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In this paper we study skeleta of residually tame coverings of 
a marked curve over a non-archimedean field. We first prove 
a simultaneous semistable reduction theorem for residually 
tame coverings, which we then use to construct a tropicaliza-
tion functor from the category of residually tame coverings of 
a marked curve (X, D) to the category of tame coverings of 
a metrized complex Σ associated to (X, D). We enhance the 
latter category by adding a set of gluing data to every cover-
ing and we show that this yields an equivalence of categories. 
We use this skeletal interpretation to define the absolute de-
composition and inertia group of a curve, which can be seen 
as the first subgroups in a ramification filtration of the funda-
mental group of the curve. We prove that the cyclic coverings 
that arise from the corresponding decomposition and inertia 
quotients coincide with the coverings that arise from the toric 
and connected parts of the analytic Jacobian of the curve.
© 2023 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

Let K be a complete, algebraically closed non-archimedean field with a non-trivial 
valuation. In this paper, we study tropicalizations of residually tame coverings of curves 
φ : X ′ → X, which are finite morphisms of smooth algebraic curves with an extra 
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tameness condition on the induced morphism φan : X ′ an → Xan of Berkovich analytifi-
cations. Namely, for every x′ ∈ X ′ an mapping to x ∈ Xan we require the corresponding 
extension of completed residue fields H(x) ⊂ H(x′) to be tame. For these coverings, we 
prove the following simultaneous semistable reduction theorem, which can be seen as a 
non-discrete generalization of [22, Theorem 2.3].

Theorem 3.3. Let (X ′, D′) → (X, D) be a residually tame covering of marked curves and 
let Σ be a skeleton of (X, D). Then the inverse image of Σ under X ′ an → Xan is a 
skeleton of (X ′, D′).

Here a skeleton of a marked curve (X, D) corresponds to a semistable model X of 
the marked curve (X, D) over the valuation ring R of K. In terms of this language, 
Theorem 3.3 says that we obtain an induced morphism of semistable models X ′ → X
by taking the normalization of X in the function field of X ′.

We now fix a skeleton Σ of a marked curve (X, D). Using Theorem 3.3, we can 
associate a finite harmonic morphism Σ′ → Σ of metric graphs to every residually tame 
covering (X ′, D′) → (X, D). This process is moreover functorial, so that we obtain a 
tropicalization functor FΣ : CovTame(X, D) → Cov(Σ) from the category of residually 
tame coverings of (X, D) to the category of finite harmonic coverings of Σ. One of the 
main goals in this paper is to investigate which properties of CovTame(X, D) are preserved 
under FΣ. For instance, the category CovTame(X, D) has the additional structure of a 
Galois category, which means that there is a profinite fundamental group πTame(X, D)
that classifies residually tame coverings of (X, D) as in classical Galois theory. It is then 
natural to ask whether we can transfer this structure to Cov(Σ), or an extended category. 
The answer is yes, and we use the lifting results in [1] to do this.

Theorem 4.13. Let Σ be a skeleton of a marked curve (X, D) and let FΣ be the corre-
sponding functor from the category of residually tame coverings of (X, D) to the category 
CovG(Σ) of enhanced tame coverings of Σ. Then FΣ induces an equivalence of categories

CovTame(X,D) � CovG(Σ).

We refer the reader to Section 4.1 for the exact definition of an enhanced tame covering 
of Σ. Roughly speaking, it consists of a finite harmonic morphism Σ′ → Σ of metric 
graphs, a set of tame algebraic coverings over the vertices of Σ that are compatible with 
the graph-theoretical data, and a set of gluing data over the edges of Σ to connect the 
various algebraic coverings. It follows from the results in [1] that we can lift an enhanced 
tame covering Σ′ → Σ to a residually tame covering of marked curves (X ′, D′) → (X, D). 
We extend this result here and show that morphisms can be uniquely lifted if we use a 
suitable notion of a morphism of enhanced tame coverings. From this, we directly obtain 
the equivalence of categories in Theorem 4.13.

Since CovTame(X, D) is a Galois category, we now find that CovG(Σ) is also a Galois 
category. We write π(Σ) � πTame(X, D) for the corresponding profinite fundamental 
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group. We can define filtrations of this fundamental group π(Σ) using the concepts of 
metrically unramified and completely split coverings. Here a covering φ is metrically 
unramified above an edge e of Σ if the dilation factors de′/e(φ) of the edges e′ above e
are all 1, and a covering is completely split above a vertex v of Σ if there are deg(φ)
vertices above v. For any subcomplex Σ0 ⊂ Σ, we then consider all coverings of Σ that 
are metrically unramified or completely split over Σ0. These coverings correspond to 
closed normal subgroups of π(Σ) which we call the absolute inertia group I(Σ0) and the 
absolute decomposition group D(Σ0) respectively. Their quotients πI(Σ0) := π(Σ)/I(Σ0)
and πD(Σ0) := π(Σ)/D(Σ0) classify the connected coverings of Σ that are unramified 
(resp. completely split) above Σ0. If D = ∅ and Σ0 = Σ, then we have the following 
theorem:

Theorem 5.14. Let D(Σ) be the decomposition group of Σ in π(Σ). Then πD(Σ) :=
π(Σ)/D(Σ) is isomorphic to the profinite completion of the ordinary fundamental group 
of the underlying graph Γ of the metrized complex Σ.

By algebraic topology, it follows that πD(Σ) is isomorphic to the profinite completion 
of the free group on β(Σ) generators, where β(Σ) is the first Betti number of Σ.

In Section 5.2, we turn to the abelianizations of the groups πD(Σ) and πI(Σ). For any 
n coprime to char(k), the cyclic étale coverings of degree n of an algebraic curve X are 
classified by the torsion points of the Jacobian J := J(X) of X using the isomorphism 
J [n] � Hom(π(Σ),Z/nZ). The decomposition and inertia groups πD(Σ) and πI(Σ)
naturally subdivide these cyclic coverings:

Hom(πD(Σ),Z/nZ) ⊂ Hom(πI(Σ),Z/nZ) ⊂ Hom(π(Σ),Z/nZ). (1)

On the other hand, we also have such a filtration in the Jacobian of X by the results in 
[10] and [8]. Indeed, let X be a semistable model of X with skeleton Σ and let Jac(Σ)
be the tropical Jacobian or component group associated to Σ. We consider the kernel 
J0 of the tropicalization map τ : Jan → Jac(Σ). The reduction J

0 of J0 fits in an exact 
sequence

1 → T → J
0 → B → 1, (2)

where T is a torus and B is an abelian variety over k. More explicitly, we have B =∏
i Jac(Γi), where the Γi are the components in the special fiber of a semistable model 

X for X. These are natural generalizations of concepts in the discretely valued case, where 
the role of the analytic Jacobian is played by the Néron model J /R of the Jacobian. 
This Néron model J has a fiberwise connected component J 0 and the special fiber of 
J 0 fits into an exact sequence similar to the one in Equation (2).

Returning to the analytic side, we now write J0[n] := {P ∈ J [n] : τ(P ) = 0} and 
T [n] := {P ∈ J0[n] : π(P ) = 0}, where P is the reduction of P and π : J0 → B is the 
map from Equation (2). We then have the inclusions
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T [n] ⊂ J0[n] ⊂ J [n]. (3)

We invite the reader to compare this with the material in [15, Exposé IX, §12]. We show 
here that the filtration of J [n] in Equation (3) coincides with the filtration in Equation 
(1) under the isomorphism J [n] � Hom(π(Σ),Z/nZ).

Theorem 5.16. Let πI(Σ) and πD(Σ) be the inertia and decomposition quotients of π(Σ)
respectively. Let n be an integer such that gcd(n, char(k)) = 1. Then the isomorphism 
J [n] � Hom(π(Σ),Z/nZ) induces isomorphisms

J0[n] � Hom(πI(Σ),Z/nZ)

and

T [n] � Hom(πD(Σ),Z/nZ).

The main tool we use in the proof of this theorem is the analytic slope formula [9, 
Theorem 5.15], which says that the local reduced divisor of a function is determined by 
the slopes of its logarithm. This allows us to relate the various properties of n-torsion 
points in the Jacobian to the covering data on the level of metrized complexes. Overall, 
we interpret Theorem 5.16 as giving geometric interpretations for the various torsion 
points in the Jacobian. In line with this thought it now also seems natural to view the 
inertia and decomposition groups as non-abelian generalizations of the connected and 
toric parts of the Jacobian.1

The paper is organized as follows. We start in Section 2.1 by proving certain results 
on residually tame morphisms. We then review the results in [1] on lifting morphisms 
of metrized complexes in Section 2.2. In Section 3, we prove a generalized simultane-
ous semistable reduction theorem for residually tame coverings. We then introduce the 
notion of an enhanced covering of metrized complexes in Section 4.1 and prove the equiv-
alence of categories in Theorem 4.13. In Section 4.2, we give an algebraic definition of 
enhanced coverings and show that this gives rise to an equivalent category. In Section 5.1, 
we introduce various filtrations of the fundamental group of the marked curve (X, D)
using metrically unramified and completely split coverings. We then study the induced 
filtrations of the abelianization of πTame(X, D) in Section 5.2 and prove Theorem 5.16.

This paper uses a great deal of concepts and results from [1] and [10]. For the reader’s 
convenience, we have included a short summary of the definitions and results we need 
from these papers in Sections 2.2 and 5.2. For the full version, we refer the reader to [1, 
Sections 2,4,6 and 7] and [10, Sections 4,5 and 6].

1 The terminology for the toric part is borrowed from [15, Exposé IX, §12], the connected part is called 
the fixed part there.
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1.1. Connections

We give an overview here of other similar results in the literature. An important object 
in the study of degenerations of coverings of curves is that of an admissible covering, 
which allows for certain mild singularities in the source and target. These were introduced 
by Harris and Mumford in [19] to compactify Hurwitz spaces of coverings of the projective 
line. This notion was consequently generalized to coverings of curves of arbitrary genus 
by Mochizuki in [24] in terms of log-admissible coverings. The corresponding stacks are 
often not normal, but if we take the normalization of such a stack then it becomes 
smooth over Z, see [24, Section 3.23]. The points in this normalization can be given a 
moduli-theoretic interpretation as well using twisted stable maps, see [2].

The boundaries of these stacks can be studied using tropical geometry as in [12]. 
It was shown there that ordinary Hurwitz numbers can be calculated in terms of the 
tropical Hurwitz numbers associated to a maximally degenerate tropical curve Σ. Here Σ
is maximally degenerate if its underlying stable graph is trivalent with vertices of weight 
zero, so that it belongs to a top-dimensional cone of the tropical moduli space M trop

g

of tropical curves of genus g. The formula in [12, Theorem 2] unfortunately does not 
extend to coverings of arbitrary tropical curves, as we will see in an explicit example 
in Remark 4.19. Theorem 4.13 explains the discrepancy in this example in terms of 
certain local twist factors, which slightly change the weight factors from [12]. It would 
be interesting to see if similar ideas involving Theorem 4.13 can be used to obtain more 
general explicit tropical formulae for Hurwitz numbers.

For more on fundamental groups in the context of non-archimedean spaces, we re-
fer the reader to [14] and [4]. In [14], one starts with the ordinary fundamental group 
for algebraic coverings and then moves on to topological coverings (we call these com-
pletely split coverings). Our approach lies in between these two, since every topological 
covering is residually tame (see Proposition 5.13), but not every algebraic covering is 
residually tame (see Example 2.2). The statement of Theorem 5.14 appears in various 
guises throughout the literature, see for instance [14, Theorem 2.6]. Our results can be 
seen as a natural generalization where the category of coverings of a graph is replaced 
by the more general category of enhanced tame coverings of a metrized complex Σ.

