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Abstract
We prove an equivariant version of the Cosmetic Surgery Conjecture for strongly
invertible knots. Our proof combines a recent result of Hanselman with the Khovanov
multicurve invariants ˜Kh and ˜BN. We apply the same techniques to reprove a result
of Wang about the Cosmetic Crossing Conjecture and split links. Along the way, we
show that ˜Kh and ˜BN detect if a Conway tangle is split.

1 Introduction

Here are two classical open conjectures in low dimensional topology:

Cosmetic Surgery Conjecture Given a non-trivial knot K ⊂ S3 and r , r ′ ∈ QP1,
suppose there exists an orientation-preserving diffeomorphism S3r (K ) ∼= S3r ′(K ). Then
r = r ′.

Cosmetic Crossing Conjecture Any crossing change that preserves the isotopy class
of a knot must occur at a nugatory crossing, meaning the crossing circle (see Fig.1a)
bounds an embedded disk in the complement of the knot.

Two distinct rational Dehn surgeries along a knot are called purely cosmetic (or
just cosmetic) if they yield diffeomorphic oriented three-manifolds. A single Dehn
surgery along a knot may also be referred to as a ‘cosmetic surgery’ when it preserves
the oriented diffeomorphism type of the three-manifold. Similarly, a crossing change
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that preserves the oriented isotopy class of a knot is called a cosmetic crossing change;
likewise, a cosmetic tangle replacement is one that preserves the oriented isotopy type
of the knot.We expect that theCosmeticCrossingConjecture holds even for unoriented
isotopy types. In fact, the results in this paper are true for unoriented knots. All knots
in this paper are unoriented by default.

The Cosmetic Surgery Conjecture originates with Gordon [8, Conjecture 6.1] and
the Cosmetic Crossing Conjecture is due to Lin. Both problems appear in Kirby’s
Problem List [14, Problem 1.81 A, Bleiler; Problem 1.58, Lin]. This paper explores
what Khovanov homology can say about these conjectures from the perspective of the
multicurve technology developed by Kotelskiy, Watson, and Zibrowius [15].

1.1 Cosmetic surgeries

Following Sakuma [29], a strongly invertible knot is a pair (K , h), where K is a knot
in S3 and h is an orientation-preserving involution of S3 mapping K to itself and
reversing a choice of orientation of K . Strongly invertible knots (K , h) and (K ′, h′)
are equivalent if there exists an orientation-preserving diffeomorphism f on S3 for
which f (K ) = K ′ (so that K and K ′ are equivalent knots) and h = f −1 ◦h′ ◦ f . Any
strong inversion h on a knot K ⊂ S3 restricts to the elliptic involution of the torus on
the boundary of the knot exterior, and hence can be extended to an involution hr on
S3r (K ) for any slope r ∈ QP1. (The latter statement can be found in [10]. See also [1]
for a nice exposition.) This extension is unique up to homotopy.

In this article we prove the following equivariant version of the Cosmetic Surgery
Conjecture:

Theorem 1.1 Given a non-trivial strongly invertible knot (K , h) and r , r ′ ∈ QP1,
suppose that there exists an orientation-preserving diffeomorphism f : S3r (K ) →
S3r ′(K ) such that hr ′ ◦ f = f ◦ hr . Then r = r ′.

A strongly invertible knot (K , h) gives rise to a Conway (ie four-ended) tangle
T ⊂ B3 constructed as follows. Waldhausen showed that the fixed point set Fix(h)

in S3 is an unknot intersecting K in two points [36], and thus restricts to a pair of
arcs in the knot exterior XK = S3 � ν(K ). (This is a special case of the well-known
Smith Conjecture, which is now a theorem.) Therefore, taking the quotient produces
a Conway tangle T = Im(Fix(h) ∩ XK ) inside the three-ball B3 = XK /h. For an
illustration, see [39, Figure 4].

Cosmetic surgeries along a strongly invertible knot (K , h) are closely related to
cosmetic tangle fillings of the quotient tangle T , due to the Montesinos trick [22]: The
fixed point set of the involution h p/q on S3p/q(K ) restricted to the surgery solid torus is a
pair of arcs, which descends in the quotient of the solid torus to a trivial Conway tangle.
Montesinos gives an explicit correspondence between the rational surgery slope and a
rational parameterization of the trivial tangle in the quotient. In particular, S3p/q(K ) is
the two-fold branched cover of the rational tangle filling T (p/q) = Q−p/q∪T illustrated
in Fig. 1, where Q−p/q denotes the rational tangle of slope −p/q and the tangle T is the
quotient tangle of (K , h). Conversely, a cosmetic crossing change on a knot induces a
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Fig. 1 A crossing circle c (a), some examples of rational tangles (b–d), and the p/q-rational filling T (p/q)

of a Conway tangle T (e)

cosmetic surgery on the two-fold branched cover. Hence, the two cosmetic conjectures
are related, and the analogue of Theorem 1.1 is:

Theorem 1.2 Let T be a Conway tangle in the three-ball with an unknot closure.
Suppose T (r) and T (r ′) are isotopic links in the three-sphere for some r , r ′ ∈ QP1.
Then r = r ′ or T is rational.

Indeed Theorem 1.2 is equivalent to Theorem 1.1 by taking two-fold branched
covers. The condition of having anunknot closure is equivalent to considering surgeries
on knots in S3 and non-triviality of the knot in S3 is equivalent to the tangle not being
rational.

Gordon and Luecke’s solution to the knot complement problem implies that no
non-trivial knots admit cosmetic surgeries when one of the slopes is ∞ [7]. Boyer and
Lines showed that if�′′

K (1) �= 0, rational surgeries along K are always distinct, where
�K (t) is the Alexander polynomial [3, Proposition 5.1], and a similar result may be
formulated in terms of the Jones polynomial [12]. Note that the obstructions of [3, 12]
do not disqualify strongly invertible knots from admitting cosmetic surgeries because
all Alexander polynomials of knots can be realized by strongly invertible knots [28].

Strong restrictions on cosmetic surgeries can be formulated in terms of Heegaard
Floer homology, as shown in work of Wang [37], Ozsváth and Szabó [25], and Ni
and Wu [23]. Using immersed curves, Hanselman’s work [9] extends these results; in
particular, he shows that cosmetic surgery slopes have to be either ±2 or ±1/n. In an
entirely different direction, hyperbolic geometry techniques have been used to obtain
other restrictions on the set of cosmetic filling slopes (namely in terms of their lengths)
[6]. Using the strategies above and others, the Cosmetic Surgery Conjecture has been
established for knots of genus one, cables, connected sums and three-braids [32, 33,
35, 37].

Up to now,Khovanov homology has remained conspicuously absent from this story.
Our proof of Theorem 1.2 relies on the Khovanov multicurve technology developed
by Kotelskiy, Watson, and Zibrowius [15, 17]. This theory assigns an immersed mul-
ticurve in the four-punctured sphere to a Conway tangle and a suitable Lagrangian
Floer homology of these multicurves computes the Khovanov homology.

