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Abstract
The purpose of this paper is to extend the store of models able to support integ-
rable defects by investigating the two-dimensional Boussinesq nonlinear wave
equation. As has been previously noted in many examples, insisting that a
defect contributes to energy and momentum to ensure their conservation, des-
pite the presence of discontinuities and the explicit breaking of translation
invariance, leads to sewing conditions relating the two fields and their derivat-
ives on either side of the defect. The manner in which several types of soliton
solutions to the Boussinesq equation are affected by the defect is explored
and reveals new effects that have not been observed in other integrable sys-
tems, such as the possibility of a soliton reflecting from a defect or of a defect
decaying into one or two solitons.

Keywords: integrable, defects, Boussinesq

(Some figures may appear in colour only in the online journal)

1. Introduction

The Boussinesq equation was introduced 150 years ago to provide an approximate description
of water waves [1]. Since then, many interesting features of this equation have been discovered
but it would be difficult to review them all here, or even to provide a comprehensive list of
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references. For this article, the papers [2–9] have been particularly useful. The purpose of this
paper, motivated by the relevance of the Boussinesq equation, or more accurately a perturbed
Boussinesq equation, to the propagation of solitons along nerve fibres [10–13], is to examine
the possibility of constructing ‘integrable discontinuities’, or ‘defects’, as a first tentative step
towards attempting tomodel a synapse [10] as a field discontinuity. If that is possible, a synapse
would be described by sewing conditions relating the (perturbed-)Boussinesq fields on either
side of it. Since it turns out that in all examples investigated so far integrable defects are purely
transmitting, at least until now, and therefore efficient from the point of view of processing
solitons, this is a property one could hope a synapse would have, at least approximately.

Integrable defects (sometimes called ‘jump defects’ to distinguish them from other types
of impurity) have been studied for some time in a variety of two-dimensional (one space—
one time) contexts. The study of impurities has a long history in solid-state physics but the
lines of thought relevant to the discussion presented here really began with papers such as
[14, 15]. On the other hand, Lagrangian descriptions of integrable defects were introduced
more recently [16], and led to discoveries within the sine-Gordon model [16–22], the KdV
equation [23], in the nonlinear Schrödinger equation [23–26], and in conformal and affine Toda
field theories [27–32]. Other examples demonstrating various features of integrable defects,
though less relevant to the present context, can be found in the collection of papers [33–37].

In all examples studied so far there is a principal recurring theme: an integrable defect is
special because its defining property is the capacity to make a contribution to both energy and
momentum to ensure that the total energy and momentum, meaning the contributions from
fields on either side of the defect together with the defect contribution, is conserved. It is
unsurprising that the total energy should be conserved because a defect of the type considered
here does not break time translation invariance. However, a defect placed at a specific point on
the spatial axis manifestly breaks translation invariance and therefore it is surprising the defect
can compensate for this. In fact, in all situations studied so far, the insistence on a conserved
overall momentum including a defect contribution actually requires the fields to either side of
a defect to satisfy integrable field equations.

One interesting feature of ‘integrable defects’ is the fact they are essentially purely transmit-
ting. This means a soliton encountering a defect, for example within the sine-Gordon model,
will pass through the defect suffering a delay, or will convert to an anti-soliton with a delay, or
will be absorbed by the defect. The three different possibilities occur according to whether the
rapidity of the soliton is less than, greater than, or exactly equal to, the (positive) free parameter
associated with the defect [17]. If it proves to be possible to construct a similar defect within
the Boussinesq setup then it will be interesting to see precisely how solitons behave as they
scatter with it. The purpose of this paper is to demonstrate that defects of this type are indeed
supported by the Boussinesq equation and that solitons are typically transmitted by the defect
rather than being reflected or destroyed by it. However, there are particular special solutions
to the Boussinesq equation that demonstrate features not shared with sine-Gordon solitons.
Examples of these are ‘merging or splitting’ soliton solutions [9], which do not preserve the
number of solitons as they evolve, and it transpires these can exhibit previously unseen novel
behaviour when encountering a defect.

The plan of the paper is as follows. In section 2, the starting point and conventions to be used
will be established. In section 3, the constraints following from insisting that there be a con-
served total energy and momentum, including contributions from the defect, are analysed in
detail leading to explicit expressions for the necessary sewing conditions. In section 4, the lin-
ear approximation is analysed to demonstrate the purely transmitting property in the simplest
case of a monochromatic wave. In section 5, the scattering of one or two soliton by the defect is
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analysed and then compared with two-soliton scattering. For these, the defect is purely trans-
mitting. As mentioned above, the Boussinesq equation also permits solutions that allow the
soliton number to change in finite time. The latter are also discussed in section 5 and lead to a
wider range of behaviours when encountering a defect. Finally, section 6 contains some con-
cluding remarks concerning a soliton solution to the perturbed Boussinesq equation studied
by the authors of [11–13].

2. The Boussinesq equation

A convenient starting point for the purposes of this article is the Lagrangian density provided
in [8]:

L=
1
2c2

u2t −
1
2
u2x −

λ

3
u3x −

κ2

2
u2xx. (2.1)

Then, the Euler–Lagrange equations require that u satisfies the nonlinear wave equation:

1
c2
utt− uxx−λ

(
u2x
)
x
+κ2uxxxx = 0. (2.2)

Differentiating this with respect to x and letting w= ux, the field w satisfies:

1
c2
wtt−wxx−λ

(
w2
)
xx
+κ2wxxxx = 0, (2.3)

which is the Boussinesq equation [1]. Here, dimensional constants c, λ, κ are inserted expli-
citly, where c is a speed, κ is a length and λ is a length divided by the dimension of u. Note,
the sign of λ is unimportant since changing the sign of λ is equivalent to changing the sign
of u.