A paper in this area that is also close to ours is [25]. Here one defines an auxiliary 
fundamental group using the intersection graph of a semistable model X/R defined over a 
discrete valuation ring R, and one then shows (under some restrictions) that its profinite 
completion is isomorphic to the étale fundamental group of an open subscheme of X . 
Since the base ring is fixed, this excludes a large part of what we call metrically ramified
morphisms, essentially by [25, Théoreme 3.7]. In particular, one does not consider all 
extensions that arise from the component group of the Néron model of the Jacobian of 
the curve. Our result is also stronger in another sense, namely that the isomorphism 
of profinite fundamental groups arises from an equivalence of Galois categories. This 
for instance implies that there is a unique Galois closure for an enhanced covering of 
metrized complexes.
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The simultaneous semistable reduction theorem we prove in Theorem 3.3 is a gener-
alization of [22, Theorem 2.3]. There, the covering X ′ → X is assumed to be Galois and 
the Galois group G satisfies the tameness condition p � |G|. In terms of this paper, we 
say that the covering is Galois-topologically tame, see Section 2.1. A possible proof for 
the Galois-topologically tame version of 3.3 was suggested in [13, Section 1.2.1] using 
results by Berkovich. We combine these with the lifting results in [1] to give a full proof 
in the more general residually tame case. We note that various other versions of Theo-
rem 3.3 in the discretely valued case can be found in the literature. For instance, there 
is [24, Section 3.13], [3, Theorem 4.14 and Remark 4.15] and [18, Theorem 1.1]. Here, 
one can use purity of the branch locus and Abhyankar’s Lemma, two results that are 
not available in the non-discrete case.
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The author would also like to thank the University of Groningen, Swansea University and 
Durham University for their hospitality and support while writing this paper. The author 
was supported by UK Research and Innovation under the Future Leaders Fellowship 
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2. Preliminaries

In this section we give a summary of algebraic and analytic results that we will need in 
the rest of the paper. We will moreover recall the notion of a residually tame morphism 
and some well-known facts concerning these. In Section 2.2 we review the lifting results 
in [1] and point out what adjustments have to be made to obtain a Galois category in 
Section 4.

2.1. Topological and residual tameness

We will use the following notation throughout this paper:

• K is a complete, algebraically closed non-archimedean field with non-trivial valuation 
val : K → R ∪ {∞} and value group Λ := val(K∗),

• R is its valuation ring,
• mR is its maximal ideal,
• k = R/mR is its residue field and
• � is an element in K with val(�) > 0.

We use p to denote the characteristic of the residue field (which is allowed to be 
zero). We endow K with the absolute value |f | = e−val(f), where e is Euler’s constant. 
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Throughout the paper, we will impose tameness conditions of the form “p � n” or “n is 
coprime to p”, for n an integer. For p = 0 these are void conditions. A curve X over K is 
a smooth proper scheme of finite type over K of dimension 1. Note that we allow curves 
to be disconnected. A marked curve (X, D) is a curve X/K together with a finite set 
D ⊂ X(K). A morphism of curves is a finite morphism of schemes φ : X ′ → X. We will 
moreover assume morphisms of curves to be separable, in the sense that they are étale 
at every generic point of X ′. If a morphism of curves φ : X ′ → X is dominant, then we 
say that it is a covering of X. If X is connected, then φ is automatically dominant since 
it is finite. A morphism of marked curves (X ′, D′) → (X,D) is a morphism of curves 
that is étale on X ′\D′, where φ−1(D) = D′. We similarly define a covering of marked 
curves. A morphism between two coverings (X ′, D′) → (X, D) and (X ′′, D′′) → (X, D)
is a commutative diagram

(X ′, D′) (X ′′, D′′)

(X,D)

,

where (X ′, D′) → (X ′′, D′′) is a morphism of marked curves. A semistable model for 
a connected curve X/K is a triplet (X , π, ψ), where X is an integral scheme, π : X →
Spec(R) is a flat, proper morphism such that the special fiber Xs is reduced and only has 
ordinary double singularities, and ψ : Xη � X is an isomorphism (here Xη is the generic 
fiber of X ). We will denote a semistable model by X . A strongly semistable model for 
X is a semistable model such that the irreducible components of the special fiber are 
smooth.

Let X be a scheme of finite type over K. The Berkovich analytification Xan of X
is the set of pairs x = (P, valP : K(P ) → R ∪ {∞}), where P ∈ X and valP (·) is a 
valuation on the residue field of P that extends the valuation on K. Note that we can 
also identify points x ∈ Xan with equivalence classes of L-valued points of X, where 
L is a complete valued field extension of K. The completed residue field of a point 
x = (P, valP : K(P ) → R ∪{∞}) is the completion of K(P ) with respect to the induced 
valuation. We denote it by H(x). Its residue field is denoted by H̃(x). There is a natural 
topology on Xan, which for X = Spec(A) is the coarsest topology such that the maps 
Xan → R ∪ {∞} given by (P, valP (·)) 	→ valP (f(P )) for f ∈ A are continuous. Here 
R ∪ {∞} is endowed with the order topology, and f(P ) is the image of f in K(P ). The 
topology on Xan for more general schemes is induced by gluing these for an affine open 
covering of X, see [17, Section 2]. The Berkovich analytification Xan moreover has the 
structure of an analytic space over K, see [6] and [28] for more details. We will only be 
needing good analytic spaces, which are analytic spaces such that every point has an 
affinoid neighborhood. For these spaces, we can freely use the material in both [5] and [6].

We now recall the definition of a semistable vertex set and a skeleton of a curve. A 
semistable vertex set V of a connected curve X is a finite set of points in Xan such 
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that Xan\V is a disjoint union of a set of open disks and finitely many open annuli, 
see [1, Definition 3.8]. A semistable vertex set of a marked connected curve (X, D) is a 
semistable vertex set of X such that the points in D are contained in distinct open disks 
of Xan\V . In particular, we have that Xan\(V ∪D) is a disjoint union of a set of open 
disks and finitely many generalized open annuli. A triangulated marked curve (X, V ∪D)
is a marked curve (X, D) with a fixed semistable vertex set V of (X, D). The skeleton 
of (X, V ∪D) is

Σ = Σ(X,V ∪D) = V ∪D ∪
⋃

Σ(Ai),

where the Σ(Ai) are the skeleta of the finitely many generalized open annuli in 
Xan\(V ∪D), see [1, Section 3.11] and [9, Section 2.3]. A semistable vertex set of a 
curve X corresponds to a unique semistable model X/R of X by [9, Theorem 4.11]. We 
say that V is strongly semistable if the irreducible components of the special fiber of X
are smooth. For arbitrary marked curves, we define semistable vertex sets and skeleta 
by taking disjoint unions.

For any morphism φ : X ′ → X of schemes of finite type over K, we obtain an 
induced morphism φan : X ′ an → Xan of analytic spaces. More explicitly, if we view a 
point x′ ∈ X ′ an as an L-valued point of X ′ for some complete valued field extension 
L ⊃ K, then this gives an induced L-valued point of X by composing Spec(L) → X ′

with φ : X ′ → X. If x′ is mapped to x by φan, then this induces a map of completed 
residue fields

ix′ : H(x) → H(x′).

We use this to define the notion of topological tameness and residual tameness for mor-
phisms of curves X ′ → X.

Definition 2.1. (Topological and residual tameness) Let X be a curve over K and let 
φ : X ′ → X be a morphism of curves with analytification φan : X ′ an → Xan. Let 
x′ ∈ Xan with φan(x′) = x and consider the extension of completed residue fields

ix′ : H(x) → H(x′).

We say that

(1) φan is residually tame at x′ if ix′ is a tame extension of valued fields, see [6, Section 
2.4].2

(2) φan is topologically tame at x′ if [H(x′) : H(x)] is coprime to p := char(k).

2 A tame extension of valued fields is called a moderately ramified extension in [6].
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We say that φ or φan is topologically tame (resp. residually tame) if φan is topologically 
tame (resp. residually tame) at every point of X ′ an. A morphism of marked curves 
(X ′, D′) → (X, D) is topologically (resp. residually) tame if the underlying morphism 
X ′ → X has the corresponding property.

These concepts can also be found in [27], [13] and [6]. If φan is topologically tame at a 
point x′, then it is also residually tame at that point, but the converse is not necessarily 
true, see Example 2.2. For any point x′ at which φan is residually tame and étale, we 
have the following relation by [6, Proposition 2.4.7]:

[H(x′) : H(x)] = [H̃(x′) : H̃(x)][|H(x′)∗| : |H(x)∗|] (4)

The morphism φan is then topologically tame at x′ if both of the indices in Equation (4)
are not divisible by char(k).

Example 2.2. We give an example of a morphism of curves that is residually tame and 
étale, but not topologically tame. Consider an elliptic curve E over C2 with ordinary 
reduction, meaning that there is a model E/R with good reduction such that E [2](F2) �
Z/2Z. Here R is the valuation ring of C2. To be more explicit, consider the elliptic curve 
over C2 given by the equation

y2 + xy = x3 + 1.

The projective homogenization of this equation in P 2
R gives a model E/R with the desired 

reduction. The non-trivial 2-torsion point in the special fiber is given in local coordinates 
by P = (0, 1).

We denote the special fiber of E by E. Since E has a non-trivial 2-torsion point, there 
is a unique étale morphism E

′ → E of degree two up to E-isomorphism. More explicitly, 
it is the isogeny dual to the Frobenius morphism. Using [1, Theorem 7.4], we see that 
there is a lift of the morphism E

′ → E to a finite morphism of semistable models E ′ → E . 
The generic points η′ and η of the special fiber of E ′ and E correspond to type-2 points 
x′ and x of the Berkovich spaces E′ an and Ean. The induced morphism H̃(x) → H̃(x′) is 
just the map of function fields F2(E) → F2(E′), which is separable by construction. We 
thus see that the morphism E′ an → Ean is residually tame over x. The morphism splits 
completely over the other points, so it defines a residually tame covering. Note that it is 
not topologically tame, since [H(x′) : H(x)] = 2.

Remark 2.3. We point out one important difference between the usual notion of tameness 
for non-archimedean fields and the notion of topological tameness. For a finite separable 
extension of complete non-archimedean fields K ⊂ L, the tameness of L implies the 
tameness of the Galois closure L over K. The same is not necessarily true for topological 
tameness. To see this, we first note that the factor [|H(x′)∗| : |H(x)∗|] will not be 
divisible by char(k) = p after passing to the Galois closure, see [6, Section 2.4]. However, 
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the degree [H̃(x′) : H̃(x)] of the extension of reductions can easily become divisible by 
p after passing to the Galois closure. In the proof of Theorem 3.3 we will show that in 
certain important cases the residual tameness does imply the topological tameness of 
the Galois closure.

Definition 2.4. Let X ′ → X be a morphism of connected curves with extension of function 
fields K(X) → K(X ′). Let K(X) be the Galois closure of this extension and let X → X

be the corresponding covering of connected curves. We say that X ′ → X is Galois-
topologically tame if X → X is topologically tame.

Note that this definition was also used in [6, Section 6.3] to compare coverings of 
algebraic curves and coverings of Berkovich spaces. It also implicitly plays a role in [22, 
Theorem 2.3], where the coverings are Galois with Galois group G and p � |G|.

Let X and X be two connected algebraic curves, and let φ : X → X be a Galois 
covering with Galois group G. Let U be the étale locus of φ and let U → U be the étale 
morphism obtained by restricting φ to U . The induced map of Berkovich analytifications 
U

an → Uan is then also étale by [5, Proposition 3.4.6]. We have that U is a G-torsor, so 
that the induced map

U ×U G → U ×U U

is an isomorphism. For any complete valued field L extending K, we then obtain a 
bijection

U(L) ×U(L) G → U(L) ×U(L) U(L). (5)

In other words, the action of G on the L-valued points of U is simply transitive. We use 
this to prove the following.