1.2 Cosmetic crossings

As illustrated by the proof of Theorem 1.2 in Sect. 4, the immersed curve invariants for
Khovanov homology provide a powerful tool for studying the behavior of Khovanov
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homology under tangle fillings. Note that the Cosmetic Crossing Conjecture can be
viewed in terms of comparing the +1 and −1 tangle fillings of a Conway tangle;
hence, the Khovanov tangle invariants provide a natural tool for studying the Cosmetic
Crossing Conjecture. In fact, Theorem 1.2 immediately implies the Cosmetic Crossing
Conjecture for the unknot, originally due to Scharlemann–Thompson [31]. In general,
the Cosmetic Crossing Conjecture is still open, but has been established for knots
which are two-bridge [34] or fibered [13, 27], as well as for large classes of knots
which are genus one [2, 11] or alternating [18]. In the second half of this paper, we
illustrate the utility of this theory by giving elementary proofs of two other known
results about the Cosmetic Crossing Conjecture.

First, we recall that there is a generalization of the Cosmetic Crossing Conjecture.
Let c be a crossing circle for a knot K as in Fig. 1a. Then, performing −1/n-Dehn
surgery on c produces a new knot Kn which corresponds to adding n full right-handed
twists at the crossing. The Generalized Cosmetic Crossing Conjecture predicts that if
c is a non-nugatory crossing, then Kn is not isotopic to Km for n �= m.

We first give a new proof of a recent result of Wang on the Generalized Cosmetic
Crossing Conjecture, which also used Khovanov homology:

Theorem 1.3 (Wang [38]) Let K be a knot obtained by a non-trivial band surgery on
a split link L. If Kn is obtained by inserting n ∈ Z twists into the band, then Kn is not
isotopic to Km for any n �= m.

We also prove that the generalized crossing conjecture holds “asymptotically”:

Theorem 1.4 Let K be an unoriented knot and c a crossing circle for a non-nugatory
crossing. Let {Kn}n∈Z be the associated sequence of knots obtained by inserting twists
at c. Then there exists an integer N such that {Kn}|n|≥N are pairwise different.

Remark 1.5 While we could not find Theorem 1.4 written explicitly in the literature, it
is certainly known to experts using standard techniques from three-manifold topology.
Rather than give this alternative proof here in full, we illustrate this by sketching a
proof for a suitably generic case. Suppose that K ∪ c is a hyperbolic link. Then Kn is
obtained by performing −1/n-surgery on c. Hence, Kn is hyperbolic for all but finitely
many n and further the hyperbolic volume of Kn converges to the hyperbolic volume of
K∪c, which is strictly greater than that of any Kn . The asymptotics of this convergence
is described by the work of Neumann–Zagier [24] and precludes having more than
finitely many knots in the sequence of fixed volume. It is interesting that Khovanov
homology and the hyperbolic volume establish the same result in this setting. We note
that the behaviour of the Jones polynomial under twisting in relation with hyperbolic
geometry has been considered, see [5] for example.

Along the way, we establish the following technical result about the Khovanov
multicurve invariants, which may be of independent interest:

Theorem 1.6 The invariants ˜Kh(T ) and ˜BN(T ) detect if the Conway tangle T is split.

Note that Theorem 1.6 has been established for the analogous knot Floer homology
multicurve invariant by Lidman, Moore, and Zibrowius [19].
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Outline

In Sect. 2, we give the requisite background on the immersed curve invariants for
tangles. In Sect. 3, we prove Theorem 1.6. In Sect. 4, we prove Theorem 1.2 (and
hence Theorem 1.1). In Sect. 5, we prove Theorems 1.3 and 1.4.

2 Review of the Khovanovmulticurve invariants

In this section, we review some properties of the immersed curve invariants ˜Kh and
˜BN of pointed Conway tangles from [15]. We work exclusively over the field F of two
elements and only summarize those properties that we will need in this paper; more
elaborate introductions highlighting different aspects of the invariants can be found in
[16, 17].

Let T be an oriented pointed Conway tangle, that is a four-ended tangle in the
three-ball B3 with a choice of distinguished tangle end, which we mark by ∗. Denote
by S24,∗ the four-punctured sphere ∂B3 � ∂T ; the puncture marked by ∗ will be called
special. We associate with such a tangle T invariants ˜BN(T ) and ˜Kh(T ) that take the
form of multicurves on S24,∗. By multicurve, we mean a collection of immersed curves
that carry certain extra data. Broadly speaking, there are two kinds of such curves:
compact and non-compact. A compact immersed curve in S24,∗ is an immersion of
S1, considered up to regular homotopy, that (up to conjugation) defines a primitive
element of π1(S24,∗), and each of these curves is decorated with a local system, ie an
invertible matrix over F considered up to matrix similarity. A non-compact immersed
curve in S24,∗ is a non-null-homotopic immersion of an interval, with ends on the three

non-special punctures of S24,∗; see [15, Definition 1.4]. Non-compact curves do not
carry local systems. In addition, all curves are equipped with a bigrading; more on
this in Sect. 2.3 below.

Remark 2.1 We often draw S24,∗ as the plane plus a point at infinity minus the four
punctures. To help identify this abstract surface with ∂B3 � ∂T , we then add two
dotted gray arcs that parametrize the surface, see Fig. 2a–c. The blue curves in these
figures show themulticurves ˜BN(P2,−3) and ˜Kh(P2,−3) for the pretzel tangle P2,−3; cf
[15, Example 6.7]. All components of these curves carry the (unique) one-dimensional
local system.

2.1 The construction of themulticurves

The starting point is the algebraic tangle invariant [[T ]]/l due to Bar-Natan. The invari-
ant [[T ]]/l is a chain complex over a certain cobordism category, whose objects are
crossingless tangle diagrams [4]; we refer to [15, Section 2] for a detailed introduction
to complexes over categories/algebras, and the equivalent viewpoint through type D
structures. In [15, Theorem 1.1], it was shown that any such complex can be rewritten
as a chain complexD(T ) over the following category B, consisting of two objects and
morphisms equal to paths in a quiver modulo relations:
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Fig. 2 The multicurve invariants for the pretzel tangle P2,−3. Under the covering R2 � Z2 → S24,∗, the
shaded regions in (b + c) correspond to the shaded regions in (d + e)

B := F

[

D•
S◦

S•
D◦

]/(

D• · S◦ = 0 = S◦ · D◦
D◦ · S• = 0 = S• · D•

)

Here, the objects and correspond to the crossingless tangles ∗ and ∗ ,
respectively.

We will refer to B as a (quiver) algebra, and to D(T ) as a chain complex over the
algebraB. Defining D:=D•+D◦ and S:=S•+S◦ often allows us to drop the subscripts
of the algebra elements of B. The chain homotopy type ofD(T ) is an invariant of the
tangle T . Moreover, using the central element

H :=D + S2 = D• + D◦ + S◦S• + S•S◦ ∈ B

we define a chain complex D1(T ) as the mapping cone

D1(T ) :=
[

q−1h−1D(T )
H ·id−−→ q1h0D(T )

]

where H · id is the endomorphism ofD(T ) defined by x
H−→ x for all generators x of

D(T ). The chain homotopy type of D1(T ) is also a tangle invariant.
Themulticurve invariants ˜BN(T ) and ˜Kh(T ) are geometric interpretations ofD(T )

and D1(T ) respectively, made possible by the following classification result: The
homotopy equivalence classes of chain complexes over B are in one-to-one corre-
spondence with multicurves on the four-punctured sphere S24,∗ [15, Theorem 1.5]. In a
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Fig. 3 Two immersed curves and their corresponding chain complexes (a + b) and their Lagrangian Floer
homology (c); cf [15, Examples 1.6 and 1.7]

Fig. 4 Two tangle decompositions defining the link T1∪T2. The tangle T2 is the result of rotating T2 around
the vertical axis. By rotating the entire link on the right-hand side around the vertical axis, we can see that
T1 ∪ T2 = T2 ∪ T1

little more detail, this correspondence (which we denote by =̂) uses the parametriza-
tion of S24,∗ given by the two dotted arcs described in Remark 2.1. We will generally
assume that the multicurves intersect these arcs minimally. Then, roughly speaking,
the intersection points correspond to generators of the associated chain complexes
and paths between those intersection points correspond to the differentials. The two
examples in Fig. 3 should give the reader a general impression how this works.

