can be obtained with the
substitutions 2↔ 4 and 2↔ 3, respectively.

B Integrals

In this appendix, we will explain how to evaluate the integrals in (3.5) and (4.7). First note
that both of these formulae contain the following tensor structure:

2HilHjm −HijHlm = πilπjm + πimπjl − πijπlm

+ k2
s + ω2

ω2

(
πilk̂j k̂m + πimk̂j k̂l + πjmk̂ik̂l + πjlk̂ik̂m

)
− k2

s + ω2

ω2

(
πij k̂lk̂m + πlmk̂ik̂j

)
+
(
k2
s + ω2

ω2

)2

k̂ik̂j k̂lk̂m.

(B.1)

We have performed this decomposition in such a way that the first two lines encode the
polarisation sums Π2,2 and Π2,1 in (A.7). The final line is written in such a way as to get a
convenient set of integrals.

After performing the decomposition in (B.1), we obtain integrals of the following general
form:

fA =
ˆ ∞

0

dω ω

ω2 + k2
s

ˆ
dz dz′(KKJ)3/2

12 (z)(KKJ)3/2
34 (z′)IA

= 2
π

ˆ ∞
0

dω ω4

ω2 + k2
s

(k2
12 + ω2 + 2k1k2)

(k2
12 + ω2)2

(k2
34 + ω2 + 2k3k4)

(k2
34 + ω2)2 IA,

(B.2)

with the following set of integrands:

I2,2 = 1, I2,1 = ω2 + k2
s

ω2 , I2,0 =
(
ω2 + k2

s

ω2

)2

,

Ia = (ω2 + k2
s)2, Ib = (ω2 + k2

s).
(B.3)
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The first three evaluate to

f2,2 = 2k1k2k3k4 (ELER+Eks)
E2
LE

3E2
R

+ k1k2 (ELk34 +Eks)
E2
LE

2ER
+ k3k4 (Eks+ERk12)

ELE2E2
R

+ ELER−k2
s

ELEER
,

f2,1 = 2k1k3k4k2
E3k12k34

+ k1k2
E2k12

+ k3k4
E2k34

+ 1
E
,

f2,0 = k12k34 +k2
s

k12k34
f2,1−

k2
s

E

(
k1k2
k3

12k34
+ 2k1k3k4k2

k3
12k

3
34

+ k3k4
k12k3

34

)
,

(B.4)

where E, EL, and ER are defined in (A.5). The last two integrals are divergent:

fa = 2
π

(
Λ3

3 − Λ(k2
12 + k2

34 − k2
s + 2(k1k2 + k3k4))

)
+ finite,

fb = 2
π

Λ + finite,
(B.5)

where Λ is a cut-off on the ω integral. On the other hand, the divergent pieces are analytic in
at least two of the momenta and therefore correspond to boundary contact terms. Moreover
they become imaginary after analytically continuing back to de Sitter so won’t contribute
to the in-in correlator. Dropping these divergences then gives

fa =
(
k12k34+k2

s

)
fb+

1
E

(
2k1k2k3k4−k1k2(2E2+k2

12)−k3k4(2E2+k2
34)−2k12k34E

2+E4
)
,

fb =
(

2k1k2k3k4
E3 +k1k2

k34+E
E2 +k3k4

k12+E
E2 + k12k34−E2

E

)
. (B.6)
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