Proposition 2.5. Let φ : X ′ → X be a morphism of connected curves with Galois closure 
X → X and consider a point x ∈ Xan over which φ

an is étale. Let xi be the points in 
X ′ an lying over x and let x be a point in X

an lying over x. The extension H(x) ⊃ H(x)
is Galois with Galois group Dx/x = {σ ∈ G : σ(x) = x}. The composite of the H(x)-
embeddings H(xi) → H(x) is H(x).

Proof. We first note that the completed residue field H(x) of any x lying over x is 
a finite separable extension of H(x), so that we can view them as subextensions of the 
separable closure L := H(x)sep. We write x(L) for the L-valued point of U corresponding 
to x ∈ Uan, Z for the fiber of φan over x and Z(L) for the corresponding L-valued points 
of U that map to x(L). By the bijectivity in Equation (5), the action of G on Z(L) is 
simply transitive.

By [6, Theorem 3.4.1], there is an equivalence of categories

Fét(X,x) → Fét(H(x)). (6)
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Consider the K-germ (X, Z), which forms an object of the first category in Equation 
(6). There is a natural map G → Aut((X, Z)). By the aforementioned equivalence and 
the fact that the action of G on Z(L) is simply transitive, we easily find that this map 
is bijective. The rest of the proposition now directly follows from standard methods in 
Galois theory; we leave the details to the reader. �
Corollary 2.6. Consider the set-up as in Proposition 2.5 and let H(xi) be a Galois closure 
of H(xi) over H(x). Suppose that p � [H(xi) : H(x)] for every i. Then p � [H(x) : H(x)].

Proof. This follows directly from Proposition 2.5 and the fact that the Galois group of 
a composite of Galois extensions is a quotient of the direct product of the individual 
Galois groups. �
Corollary 2.7. Consider the set-up as in Proposition 2.5 and suppose that φ is residually 
tame. Then the Galois closure φ is residually tame.

Proof. By [6, Section 2.4], we find that if H(xi) ⊃ H(x) is tame, then the Galois closure 
is also tame and any composite of tame extensions is again tame. By Proposition 2.5, 
we then see that H(x) is also tame for any point x lying over x in the Galois closure X
of X ′ over X. �
Lemma 2.8. Suppose that K(X) ⊂ K(X1) ⊂ K(X) and K(X) ⊂ K(X2) ⊂ K(X)
are function field extensions in a fixed algebraic closure K(X) of K(X) corresponding 
to residually tame (resp. Galois-topologically tame) coverings of (X, D). Consider their 
composite M = K(X1) · K(X2). Then M is residually tame (resp. Galois-topologically 
tame).

Proof. By Corollaries 2.6 and 2.7, the Galois closures of both K(Xi)/K(X) are residually 
tame (resp. Galois-topologically tame). It suffices now to show that the composite of the 
Galois closures has the desired property. This composite is Galois, so we can use the 
local results from Proposition 2.5 again. Both cases easily follow from this. �

We now consider the composite MTame (resp. MGTop) of all function fields K(X ′)
corresponding to residually tame (resp. Galois-topologically tame) coverings (X ′, D′) →
(X,D) of a fixed marked curve (X, D). Using Corollary 2.7 and Lemma 2.8, we easily 
see that MTame and MGTop are Galois.

Lemma 2.9. Let K(X) be the function field of a curve X with a fixed set of marked points 
D ⊂ X(K). Consider the composite MTame (resp. MGTop) of all function field extensions 
K(X ′) ⊃ K(X) arising from residually tame (resp. Galois-topologically tame) coverings 
(X ′, D′) → (X,D). Then MTame and MGTop are Galois.
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Proof. Let x be an element of MTame or MGTop and let L be the field generated by x
over K(X). By Lemma 2.8, L is residually tame (resp. Galois-topologically tame) over 
K(X). By Corollary 2.7, we then see that the Galois closure L over K is residually 
tame. For Galois-topologically tame coverings, L is automatically topologically tame. 
The extensions MTame and MGTop are thus Galois. �

We denote the Galois groups of the extensions in Lemma 2.9 by πTame(X, D) and 
πGTop(X, D). We view these as the fundamental groups of suitable Galois categories. 
For more background regarding the notion of a Galois category, we refer the reader to 
[26, Tag 0BMQ], [16], [20] and [11].

Definition 2.10. Let X/K be a connected curve with a set of marked points D. We write 
Cov(X, D) for the category of all finite étale coverings of X\D, or equivalently, the cat-
egory of coverings of the marked curve (X, D). The full subcategories of Cov(X, D)
of all coverings that are residually (resp. Galois-topologically) tame are denoted by 
CovTame(X, D) and CovGTop(X, D) respectively. By Lemma 2.9, these are Galois cate-
gories with profinite fundamental groups πTame(X, D) and πGTop(X, D).

Remark 2.11. Throughout this paper, we suppress the base-points in the profinite fun-
damental groups π(X, x).

2.2. A review of the lifting results in [1]

We now review the notion of a metrized complex, a tame covering of metrized com-
plexes and the lifting results in [1] in the connected case. For disconnected metrized 
complexes, we refer the reader to Remark 2.18. Let Σ be a metric graph, as defined in 
[1, Section 2.1]. The essential vertices of Σ are the points of valence not equal to 2. Let 
Λ be the value group of K. A Λ-metric graph is a metric graph such that the distance 
between two essential vertices lies in Λ. A vertex set V (Σ) of Σ is a finite subset of the 
Λ-points of Σ containing all essential vertices. This also gives rise to an edge set, which 
we denote by E(Σ). To ease notation, we will from now on omit the value group Λ.

The analogue of a covering map for metric graphs is the notion of a finite harmonic 
morphism, see [1, Definitions 2.4 and 2.6]. We recall the harmonicity in this definition. 
Let p′ ∈ Σ′ map to p ∈ Σ under φ : Σ′ → Σ. Let v be a tangent direction at p, which 
is an equivalence class of line segments starting at p. For small enough line segments e, 
we have that the map φ over e is affine linear with dilation factor dv′/v := de′/e. We say 
that φ is harmonic at p′ if the local degree

dp′,v :=
∑

v′ �→v

dv′/v (7)

is independent of the tangent direction v. Here the sum in Equation (7) ranges over all 
tangent directions starting at p′ and mapping to v. The total degree of the harmonic 
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morphism is the sum of the local degrees dp′,v for p′ mapping to p. This is independent of 
the chosen p. A morphism Σ′ → Σ is said to be harmonic if it is surjective and harmonic 
at every p′ ∈ Σ′.

If Σ is a subset of the Berkovich analytification Xan of a curve X/K, then every point 
x ∈ Σ comes with additional algebraic data in the form of a residue field H̃(x). If x is 
a point of type two, then this is the function field of a unique smooth curve Cx/k, and 
the different tangent directions at x in Xan can be identified with the closed points of 
Cx. We can add this algebraic data to Σ as follows.

Definition 2.12. (Metrized complexes) A metrized complex of k-curves (Σ, Cx) consists 
of a metric graph Σ, a vertex set V (Σ) of Σ, a set of smooth proper connected curves 
Cx/k for finite vertices x ∈ V (Σ) and an identification of the edges e adjacent to x with 
closed points ze of Cx. We will also simply call these metrized complexes.

Let (Σ′, Cx′) and (Σ, Cx) be metrized complexes with vertex sets V (Σ′) and V (Σ). 
A morphism (Σ′, Cx′) → (Σ, Cx) of metrized complexes consists of a finite harmonic 
morphism of metric graphs φ : Σ′ → Σ represented by the vertex sets V (Σ′) and V (Σ)
(see [1, Definition 2.4]), together with a collection of finite morphisms of curves

φx′/x : Cx′ → Cx

satisfying the following:

(1) If e′ ∈ E(Σ′) maps to e ∈ E(Σ) under φ, then ze′ maps to ze under φx′/x.
(2) The morphism φx′/x is only ramified at the points ze′ corresponding to the edges e′

adjacent to x′.
(3) The ramification index of ze′ 	→ ze is equal to the dilation factor de′/e.

We say that φ is tame if the maps φx′/x are all tame. This in particular implies that the 
φx′/x are separable.

Example 2.13. Let (X, V ∪ D) be a triangulated marked curve with skeleton Σ as in 
Section 2.1 or [1, Section 3.7]. This skeleton is a metric graph. The residue field H̃(x)
of every x ∈ V is isomorphic to the function field of a smooth proper connected curve 
Cx. We call this the residue curve of x. The tangent directions at x that belong to 
Σ can be identified with closed points on Cx, see [1, Section 3.20]. If e is an edge that 
represents a tangent direction, then we write ze for this closed point. From this we obtain 
a natural metrized complex (Σ, Cx). We call this the metrized complex associated to the 
triangulated marked curve (X, V ∪D).

Remark 2.14. We point out two differences between the definitions given here and the 
ones in [1]. In [1], metric graphs are augmented with a weight function, which gives the 
genera of the local curves Cx. We omitted this here, since the genus is implied by the 
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residue curve. Secondly, we note that the second condition in Definition 2.12 is added so 
that the morphism of metrized complexes is generically étale in the terminology of [1]. 
This implies that the Riemann-Hurwitz formula holds at every finite vertex.

We now recall the notion of a star-shaped curve and the main lifting theorem from 
[1]. A star-shaped curve (U, x) consists of a smooth analytic space U of dimension 1 over 
K with a point x ∈ U such that U\{x} is a disjoint union of open disks and finitely 
many open annuli, see [1, Definition 6.2]. A marked star-shaped curve (U, x, D) consists 
of a star-shaped curve (U, x) together with a set D of points of type 1 such that each 
P ∈ D is contained in a distinct open disk in U\{x}. We will also write U for the marked 
star-shaped curve if the central vertex x and the marked points D are clear from context. 
The space U comes with a natural retraction map τ : U → Σ(U, {x} ∪D), where

Σ(U, {x} ∪D) = {x} ∪D ∪
⋃

Σ(Ai) ∪
⋃

Σ(Bi)

is the skeleton of the marked star-shaped curve, see [1, Section 6.3]. Here the Ai are the 
finitely many open annuli, the Bi are the punctured open disks corresponding to the 
points P ∈ D, and the Σ(Ai) and Σ(Bi) are the skeleta of the Ai and Bi as defined in 
[9, Section 2.3]. We can now state the main local lifting theorem in [1].

Theorem 2.15. Let (U, x, D) be a marked star-shaped curve with residue curve Cx, and 
let C ′ → Cx be a tame covering that is only ramified over the closed points corresponding 
to tangent directions in Σ(U, {x} ∪ D). Then there is a unique lifting (up to a unique 
isomorphism) of C ′ → Cx over k to a tame covering of star-shaped curves over K.

Proof. See [1, Theorem 6.18]. The notion of a tame covering of star-shaped curves can 
be found in [1, Definition 6.12]. �

This result gives us our local analytic models over K, which can be glued to give 
global coverings of algebraic curves. We explain this gluing in detail here, as it will be 
important in Section 4.

Let (Σ, Cx) be the metrized complex associated to a triangulated marked curve (X, V ∪
D). For every x ∈ V , there is an associated star-shaped curve Y (x) ⊂ Xan. For a tame 
covering (Σ′, Cx′) → (Σ, Cx) of metrized complexes, we then obtain a unique set of 
local coverings Y (x′) → Y (x) of star-shaped curves by Theorem 2.15. Write 

−→
E f (Σ)

for the set of finite oriented edges in Σ, and let e = xy be a finite oriented edge with 
corresponding open edge eo. We write τx for the retraction map associated to Y (x), and 
τy for the retraction map associated to Y (y). These are induced by the global retraction 
map τ coming from Σ(X, V ∪D). In particular, we have τ−1

x (eo) = τ−1
y (eo), which is an 

open annulus. We now consider an edge e′ lying over e. We then have the sets τ−1
x′ (e′ o)

and τ−1
y′ (e′ o), which are again open annuli. The induced maps τ−1

x′ (e′ o) → τ−1
x (eo) and 

τ−1
y′ (e′ o) → τ−1

y (eo) are Kummer, in the sense that they are obtained by extracting an 
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de′/e-th root of a parameter of the open annulus τ−1
x (eo) = τ−1

y (eo). As such, there exists 
an isomorphism τ−1

x′ (e′ o) → τ−1
y′ (e′ o) that gives a commutative diagram

τ−1
x′ (e′ o) τ−1

y′ (e′ o)

τ−1
x (eo) τ−1

y (eo).