Example 2.2 For the trivial tangle Q∞ = ∗ , the chain complexD(Q∞) consists of a

single object and the differential vanishes. The corresponding multicurve ˜BN(Q∞)

consists of a single vertical arc connecting the two non-special tangle ends. The chain
complex D1(Q∞) and the corresponding curve ˜Kh(Q∞) is shown in Fig. 3a. The
local system on this curve is one-dimensional.

The tangle Q1/3 = * �

is obtained from the trivial tangle Q∞ by adding three

twists to the two lower tangle ends. Its invariant ˜BN(Q1/3) is shown in Fig. 3b. Note
that it agreeswith the vertical arc ˜BN(Q∞) up to three twists. This is not a coincidence;
one can show that adding twists to any tangle (not just a rational tangle) corresponds
to adding twists to the multicurves; see [15, Theorem 1.13]. Thus, the identification
of ∂B3 � ∂T with the abstract surface S24,∗ containing the multicurves is natural.
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2.2 A gluing theorem

The multicurve invariants satisfy various gluing formulas [15, Theorem 1.9]. The one
that we will use in this paper is the following:

Theorem 2.3 Let L = T1 ∪ T2 be the result of gluing two oriented pointed Conway
tangles as in Fig.4 such that the orientations match. Let m be the map identifying the
two four-punctured spheres. Then

˜Kh(L) ∼= HF
(

m(˜Kh(T1)), ˜BN(T2)
) ∼= HF

(

m(˜BN(T1)), ˜Kh(T2)
)

The Lagrangian Floer homologyHF(γ , γ ′) between two curves γ and γ ′ is a vector
space that can be computed as follows. First, we draw the curves in such a way that
minimizes the number of intersection points between γ and γ ′. HF(γ , γ ′) is then
equal to a vector space freely generated by those intersection points, provided that the
curves are not homotopic to each other [15, Theorem 5.25]. (We will always be able
to make this assumption in this paper.) For instance, with Example 2.2 and Fig. 3 in
mind, the Khovanov homology of the trefoil can be computed as follows:

˜Kh( ∗ ∪ * �

) ∼= HF(˜Kh( ∗ ), ˜BN(
* �

) = F3

Finally, the Lagrangian Floer homology between two multicurves is simply the direct
sum of the Lagrangian Floer homologies between individual components.

2.3 Gradings

Khovanov homology is a bigraded homology theory, and this bigrading is often
what makes it a powerful invariant. The multicurves ˜BN(T ) and ˜Kh(T ) also carry
bigradings. We now describe how the gradings work: first on the algebra B, then on
chain complexes, then onmulticurves, and then finally on Lagrangian Floer homology
between multicurves.

Equip the algebra B with quantum grading q, which is determined by

q(D•) = q(D◦) = −2 and q(S•) = q(S◦) = −1.

The homological grading is defined to be 0 for all elements of B.
Differentials of bigraded chain complexes over B are required to preserve quantum

grading and increase the homological grading by 1. Concretely this means that if a
differential contains a morphism x

a−→ y (where x and y are generators of the complex
and a ∈ B), then q(a) + q(y) − q(x) = 0 and h(a) + h(y) − h(x) = 1. We often
specify the quantum gradings q of generators of such complexes via superscripts, like
so: q x .

The bigrading onmulticurves is simply a bigrading on the associated chain complex.
To be more precise, let G(�) be the set of intersection points between a multicurve �

and the two parametrizing arcs. A bigrading on the multicurve � is a map
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ψ : G(�) → Z2

satisfying certain compatibility conditions; namely, if X is the bigraded vector space
freely generated by the elements x inG(�) overFwith bigradingψ(x) = (q(x), h(x)),
then the differential on X corresponding to � is required to preserve the quantum
grading and to increase the homological grading by 1. These conditions can be stated
in terms of the geometry of the multicurves as in [17, 19]. However, in this paper, we
will only need the above algebraic formulation.

If T is an unoriented tangle, the bigradings on ˜BN(T ) and ˜Kh(T ) are only well-
defined as relative bigradings, that is to say, the map ψ is only well-defined up to
adding a constant map. To fix this overall shift, an orientation of T is required; see for
example [4, Definition 6.4] or [15, Proposition 4.8].

Let γ and γ ′ be two bigraded multicurves and suppose X =̂ γ and X ′ =̂ γ ′ are
the corresponding bigraded chain complexes over B. Then HF(γ , γ ′) also carries a
bigrading. It can be computed using the fact that this vector space is bigraded isomor-
phic to the homology of the morphism space Mor(X , X ′) [15, Theorem 1.5] (see the
discussion before [15, Definition 2.4] for the definition of the differential on a mor-
phism space between two complexes). The quantumgrading of amorphism bx a yα ,
where α ∈ B, is computed using the formula a − b + q(α); an analogous formula
holds for the homological grading. Each intersection point generating HF(γ , γ ′) cor-
responds to a morphism from which we can read off the bigrading [16, Section 7].
For instance, the highlighted intersection point in Fig. 3c corresponds to the morphism

S , so the bigrading of this intersection point is equal to

q( ) = q( ) − q( ) + q(S) and h( ) = h( ) − h( )

The Z/2 reduction of the homological grading corresponds to the usual grading on
Lagrangian Floer homology; for example, the gradings of two intersection points
connected by a bigon differ by 1. The quantum grading plays a similar role to the
Alexander grading in Heegaard Floer homology in that it corresponds to counting the
multiplicities of connecting domains near tangle ends, similar to [19, Sections 3.5
and 3.6]. For the grading computations in this paper, however, we only use the above
formulation of the bigrading in terms of morphism spaces.

2.4 Geography of components of ˜Kh

We now recall some basic facts about ˜Kh(T ) and ˜BN(T ) from [15, Section 6]. In this
paper, we will focus only on tangles without closed components. For such tangles,
˜BN(T ) consists of a single non-compact component and a (possibly zero) number of
compact components. In contrast, ˜Kh(T ) consists of compact components only.

Often, multicurves become easier to manage when considered in a certain covering
space of S24,∗, namely the planar cover that factors through the toroidal two-fold cover:

(R2 � Z2) → (T 2 � 4pt) → S24,∗
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Fig. 5 The curves rn(0) and s2n(0) (a–c) and their lifts to R2 � Z2 (d). While not visually apparent, the
curves rn(0) are invariant under the Dehn twist interchanging the lower two punctures

This is illustrated in Fig. 2 for the multicurve invariants of the pretzel tangle P2,−3.