In terms of u, the energy density associated with (2.1) is:

E =
1
2c2

u2t +
1
2
u2x +

λ

3
u3x +

κ2

2
u2xx, (2.4)

and the momentum density is

P =− 1
c2
ut ux. (2.5)

The minus sign is included in (2.5) to ensure a soliton travelling along the x-axis in the sense
of increasing x has positive momentum. It is also useful to note for future reference, using
equation (2.2), that the time derivatives of the energy and momentum densities satisfy:

Et =
∂

∂x

(
ut(ux+λu2x −κ2uxxx)+κ2uxxuxt

)
, (2.6)

and

Pt =− ∂

∂x

(
1
2c2

u2t +
1
2
u2x +

2λ
3
u3x −κ2uxuxxx+

κ2

2
u2xx

)
. (2.7)

This is the formulation mainly used in this article. Also, throughout it will be assumed that κ
is real and positive, which is the form of the Boussinesq equation that is most relevant to the
investigation of pulse propagation in nerve fibres [11]. Sometimes, with κ2 > 0, (2.3) is called
the ‘good’ Boussinesq equation.
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For future use, the equation (2.2) has the well-known soliton solution [2, 3, 7] progressing
with speed ν:

u(x, t) =−3κγ(ν)
λ

tanh

(
γ(ν)

2κ
(x− νt)

)
, γ(ν) =

√
1− ν2/c2, |ν|< c. (2.8)

A direct calculation of the energy and momentum for the soliton, using the above expres-
sions (2.4) and (2.5) for the energy and momentum densities, gives

P=M0γ
3ν, E=

1
5
M0c

2γ3

(
1+

4ν2

c2

)
, where M0 =

6κ
λ2c2

. (2.9)

These expressions look strange. However, if ν << c, they are approximated by:

P=M0γ
3ν ≈M0 ν, E=

1
5
M0c

2γ3

(
1+

4ν2

c2

)
≈ 1

5
M0 c

2 +
1
2
M0 ν

2, (2.10)

which look more familiar. On the other hand, as ν → c, both P and E tend towards zero, as
they should, since according to equation (2.8) u→ 0 in that limit and the soliton disappears.

If κ2 < 0, then the corresponding soliton solution would be real provided |ν|> c. This
illustrates the distinction between the ‘good’ and ‘bad’ variants of the equation.

3. Adding an integrable defect

As in previously discussed models, an ‘integrable’ defect can be added to the Boussinesq
setup at the point x= x0 by considering two different Boussinesq fields (by default these are
now described by equation (2.2) with κ2 > 0), u defined in the region x< x0 and v defined in
the region x> x0, together with sewing conditions that relate the fields and their derivatives
across the defect at x= x0. Note, in this context fields and their derivatives are defined as
limits from the left of x0 (for u) and from the right of x0 (for v). Typically, a defect will require
discontinuities in the fields and their derivatives at x= x0; in particular, there is no assumption
that u(x0, t) = v(x0, t). For these reasons, the action will be taken to be

A=

ˆ
dt

 x0ˆ

−∞

dxLu+D+

∞̂

x0

dxLv

 , (3.1)

where Lu, Lv are both of the form (2.1), and D depends on the fields u,v and their space/time
derivatives evaluated at x= x0 (in the sense described above).

Note also, it is implicitly assumed the Boussinesq equations in the regions x< x0 and
x> x0 are identical. However, there is no need to make this assumption since the media to
either side of the defect could, in principle, be different, meaning the dimensional constants
in equation (2.2) might be different. An example of a change of medium of this kind, for the
sine-Gordon model, is given in [37]. In such a situation, a defect involving a discontinuity of
the fields and/or their derivatives is to be expected.
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Starting with the action given in equation (3.1) and varying the fields u,v independently
in their respective domains leads to the Boussinesq equations for u,v within their respective
domains, together with the sewing conditions that should hold at x= x0:

∂Lu

∂ux
− ∂

∂x
∂Lu

∂uxx
+

∂D
∂u

− ∂

∂t
∂D
∂ut

= 0,

∂Lu

∂uxx
+

∂D
∂ux

= 0,

−∂Lv

∂vx
+

∂

∂x
∂Lv

∂vxx
+

∂D
∂v

− ∂

∂t
∂D
∂vt

= 0,

−∂Lv

∂vxx
+

∂D
∂vx

= 0. (3.2)

Using the explicit expressions for the Lagrangians these become conditions on the space deriv-
atives of u and v at x= x0:

∂Lu

∂ux
− ∂

∂x
∂Lu

∂uxx
=−ux−λu2x +κ2uxxx =−∂D

∂u
+

∂

∂t
∂D
∂ut

,

∂Lu

∂uxx
=−κ2uxx =−∂D

∂ux
,

∂Lv

∂vx
− ∂

∂x
∂Lv

∂vxx
=−vx−λv2x +κ2vxxx =

∂D
∂v

− ∂

∂t
∂D
∂vt

,

− ∂Lv

∂uxx
= κ2vxx =−∂D

∂vx
. (3.3)

Note: these expressions suggest strongly thatD depends only on u,v,ux,vx,ut,vt (all evaluated
at x0 via appropriate limits). These will be used to replace the second and third order space
derivatives evaluated at x0 whenever they occur.

The total energy contributed by the fields to either side of the defect is given by

E= Eu+Ev =
ˆ x0

−∞
dxEu+

ˆ ∞

x0

dxEv. (3.4)

This is not necessarily conserved but, using the expression (2.6), and assuming the fields and
their derivatives are decaying to zero as x→±∞, its time derivative can be expressed as the
difference of contributions from the defect at x= x0. Thus,

Et =
(
ut(ux+λu2x −κ2uxxx)+κ2uxxuxt

)∣∣
x0
−
(
vt(vx+λv2x −κ2vxxx)+κ2vxxvxt

)∣∣
x0
, (3.5)

which can be rewritten using the sewing conditions (3.3) to obtain:

Et =
∂

∂t

(
D− ut

∂D
∂ut

− vt
∂D
∂vt

)
. (3.6)

Hence, the quantity

Etot = E+ ut
∂D
∂ut

+ vt
∂D
∂vt

−D ≡ Eu+Ev+ED (3.7)

is conserved independently of the specific details of the defect. This was to be expected since
the defect does not destroy the property of time translation invariance; it simply contributes to
the total energy as shown.
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On the other hand, placing a defect at a specified location certainly breaks translation invari-
ance. Nevertheless, as has been demonstrated several times before in a variety of other models,
insisting that a suitably modified total momentum is also conserved is a powerful constraint
with interesting consequences. Moreover, evidence from examples examined so far suggests
this is only possible in an integrable situation. Since the Boussinesq equation is known to be
integrable it is worth exploring in detail the restrictions on the defect contribution D to the
action.