(8)

These isomorphisms are not unique however, as we can compose any isomorphism with 
an element of Aut(τ−1

y′ (e′ o)/τ−1
y (eo)) � Z/de′/eZ.

Definition 2.16. (Gluing data) Let (Σ, Cx) be the metrized complex associated to a tri-
angulated marked curve (X, V ∪ D). A set of gluing data for a pair of oriented edges 
e′ ∈ −→

E f (Σ′) and e ∈ −→
E f (Σ) with φ(e′) = e is an isomorphism θe′/e : τ−1

x′ (e′ o) → τ−1
y′ (e′ o)

such that the diagram in Equation (8) commutes. A set of gluing data for a tame cover-
ing of metrized complexes consists of a set of gluing data for all pairs of finite oriented 
edges (e′, e) ∈ −→

E f (Σ′) × −→
E f (Σ) with φ(e′) = e. We impose the condition θ−1

e′/e = θe′/e
for edges e = yx and e′ = y′x′ with the opposite orientation. A set of gluing data for a 
tame covering is denoted by g, and the set of all gluing data for a pair (Σ′ → Σ, X) is 
denoted by G(Σ′, X).

Note that there are only finitely many isomorphisms θe′/e for any given oriented edge. 
Indeed, the group Aut(τ−1

y′ (e′ o)/τ−1
y (eo)) � Z/de′/eZ acts on these isomorphisms by 

postcomposition and this action is simply transitive. In other words, the set of θe′/e is 
a Z/de′/eZ-torsor. We can trivialize this torsor by fixing an initial isomorphism, which 
identifies the set of such isomorphisms θe′/e with Z/de′/eZ. We will see an algebraic 
version of this in Section 4.2.

Remark 2.17. In [1, Section 7], a set of gluing data is defined to be a set of isomorphisms

θe′/e : τ−1
x′ (e′ o) → τ−1

y′ (e′ o)

such that θ−1
e′/e = θe′/e for the edges e′ = y′x′ and e = yx with the opposite direction. This 

however gives us the possibility to compose any isomorphism with an arbitrary automor-
phism of the annulus in question. For instance, for any u ∈ R∗, we obtain a non-trivial 
automorphism by multiplying a parameter t by u. The elements in Aut(τ−1

y′ (e′ o)/τ−1
y (eo))

can be seen as examples of this by taking u to be a primitive n-th root of unity. We now 
see that the annuli τ−1

x′ (e′ o) and τ−1
y′ (e′ o) afford infinitely many distinct automorphisms 

and this implies that the set of gluing data is infinite. If we however require the corre-
sponding diagrams to be commutative as here, then the set of gluing data is finite. This 
seems to be implicit in the considerations in [1], as the sets of gluing data obtained in 
the examples there are finite and equal to the ones obtained here.
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Remark 2.18. To obtain a Galois category of tropical coverings, we have to modify the 
definitions given in this section to allow for disconnected metrized complexes and mor-
phisms between these. We leave it to the reader to write out their formal definitions. The 
most important modification here is that finite harmonic morphisms are not required to 
be surjective anymore. We however do require these morphisms to be surjective on the 
connected components, so that we retrieve the original definition from [1] in the con-
nected case. If φ : Σ′ → Σ is surjective and tame, then we say that φ is a tame covering 
of Σ. This is analogous to our definition of coverings of curves, see Section 2.1.

3. A simultaneous semistable reduction theorem for tame coverings

In this section, we prove a simultaneous semistable reduction theorem for residually 
tame coverings of a marked algebraic curve (X, D). This theorem will be used in Section 4
to construct a functor from the category of residually tame coverings of (X, D) to the 
category of tame coverings of a metrized complex Σ associated to (X, D).

We first recall the notion of a Galois covering in the context of analytic spaces.

Definition 3.1. Let U, V be analytic spaces, let φ : U → V be a finite étale morphism 
and let G be a finite group acting on U through V -automorphisms. We say that φ is a 
Galois if φ is a G-torsor, so that the map

U ×V G → U ×V U

is an isomorphism. Note that since φ is finite étale, it is already locally trivial.

We now have the following important theorem by Berkovich.

Theorem 3.2. (Topologically tame finite étale Galois coverings of open disks and annuli)

(1) Let U be an open disk and let ψ : V → U be a topologically tame Galois covering. 
Then V is a disjoint union of open disks.

(2) Let U be an open annulus, let V be connected and let V → U be a topologically tame 
Galois covering. Then there exist isomorphisms S(a)+ � U and V � S+(a1/n) for 
a ∈ K such that the composed map is given by t 	→ tn. Here S(a)+ and S+(a1/n)
are standard open annuli as in [1, Section 3.1].

Proof. This follows from [6, Theorems 6.3.2 and 6.3.5] by writing U as a union of closed 
disks or closed annuli. �
Theorem 3.3. Let (X ′, D′) → (X, D) be a residually tame covering of marked curves. 
Then the inverse image of any (strongly) semistable vertex set V of (X, D) is a (strongly) 
semistable vertex set for (X ′, D′).
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Proof. It suffices to prove the connected case. Let φ : X ′ → X be the morphism of curves 
and let φ : X → X be its Galois closure with Galois group G. By basic ramification 
theory, we have that D is again the branch locus of φ. We write D = φ

−1(D) for 
the ramification locus. Throughout the proof, we will denote the analytified morphisms 
X ′ an → Xan and X

an → Xan by φ and φ again to ease notation. Let U be a connected 
component of Xan\V that is an open annulus or an open disk. We have that φ−1(U) → U

is a G-torsor, so that it is Galois. This also implies that the covering on any connected 
component of φ−1(U) is Galois, with Galois group the stabilizer of the component.

Suppose now that φ−1(U) → U is topologically tame. We then conclude by Theo-
rem 3.2 that φ−1(U) is a disjoint union of open annuli or open disks. On the annuli, 
the covering is Kummer and on the open disks the covering is trivial. This then also 
implies that the coverings φ−1(U) → U are of the above type. If we now consider the 
inverse image V ′ of the semistable vertex set V of Xan in X ′ an, then we see that the 
complement X ′ an\V ′ is a disjoint union of open annuli and open disks. In other words, 
V ′ is a semistable vertex set for X ′ an. The strongly semistable case also follows, since the 
induced morphism of metrized complexes from Proposition [1, Corollary 4.28] is finite, 
and thus Σ is loopless if and only if Σ′ is loopless.

We now show that φ is topologically tame over U . We first note that φ and φ are 
topologically tame over any type-3 point. Indeed, this follows from the fact that for any 
point x′ ∈ X ′ an lying over x, we have that H(x) ⊂ H(x′) is residually tame if and only 
if p � [|H(x′)∗| : |H(x)∗|]. The latter in turn follows from H̃(x′) = H̃(x) = K and [6, 
Proposition 2.4.7]. We conclude using Lemma 2.6 that φ is topologically tame at any 
type-3 point.

Suppose now for a contradiction that φ is not topologically tame over some type-2
point x ∈ U and let x be a point where φ fails to be topologically tame. We will do the 
case where U is an open annulus, the open disk case is similar. We write x′ for its image 
in X ′ an. By the results in [1], we can find a pair of skeleta Σ′

1 and Σ1 of X ′ an and Xan

respectively such that x′ ∈ Σ′
1, x ∈ Σ1 and φ−1(Σ1) = Σ′

1. This in turn induces a finite 
morphism of triangulated marked curves (X ′, V ′

1 ∪D′) → (X,V1 ∪D). From the residual 
tameness of φ, we conclude that the morphism of triangulated marked curves is a tame 
covering.

Consider the retraction morphism τΣ : Xan → Σ with y := τΣ(x). Note that the set of 
points in Σ1 that retract to y under τΣ is a tree. For any type-2 point in the vertex set of 
Σ1 that retracts to y (and not equal to y), we claim that the covering is trivial. Indeed, 
we can prove this inductively by starting at the leaf-vertices of Σ1 retracting to y. Let 
z be such a leaf-vertex and choose a tangent direction outside Σ1. Since φ is piecewise 
linear, we can find for any such tangent direction a geodesic l′ : [a, b] → X ′ an such that 
the induced map l : [am, bm] → Xan is a geodesic, see [1, Definitions 4.4 and 4.21]. Here 
m is the dilation factor. Suppose now that m is non-trivial in a direction outside Σ1. 
Note that m is equal to the local degree [H(w′) : H(w′)] for a pair of points in a geodesic 
representing the tangent direction, see [9, Propositions 2.2.1(2) and 2.5(1)]. A geodesic 
representing this direction contains points of type 2 and we obtain a contradiction using 
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[1, Proposition 4.35]. Since z is a leaf-vertex, there is only one direction in which the 
dilation factor can be non-trivial. But then the dilation factor has to be one, since this 
would otherwise give a tame covering of P 1 ramified over only one point by [1, Theorem 
4.23(2)], a contradiction. We conclude that φ is split over z. We then inductively continue 
this argument and see that φ is split over all type-2 points retracting to y and not equal 
to y. In particular, we must have x = y = τΣ(x), which implies that x is a type-2 point 
in an edge of Σ.

We now find that there are only two directions in which the dilation factor can be 
non-trivial. Indeed, by the previous argument the tangent directions belonging to Σ1 are 
covered, and the covering is split over the other tangent directions. The tame covering 
of residue curves Cx′ → Cx = P 1 is then ramified over exactly two points. This implies 
that Cx′ → P 1 is a Kummer covering, of degree equal to the ramification degree in the 
two directions. This ramification degree is prime to p, since we can detect this using 
type-3 points. We conclude that H(x) → H(x′) is Galois of degree coprime to p. By 
doing this for every point x′ in X ′ an lying over x, we find that all the corresponding 
morphisms H(x) → H(x′) for x′ lying over x are Galois of degree coprime to p. Using 
Lemma 2.5, we conclude that the degree of H(x) over H(x) is coprime to p for any x over 
x, a contradiction. We conclude that φ is topologically tame over any type-2 point in U . 
Since the map φ is piecewise linear, we then also easily conclude that φ is topologically 
tame at points of type 1 and 4 in U . �
Remark 3.4. For Galois-topologically tame coverings, the material in [1] on lifting mor-
phisms to skeleta is not necessary, as we are done after the first paragraph of the proof. 
Since the theorems by Berkovich do not rely on any semistable reduction theorem, this 
gives a stand-alone proof of this theorem. The material in [1] on lifting morphisms how-
ever does rely on the semistable reduction theorem, so the second part does not give a 
stand-alone proof of this theorem for residually tame coverings. Finally, we note that the 
conclusion in the proof of Theorem 3.3 is similar to that of [27, Lemma 3.4.2]. Namely, 
if we have a residually tame morphism together with a skeleton of that morphism, then 
this morphism splits outside the skeleton.

Remark 3.5. Theorem 3.3 can be paraphrased in terms of ordinary algebraic geometry 
as follows. We first define a (strongly) semistable model for a marked curve (X, D) to be 
a strongly semistable model X such that D is mapped injectively to the smooth locus 
of Xs under the canonical reduction map X(K) → Xs(k) assigned to X . In terms of this 
language, Theorem 3.3 now says the following:

Let φ : X ′ → X be a residually tame covering of smooth proper connected algebraic 
curves over K and let X be a (strongly) semistable model for (X, D), where D is the 
branch locus of φ. Let X ′ be the normalization of X in the function field K(X ′). Then 
X ′ is (strongly) semistable and X ′ → X is a finite morphism of (strongly) semistable 
models over R.
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This translated version quickly follows from the results in [1, Section 5] and the fact 
that semistable models are normal.