Definition 2.4 Given an immersed curve c � S24,∗, denote by c̃ a lift of c to the

cover R2 � Z2. For n ∈ N, let rn(0) and s2n(0) be the immersed curves in S24,∗ that
respectively admit lifts to the curves r̃n(0) and s̃2n(0) in Fig. 5d; curves for n = 1, 2, 3
are illustrated in Fig. 5a–c. For every p/q ∈ QP1, we respectively define the curves
rn(p/q) and s2n(p/q) as the images of rn(0) and s2n(0) under the action of

[

q r
p s

]

considered as an element of the mapping class group fixing the special puncture
Mod(S24,∗) ∼= PSL(2, Z), where qs − pr = 1. (This transformation maps straight
lines of slope 0 to straight lines of slope p/q.) We call rn(p/q) a curve of rational type,
slope p/q, and length n. We call s2n(p/q) a curve of special type, slope p/q, and length
2n. The local systems on all these curves are defined to be trivial.

The following classification result is [17, Theorem 6.5].

Theorem 2.5 For any pointed Conway tangle T , every component of ˜Kh(T ) is equal
to rn(p/q) or s2n(p/q) for some n ∈ N and p/q ∈ QP1, up to some bigrading shift.
In other words, components of ˜Kh(T ) are completely classified by their type, slope,
length, and bigrading.

As already mentioned in Example 2.2, the multicurve invariants are natural with
respect to adding twists; these twists generateMod(S24,∗). Thus, the invariant ˜Kh(Qp/q)
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of a p/q-rational tangle Qp/q is equal to r1(p/q), justifying the terminology. In fact, we
have the following detection result [17, Theorem 5.7].

Theorem 2.6 A pointed Conway tangle T is rational if and only if ˜Kh(T ) consists of
a single component r1(p/q) for some p/q ∈ QP1.

Rational components can also occur in the invariants of non-rational tangles. In fact,
if T has no closed component,we know that there is always at least one such component
[17, Corollary 6.42]. For example, the curve ˜Kh(P2,−3) from Fig. 2c consists of the
special component s4(0) and the rational component r1(1/2). Such rational components
detect how tangle ends are connected [17, Theorem 6.41]:

Theorem 2.7 Suppose a pointedConway tangle T has connectivity . Then the slope
p/q ∈ QP1 (with p and q coprime) of any odd-length rational component of ˜Kh(T )

satisfies p ≡ 0 mod 2.

Remark 2.8 Components of the invariant ˜BN(T ), even compact ones, can be much
more complicated than components of ˜Kh(T ); for an example, see [17, Figure 26].
However, the invariants of rational tangles are very simple: Any lift of ˜BN(Qp/q) to
R2 � Z2 is a straight line segment of slope p/q connecting the lifts of two non-special
punctures.

2.5 A dimension formula

Definition 2.9 Given two slopes p/q, p′/q ′ ∈ QP1, where (p, q) and (p′, q ′) are pairs
of mutually prime integers, define the distance between two slopes as

�(p/q, p′/q ′):=
∣

∣

∣

∣

det

[

q q ′
p p′

]∣

∣

∣

∣

= |qp′ − pq ′|

Lemma 2.10 Let s, r ∈ QP1 be two distinct slopes. Let as :=˜BN(Qs) and let γ be a
rational or special curve of length 
 and slope r . Then

dimHF(as, γ ) = 
 · �(s, r)

Our proof of Lemma 2.10 makes use of the following basic idea, on which many
other calculations in this paper rely as well.

Observation 2.11 The number of intersection points between two curves γ1 and γ2 in
S24,∗ is equal to the number of intersection points between the preimage �1 of γ1 and

any lift γ̃2 of γ2 in R2 � Z2, provided the endpoints of γ̃2 are disjoint from �1.

Proof of Lemma 2.10 Write s = p/q and r = p′/q ′ for pairs (p, q) and (p′, q ′) of mutu-
ally prime integers. Observe that dim HF(as, γ ) stays invariant under changing the
parametrization of the four-punctured sphere. So let us apply the linear transforma-
tion corresponding to the matrix

[

n −m
p′ −q ′

]
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Fig. 6 The set As in the proof of
Lemma 2.10 is the union of the
bold straight line with all its
2Z × 2Z-translates

where n,m ∈ Z are such thatmp′ −nq ′ = 1. This transformation maps γ to a curve of
slope 0 and as to a curve of slope

p′q−q ′ p
nq−mp . The distance between these curves remains

the same. This shows that if the formula holds for the case r = 0, then it also holds
in general. So suppose r = 0. Then �(s, r) = |p|, which by assumption is non-zero.
We need to see that in this case

dimHF(as, γ ) = 
 · |p|

This identity can be easily checked in the covering space R2 � Z2 using Observa-
tion 2.11. If γ̃ is a lift of γ , dim HF(as, γ ) is equal to the number of times that γ̃

intersects the preimage As of as (assuming the endpoints of γ̃ are disjoint from As).
This is the same as the number of intersection points of As with certain horizontal
straight line segments of length 2
 (whose endpoints are disjoint from As). So it suf-
fices to show that the distance between consecutive intersection points of As with any
straight horizontal line is constant equal to 2/|p|. A simple geometric argument, illus-
trated in Fig. 6, shows that said distance is the minimum of all non-zero expressions
of the form

2 · |q/p| · a + 2b = 2/|p| · (a|q| + b|p|)

where a and b vary over all integers. The claim now follows from Bézout’s identity
and the assumption that p and q are coprime. ��

3 Splitness detection for ˜BN and ˜Kh

Recall that a Conway tangle T ⊂ B3 is split if there exists an essential curve in
∂B3 � ∂T that bounds a disk in B3 � T . If the slope of this curve is 0, we call the
tangle horizontally split. Equivalently, a tangle is horizontally split if it can be written
as a disjoint union of two-ended tangles T1 and T2 as in Fig. 7a. In this section, we
show that ˜Kh and ˜BN detect this property:

Theorem 3.1 For any Conway tangle T the following conditions are equivalent:

(1) T is horizontally split;
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Fig. 7 (a) A split tangle and (b) the region in S24,∗ supporting the multicurve invariants of any such tangle,
according to Theorem 3.1. (c) Illustrates the generalized figure-eight curves en(0) for n = 2; note that
e1(0) = r1(0)

(2a) Up to some bigrading shift, each component of ˜BN(T ) is equal to the horizontal

arc a =̂ [ ] or a generalized figure-eight curve ek(0) =̂
[

Hk
]

for some

k > 0;
(2b) Up to some bigrading shift, each component of ˜Kh(T ) is equal to r1(0);
(3a) Up to homotopy, ˜BN(T ) is entirely contained in the shaded region in Fig.7b;
(3b) Up to homotopy, ˜Kh(T ) is entirely contained in the shaded region in Fig.7b;
(4a) In the homotopy equivalence class D(T ) =̂ ˜BN(T ) there is a representative

chain complex that contains no generator ;
(4b) In the homotopy equivalence class D1(T ) =̂ ˜Kh(T ) there is a representative

chain complex that contains no generator .

Remark 3.2 There is an analogous detection result for theHeegaard Floer tangle invari-
ant HFT [19, Theorem 4.1].

By the naturality of ˜BN and ˜Kh under twisting [15, Theorem 1.13], it follows that a
tangle is split if and only if ˜Kh(T ) consists of rational components of the same slope,
or equivalently, if and only if ˜BN(T ) consists only of generalized figure-eight curves
and arcs of the same slope.