The combined contributions from the fields to the momentum is

P= Pu+Pv =
ˆ x0

−∞
dxPu+

ˆ ∞

x0

dxPv. (3.8)

Using the expression (2.7) the time derivative of the total momentum is given by

−Pt =
(

1
2c2

u2t +
1
2
u2x +

2λ
3
u3x −κ2uxuxxx+

κ2

2
u2xx

)∣∣∣∣
x0

−
(

1
2c2

v2t +
1
2
v2x +

2λ
3
v3x −κ2vxvxxx+

κ2

2
v2xx

)∣∣∣∣
x0

,

which can be rewritten, using the sewing conditions to replace the second and third derivative
terms, to obtain

−Pt =

(
1
2c2

u2t −
1
2
u2x −

λ

3
u3x +

1
2κ2

(
∂D
∂ux

)2

+ ux
∂D
∂u

− ux
∂

∂t
∂D
∂ut

)∣∣∣∣∣
x0

−

(
1
2c2

v2t −
1
2
v2x −

λ

3
v3x +

1
2κ2

(
∂D
∂vx

)2

− vx
∂D
∂v

+ vx
∂

∂t
∂D
∂vt

)∣∣∣∣∣
x0

. (3.9)

This expression can be rearranged slightly to give(
−P+ ux

∂D
∂ut

+ vx
∂D
∂vt

)
t

=

(
1
2c2

u2t −
1
2
u2x −

λ

3
u3x +

1
2κ2

(
∂D
∂ux

)2

+ ux
∂D
∂u

+ uxt
∂D
∂ut

)∣∣∣∣∣
x0

−

(
1
2c2

v2t −
1
2
v2x −

λ

3
v3x +

1
2κ2

(
∂D
∂vx

)2

− vx
∂D
∂v

− vxt
∂D
∂vt

)∣∣∣∣∣
x0

≡ dPD

dt
, (3.10)

where D has to be carefully chosen so that the two terms central to this expression conspire
together to be the complete time derivative of a function PD of the fields and their derivatives.
If this is possible then the suitably adjusted momentum,

Ptot = P− ux
∂D
∂ut

− vx
∂D
∂vt

+PD ≡ Pu+Pv+PD, (3.11)

which includes an explicit defect contribution, PD, will be conserved.
To begin the analysis of (3.10), it is natural to assume the quantity D depends linearly on

the time derivatives ut, vt, and has no dependence on higher order time derivatives. In other
words, it is assumed the defect does not add dynamics of its own, meaning it is type I and
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not type II in the sense of [29]. With that assumption in place, the defect introduces no new
dynamics. Then, a suitable ansatz is to take

D = (utF+ vtG+H)|x=x0 , (3.12)

where F,G,H depend only on the fields u,ux,v,vx evaluated at x= x0. Note, in analys-
ing (3.10) all fields and their derivatives are evaluated at the defect (in the limiting sense
mentioned before), and this will be understood to be the case from now on. Using this ansatz,
equation (3.10) becomes(

−P+ ux
∂D
∂ut

+ vx
∂D
∂vt

)
t

= uxtF+ vxtG

+

(
1
2c2

u2t −
1
2
u2x −

λ

3
u3x +

1
2κ2

(
∂D
∂ux

)2

+ ux
∂D
∂u

)

−

(
1
2c2

v2t −
1
2
v2x −

λ

3
v3x +

1
2κ2

(
∂D
∂vx

)2

− vx
∂D
∂v

)
. (3.13)

Suppose the right hand side of equation (3.13) is the time derivative of PD, the contribution
the defect supplies to momentum. Then PD has to be a suitably chosen function of u,ux,v,vx,
and it is already clear that

∂PD
∂ux

= F,
∂PD
∂vx

= G, (3.14)

implying the constraint:

∂F
∂vx

=
∂G
∂ux

. (3.15)

Also, the other pieces of the right hand side of equation (3.13) fall into three groups. First,
there are a number of terms that are quadratic in time derivatives ut,vt; these must cancel
among themselves. Second, there are terms that contain no time derivatives; these must also
cancel among themselves. Third, there is a group of terms that are linear in time derivatives
and these must combine in such a manner that equation (3.13) can be rewritten(

−P+ ux
∂D
∂ut

+ vx
∂D
∂vt

)
t

= uxtF+ vxtG+ ut
∂PD
∂u

+ vt
∂PD
∂v

≡ ∂PD
∂t

. (3.16)

Each set of terms will be considered separately in the first instance.

3.1. Terms quadratic in time derivatives

There are three terms that are quadratic in time derivatives, proportional to one of u2t ,v
2
t and

utvt, which must separately vanish. In detail, these are:

u2t :
1
2c2

+
1
2κ2

[(
∂F
∂ux

)2

−
(
∂F
∂vx

)2
]
= 0, (3.17)

v2t :
1
2c2

+
1
2κ2

[(
∂G
∂vx

)2

−
(
∂G
∂ux

)2
]
= 0, (3.18)

utvt :
1
κ2

[
∂F
∂ux

∂G
∂ux

− ∂F
∂vx

∂G
∂vx

]
= 0. (3.19)
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Using equation (3.15) together with equation (3.19) (and assuming the partial derivatives do
not vanish) yields a second relation:

∂F
∂ux

=
∂G
∂vx

, (3.20)

in turn implying that equations (3.17) and (3.18) represent the same constraint. Combining
equations (3.15) and (3.20) implies that F and G satisfy

∂2F
∂u2x

=
∂2F
∂v2x

,
∂2G
∂u2x

=
∂2G
∂v2x

. (3.21)

The only functions of ux,vx compatible with equation (3.21) and satisfying the constraint (3.17)
are linear, implying

F= αux+βvx+ f, G= βux+αvx+ g, β2 −α2 =
κ2

c2
. (3.22)

In (3.22), the coefficients α,β and the terms f,g are functions of u,v only. Note also, the func-
tions f and g are not unique since any change of the form

f→ f ′ = f+
∂Ω

∂u
, g→ g ′ = g+

∂Ω

∂v
, (3.23)

where Ω depends on u and v but not their derivatives, simply adds a total time derivative to D,
which is unimportant for the action.