4. Enhanced tame coverings of metrized complexes

In this section we introduce the category of enhanced tame coverings of a metrized 
complex. These coverings consist of a tame covering of a metrized complex, together 
with a set of gluing data. In Section 4.1, we show that the category of enhanced tame 
coverings of a metrized complex is equivalent to the category of residually tame coverings 
of a marked curve. In Section 4.2, we show that we can give a purely algebraic definition 
of the category of enhanced tame coverings of a metrized complex. We conclude with 
several examples.

4.1. Enhanced tame coverings

In this section we define the category of enhanced coverings of a metrized complex 
and prove Theorem 4.13.

Remark 4.1. Throughout this section, we fix a triangulated marked curve (X, V ∪ D)
whose underlying curve X is connected. We assume furthermore that V is strongly 
semistable, so that the associated metrized complex Σ is connected and loopless. We 
note that the metrized complexes Σ′ for tame coverings Σ′ → Σ are not necessarily 
connected.

We recall the set-up given before Definition 2.16. Let (X, V ∪ D) and Σ be as in 
Remark 4.1 and let φ : Σ′ → Σ be a tame covering of metrized complexes. We write 
Y (x) and Y (y) for the star-shaped curves corresponding to the endpoints of a finite 
oriented edge e = xy in Σ with open edge eo. By [1, Theorem 6.18], the morphisms of 
residue curves Cx′ → Cx and Cy′ → Cy lift to unique tame coverings of star-shaped 
curves Y (x′) → Y (x) and Y (y′) → Y (y). We denote the corresponding retraction maps 
of Y (x′) and Y (y′) by τx′ and τy′ . A set of gluing data g for φ consists of a set of 
τ−1(eo)-isomorphisms θe′/e : τ−1

x′ (e′ o) → τ−1
y′ (e′ o) for all finite oriented edges e′ 	→ e, see 

Definition 2.16. These isomorphisms are moreover required to satisfy θ−1
e′/e = θe′/e for 

the edges e′ and e with the opposite orientation. We emphasize here that for every pair 
e′ 	→ e, there are exactly de′/e of these isomorphisms θe′/e.

Definition 4.2. (Enhanced tame coverings) An enhanced tame covering of a metrized 
complex Σ associated to a triangulated marked curve (X, V ∪D) is a pair φg := (φ, g)
consisting of:

(1) A tame covering φ : Σ′ → Σ of metrized complexes of k-curves,
(2) An element g of the set of gluing data G(Σ′, X), see Definition 2.16.
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We will also refer to such a pair as an enhanced covering of Σ.

Definition 4.3. (Morphisms of enhanced coverings) Let φ1,g1 and φ2,g2 be two enhanced 
coverings of a metrized complex Σ. Write φi : Σi → Σ for the morphisms of metrized 
complexes and θei,i for the isomorphisms arising from the gluing data. A morphism 
φ1,g1 → φ2,g2 is a morphism of metrized complexes ψ : Σ1 → Σ2 satisfying the following 
two properties:

(1) The diagram

Σ1 Σ2

Σ

ψ

φ1
φ2

is commutative.
(2) The induced diagram

τ−1
x (eo1) τ−1

y (eo1)

τ−1
ψ(x)(e

o
2) τ−1

ψ(y)(e
o
2)

τ−1(eo) τ−1(eo)

θe1,1

ψ ψ

θe2,2

φ2 φ2

id

commutes for every edge e1 ∈ Σ1 with images e2 ∈ Σ2 and e ∈ Σ. Here we again write 
ψ and φ2 for the induced unique maps (see [1, Theorem 6.18]) on the corresponding 
star-shaped curves (see [1, Definition 6.2]) and the restrictions of these maps to 
subannuli. Two morphisms of enhanced coverings are composed by composing the 
morphisms of metrized complexes and the maps of open annuli.

Remark 4.4. The composition of the maps ψ : τ−1
x (eo1) → τ−1

ψ(x)(e
o
2) and φ2 : τ−1

ψ(x)(e
o
2) →

τ−1(eo) is equal to φ1 : τ−1
x (eo1) → τ−1(eo). Indeed, this follows from the commutativity 

in the first condition of Definition 4.3, together with the fact that the maps on the 
star-shaped curves are uniquely induced from the maps of metrized complexes.

Remark 4.5. We note that any morphism Σ1 → Σ2 of enhanced tame coverings of Σ
is automatically tame. Indeed, any subextension of a separable extension is separable 
(which gives tameness at the vertices) and ramification degrees are multiplicative in 
towers (which gives tameness at the edges).
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Remark 4.6. We will occasionally denote the commutative diagram of metrized com-
plexes in Definition 4.3 by Σ1 → Σ2 → Σ to ease notation.

Definition 4.7. (Category of enhanced tame coverings) Let Σ be the metrized complex 
associated to a triangulated marked curve (X, V ∪D). The category CovG(Σ) of enhanced 
tame coverings of Σ is defined as follows:

(1) The objects of CovG(Σ) are enhanced tame coverings of Σ, see Definition 4.2.
(2) The morphisms of CovG(Σ) are morphisms of enhanced coverings, see Definition 4.3.

We will also call this the category of enhanced coverings of Σ.

Example 4.8. Let us examine [1, Example 7.8] from the viewpoint of enhanced coverings. 
The set-up is as follows. We assume that char(k) �= 2 and consider the Tate curve E, 
given by K∗/〈q〉 for some q ∈ K∗ with v(q) > 0. Let Σ′ → Σ be the degree 2 covering 
of metrized complexes as in [1, Example 7.8]. The gluing data G(Σ′, E) of the covering 
Σ′ → Σ consists of four elements, corresponding to a choice of an automorphism per 
edge. The automorphism group of Σ′ → Σ in terms of metrized complexes has order 
four, but if we choose a set of gluing data g and consider the corresponding enhanced 
automorphism group, then it has order two.

Our goal for the remainder of this section is to show that CovG(Σ) is equivalent to 
CovTame(X, D). To that end, we first show that the category of enhanced coverings is 
equivalent to an intermediate category of tame coverings of triangulated marked curves, 
see [1, Definition 3.8]. We then show that this category is equivalent to the category of 
residually tame coverings of (X, D), which gives the final equivalence of categories in 
Theorem 4.13.

We start by creating a functor from the category of tame coverings of triangulated 
marked curves to the category of enhanced coverings. Let φ : (X ′, V ′∪D′) → (X,V ∪D)
be a tame covering of triangulated marked curves. The inverse image Σ′ := (φan)−1(Σ) is 
then a skeleton of (X ′, D′) and by [1, Corollary 4.28] we obtain a natural tame covering 
of metrized complexes Σ′ → Σ. In terms of that paper, we say that the morphism φ is a 
lifting of Σ′ → Σ. Let x ∈ V and let Y (x) be the canonical star-shaped neighborhood of 
x, as in [1, Sections 6 and 7]. We then consider the inverse image of Y (x) in X ′ an. This 
inverse image is a disjoint union of star-shaped curves Y (x′) for x′ ∈ X ′ an mapping to x. 
We similarly write y, Y (y) and Y (y′) for a vertex y adjacent to x. For any two vertices 
x′ and y′ lying above x and y respectively, we consider the intersection Y (x′) ∩ Y (y′), 
which is a disjoint union of open edges: Y (x′) ∩ Y (y′) �

∐
τ ′ −1(e′ o). Here the disjoint 

union is over all edges e′ that contain x′ and y′ and τ ′ is the retraction map on X ′ an. 
Since the retraction maps τx′ and τy′ on the star-shaped curves Y (x′) and Y (y′) are 
the restrictions of the retraction map τ ′, we then have canonical τ−1(eo)-isomorphisms 
τ−1
x′ (e′ o) � τ−1(e′ o) � τ−1

y′ (e′ o), which gives a set of gluing data g for Σ′ → Σ. We 
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thus have an associated enhanced covering φg for φ. Furthermore, suppose that we have 
a morphism of tame coverings of a triangulated marked curve (X, V ∪ D), which is a 
commutative diagram

(X1, V1 ∪D1) (X2, V2 ∪D2)

(X,V ∪D)

ψ

φ1
φ2

.

This in turn comes from a commutative diagram of analytifications

Xan
1 Xan

2

Xan

ψan

φan
1

φan
2

.

Using [1, Corollary 4.28], we see that this induces a commutative diagram of metrized 
complexes

(φan
1 )−1(Σ) (φan

2 )−1(Σ)

Σ

ψ

φan
1

φan
2

.

Since the diagram of analytifications is commutative, we directly obtain that the gluing 
data defined above commutes with ψan and the φan

i by considering the canonical opens 
Y (xi), Y (yi) and Y (xi) ∩ Y (yi) in Xan

i . We thus see that we have an induced morphism 
of enhanced tame coverings of Σ. In other words, we have a functor Ftri from the cate-
gory Tame(X, V ∪D) of tame coverings of a triangulated marked curve to the category 
CovG(Σ) of enhanced tame coverings of Σ.

We now compare morphisms in these categories Tame(X, V ∪ D) and CovG(Σ). To 
ease notation, we adopt the notation Xi := (Xi, Vi ∪ Di) and X := (X, V ∪ D) for 
triangulated marked curves in this lemma.

Lemma 4.9. Let φi : Xi → X be tame coverings of a triangulated marked curve X with 
enhanced tame coverings Σi → Σ arising from the functor Ftri constructed above. Then

HomX(X1, X2) � HomΣ(Σ1,Σ2).

Proof. We first show the injectivity of the induced map. Suppose that there are two 
coverings ψi that map to the same morphism of enhanced coverings. For every pair of 
vertices x1 and x2 with ψi(x1) = x2, we have a unique extension of the algebraic covering 
Cx1 → Cx2 to a covering of star-shaped curves Y (x1) → Y (x2) by [1, Theorem 6.18]. 
But these open neighborhoods cover Xan

1 and Xan
2 , so we conclude that ψ1 = ψ2.
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Let ψ : Σ1 → Σ2 → Σ be a morphism of enhanced tame coverings. We write Y (xi)
for the star shaped curves corresponding to the vertices x1 and x2, where x1 maps to x2. 
Similarly, we write Y (yi) for the star-shaped curves corresponding to adjacent vertices. 
The commutativity of the diagram in the second condition of Definition 4.3 then implies 
that the local morphisms Y (x1) → Y (x2) → Y (x) and Y (y1) → Y (y2) → Y (y) lift to a 
well-defined global morphism on their union. But the union over all vertices is exactly 
Xan

i , so we conclude that ψ lifts to coverings Xan
1 → Xan

2 → Xan. �
Corollary 4.10. Let Tame(X, V ∪D) be the category of tame coverings of a triangulated 
marked curve (X, V ∪D) and let CovG(Σ) be the category of enhanced tame coverings. 
Then Ftri induces an equivalence of categories.

Proof. By Lemma 4.9, we see that the functor Ftri is fully faithful. For any enhanced 
covering (Σ′ → Σ, g), we glue the local coverings on the star-shaped curves using g
to obtain a smooth proper analytic space X ′ an with a covering X ′ an → Xan as in [1, 
Theorem 7.4]. This comes from an algebraic covering X ′ → X and we easily verify that 
it has the correct properties. �

Consider the category CovTame(X, D) of residually tame coverings of the marked curve 
(X, D). Recall from Remark 4.1 that we have a fixed strongly semistable vertex set V
for (X, D). Using Theorem 3.3, we see that the inverse image V ′ = (φan)−1(V ) for any 
residually tame covering φ : X ′ → X is a strongly semistable vertex set of (X ′, D′), 
where D′ is the inverse image of D. We moreover have the following:

Lemma 4.11. Let V be a fixed strongly semistable vertex set for (X, D) and let (X ′, D′) →
(X,D) be a residually tame étale covering. Let φtri : (X ′, V ′ ∪D′) → (X,V ∪D) be the 
finite morphism of triangulated marked curves induced from Theorem 3.3. Then φtri is 
a tame covering of triangulated marked curves. This induces a functor from the category 
of residually tame coverings of (X, D) to the category of tame coverings of (X, V ∪D).