Proof We start with the implication (1) ⇒ (2a). Bar-Natan associates with the two-
ended tangles T1 and T2 the invariants [[T1]]/l and [[T2]]/l , which are chain complexes
over the cobordism categorywhose objects are crossingless two-ended tangles. Thanks
to delooping [15, Observation 4.18], we can write these as complexes over the sub-
category generated by the trivial tangle . The morphisms in this subcategory can
be represented by linear combinations of cobordisms without closed components, ie
identity cobordisms with some number of handles attached. By Bar-Natan’s gluing
formalism, [[T ]]/l is then a tensor product of the complexes [[T1]]/l and [[T2]]/l . In
particular, the objects of [[T ]]/l are equal to and the differential consists of linear
combinations of identity cobordisms with some number of handles attached to one
of the components. Since we are working with coefficients in F, the (4Tu)-relation
[15, Definition 4.3] allows us to move all handles on these cobordisms to the compo-
nent containing the basepoint ∗ of ∗ . Attaching a handle to the component with a
basepoint corresponds to multiplying by H [15, Definition 4.10], so [[T ]]/l is a chain
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complex over the graded algebra F[H ]. Therefore, up to homotopy, D(T ) is a direct
sum of complexes of the form

[ ]

or
[

Hk
]

for some integer k > 0,

as required. (This follows from essentially the same arguments as the classification
of free chain complexes over a principal ideal domain; see for instance [26, Proposi-
tions A.4.3 and A.8.1].)

The implication (2a)⇒(2b) follows from the definition of ˜Kh(T ) as the curve
corresponding to the mapping coneD1(T ) of the identity map onD(T ) multiplied by
H . The equivalences (3a)⇔ (4a) and (3b)⇔ (4b) and the implications (2a)⇒ (3a) and
(2b) ⇒ (3b) are obvious. The equivalence (4a)⇔ (4b) follows from the observation
that any complexD(T ) corresponding to a curve ˜BN(T ) contains a generator if and
only if the same is true for its mapping cone D1(T ).

The implication (4a)⇒(1) remains. This direction relies on a detection result for
annular Khovanov homology; this was established by Xie using annular instanton
homology. We know that there is a complex D(T ) representing ˜BN(T ) that only
contains generators . This is equivalent to saying that the tangle invariant [[T ]]/l ,
as a homotopy equivalence class of chain complexes over Cob/l(

∗ ⊕ ∗ ), has a

representative containing only generators ∗ . Let Ta(∞) be the annular link shown in
Fig. 8. Its annular Khovanov homology AKh(Ta(∞); F) can be computed from [[T ]]/l
via gluing arguments similar to [4, Section 5]. It is concentrated in annular grading
zero, because in that computation, every circle has winding number zero around the
annulus. By the classification of finitely generated Abelian groups, we can write

AKh(Ta(∞); Z) ∼= Zn ⊕
(

m
⊕

i=1

Z/2
i Z

)

⊕ Todd

for some integers n, 
1, . . . , 
m , where Todd is the subgroup of elements of
AKh(Ta(∞); Z) of odd order. Hence, by the universal coefficient theorem,

AKh(Ta(∞); C) ∼= AKh(Ta(∞); Z) ⊗ C ⊕ TorZ(AKh(Ta(∞); Z), C)
︸ ︷︷ ︸

∼=0

∼= Cn

and

AKh(Ta(∞); F) ∼= AKh(Ta(∞); Z) ⊗ F ⊕ TorZ(AKh(Ta(∞); Z), F) ∼= (Fn ⊕ Fm) ⊕ Fm .

Therefore, if AKh(Ta(∞); F) is concentrated in annular grading zero, then so is
AKh(Ta(∞); C). We can now apply Xie’s detection result [40, Corollary 1.6] to
deduce that the link Ta(∞) is contained in a three-ball embedded in the solid torus
S1 × D2. We conclude with Lemma 3.3 below. ��
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Fig. 8 The annular link Ta(∞)

in S1 × D2. The shaded disk on
the right shows the essential disk
E used in the proof of
Lemma 3.3

Lemma 3.3 If Ta(∞) is contained in a three-ball inside a solid torus, then T must be
horizontally split.

Proof Without loss of generality, we may assume that T has no unlinked closed com-
ponents.

Let S be the boundary of the three-ball containing Ta(∞) and let E be the essential
disk in S1 × D2 shown in Fig. 8. Without loss of generality, we may assume that S
intersects E transversely, so that E ∩ S is a union of circles. Clearly, E ∩ S �= ∅ since
S separates E ∩ Ta(∞) �= ∅ from ∂E . We now consider those circles as subsets of S.
One of them, let us call it C , is innermost, so it bounds a disk DS in S disjoint from
any other circles. The circle C also bounds a disk DE in E .

Suppose DE is disjoint from Ta(∞). Then DE ∪ DS is disjoint from Ta(∞) and
bounds a three-ball B in the solid torus. Since T has no unlinked closed component,
B is disjoint from Ta(∞). Therefore, there exists an isotopy of S that is the identity
outside a small neighbourhood of B and inside this neighbourhood removes the circle
C from E ∩ S �= ∅ as well as any other component of E ∩ S �= ∅ that lies in DE .

After repeating this procedure a finite number of times, we may assume that DE

intersects Ta(∞) non-trivially. Since the sphere DS ∪ DE intersects Ta(∞) in an even
number of points and DS is disjoint from Ta(∞), DE must contain both intersection
points of E with Ta(∞). So E � DE is an annulus and DS ∪ (E � DE ) is an essential
disk which, after isotopy, certifies that T is a horizontally split tangle. ��
Remark 3.4 Lemma 3.3 and its proof generalize to tangles with arbitrarily many tangle
ends as follows: A tangle is split if its ∞-closure in the solid torus is contained in a
three-ball. However, it need not be horizontally split. For an example, consider the
tangle T = .

4 Proof of Theorem 1.2

The two-fold branched cover �(T ) of B3 branched over T is the exterior of a knot
K ⊂ S3. Suppose, without loss of generality, that T (∞) is the unknot. Then, a curve
of slope ∞ on the boundary of the three-ball containing T lifts to a meridian of K . By
adding the appropriate number of twists on the right of the tangle T , we can further
assume that T is parametrized such that a curve of slope 0 lifts to a longitude of K .
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Suppose now that T (r) ∼= T (r ′) as unoriented links and that the tangle T is non-
rational. It suffices to show that r = r ′. Assume, for sake of contradiction, that r �= r ′.
The identity T (r) ∼= T (r ′) implies

S3r (K ) = �(T (r)) ∼= �(T (r ′)) = S3r ′(K ).

We now apply Hanselman’s theorem [9, Theorem 2] to deduce that r = −r ′ where

r = ±2 (case 1) or r = ±1/n for some positive integer n (case 2).

The hypothesis of Hanselman’s theorem is indeed satisfied: If K were the unknot,
then there would be a unique strong inversion, and its quotient T would be a rational
tangle, contradicting our assumptions.

As a consequence of our chosen parametrization, the connectivity of the tangle T
is . This can be seen as follows: First, observe that T has no closed component

and the connectivity of the tangle is not . Both follow from the fact that T (∞) is
the unknot. Secondly, if T (0) were a knot, det T (0) = |H1(�(T (0)))| would be odd,
so its two-fold branched cover �(T (0)) would be a rational homology sphere. This
contradicts the fact that the two-fold branched cover is 0-surgery on the knot K ⊂ S3.
So T (0) is a two-component link and hence the connectivity of T is not .