From (3.22) and (3.14) it is already clear that PD is a quadratic function of ux,vx.

3.2. Terms linear in time derivatives

The next step is to extract and consider the terms in (3.13) that are linear in ut,vt. Thus

∂PD
∂u

= ux
∂F
∂u

+ vx
∂F
∂v

+
1
κ2

(
∂F
∂ux

∂H
∂ux

− ∂F
∂vx

∂H
∂vx

)
, (3.24)

∂PD
∂v

= ux
∂G
∂u

+ vx
∂G
∂v

+
1
κ2

(
∂G
∂ux

∂H
∂ux

− ∂G
∂vx

∂H
∂vx

)
. (3.25)

Using the expressions for F,G from (3.22) these may be rewritten as follows:

∂PD
∂u

= u2x
∂α

∂u
+ v2x

∂β

∂v
+ uxvx

(
∂β

∂u
+

∂α

∂v

)
+ ux

∂f
∂u

+ vx
∂f
∂v

+
1
κ2

(
α
∂H
∂ux

−β
∂H
∂vx

)
,

∂PD
∂v

= u2x
∂β

∂u
+ v2x

∂α

∂v
+ uxvx

(
∂α

∂u
+

∂β

∂v

)
+ ux

∂g
∂u

+ vx
∂g
∂v

+
1
κ2

(
β
∂H
∂ux

−α
∂H
∂vx

)
. (3.26)
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Clearly, the four partial derivatives of PD given in (3.14) and (3.26) must be compat-
ible and this requires several further constraints. To examine these, compare in turn the
(u,ux), (v,vx), (u,vx) and (v,ux) pairs of derivatives to obtain:

(u,ux) : ux
∂α

∂u
+ vx

∂α

∂v
+

1
κ2

(
α
∂2H
∂u2x

−β
∂2H

∂ux∂vx

)
= 0

(v,vx) : ux
∂α

∂u
+ vx

∂α

∂v
− 1

κ2

(
α
∂2H
∂v2x

−β
∂2H

∂ux∂vx

)
= 0

(u,vx) : ux
∂α

∂v
+ vx

(
2
∂β

∂v
− ∂α

∂u

)
+

∂f
∂v

− ∂g
∂u

− 1
κ2

(
β
∂2H
∂v2x

−α
∂2H

∂ux∂vx

)
= 0

(v,ux) : ux

(
2
∂β

∂u
− ∂α

∂v

)
+ vx

∂α

∂u
− ∂f

∂v
+

∂g
∂u

+
1
κ2

(
β
∂2H
∂u2x

−α
∂2H

∂ux∂vx

)
= 0. (3.27)

Adding the first pair of relations in (3.27) implies

2ux
∂α

∂u
+ 2vx

∂α

∂v
+

α

κ2

(
∂2H
∂u2x

− ∂2H
∂v2x

)
= 0, (3.28)

while adding the third and fourth relations gives

2ux
∂β

∂u
+ 2vx

∂β

∂v
+

β

κ2

(
∂2H
∂u2x

− ∂2H
∂v2x

)
= 0. (3.29)

Recalling from the third relation of (3.15) that β2 −α2 is constant it follows from
equations (3.28) and (3.29) that each of α and β is constant and

∂2H
∂u2x

− ∂2H
∂v2x

= 0, α
∂2H
∂u2x

−β
∂2H

∂ux∂vx
= 0. (3.30)

Hence, H is a quadratic function of ux,vx of the form

H=
σ

2

(
βu2x + 2αuxvx+βv2x

)
+ ρuux+ ρvvx+ τ, (3.31)

where σ,ρu,ρv, τ are functions of u,v only. Note also, σ has the dimensions of velocity while
ρu, ρv have the same dimensions as the fields u,v, and τ has the dimensions of energy. In
addition, the third and fourth relations are now identical and given by:

∂f
∂v

− ∂g
∂u

− 1
κ2

(
β
∂2H
∂v2x

−α
∂2H

∂ux∂vx

)
≡ ∂f

∂v
− ∂g

∂u
− σ

c2
= 0. (3.32)

Note, this constraint on f and g is invariant under the ‘gauge’ transformation (3.23).
Expressions for f and g will be chosen later in section 3.4. The requirement that α and β

9



J. Phys. A: Math. Theor. 56 (2023) 385701 E Corrigan and C Zambon

are constant also simplifies the expressions for the derivatives of PD. Explicitly, they are now
given by:

∂PD
∂u

= ux
∂f
∂u

+ vx
∂f
∂v

+
1
κ2

(
α
∂H
∂ux

−β
∂H
∂vx

)
,

∂PD
∂v

= ux
∂g
∂u

+ vx
∂g
∂v

+
1
κ2

(
β
∂H
∂ux

−α
∂H
∂vx

)
,

∂PD
∂ux

≡ F= αux+βvx+ f,

∂PD
∂vx

≡ G= βux+αvx+ g. (3.33)

The remaining requirements needed for matching the mixed (u, v) derivatives will be con-
sidered later once more information is known about H.

3.3. The terms without time derivatives

The remaining terms to be considered are the terms that do not contain any time derivat-
ives and these must cancel among themselves. The constraint arising from these terms in
equation (3.13) is

−1
2
u2x +

1
2
v2x −

λ

3
u3x +

λ

3
v3x + ux

∂H
∂u

+ vx
∂H
∂v

+
1
2κ2

[(
∂H
∂ux

)2

−
(
∂H
∂vx

)2
]
= 0. (3.34)

Using the expression for H provided by equation (3.31), the terms cubic in space derivatives
in (3.34) lead to:

u3x :
∂σ

∂u
=

2λ
3β

, v3x :
∂σ

∂v
=−2λ

3β
, (3.35)

u2xvx : α
∂σ

∂u
=−β

2
∂σ

∂v
, v2xux : α

∂σ

∂v
=−β

2
∂σ

∂u
. (3.36)

At this stage it is necessary to distinguish two cases, λ= 0, and λ ̸= 0.
If λ= 0, which means the nonlinear term in the Boussinesq equation is temporarily disreg-

arded, equation (3.35) imply that σ = σ0, a constant, and there is no additional constraint on
α, β or σ from equation (3.36). This case will be examined further in section 4.