Proof. Let x′ be a type-2 point in X ′ an with φan(x′) = x. Then by [6, Proposition 2.4.7], 
the extension of residue fields H̃(x′) ⊃ H̃(x) is separable. As in the proof of Theorem 3.3, 
the expansion factor of an edge e is just the local degree [H(x′) : H(x)] for any point 
in e. We then take a point of type 3 and conclude that the degree is not divisible by p. 
This implies that φtri is a tame covering. We leave the functoriality to the reader. �
Definition 4.12. (Tropicalization functor) Let FΣ : CovTame(X, D) → CovG(Σ) be the 
composite of the functors in Corollary 4.10 and Lemma 4.11. We call this the tropical-
ization functor associated to Σ.

Theorem 4.13. Let FΣ be the tropicalization functor from the category of residually tame 
coverings of a marked curve (X, D) to the category of enhanced tame coverings of Σ.
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Then FΣ induces an equivalence of categories

CovTame(X,D) � CovG(Σ).

Proof. Using Lemma 4.10, we see that we only have to show that the functor from 
CovTame(X, D) to Tame(X, V ∪D) defines an equivalence. To do this, it suffices to show 
that any tame covering of triangulated marked curves is also residually tame. By [1, 
Proposition 4.35] any tame covering is an isomorphism outside the skeleton Σ′. At the 
vertices of Σ′, it defines a separable covering, so these give tame extensions. For an edge 
e′ in Σ′, the covering is piecewise linear, with dilation factor coprime to p. As in the 
proof of Theorem 3.3, this dilation factor is the degree [H(x′) : H(x)] for the points x′

in e′. This proves that φ is residually tame. �
4.2. An algebraic definition of enhanced coverings

In this section we give an algebraic definition of enhanced coverings, without any 
reference to Berkovich spaces. Consider a metrized complex of k-curves Σ. For every 
vertex x ∈ V (Σ), the residue curve Cx over k is smooth and proper. Every adjacent edge 
e = xy then corresponds to a pair of closed points ze,x and ze,y of Cx and Cy respectively. 
We will think of e as an oriented edge, and we will write e = yx for the edge with the 
reverse orientation. Since Cx is smooth over k, we have

ÔCx,ze,x � k[[u]]

and similarly for ze,y and Cy. In particular we find that the completed local rings ÔCx,ze,x

and ÔCy,ze,y are isomorphic. There is no canonical isomorphism however, so we are led 
to the following definition.

Definition 4.14. (Algebraic gluing sets) Let −→E f (Σ) be the set of finite oriented edges of 
Σ. An algebraic set of gluing data for Σ is a set of isomorphisms

ψΣ,e : ÔCx,ze,x → ÔCy,ze,y

for e ∈ −→
E f (Σ). We impose the condition ψΣ,e = ψ−1

Σ,e for the edge e = yx with the 
reverse orientation. A pair (Σ, ψΣ,e) is called an algebraically glued metrized complex. If 
Σ is clear from context, then we denote ψΣ,e by ψe.

Definition 4.15. (Algebraically enhanced coverings) Let (Σ′, ψe′) and (Σ, ψe) be two alge-
braically glued metrized complexes. An algebraically enhanced covering φ : (Σ′, ψe′) →
(Σ, ψe) is a tame covering of metrized complexes Σ′ → Σ such that for every oriented 
edge e′ = x′y′ mapping to the oriented edge e = xy the following diagram commutes
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ÔCx′ ,ze′,x′ ÔCy′ ,ze′,y′

ÔCx,ze,x ÔCy,ze,y

.

Here the vertical maps ÔCx,ze,x → ÔCx′ ,ze′,x′ and ÔCy,ze,y → ÔCy′ ,ze′,y′ are induced from 
the morphism of metrized complexes, and the horizontal maps are induced by ψe and 
ψe′ . The category of algebraically enhanced coverings of (Σ, ψe) has as its objects the 
algebraically enhanced coverings of (Σ, ψe). Morphisms between algebraically enhanced 
coverings are defined as in Definition 4.3. For a given tame covering of metrized complexes 
Σ′ → Σ and a fixed algebraic gluing set ψe for Σ, the set of algebraic gluing data for the 
pair (Σ′ → Σ, ψe) is the set of all gluing data ψe′ for Σ′ that induce an algebraically 
enhanced covering of (Σ, ψe). This set is denoted by Ga(Σ′, ψe).

Remark 4.16. If the above diagram commutes for a given pair of oriented edges e′ and 
e, then the corresponding diagram for e′ and e also automatically commutes by the 
condition on the inverses in Definition 4.14.

We now argue that the set of algebraic gluing data Ga(Σ′, ψe) for a given mor-
phism Σ′ → Σ of metrized complexes is finite. In fact, consider the finite set ∏

e′∈E(Σ′) Z/de′/e(φ)Z. We can identify Ga(Σ′, ψe) with this set by noting that any two 

isomorphisms for a given oriented edge e′ are related by an automorphism of ÔCx′ ,ze,x′

over ÔCx,ze,x . This automorphism group is just Z/de′/e(φ)Z, so we only have to note 
that these isomorphisms in fact exist. This follows from the fact that there is exactly one 
tamely ramified extension of ÔCx,ze,x � k[[u]] of any given degree coprime to char(k). 
More abstractly, we have that the set of isomorphisms in Definition 4.15 for a given pair 
of edges e′ and e is a Z/de′/e(φ)Z-torsor, and we can trivialize this torsor by choosing a 
specific isomorphism.

Suppose that we are given a triangulated marked curve (X, V ∪ D) with metrized 
complex Σ and a tame covering of metrized complexes Σ′ → Σ. As with the algebraic 
gluing data, the analytic gluing data in Definition 2.16 can be trivialized by choosing 
initial isomorphisms. Moreover, the resulting analytic trivializations are isomorphic to 
the algebraic trivializations by inspection. We conclude that the corresponding torsors 
in the algebraic and analytic context are isomorphic. We note however that this isomor-
phism is not unique, as we for instance can twist by automorphisms of the Z/de′/e(φ)Z. 
We can nonetheless fix a set of isomorphisms for all tame coverings Σ′ → Σ, and all 
edges of the Σ′. By the way that morphisms were defined in Definitions 4.3 and 4.15, we 
then directly find an equivalence of categories. The category of enhanced coverings can 
thus be defined without any reference to Berkovich spaces.

Example 4.17. We determine all connected degree two enhanced coverings of the metrized 
complex in Fig. 1, where char(k) �= 2 and the vertex of genus one corresponds to an 
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1

1

1

2 1

Fig. 1. The enhanced connected coverings of degree two of a metrized complex of genus 2 in Example 4.17. 
The multiplicities from left to right are 8, 1 and 6. These give a total of 15 different coverings of the base 
complex Σ.

elliptic curve E/k. Note that the genus of the complex is 2, so a degree-2 covering 
has genus 3 by the Riemann-Hurwitz formula. The dilation factor de′/e(φ) over the 
edges is either 1 or 2. If one of them is 2, then there is graph-theoretically only one 
option, see Fig. 1. On the vertex of genus 1, this induces an étale degree two covering 
of E\{p1, p2}. Using Grothendieck’s results on the tame fundamental group of a curve 
over a field [16, Corollaire 2.12], one then sees that 4 of these coverings C → E\{p1, p2}
are ramified over at least one pi. Each of these maps is ramified over the edges and the 
corresponding gluing data can be identified with Z/2Z × Z/2Z. These give rise to two 
distinct isomorphism classes of enhanced coverings, as in the case of an elliptic curve 
with multiplicative reduction. For each of the four coverings above we thus have two 
liftings, giving 8 coverings in total that are ramified over at least one edge. We call this 
the multiplicity of the combinatorial type on the left in Fig. 1.

If the dilation factor is 1 on both edges, then there are graph-theoretically two options 
for a degree two covering. It is either split over the vertex of genus one or it is not. If it 
is not split, then it is defined by a non-trivial étale covering of degree two of E and there 
are exactly 3 such coverings. We still have some freedom in identifying the closed points 
corresponding to the edges however. This gives a total of four options per covering of E. 
Using the non-trivial automorphism of E′ over E, we find that out of the four options, 
only two are non-isomorphic. In total, we thus obtain 6 of these coverings. Lastly, suppose 
that the covering is completely split over both the edges and the vertices. There is then 
only one option, namely the graph-theoretical covering of degree two of the circle. In 
total, we find 15 different non-trivial coverings of degree two.

Example 4.18. Consider the covering Σ′ → Σ depicted in Fig. 2, where the five edges 
all have dilation factor 3. We can turn this into a tame covering of metrized complexes 
by adding appropriate Z/3Z-coverings of the projective line. We thus have a covering of 
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1 1

Fig. 2. A covering of degree three that is locally a Z/3Z-covering, but not globally.

degree three that is locally a Z/3Z-covering. It does not lift to a global Z/3Z-covering 
however. Indeed, consider a collection of automorphisms over the vertices. Note that the 
induced automorphisms of ÔP1,xi

over the two closed points xi on the left are inverse to 
each other, whereas the automorphisms on the ÔE,yi

for the two corresponding points 
yi are not (since otherwise the morphism E → P 1 would be étale at the third point 
corresponding to the bridge). In other words, we do not obtain a commutative diagram as 
in the definition of gluing data and we thus do not have an automorphism of order three. 
Note that the induced condition on the gluing data for a loop is completely analogous 
to the balancing condition found in the theory of admissible coverings, see [2, Definition 
4.3.1].

Another way to see the non-realizability as a Z/3Z-covering is using the material 
in Section 5.2. Namely, this covering would correspond to a 3-torsion point D in the 
tropical Jacobian of Σ whose associated piecewise linear function φ with 3D = div(φ)
has slope not divisible by 3 on all the edges. This does not exist, so this covering is not 
realizable as a Z/3Z-covering. We now find that this covering has a non-trivial Galois 
closure Σ → Σ with Galois group S3. Moreover, the intermediate degree-two morphism 
ΣQ → Σ is a topological covering of Σ by the imposed conditions on Σ′ → Σ, and the 
induced covering Σ → ΣQ corresponds to a non-trivial torsion point of order three in 
the tropical Jacobian of ΣQ by the considerations in Section 5.2.

Remark 4.19. We illustrate the difference between algebraically enhanced coverings, ad-
missible coverings (see [19], [24] and [12]), and twisted stable maps (see [2]). We first 
note that the different notions of an admissible covering in the papers above are equiv-
alent, essentially by [24, Section 3.11]. We write Hg′→g,d for the corresponding stack of 
unramified admissible coverings of degree d between curves of genera g′ and g. Here by 
unramified, we mean that the coverings are unramified over the smooth locus, so that the 
ramification pattern μ in the terminology of [12] is trivial. The stack Hg′→g,d is usually 
not normal at the boundary strata, but its normalization is smooth over Z, see [19, Proof 
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of Theorem 4] and [24, Section 3.23]. In [2] the limit objects in the normalization were 
given a modular interpretation using twisted stable maps.

To see the difference between our notion of an algebraically enhanced covering and 
the notion of an admissible covering, consider the Hurwitz stack H3→2,2 of unramified 
admissible Z/2Z-coverings of curves of genus two. Since we are dealing with G-coverings 
for a finite group G, the notions above all give the same stack, see [2, Theorem 4.3.2]. Note 
that specific strata of this stack were also considered in Example 4.17. Let H3→2,2 → M2
be the target map, sending a covering X ′ → X to X . We now fix a k-valued point of M2, 
corresponding to a stable genus-two curve X over k. If X is smooth, then there are 15
different coverings in H3→2,2 lying over the point corresponding to X. In the boundary 
strata, this number is often lower. For instance, the 8 coverings on the left in Fig. 1 only 
give 4 different admissible coverings.