The strategy for the remainder of the proof is to show that the reduced Khovanov
homologies ˜Kh(T (r)) and ˜Kh(T (r ′)) are distinct. We first equip T (r) and T (r ′) with
orientations such that they agree as oriented links. Then ˜Kh(T (r)) and ˜Kh(T (r ′))
agree as absolutely bigraded groups. We work with coefficients in F, so that reduced
Khovanov homology is independent of the reduction point [30, Corollary 3.2.C]. We
will compute ˜Kh(T (r)) and ˜Kh(T (r ′)) by pairing the ˜BN-invariants of the rational
tangle fillings (arcs) with the multicurve C := ˜Kh(T ). A priori, the absolute bigrading
on C depends on the orientation of the tangle, but as we will see below, it is in fact
orientation independent. Since T (∞) is the unknot, we know that C has only one
intersection with the vertical arc a∞ := ˜BN( ∗ ). Special curves s2n(s) intersect a∞
in more than one point, unless they have slope s = ∞, in which case they are disjoint
from a∞. Similarly, a rational curve rn(s) intersects a∞ in more than one point, unless
n = 1 and s ∈ Z, in which case there is a single intersection point. Hence, we may
write

C := γ1 ∪ · · · ∪ γm ∪ ρ,

where γ1, . . . , γm are special components of slope ∞ and ρ = r1(s), of slope s ∈ Z.
Since T is non-rational,m > 0 by Theorem 2.6. Moreover, by Theorem 2.7, we know
that s is an even integer.

We now consider the two cases separately. The arguments in both cases are essen-
tially the same. We first show that the slope s of ρ must be 0 for the total dimensions
of ˜Kh(T (r)) and ˜Kh(T (r ′)) to agree; then we compute the absolute quantum gradings
and observe that they are different.
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Fig. 9 The arcs a+ and a−

Case 1: {r , r ′} = {2,−2}. Since the connectivity of the tangle T is , T (+2) =
T (−2) is a link with two components. Consider their linking number. If we choose
the same orientation of the tangle T , the linking numbers of T (+2) and T (−2) are
different, since the crossings in the ±2-twist tangles then have different signs. So
up to an overall orientation reversal (which does not affect the reduced Khovanov
homology), we may assume that the orientations on T (+2) and T (−2) are as follows:

Since the crossings in the ±2-twist tangles are all positive, the linking number of
the tangle T with the orientation as in T (+2) is the same as with the orientation as
in T (−2). (The linking number of a tangle is defined in [15, Definition 4.7].) Since
the two orientations are obtained by reversing one strand, these linking numbers also
differ by a sign, so the linking number of T is zero. Hence C = ˜Kh(T ) is independent
of orientations; see for example [15, Proposition 4.8].

Define two arcs

These are the arc invariants of the mirrors of the ±2-twist tangles in T (+2) and
T (−2), respectively, and are illustrated in Fig. 9. (For instance, this calculation fol-
lows from [15, Example 4.27], using (1) the relation q = 2(h + δ) between the δ-,
homological, and quantum gradings in Khovanov theory, and (2) the formula from
[15, Proposition 4.8] for the grading shift induced by reversing the orientation of a
tangle component.) Then, by the pairing theorem,

˜Kh
(

T (±2)
) ∼= HF(a±,C) = HF(a±, γ1) ⊕ · · · ⊕ HF(a±, γm) ⊕ HF(a±, ρ)

The total dimensions of the first m pairs of summands are identical:

dim HF(a+, γ j ) = dimHF(a−, γ j ) for all j = 1, . . . ,m.

This is because all intersection points lie within a small neighbourhood of a vertical
line through the special puncture and a+ and a− look identical in this neighbourhood.
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Fig. 10 Canonical generators of HF(a±, γi ) in the proof of Theorem 1.2, (a) Case 1 and (b) Case 2. The
arrows indicate the corresponding morphisms used for computing the gradings, as in Sect. 2.3

By Lemma 2.10, and because a figure eight and an arc of the same slope intersect
minimally in two points, the dimensions of the final summands HF(a±, ρ) are

dimHF(a±, ρ) =

⎧

⎪

⎨

⎪

⎩

3 ∓ 1, if s = 2;
3 ± 1, if s = −2;
|s ∓ 2|, otherwise.

Our assumption that T (+2) ∼= T (−2) implies that the dimensions of reduced Kho-
vanov homology agree, so the slope s = 0.

We now consider the quantum gradings. Recall that the grading on ˜Kh( ∗ ) is

independent of the orientation on ∗ . Since T (∞) is the unknot, the quantumgradings

on ρ and ˜Kh( ∗ ) =̂
[

−1 H−→ +1
]

agree. Thus, HF(a+, ρ) and HF(a−, ρ) are

graded isomorphic, because both are graded isomorphic to the reduced Khovanov
homology of the same orientedHopf link.Moreover, for all i = 1, . . . ,m, the quantum
grading is shifted such that

HF(a−, γi ) ∼= q+2 HF(a+, γi )

which together with the previous observation contradicts ˜Kh(T (+2)) ∼= ˜Kh(T (−2)).
The grading shift for HF(a±, γi ) can be seen as follows: After pulling the curves γi
sufficiently tight, their intersections with the arcs a± are all in a small neighbourhood
of the intersection points of a± with the parametrizing arcs corresponding to the
generators as shown in Fig. 10a from the viewpoint of the planar cover of S24,∗. The
arcs a± are parallel in this region, so the grading difference is precisely the (negative
of) the grading difference between these two generators.
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Case 2: {r , r ′} = {1/n,−1/n}. Since the connectivity of the tangle T is , T (1/n) =
T (−1/n) is a knot and up to overall orientation reversal, the orientations on T (1/n) and
T (−1/n) are as follows:

T (1/n) = n

{
T

�
*

�
*

T (−1/n) = n

{
T

�
*

�
*

Define

a+ =̂
[

−2n 1−2n 3−2n 4 j−3−2n 4 j−1−2n −1S D S2 S2 D S2
]

and

a− =̂
[

1 2n+1−4 j 2n+3−4 j 2n−3 2n−1 2nS2 D S2 S2 D S
]

Note that j = 1, . . . , � n
2 �. The arcs a+ and a− are the ˜BN invariants of the mirrors

of the ±1/n-twist tangles in T (1/n) and T (−1/n), respectively; see [15, Example 6.2,
Proposition 4.8]. So as in Case 1, the pairing theorem allows us to write

˜Kh
(

T (±1/n)
) ∼= HF(a±,C) = HF(a±, γ1) ⊕ · · · ⊕ HF(a±, γm) ⊕ HF(a±, ρ)

The total dimensions of the first m pairs of summands are identical, regardless of the
slope s of the rational component ρ. Since the slope s is an even integer, it never agrees
with ±1/n, so the dimensions of the final summands HF(a±, ρ) are equal to |1 ∓ sn|
by Lemma 2.10 and hence only agree if s = 0.

We now compute quantum gradings. First, HF(a±, ρ) agree as absolutely bigraded
homology groups, since they compute the reduced Khovanov homology of an unknot,
shifted in quantum grading by the same amount. To compute the grading shifts for the
first m summands, we observe that after pulling the curves γi sufficiently tight (see
[17, Definition 6.1] and the discussion afterwards), the intersection points between
the arcs a± and γi sit in a small neighbourhood of the vertical line through the special
marked point. If n is even, the relevant portions of the complexes a+ and a− are,
respectively,

where j = 1, . . . , � n
2 �. The corresponding curve segments are illustrated in Fig. 10b.