On the other hand, when λ ̸= 0, the equations (3.35) and (3.36) imply the extra constraint
β = 2α. Thus, for λ ̸= 0 and using the last relation of equation (3.22), α, β and σ are given by:

α2 =
κ2

3c2
, β2 =

4κ2

3c2
, σ = σ0 +µ(u− v), µ=

2λ
3β

. (3.37)

The three terms in (3.34) quadratic in space derivatives lead to

u2x :
∂ρu
∂u

=
1
2

(
1− σ2

c2

)
, v2x :

∂ρv
∂v

=−1
2

(
1− σ2

c2

)
, uxvx :

∂ρv
∂u

=−∂ρu
∂v

, (3.38)

while the two terms linear in space derivatives in (3.34) are

ux :
∂τ

∂u
+

σ

κ2
(β ρu−αρv) = 0, vx :

∂τ

∂v
+

σ

κ2
(αρu−β ρv) = 0. (3.39)

Finally, the terms independent of ux and vx in (3.34) must also cancel, implying

ρ2u = ρ2v . (3.40)

10
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Then, it follows from (3.38), (3.35) and (3.36) that

∂2ρu
∂u∂v

=− σ

c2
∂σ

∂v
=

µσ

c2
,

∂2ρv
∂v∂u

=
σ

c2
∂σ

∂u
=

µσ

c2
,

which is not compatible with the choice ρu =−ρv. Hence, (3.40) implies

ρu = ρv ≡ ρ,

and the last relation of (3.38) implies ρ is a function of the combination u− v. Then, the first
two relations of (3.38) are identical and on integration imply

ρ= ρ0 +
σ

2µ

(
1− σ2

3c2

)
. (3.41)

At this stage equation (3.39) become

∂τ

∂u
=−βσρ

2κ2
=−∂τ

∂v
,

implying that τ is also a function of u− v. Integrating these expressions gives

τ = τ0 −
βσ2

4κ2µ2

(
µρ0 +

σ

3

(
1− σ2

5c2

))
. (3.42)

Again, this is a compact expression but the constants would need to be redefined if taking the
limit µ→ 0. In any case, adding a constant to H simply adds a constant to D, which can be
ignored. Note also, the expression (3.42) is a fifth order polynomial in the discontinuity u− v,
which is very reminiscent of the explicit Bäcklund transformation for the Boussinesq equation
presented by Huang [5]. This should not be a surprise since Bäcklund transformations are
known to be intimately related to this type of defect (see [17] for details of the sine-Gordon
example). It is also reminiscent of the structure of the sewing relations describing a similar
defect within the KdV model [23], which also contain a fifth order polynomial in u− v.

At this stage, since H is determined, the (u, v) compatibility relation mentioned at the end
of section 3.2, but not analysed there, is seen to follow automatically on using the explicit form
of H together with the constraint on f and g given by equation (3.32). Note, the constant terms
in τ can be discarded in the defect contribution to the action since they play no role.

3.4. Summary

At this stage, the various components of the defect contribution can be brought together and
summarised (for λ ̸= 0):

D = utF+ vtG+H, F= αux+βvx+ f, G= βux+αvx+ g, β2 =
4κ2

3c2
, α2 =

κ2

3c2
;

H=
σ

2

(
βu2x + 2αuxvx+βv2x

)
+ ρ(ux+ vx)+ τ, σ = σ0 +µ(u− v), µ=

2λ
3β

,

ρ= ρ0 +
σ

2µ

(
1− σ2

3c2

)
, τ = τ0 −

βσ2

4κ2µ2

(
µρ0 +

σ

3

(
1− σ2

5c2

))
,

∂f
∂v

− ∂g
∂u

=
σ

c2
; for example: f = g=− σ2

2µc2
(but not uniquely). (3.43)

11
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Using these expressions in equation (3.3) provides the set of explicit sewing conditions that
must be satisfied by the fields u,v and their derivatives at the defect location x= x0. These are:

κ2 uxx = αut+βvt+σ(βux+αvx)+ ρ,

κ2 vxx =−(βut+αvt+σ(αux+βvx)+ ρ) ,

κ2uxxx = ux(1+λux)+
σ

c2
vt+αuxt+βvxt−

µ

2
(βu2x + 2αuxvx+βv2x)

− 1
2

(
1− σ2

c2

)
(ux+ vx)+

bσ
2κ2

(
ρ0 +

σ

2µ
− σ3

6µc2

)
,

κ2vxxx = vx(1+λvx)+
σ

c2
ut−βuxt−αvxt−

µ

2
(βu2x + 2αuxvx+βv2x)

− 1
2

(
1− σ2

c2

)
(ux+ vx)+

bσ
2κ2

(
ρ0 +

σ

2µ
− σ3

6µc2

)
. (3.44)

3.5. An expression for the contribution to momentum from the defect

Since the equation (3.33) are consistent they can be integrated to determine an expression for
PD via (3.10). Thus,

PD =
1
2

(
αu2x + 2βvxux+αv2x

)
+ fux+ gvx+ h,

∂h
∂u

=−∂h
∂v

=− (β−α)ρ

κ2
. (3.45)

Given the expression (3.41) for ρ, the function h(u,v) is given explicitly by

h= h0 −
(β−α)σ

κ2µ2

(
µρ0 +

σ

4

(
1− σ2

6c2

))
, (3.46)

though h0 and other constant terms in this expression are inessential. On the other hand, f and
g are not uniquely determined for the reasons mentioned previously. A possible choice would
be to take

f = g=− σ2

2µc2
. (3.47)

However, constant terms in this expressionwould play no role in the defect action. The undeter-
mined parameters that do play a role in the defect action (for λ ̸= 0) are σ0 and ρ0.