This discrepancy is due to the fact that we are only considering set-theoretic fibers 
here. To address this problem, various weights for the coverings were introduced in [12, 
Definition 22] (we called these multiplicities in Example 4.17). By attaching this weight 
�(Θ) to every combinatorial type Θ, one obtains the right Hurwitz number for maximally 
degenerate tropical coverings,3 see [12, Theorem 2]. In the proof of that theorem, the 
authors work with the completed local ring rather than the fiber to calculate the right 
multiplicities. Our set-up is similar, in that algebraically enhanced coverings allow us to 
work over an infinitesimal neighborhood rather than the fiber.

A difference between the two approaches is that algebraically enhanced coverings give 
the right multiplicities for all types of curves in the boundary (and not just maximally 
degenerate curves). In fact, if we use the weight factors from [12] on Example 4.17, then 
we obtain 21/4, rather than 15/2. Here the two coverings on the left in Fig. 1 have 
the correct weights, but the covering on the right does not, as one obtains 3/4 rather 
than 6/2. To adjust the formula in this case, first note that both the graph-theoretical 
automorphism of the covering and the algebraic automorphism of the vertex give a factor 
of 1/2 with the formula in [12], even though only one should be taken into account. 
Moreover, the different twists arising from edge identifications are not accounted for, so 
that the weight is missing a factor 2. All in all, we have to multiply the weight by 4
to obtain the correct Hurwitz number. It seems likely that one can write down similar 
formulas for the weights of other types of tropical coverings using the equivalence in 
Theorem 4.13.

5. Fundamental groups for metrized complexes

In this section, we use the equivalence of categories in Theorem 4.13 to endow the cat-
egory of tame coverings of a metrized complex with the structure of a Galois category, 

3 Here maximally degenerate means that the target tropical curve is in a top-dimensional cone of the 
tropical moduli space of marked tropical curves of genus g. That is, the corresponding stable graph is 
trivalent with vertices of weight zero. Note that any algebraic curve whose skeleton is in a top-dimensional 
cone is automatically Mumford, but not conversely.
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giving a natural notion of a fundamental group for a metrized complex. We further-
more define the notions of unramified coverings and completely split coverings above 
a subcomplex Σ0 ⊂ Σ. These correspond to closed subgroups of π(Σ), which we call 
the absolute inertia group I(Σ0) and decomposition group D(Σ0) of Σ0. For unmarked 
curves, we prove that the quotient πD(Σ(X)) := π(Σ)/D(Σ) is isomorphic to the profi-
nite completion of the ordinary fundamental group of the underlying graph of Σ, see 
Theorem 5.14. Furthermore, we show that the coverings that come from the abelianiza-
tions of the quotients πD(Σ) and πI(Σ) correspond to the extensions that come from the 
toric and connected parts in the analytic Jacobian of the curve, see Theorem 5.16.

5.1. Fundamental, inertia and decomposition groups

As in Section 4, we fix a semistable vertex V for a marked curve (X, D) with skeleton 
Σ := Σ(X, V ∪ D). Here we again assume that X is connected. By Theorem 4.13, the 
tropicalization functor FΣ gives an equivalence of categories

FΣ : CovTame(X,D) → CovG(Σ).

Since CovTame(X, D) is a Galois category, we obtain an induced Galois category struc-
ture on CovG(Σ).

Definition 5.1. (Fundamental group of a metrized complex) Let CovG(Σ) be the cate-
gory of enhanced tame coverings of Σ. We endow it with the Galois category struc-
ture induced by Theorem 4.13. The corresponding fundamental group is denoted by 
π(Σ) = πTame(X, D). We call this group the tame profinite tropical fundamental group 
of Σ, or just fundamental group of Σ.

Let us state some facts about the interaction between the profinite group π(Σ) and 
the category CovG(Σ). All of these results directly follow from the theory of Galois 
categories.

Proposition 5.2. Let Σ be a fixed metrized complex associated to the marked curve (X, D)
and consider the category of enhanced tame coverings of Σ. Then the following are true.

(1) There is an equivalence of categories

CovG(Σ) → (Finiteπ(Σ)-Sets).

(2) The closed subgroups of finite index in π(Σ) correspond bijectively to connected en-
hanced tame coverings Σ′ → Σ.

Example 5.3. Consider an elliptic curve E/K with char(K) = 0. The ordinary profinite 
fundamental group of E is Ẑ2. For char(k) = 0, we have that every such covering is 
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automatically residually tame, so π(Σ) � Ẑ2. If char(k) = p, then the group depends on 
the reduction type of E. If E has good reduction, then the minimal skeleton consists of 
a single vertex of genus 1 and we write Σ for this skeleton. We then have π(Σ) � π(E), 
where π(E) is the étale fundamental group of E. Suppose that the reduced curve E
has supersingular reduction. We then have π(Σ) � Ẑ′ 2, where the prime means that the 
inverse limit in the definition of Ẑ runs over all subgroups of index coprime to p. The étale 
coverings of degree pn are thus not residually tame. If the reduced curve E has ordinary 
reduction, then there are coverings of degree pn that are residually tame, see Example 2.2. 
We have π(Σ) � Ẑ′ 2 × Zp in this case. Suppose now that Σ has Betti number one and 
let E/K be an elliptic curve with skeleton Σ. Then π(Σ) � Ẑ′ 2 × Zp. Indeed, using 
the Tate uniformization Ean � Gan

m,K/〈q〉, one easily obtains a description of all finite 
étale coverings. The induced coverings on the skeleton are either topological coverings 
or coverings with some expansion factor d on the cycle. The topological coverings are 
residually tame (see Proposition 5.13), but the coverings with dilation factor pn on both 
edges are not.

Remark 5.4. Every covering X ′ → X of connected smooth curves comes with a natural 
extension of function fields K(X) → K(X ′) and this is a bijective correspondence. 
The closed subgroups of πTame(X, D) = π(Σ) then correspond to (possibly infinite) 
field extensions, which are composites of finite function field extensions K(X ′) ⊃ K(X)
where X ′ → X is residually tame. We will create closed subgroups of π(Σ) using this 
correspondence.

Definition 5.5. (Subcomplexes) A (strict) finite subcomplex Σ0 of Σ consists of subsets 
V (Σ0) ⊂ Vf (Σ) and E(Σ0) ⊂ Ef (Σ). Here Vf (Σ) and Ef (Σ) denote the sets of finite 
vertices and edges of Σ respectively.

Definition 5.6. (Unramified and completely split coverings) Let φ : Σ′ → Σ be a connected 
enhanced covering of metrized complexes and let Σ0 ⊆ Σ be a subcomplex. We say that

(1) φ is metrically unramified (or unramified) above Σ0 if for every edge e′ ∈ E(Σ′)
mapping to e ∈ E(Σ0), we have de′/e(φ) = 1,

(2) φ is completely split above Σ0 if φ is unramified above Σ0 and for every vertex 
v ∈ V (Σ0), we have that there are deg(φ) vertices v′ ∈ V (Σ′) such that φ(v′) = v.

We then say that an enhanced covering of metrized complexes has any of the above 
properties if the connected components have these properties. The enhanced covering 
Σ′ → Σ is unramified (resp. completely split) if it is unramified (resp. completely split) 
over the maximal finite subcomplex Σ0 in Σ. We say that a residually tame covering 
φ : (X ′, D′) → (X,D) is unramified (resp. completely split) above a subcomplex Σ0 ⊆ Σ
if FΣ(φ) is unramified (resp. completely split) above Σ0 (and similarly for the maximal 
finite subcomplex).
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Remark 5.7. Our definition of φ being completely split above an edge or vertex corre-
sponds to φ being a topological covering above that edge or vertex. The definition of 
being metrically unramified is not related to the Berkovich definition of being unram-
ified or étale. Indeed, any morphism X ′ an → Xan will automatically be étale outside 
the branch points. However, the morphism X ′ → X of strongly semistable models cor-
responding to φ : Σ′ → Σ is not étale at the closed points corresponding to edges if and 
only if de′/e(φ) �= 1. This can be seen by considering the corresponding morphism of 
completed rings for the ordinary double points. It is for this reason that we call these 
morphisms metrically unramified at an edge if de′/e(φ) = 1.

Lemma 5.8. The notions of being unramified and completely split above a subcomplex Σ0

are stable under taking composites.

Proof. We first show that these are stable under taking Galois closures. For the notion of 
being unramified, we can take a type-3 point x in an edge of Σ0. If [H(x′) : H(x)] = 1 for 
every point x′ lying above x, then by Proposition 2.5 we conclude that [H(x) : H(x)] = 1. 
We can also apply the above reasoning to a point of type 2 that is completely split to 
obtain the desired statement for completely split morphisms. For the composite K(X)
of two fields K(Xi), we argue as in 2.8: we reduce to the case of two Galois extensions 
and then find that the composite of H(x1) and H(x2) for two points xi ∈ Xan

i lying 
above x is H(x), where x ∈ X

an lies above the xi. If [H(xi) : H(x)] = 1 for both i, then 
[H(x) : H(x)] = 1, which quickly gives the desired statement for both unramified and 
completely split morphisms. �

We now consider the closed subgroups in π(Σ) corresponding to the coverings that 
are unramified and completely split.

Definition 5.9. (Inertia and decomposition groups) We define I(Σ0) and D(Σ0) to be 
the closed subgroups of π(Σ) corresponding to the coverings that are unramified and 
completely split above Σ0 respectively. We refer to them as the (absolute) inertia and 
decomposition groups of Σ0 respectively. If Σ0 consists of all finite edges and vertices of 
Σ, then we denote these groups by I(Σ) and D(Σ).

Proposition 5.10. The subgroups I(Σ0) and D(Σ0) are normal subgroups of π(Σ).

Proof. Let x ∈ M , where M is the field corresponding to either I(Σ0) or D(Σ0) and 
write L = K(X)(x) for the field generated by x over K(X). By Lemma, 5.8, the covering 
X ′ → X corresponding to L is unramified or completely split above Σ0, and the Galois 
closure then also has the same property. Thus the conjugates of x are contained in M , 
which proves that it is Galois. �
Definition 5.11. (Inertia and decomposition quotients) Let Σ0 ⊆ Σ be a subcomplex and 
let I(Σ0) and D(Σ0) be the absolute inertia and decomposition groups of Σ0. We define 
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πI(Σ0) := π(Σ)/I(Σ0) and πD(Σ0) := π(Σ)/D(Σ0). If Σ0 consists of all finite vertices 
and edges of Σ, then we write πI(Σ) and πD(Σ) for these groups.

Remark 5.12. We will see in Section 5.2 that there is a natural connection between the 
cyclic abelian extensions coming from πD(Σ) and πI(Σ) and the cyclic abelian extensions 
coming from the toric and connected parts of the analytic Jacobian of X. It is in this 
sense that we think of the groups πD(Σ) and πI(Σ) as natural non-abelian generalizations 
of the extensions coming from the toric and connected parts of the Jacobian in the tame 
case.

We now connect the group πD(Σ) to the profinite completion of the ordinary funda-
mental group of the graph underlying Σ. Let Γ be the finite connected graph underlying 
Σ. We denote the category of finite coverings by Cov(Γ), its profinite fundamental group 
by π̂(Γ) and its ordinary fundamental group by π(Γ) (this is the only time we will use 
this notation for a nonprofinite group). The normal subgroup D(Σ) gives rise to a Ga-
lois subcategory of Cov(Σ), which we denote by CovD(Σ). The corresponding profinite 
fundamental group is πD(Σ). We now have the following

Proposition 5.13. Let CovD(X) be as above and consider the forgetful functor CovD(Σ) →
Cov(Γ). This induces an equivalence of categories

CovD(Σ) → Cov(Γ).