They are obviously parallel, so there is a one-to-one correspondence between genera-
tors x+ ∈ HF(a+, γi ) and generators x− ∈ HF(a−, γi ) such that the quantum gradings
satisfy

q(x−) − q(x+) = 8 j − 4 − 4n < 0
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Fig. 11 The knots Kn for n ≥ 0 (a) and n ≤ 0 (b)

for j = 1, . . . , � n
2 �. If n is odd, there are additional generators stemming from the

generators −1 and +1 of the complexes a±. The corresponding curve segments look
as in Fig. 10a, except that the quantumgradings are different. The correspondence from
the case that n is even extends to the case that n is odd so that the quantum gradings
of the additional generators satisfy

q(x−) − q(x+) = −2 < 0

The grading shifts are strictly negative in all cases, contradicting ˜Kh(T (1/n)) ∼=
˜Kh(T (−1/n)). ��
Remark 4.1 This proof highlights the utility of the quantum gradings in Khovanov
homology. However, it also suggests an alternate strategy that avoids gradings in these
complexes altogether through the exact triangle. In general, by using the immersed
curves reformulation of Khovanov homology, one is able to split up the skein exact
triangle into several summands. There is one for each component of the immersed
multicurve for the tangle complementary to the crossing where the exact triangle
is being implemented. For each exact triangle, the dimensions of the three groups
are simply computed by a count of intersections between the component and three
rational curves in the four-punctured sphere of distance one. This gives much stronger
constraints on the structure of the exact triangle. Frequently, as a result, the maps in
the exact triangle can be computed as well, and additional grading structures can be
deduced. A similar perspective on these exact sequences is seen in bordered Heegaard
Floer homology for three-manifolds with torus boundary [20, Section 11.2].

5 The generalized Cosmetic Crossing Conjecture holds asymptotically

Throughout this section we fix a Conway tangle T with connectivity and without
any closed components. Furthermore, we consider the family of knots {Kn}n∈Z shown
in Fig. 11 and defined by Kn = T (1/2n) for n ∈ Z. Equivalently, each knot Kn is the
result of a band surgery on a fixed two-component link T (0) and the knots Kn and
Kn+1 are obtained from each other by adding a full twist to the band. This point of
view explains the restrictions placed on the tangle T .

If T is horizontally split, then all Kn are equal to each other. We now restate the
two conjectures on cosmetic crossings in terms of Conway tangles:
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Conjecture 5.1 (Cosmetic Crossing Conjecture) Suppose T is not horizontally split.
Then K0 and K1 are different as unoriented knots.

Conjecture 5.2 (Generalized Cosmetic Crossing Conjecture) Suppose T is not hori-
zontally split. Then the unoriented knots {Kn}n∈Z are pairwise different.

Recently, Wang showed that these conjectures hold assuming T (0) is a split link
[38]. While he states these conjectures for oriented knots, we are not aware of any
counterexamples to the conjectures as stated above for unoriented knots. Note, how-
ever, that a crossing change may result in the mirror of the original knot, as illustrated
by the (3,−3,±1)-pretzel knots, see the remarks to [14, Problem 1.58].

We now show that the generalized Cosmetic Crossing Conjecture holds “asymp-
totically”:

Theorem 5.3 (Reformulation of Theorem 1.4) Suppose T is not horizontally split.
Then there exists an integer N such that the knots {Kn}|n|≥N are pairwise different as
unoriented knots.

Lemma 5.4 Suppose ˜Kh(T ) only contains curves of slope 0 of which at least one is
special. Then Kn � Km for any n �= m.

Proof Let us write ˜Kh(T ) = � ∪ P , where � consists of special components and P
of rational components. By assumption � �= ∅. Also P �= ∅, since the pairing of the
arc ˜BN( ∗ ) with ˜Kh(T ) computes the Khovanov homology of the link T (0) and as

such is non-zero. Since the connectivity of the tangle T is , the induced orientation
of Kn on the tangle T and its rational filling are as shown in Fig. 11a, up to overall
orientation reversal. Define the arc of slope 1/2n:

By the same calculation as in the proof of Theorem1.2, Case 2 (using [15, Example 6.2,
Proposition 4.8]), these are the arc invariants of the mirrors of the rational fillings of
T . Then, by the pairing theorem,

˜Kh(Kn) ∼= HF(a1/2n, ˜Kh(T )) = HF(a1/2n, �) ⊕ HF(a1/2n, P)

We now study how both summands behave when varying n; Fig. 12c depicts the
schematic picture of intersections in S24,∗. After pulling the multicurves P and a1/2n
sufficiently tight, the intersection points generating HF(a1/2n, P) all sit close to the
end of a1/2n corresponding to the generator −1 for n > 0, 0 for n = 0, and +1

for n < 0. The corresponding curve segments are shown in Fig. 12a. We see that the
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Fig. 12 Illustration of intersection points between various curves in the proofs of Lemmas 5.4 and 5.5.
Numbers near generators (intersection points) indicate their quantum gradings. In (c), the dots • indicate
the intersection points of the curve a1/2n with P (contained in the bottom region) and � (contained in the
top region)

quantum grading of HF(a1/2n, P) is independent of n; see Sect. 2.3 for how gradings
are computed.

We now investigate the pairing of a1/2n with special curves. After pulling all mul-
ticurves sufficiently tight, the intersection points generating HF(a1/2n, �) all sit close
to the end of a1/2n corresponding to the generator −4n , see Fig. 12b. Thus, the shift
in quantum grading is as follows:

HF(a1/2n, �) ∼= q4n HF(a∞, �) ∼= q4n−4m HF(a1/2m, �)

Therefore Kn � Km if n �= m. ��

Lemma 5.5 Suppose ˜Kh(T ) contains a curve of a non-zero slope. Then there exists N
such that the unoriented knots {Kn}|n|≥N are all different.

Proof Let us write ˜Kh(T ) = γ1 ∪ · · · ∪ γm for some integer m > 0. For each i =
1, . . . ,m, let (pi , qi ) be a pair of mutually prime integers such that the slope of γi is
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pi/qi . By assumption, there is some i ∈ {1, . . . ,m} such that pi �= 0. Let

M = max
{ |qi |

2|pi |
∣

∣

∣ i ∈ {1, . . . ,m} : pi �= 0
}

Then for |n| > M , the slope 1/2n of the curve a1/2n is distinct from pi/qi . Therefore, by
Lemma 2.10,

dim HF(a1/2n, γi ) = 
i · |qi − pi · 2n|

where 
i is the length of γi . As we have seen in the proof of Lemma 5.4, if pi = 0, the
dimension of HF(a1/2n, γi ) is independent of n. If pi �= 0, the sign of the expression
qi/pi − 2n is the same for all n > M . Therefore, dim ˜Kh(Kn) is a strictly increasing
function in n for n > M . The same argument shows that it is strictly decreasing
for n < −M . Thus the knots {Kn}n>M are pairwise different, and so are the knots
{Kn}n<−M .

It remains to distinguish the two families. For this we first prove that the quantum
grading of {˜Kh(Kn)}n�0 is unbounded above and bounded below.