Once D is determined, the expressions for the conserved energy (3.7) and conserved
momentum are given by:

Etot = E+ ut
∂D
∂ut

+ vt
∂D
∂vt

−D ≡ E−H

= Eu+Ev−
[σ
2

(
βu2x + 2αuxvx+βv2x

)
+ ρ(ux+ vx)+ τ

]
x=x0

,

Ptot = P− ux
∂D
∂ut

− vx
∂D
∂vt

+PD

= Pu+Pv−
[
1
2

(
αu2x + 2βuxvx+αv2x

)
− h

]
x=x0

. (3.49)

12
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Alternatively, the explicit contributions ED and PD are seen to be

ED =−
[σ
2

(
βu2x + 2αuxvx+βv2x

)
+ ρ(ux+ vx)+ τ

]
x=x0

, (3.50)

PD =−
[
1
2

(
αu2x + 2βuxvx+αv2x

)
− h

]
x=x0

. (3.51)

4. The linear case with λ=0

As noted in section 3.3, when λ= 0 it follows that σ = σ0, a constant, and α, β only satisfy
the quadratic constraint given in (3.22).
(i) The simplest choice would be to take σ0 = c, which requires ρu = ρv ≡ ρ to be constant
via (3.38). Taking ρ= 0, τ = 0, and choosing

f =
v
2c

, g=− u
2c

as a solution to (3.32), gives the following expression for the defect contribution:

D0 =
1
2c

(utv− vtu)+ ut(αux+βvx)+ vt(βux+αvx)+
c
2

(
βu2x + 2αuxvx+βv2x

)
. (4.1)

In this case, the conserved energy andmomentum, including the defect contributions, are given
by

E0 = E− c
2

(
βu2x + 2αuxvx+βv2x

)
, P0 = P− 1

2

(
αu2x + 2βuxvx+αv2x

)
, β2 −α2 =

κ2

c2
.

(4.2)

Thus, for this particular example the expressions for E0 and P0 are nicely symmetrical.
(ii) However, if σ0 ̸= c it would be natural to take

f =
σ0v
2c2

, g=−σ0u
2c2

,

as solutions to (3.32), and the other pieces ρu,ρv and τ would not be constants. Rather,
equation (3.40) allows two different possibilities: either (a) ρu = ρv ≡ ρ, or (b) ρu =−ρv ≡ ρ.
In option (a) ρu and τ are functions of u− v, while in option (b) ρu and τ are functions of u+ v.
Thus, for option (a), for example, the expressions are:

ρ= ρ0 +
1
2

(
1− σ2

0

c2

)
(u− v), τ =

σ0(α−β)

κ2

[
ρ0(u− v)+

1
4

(
1− σ2

0

c2

)
(u− v)2

]
. (4.3)

Also, using the last pair of equation (3.45), h(u,v) is given by

h=
(α−β)

κ2

[
ρ0(u− v)+

1
4

(
1− σ2

0

c2

)
(u− v)2

]
. (4.4)

In this case, the defect contribution to the action is more elaborate. As before, ρ0 and σ0 are
constants playing a role but h0 and τ 0 are irrelevant and omitted.

The next step is to analyse how the defect affects a linear wave (in the cases for which
λ= 0), or a soliton (in the cases for which λ ̸= 0). The latter is more interesting but the linear
wave will be considered first. From previous experience, it might expected that the defect is
purely transmitting in all cases.

13
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4.1. A linear wave encountering a defect

The simplest case to consider has λ= 0, ρ0 = 0, places the defect at x= 0, and uses the ansatz

u=
(
eikx+Re−ikx

)
e−iωt, v= Teikx e−iωt, ω > 0, k> 0, ω2 = c2k2(1+κ2k2), (4.5)

where the reflection coefficient R, and transmission coefficient T, are to be determined by the
sewing conditions (3.3). In this case, the expression for D is assembled using the data in part
(ii) above. However, ρ0 has been taken to be zero because otherwise it would correspond to a
constant shift in one or both of the expressions for u,v given above. The sewing conditions for
option (a), for example, lead to four equations for R and T. Nevertheless, the over-determined
system for R and T has the unique solution

R= 0, T=− (α+β)c2k2 + iσ0k+ iω
(α+β)c2k2 − iσ0k− iω

, TT̄= 1. (4.6)

This contains two tunable parameters, σ0 and α, on recalling that

β2 = α2 +
κ2

c2
.

Clearly, the defect within the linearised Boussinesq equation is purely transmitting, as expected
from previous experience. Choosing σ0 = c, β = κ/c, α= 0 leads to a particularly simple
expression for a transmission factor, namely

T0 =− cκk2 + ick+ iω
cκk2 − i ck− iω

=
ck
ω

(1− iκk)≡−i tanh
(
θ

2
+
iπ
4

)
,

where the last equality has made use of a ‘rapidity’ variable, setting k= (1/κ)sinhθ, ω =
(c/2κ)sinh2θ, to represent solutions to the dispersion relation in equation (4.5).

5. Solitons encountering a defect

5.1. A single soliton

An expression for a single soliton solution (in terms of u satisfying (2.2)) of the Boussinesq
equation (2.3) is given in (2.8). For this section, it is useful to reorganise the expression as
follows:

w= ux, u= u0 +
3κγ
λ

(
1−E
1+E

)
, E= eγ(x−νt)/κ, γ =

√
1− ν2/c2, |ν|< c. (5.1)

Also, because u0 is arbitrary, adjusting it leads to an alternative, slightly simpler but equivalent,
expression given by:

u= u ′
0 −

6κγ
λ

(
E

1+E

)
, E= eγ(x−νt)/κ, γ =

√
1− ν2/c2, |ν|< c. (5.2)

Since the sewing conditions at the defect location must hold for all time, it is sensible to take
the expression (5.2) in the region x< x0, and to suppose the soliton solution (in terms of v) in
the region x> x0 is given by

v= v0 +
3κγ
λ

(
1− zE
1+ zE

)
, or, v= v ′0 −

6κγ
λ

(
zE

1+ zE

)
, (5.3)

14
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Figure 1. Soliton and a defect (θ = 1.0,s= 0.5), the right hand colourmap shows the
delay caused by the defect. Note: The left hand plot represents ux in the absence of a
defect while the right hand plot displays ux for x< 0 and vx for x> 0 with a defect at
x= 0.

where the parameter z is to be determined. The shifts u0 or u ′
0 and v0 or v

′
0 can be removed

entirely provided ρ0 is given by

ρ0 =− σ0

2µ

(
1− σ2

0

3c2

)
. (5.4)

As in the linear case, the quantity z is over-determined and it is necessary to check that there
is a consistent solution to the four sewing conditions. This is straightforward, though quite
lengthy, and the necessary algebra has been handled using Maple.