Proof. Let Γ′ → Γ be a finite covering of graphs. By assigning the same length function 
on Γ′ as on Γ (induced by Σ) and by assigning to every vertex of Γ′ a projective line with 
the right identifications of the edges, we easily obtain a finite tame covering of metrized 
complexes Σ′ → Σ. There is no non-trivial gluing data (indeed, Autτ−1

x (e0)(τ
−1
x′ (e′ 0)) =

(1) for every finite vertex x′ with image x and adjacent edges e′ and e), so this also gives 
a canonical enhanced morphism. This shows that the functor is essentially surjective. 
For any two completely split coverings Σi → Σ, giving an enhanced Σ-covering Σ1 → Σ2

of metrized complexes is no different from giving a covering of graphs (since there are no 
non-trivial coverings of algebraic curves and no non-trivial dilation factors). This gives 
an isomorphism of Hom-sets and we conclude that the categories are equivalent. �
Theorem 5.14. Let D(Σ) be the decomposition group of Σ in π(Σ). Then πD(Σ) :=
π(Σ)/D(Σ) is isomorphic to the profinite completion of the ordinary fundamental group 
of the underlying graph Γ of a metrized complex Σ corresponding to X.

Proof. Note that the category Cov(Γ) is a Galois category with profinite fundamental 
group equal to π̂(Γ) by algebraic topology. The theorem then follows from Proposi-
tion 5.13 and [26, Lemma 0BMV]. �
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5.2. Filtrations of the abelianization of π(Σ)

In this section, we study the abelianizations of the profinite groups π(Σ), πI(Σ) and 
πD(Σ) introduced in Section 5.1. We start by reviewing some material on divisors on 
metric graphs and skeleta of Jacobians. For more details, we refer the reader to [10].

Let X be a connected curve over K as in Section 2.1 and let J := J(X) be its Jacobian. 
We write X for a fixed strongly semistable model of X with skeleton Σ and retraction 
map τ : Xan → Σ. By linearly extending τ , we then obtain a map

τ∗ : Div(X) → DivΛ(Σ).

On divisors of degree zero, this leads to the following commutative diagram with exact 
rows:

0 Prin(X) Div0(X) J(K) 0

0 PrinΛ(Σ) Div0
Λ(Σ) JacΛ(Σ) 0

Here JacΛ(Σ) is the Λ-valued tropical Jacobian of Σ. We will view this as a subset of 
the real tropical Jacobian Jac(Σ) = JacR(Σ). By the results in [10], this real tropical 
Jacobian arises naturally as the skeleton of Jan. Furthermore, under this identification 
the retraction map

τ : Jan → Jac(Σ)

is given on type-1 points by the earlier maps on divisor groups. We now consider the 
kernel of τ , which is the unique compact analytic domain J0 ⊂ Jan that is also a formal 
K-analytic subgroup, see [10, Corollary 6.8]. We then have an exact sequence

(1) → T 0 → J0 → Ban → (1)

where T 0 ⊂ T an is an affinoid torus and B is an abelian variety with good reduction. 
Note that if T an = (Gan

m,K)n, then the canonical reduction T of T 0 is isomorphic to 
(Gm,k)n. As in [8, Theorem 5.1.c] and [10, Section 7.2], the reduction of J0 is equal to 
the Jacobian of the special fiber Xs, which gives the exact sequence

(1) → T → J0 →
n∏

i=1
Jac(Γi) = B → (1). (9)

Here the Γi are the irreducible components of Xs and T � (k∗)t. This toric rank t
is equal to the first Betti number of the intersection graph of Xs by [21, Chapter 7, 
Lemma 5.18]. We write a =

∑n
i=1 g(Ci) for the abelian rank of J0 and π for the map 

J
0 →

∏n
i=1 Jac(Γi) = B in Equation (9).
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The group scheme J [n] is étale over K by our assumptions on n, so we can identify 
it with its K-rational points. These K-rational points give a set of type-1 points of Jan

and we again denote these by J [n]. We then define

J0[n] = {P ∈ J [n] : τ(P ) = 0},
T [n] = {P ∈ J0[n] : π(P ) = 0}.

Here P is the image of P in J
0 under the reduction map.

Proposition 5.15. Let n be any integer that is coprime to the residue characteristic of K. 
Then

J0[n] � (Z/nZ)t+2a,

T [n] � (Z/nZ)t.

Proof. This follows from [21, Chapter 7, Corollary 4.41], the exact sequence in Equation 
(9) and the fact that the reduction map restricted to the n-torsion has no kernel for n
coprime to char(k). �

We can now characterize the torsion points in J using the groups πD(Σ) and πI(Σ). 
We assume throughout that n is coprime to the residue characteristic. We first note that 
we have an isomorphism

J [n] � Hom(π(Σ),Z/nZ)

by [23, Chapter III, Lemma 9.2]. That is, cyclic étale coverings of X are given by torsion 
points of J . To be more explicit, let D ∈ J [n] and suppose that D has order n. Then 
nD = div(f) for some f ∈ K(X) and we can consider the covering on the level of 
function fields defined by

zn = f.

The condition on the order of D ensures that this equation is irreducible, and the corre-
sponding covering is étale since f is étale-locally an n-th power. Conversely, every cyclic 
covering of X is given on the level of function fields by a covering of the form zn = f by 
Kummer theory. In order for this covering to be étale, the valuation of f at every closed 
point must be divisible by n. This then quickly gives an n-torsion point in J .

Theorem 5.16. Let I(Σ) and D(Σ) be the inertia and decomposition group of Σ in π(Σ)
and let πI(Σ) and πD(Σ) be their corresponding quotients in π(Σ). Let n be an integer 
such that gcd(n, char(k)) = 1. Then the isomorphism J [n] � Hom(π(Σ),Z/nZ) induces 
isomorphisms
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J0[n] � Hom(πI(Σ),Z/nZ)

and

T [n] � Hom(πD(Σ),Z/nZ).

Proof. Let X be a strongly semistable model for X. On the level of function fields, 
any cyclic étale covering X ′ → X is given by K(X ′) = K(X)(α), where αn = f and 
f ∈ K(X). This defines a Galois-topologically tame covering of X and we denote the 
induced morphism of metrized complexes by ψ : Σ′ → Σ and the morphism of semistable 
models by X ′ → X . For any vertex v of Σ(X ), we denote the corresponding generic 
point of the special fiber Xs by ηv. The local ring OX ,ηv

is a valuation ring of rank 
1, being locally generated by mR ⊂ R. We can directly describe the normalization of 
X in K(X ′) above this valuation ring as follows. Write f = ωnfv for some fv with 
vηv

(fv) = 0. The element α′ = α/ω is then integral over OX ,η as it satisfies α′n = fv. 
Since gcd(n, char(k)) = 1, we find that this gives an étale extension, which thus describes 
the normalization above ηv. That is, the points of X ′ that lie above ηv are described by 
the étale OX ,ηv

-scheme

Z = Spec(OX ,ηv
[z]/(zn − fv))

or equivalently by the base change of Z over Spec(k(ηv)). The closed points of this 
scheme are as follows. Write fv = fd

1 in k(ηv), where d is the largest divisor of n such 
that fv is a d-th power. Let ζ be a primitive d-th root of unity. The factors zn/d−ζif1 of 
zn − fv are then irreducible over k(ηv) for every i ∈ 0, 1, ..., d− 1 by our assumption on 
d. We thus find that the polynomials zn/d − ζif1 define the extensions of residue fields 
k(ηv) ⊂ k(ηvi). These are all isomorphic over k(ηv), so it suffices to consider the one 
determined by zn/d − f1.

We now start with the correspondence for J0. Let D ∈ J0[n]. Then τ(D) = 0, so there 
is a piecewise linear function φD such that τ∗(D) = Δ(φD). Here Δ(·) is the Laplace 
operator on piecewise linear functions. Let f ∈ K(C) be such that div(f) = nD and let 
φf be a piecewise linear function on Σ such that Δ(φf ) = τ∗(div(f)). Since the divisors 
of n ·φD and φf are the same, we can use [7, Theorem 3] and translate these functions so 
that n · φD = φf . The slope of φf on every edge is then divisible by n. Let v be a vertex 
in Σ and scale f as in the previous paragraph so that vηv

(fv) = 0. By the slope formula
(see [9, Theorem 5.15(3)]) we find that the order of the reduction of fv at the closed 
point we in Cv corresponding to an edge e is divisible by n. Write fv = fd

1 as in the first 
paragraph and consider a factor zn/d− f1 defining the extension of residue curves. Since 
the order of fv at the closed point we is divisible by n, we find that the order of f1 at 
we is divisible by n/d. A computation similar to the one in the previous paragraph then 
shows that the morphisms Cvi → Cv are completely split above we (divide or multiply 
by a suitable power of a uniformizer at we). We then apply [1, Theorem 4.23] and see 
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that de′/e(ψ) = 1 for every edge e′ lying above e, which shows that ψ is unramified above 
e.

Conversely, suppose that ψ is unramified above every e. Let v be a vertex and write 
zn/d − f1 for the polynomial defining an irreducible component above v. We claim that 
the order of f1 at any closed point corresponding to an edge is divisible by n/d. Indeed, 
otherwise the Newton polygon of zn/d − f1 with respect to the discrete valuation corre-
sponding to the closed point would contain a non-rational slope and thus the extension 
would be ramified, a contradiction. We conclude by the slope formula that the slope of the 
piecewise linear function φf on every edge e ∈ E(Σ) is divisible by n. We can then write 
φf = n · φ′ for some piecewise linear function φ′. But then nΔ(φ′) = Δ(φf ) = nτ∗(D)
and thus τ∗(D) = Δ(φ′). We conclude that D ∈ J0[n], as desired.

Suppose now that D ∈ T [n]. We have to check that the induced covering of metrized 
complexes splits completely. Since T [n] ⊆ J0[n], we already know that the covering splits 
on the edges. We thus only have to show that the covering splits on the vertices. By the 
exact sequence in Equation (9), we know that the reduction of the divisor D at every 
component is principal, that is red(D, Γi) = (hi) for an hi ∈ k(ηv). Furthermore, we 
have ui ·hn

i = fv for some ui ∈ k∗ by the condition nD = div(f). It now follows from the 
explicit description of the normalization given in the first paragraph of the proof that 
the covering is completely split above every v.

Conversely, suppose that the extension induced by D ∈ J [n] splits above every vertex. 
Then the reduction of zn − fv splits completely at every v. This means that fv is an 
n-th power in k(ηv). We then see that red(D, Γi) = (hi) for some hi ∈ k(ηv) and thus 
the image of D in Jac(Xs) maps to zero in the Jacobian of every component Γi. In other 
words, D ∈ T [n], as desired. �
Example 5.17. Consider a genus two curve X with skeleton as in Fig. 1. To be more 
explicit, consider the smooth proper curve X defined locally by

y2 = x(x−�)f(x)

for a polynomial f(x) ∈ R[x] of degree 3 and an element � ∈ R with val(�) > 0. Here 
we assume that char(k) �= 2, f(0) �= 0, f(�) �= 0, deg(f(x)) = 3, gcd(f(x), f ′(x)) = 1
and f(0) �= 0. A simple computation shows that X has a skeleton of the desired type. 
For any n coprime to char(k), we have

J [n] = (Z/nZ)4,

J0[n] = (Z/nZ)3,

T [n] = (Z/nZ).

By Theorem 5.16, the coverings that come from T [n] correspond to the topological 
abelian coverings of Σ, and the coverings that come from J0[n] correspond to the metri-
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cally unramified abelian coverings of Σ. We invite the reader to compare this for n = 2
with Example 4.17.
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