The existence of a lower bound follows from the following two observations: first,
the quantum gradings of the generators of a1/2n are bounded above by −1. Second,
every intersection point generating the Lagrangian Floer homology between a1/2n and
a rational or special curve can be represented by a homogeneous morphism containing
a component labelled by an algebra element of quantum grading greater than or equal
to −2 (namely one of the algebra elements id, S, S2, D ∈ B); this follows from
an elementary argument about straight lines in the covering space S24,∗. Thus, if the
minimal grading of a generator of D1(T ) =̂ ˜Kh(T ) is μ, the formula from Sect. 2.3
for computing the quantum grading of generators of HF(a1/2n, ˜Kh(T )) gives us μ −
(−1) + (−2) as a lower bound.

Next, we show that the quantum grading of {˜Kh(Kn)}n�0 has no upper bound. By
assumption, there exists a component γ of ˜Kh(T ) of non-zero slope. For n � 0, we
may assume that the slope of γ is bigger than the slope 1/2n of the arc a1/2n . Then, there
exists an intersection point close to the generator −4n , which looks like Fig. 12d.
Clearly, the quantum gradings of this family of generators are unbounded.

Analogous arguments imply that the quantum grading of {˜Kh(Kn)}n�0 is
unbounded below and bounded above. This proves that there exists N � M such
that knots in {Kn}n>N ∪ {Kn}n<−N are pairwise different. ��

Proof of Theorem 5.3 Wewill show that the reduced Khovanov homology of the knots
{Kn}|n|≥N are pairwise different by studying how the invariant ˜Kh(T ) pairs with the
arc a1/2n:=˜BN(Q1/2n). First, suppose ˜Kh(T ) contains only rational components of
slope 0: In this case Theorem 3.1 implies that T is horizontally split, contradicting
the assumption in Theorem 5.3. Next, suppose ˜Kh(T ) only contains curves of slope 0
of which at least one is special: This case is covered by Lemma 5.4. The last case of
˜Kh(T ) containing curves of non-zero slopes is covered by Lemma 5.5. ��
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5.1 Non-trivial band detection

Joshua Wang asked if it is possible to recover his result [38, Theorem 1.1] using our
techniques. The answer is yes:

Theorem 5.6 (Reformulation of Theorem 1.3) Suppose T is not horizontally split, and
T (0) is a split link. Then the unoriented knots {Kn}n∈Z are pairwise different.

The only missing ingredient in the proof is the following.

Theorem 5.7 (Split closure property) Suppose T (0) is a split link K ∪K ′. Then ˜Kh(T )

only contains components of slope 0.

Proof of Theorem 5.6 Theorem 5.7 implies that ˜Kh(T ) only contains components of
slope 0. By Theorem 3.1 we know that the tangle T must contain special components
of slope 0. Lemma 5.4 now proves the statement. ��
Proof of Theorem 5.7 Placing the reduction point to the top-left end of T , we consider
the reduced Khovanov homology of the split link ˜Kh(T (0)) = ˜Kh(K ∪ K ′). Since
only one of the two components is reduced (say K ), we may consider the basepoint
action on ˜Kh(K ∪ K ′) with respect to a basepoint on K ′, which we place near the
bottom left end of T . Keeping in mind that we work with F coefficients, we have

˜Kh(K ∪ K ′) = ˜Kh(K ) ⊗F Kh(K ′)

and the basepoint action ofF[x]/(x2) on ˜Kh(K∪K ′) is induced by the basepoint action
of F[x]/(x2) on Kh(K ′). Over F the latter basepoint action on unreduced Khovanov
homology is well-known to be free [30, Corollary 3.2.C], and so the basepoint action
of F[x]/(x2) on ˜Kh(K ∪ K ′) is also free.

We now come back to the tangle T and leverage the description of Khovanov
homology in terms of the Floer homology of curves:

˜Kh(K ∪ K ′) = ˜Kh(T (0)) = HF(a0, ˜Kh(T ))

Let us suppose there is a curve γ in ˜Kh(T ) of slope p/q �= 0. By adding twists to
the lower two punctures we may assume that p/q is positive and as close to 0 as we
want. After pulling the curves tight in the planar cover, using Observation 2.11, each
intersection between a0 and γ locally looks as in Fig. 13.

Thus the complexes over the algebra B associated to the curves a0 and γ are as
follows:

D0 = [

0
] =̂ a0

D1 =
[

· · · 1 2 3 4 5 6 · · ·D S2 D S2 D
]

=̂ γ

where the subscripts are used to simply label generators. According to [15, Theo-
rem 1.5], the Lagrangian Floer homology between two curves is isomorphic to the
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Fig. 13 The lifts of the arc a0 and a rational or special curve γ of sufficiently shallow positive slope, based
at a common point of intersection

homology of the morphism space between the corresponding complexes:

HF(a0, γ ) ∼= H∗(Mor(D0,D1))

As F[x]/(x2)-modules, they are direct summands of

˜Kh(T (0)) ∼= HF(a0, ˜Kh(T )) ∼= H∗(Mor(D0,D1(T )))

sinceγ is a component of ˜Kh(T ) andhenceD1 is a direct summandofD1(T ). Consider

now a morphism consisting of a single arrow ( 0
id−→ 4) ∈ H∗(Mor(D0,D1)). (This

morphism corresponds to the single intersection in Fig. 13.) The basepoint action mul-
tiplies all the labels of a morphism by D ; see the discussion before [17, Lemma 6.46]
for a detailed explanation of the basepoint action in the context of morphism spaces

of chain complexes. Thus the basepoint action sends the morphism ( 0
id−→ 4) to the

morphism ( 0
D−→ 4), which is null-homotopic; the null-homotopy is ( 0

id−→ 3).

Furthermore, the morphism ( 0
id−→ 4) is not in the image of the basepoint action,

because every morphism that is homotopic to the one in the image of the basepoint

action cannot contain identity arrows
id−→. This is because bothD0 andD1 correspond

to the pulled tight curves, and thus do not contain any
id−→ in their differentials. We

conclude that the morphism ( 0
id−→ 4) represents torsion in the basepoint action of

F[x]/(x2) on ˜Kh(T (0)). So this action is not free, contradicting the fact that T (0) is
split. ��

5.2 Towards split closure detection

It is natural to wonder if the converse of Theorem 5.7 also holds.

Conjecture 5.8 (Split closure detection) Given a Conway tangle T , T (0) is a split link
if and only if ˜Kh(T ) only contains components of slope 0.
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In this direction, we can offer the following result:

Theorem 5.9 T (0) is a split link if ˜Kh(T ) only contains components of slope 0 and
no rational curves of length greater than 1.

Proof If ˜Kh(T ) only contains components of slope 0 then ˜Kh(T (0)) is isomorphic
to the Lagrangian Floer homology between BN( ∗ ) and the rational components of
˜Kh(T ). If all rational components are (up to grading shift) equal to r1(0) this implies
that the basepoint action on ˜Kh(T (0)) is free. So by the main result of [21], T (0) is a
split link. ��

To prove Conjecture 5.8, it remains to show that if ˜Kh(T ; F) only contains curves
of slope 0 then all its rational components have length 1. Note that it is important that
we use coefficients in F, because this statement is false away from characteristic 2.
However, over F, we in fact expect this to be a more general property of the multicurve
invariants ˜Kh:

Conjecture 5.10 For any Conway tangle T , the length of any rational component of
˜Kh(T ; F) is equal to 1.
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