To obtain a simple expression for z, it is useful to express the speed of the soliton in terms of
rapidity by setting ν = c tanhθ, and define the essential parameter σ0 (which is not necessarily
constrained in magnitude to be less than c) as a multiple of c, namely σ0 = sc. Then, z is
given by

z=
sinhθ+ scoshθ∓

√
3

sinhθ+ scoshθ±
√
3
, α=± κ√

3c
. (5.5)

The two possibilities arise because of the relations given in (3.37), which imply two possible
choices for α. Provided z is positive, both u and v are non-singular solutions in their respective
domains. Note, the expression for z is independent of the location of the defect.

A typical situation is illustrated in figures 1 and 2 where a soliton meets a defect using
the parameter choices c= λ= κ= 1, θ = 1.0, s= 0.5, the latter implying z≈ 0.05836
using (5.5).

In figure 1, the colourmap on the left represents a soliton without the defect while the
colourmap on the right represents the effect of the defect. Note, in this type of picture, the
defect position has been chosen to be x0 = 0, ux is plotted on the left hand diagram and then
ux, x< 0, vx, x> 0 are plotted on the right hand diagram. In other words, on the colourmaps,
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Figure 2. Momentum conservation for a single soliton with a defect (θ = 1.0,s= 0.5).

it is the solutions to (2.3) that are illustrated because the spatial extents of the solitons are more
clearly evident.

In the second diagram, figure 2, the contributions to Pu,Pv and PD, as defined in
equation (3.51), are plotted as functions of time. It is clear from the plots that the soliton
momentum is transferred across the defect and no part of it is stored there after the soliton has
passed; the total momentum is conserved, as expected.

On the other hand, if the rapidity variable θ is chosen to ensure the numerator or denom-
inator vanishes in the expression for z given by (5.5), then the solution v for x> 0 is constant,
meaning the soliton will have disappeared with its energy and momentum absorbed by the
defect. However, this is not always possible. If |s|> 2, the soliton rapidity cannot be chosen in
this way. Effectively, this means there is a regime in the parameter s for which an approaching
soliton will be always be transmitted, albeit delayed. This can be compared with the situation
in the sine-Gordon model [17] where, for any choice of the defect parameter, an approaching
soliton with a suitably matching rapidity will be absorbed.

Finally, if z< 0 the solution v develops a singularity.

5.2. Two solitons

With the conventions adopted here, a double soliton solution [2] is given by

u=−6κ
λ

γ1E1 + γ2E2 +(γ1 + γ2)S12E1E2

1+E1 +E2 + S12E1E2
, (5.6)

where

ν1 = c tanhθ1, ν2 = c tanhθ2, and S12 =
sinh2(θ1 − θ2)− 3(coshθ1 − coshθ2)2

sinh2(θ1 − θ2)− 3(coshθ1 + coshθ2)2
. (5.7)
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The latter expression for S12 factors into

S12 =

(
3cosh(θ1 + θ2)− cosh(θ1 − θ2)− 4
3cosh(θ1 + θ2)− cosh(θ1 − θ2)+ 4

)
tanh2

(
θ1 − θ2

2

)
, (5.8)

and the first factor in (5.8) can be rewritten:(
cosh

(
θ1−θ2

2

)
−
√
3sinh

(
θ1+θ2

2

)
sinh

(
θ1−θ2

2

)
−
√
3cosh

(
θ1+θ2

2

)) (cosh
(
θ1−θ2

2

)
+
√
3sinh

(
θ1+θ2

2

)
sinh

(
θ1−θ2

2

)
+
√
3cosh

(
θ1+θ2

2

)) . (5.9)

However, none of the factors of S12 seem closely related to the expression for z given in
equation (5.5).

For comparison, consider the sine-Gordon example [17]. There, the scattering of a soliton
with a defect can be calculated similarly and the corresponding quantity z bears a close rela-
tionship with the delay factor A12(θ1 − θ2) describing the scattering of two solitons. In fact,
performing the analogous calculations in the sine-Gordon model and using a similar notation,
with an appropriately defined defect parameter η, the result is found to be:

z= coth

(
η− θ

2

)
, z2 = A12(η− θ). (5.10)

The situation in the present context is evidently more complicated, which was to be expected.
After all, the Boussinesq equation is not Lorentz invariant and there is no reason why delays
such as (5.8) should be functions solely of rapidity differences.

If a double soliton (5.6) encounters a defect from the region x< x0 then the matching solu-
tion in the region x> x0 has the form

v=−6κ
λ

γ1z1E1 + γ2z2E2 +(γ1 + γ2)S12 z1z2E1E2

1+ z1E1 + z2E2 + S12 z1z2E1E2
, (5.11)

where each of z1 and z2 are given by the expression (5.5) with θ replaced by θ1 and θ2, respect-
ively. Again, this is straightforward to check using the Maple package and demonstrates that
the soliton components behave independently when meeting a defect. For example, if θ1 is
chosen so that z1 = 0, the transmitted soliton will have just one component (the soliton labelled
2). The defect will absorb the energy and momentum of soliton 1, which is therefore filtered
out by the defect. Since there is no two soliton solution with θ1 = θ2, at most one of the two
solitons can be removed by the defect in this way.

5.3. Merging and splitting solitons

As mentioned in the section 1, the Boussinesq equation also permits solutions that represent
merging, or splitting, solitons [9]. This type of solution is not shared with the other integrable
nonlinear wave equations where defects have been explored. In fact, when negotiating a defect
these solutions display interesting behaviours not encountered before.

In the conventions of this article, an example of this type of solution is provided by setting

u=−6κ
λ

ω1E1 +ω2E2 +ω3E3

E1 +E2 +E3
, Ea = eωa(x−νat)/κ, νa =

√
3wa c, a= 1,2,3, (5.12)

where

w1 =
1
2

(
1

coshθ
+

tanhθ√
3

)
, w2 =

1
2

(
− 1
coshθ

+
tanhθ√

3

)
, w3 =− tanhθ√

3
. (5.13)
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Note, the parameters w1,w2,w3 have been chosen to satisfy explicitly the necessary conditions

ω1 +ω2 +ω3 = 0, ω2
1 +ω2

2 +ω2
3 = 1/2,

but written in terms of a single variable θ to facilitate a comparison with the calculations for
a single soliton. The variable θ plays the role of a rapidity for E3 the third component of the
expression (5.12).

This type of solution is also compatible with the defect (which, for convenience of calcula-
tion, is placed at x0 = 0). To see this, the sewing conditions are used to perform the matching,
assuming a solution for u(x, t), x< 0, given by (5.12), and a solution for v(x, t), x> 0, of the
type

v=−6κ
λ

z1ω1E1 + z2ω2E2 + z3ω3E3

z1E1 + z2E2 + z3E3
, z3 ̸= 0. (5.14)

Then, for the two possible choices of α, either

z1 = z3
scoshθ− 2sinhθ

scoshθ+ sinhθ+
√
3
, z2 = z3

scoshθ− 2sinhθ

scoshθ+ sinhθ−
√
3
, if α=

κ√
3c

, (5.15)

or

z1 = z3
scoshθ+ sinhθ+

√
3

scoshθ− 2sinhθ
, z2 = z3

scoshθ+ sinhθ−
√
3

scoshθ− 2sinhθ
, if α=− κ√

3c
. (5.16)

It is interesting to note that in both cases the previously determined soliton transmission factor
provided in (5.5) is given by z= z1/z2. As before the Maple package is indispensable when
checking the formulae for z1 and z2.

For most choices of the parameters θ and s, and provided s ̸= 2tanhθ, there will be both
reflection and transmission at the defect. To illustrate this, it is useful to plot separately the
various contributions to the total momentum over time. As before, in the numerical calculations
the Boussinesq parameters are chosen to be c= λ= κ= 1. There are a number of cases to
explore and a selection of possibilities are listed next.
(i) Consider the case with α> 0 for which equation (5.15) is relevant. Then, figure 3, with
θ =−1.5 and s= 2, illustrates a typical situation that involves transmission and reflection.
The plot clearly demonstrates that the total conserved momentum (solid green line) is split
between the ingoing soliton momentum Pu and the defect before the defect is reached, and
then, after the interaction with the defect, the momentum is split between the reflected soliton,
the transmitted soliton, and the defect.

In this case, the momentum stored at the defect fluctuates during the interaction but returns
to its pre-interaction value after the interaction.

The caption refers to a ‘splitting’ soliton because even in the absence of a defect the initial
soliton will split into two others, as was shown in [9].
(ii)However, if, in the case for which |s|< 2, θ is chosen to satisfy tanhθ = s/2, then in the first
option above, equation (5.15), with α> 0, both z1 and z2 vanish, implying that v is constant
and nothing is transmitted into the region x> 0.

In this case, a soliton approaching the defect in the region x< 0 might be reflected, with
some of its energy and momentum stored by the defect, or captured with all its energy
and momentum deposited on the defect. Illustrations of these possibilities are provided
in figures 4–6.
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Figure 3. A splitting soliton interacting with a defect showing transmission and reflec-
tion illustrating momentum conservation (θ =−1.5, s= 2.0).

Figure 4. A merging soliton reflecting from a defect (z1 = z2 ≡ 0 and θ= 1.0).
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Figure 5. Colourmap representing on the right hand diagram a reflecting soliton
(θ =−1.4).

In figure 4 with the choice θ= 1.0, the reflected soliton shares its momentum with the
defect and therefore reflects with a reduced momentum. In this case, there is a net change of
momentum stored at the defect.

On the other hand, in figures 5 and 6, with the choice θ =−1.4, the soliton appears to be
almost perfectly reflected and there is no momentum stored in the defect after the interaction.

The colourmap provided in the left hand diagram of figure 5 also illustrates the fact men-
tioned above that this type of soliton splits even without the defect. In this particular case, the
defect is filtering out one of the emerging solitons following the split but allowing the other to
carry momentum into the region x< 0.
(iii) Finally, still considering the case with s= 2tanhθ, a soliton could be captured by the
defect and this possibility occurs with θ in the range −∞< θ ≲−3.0 (the upper bound is not
precise) for which ω1 and ω2 are both negative with ω1 ≈ ω2.

This is illustrated in figure 7, with θ =−5.0. It is clear that almost all the momentum even-
tually resides in the defect with Pu → 0 as θ decreases. Since the Boussinesq equation (2.2) is
invariant under time reversal, choosing θ =+5.0 would lead to a situation where the defect is
first set up with a discontinuity at early times and then evolves into a single soliton carrying
momentum away into the region x< 0.
(iv) If the other option is adopted, which means α< 0 and z1 and z2 are defined instead
by (5.16), and θ is chosen to satisfy tanhθ = s/2, then both z1 and z2 diverge.

However, if the expression for v(x, t) is first rearranged by multiplying the numerator and
denominator by scoshθ− 2sinhθ before setting s= 2tanhθ, then the result is equivalent to
setting z3 = 0 but keeping z1 and z2 finite. In that situation v represents a soliton transmitted
into the region beyond the defect with speed

√
3(ω1 +ω2)c≡ c tanhθ. Again there are several

possibilities as the parameter θ is varied.
In this parameter regime, one particularly intriguing situation deserves a special mention.

It is possible to create an initial state with all the momentum stored in the defect (by arranging
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Figure 6. Conservation of momentum for a reflecting soliton (z1 = z2 ≡ 0, θ =−1.4).

Figure 7. A ‘disappearing’ soliton (z1 = z2 ≡ 0, θ =−5.0).

a discontinuity at early times), which then evolves into a pair of solitons. In order to conserve
momentum one of the decay products is travelling in the direction of decreasing x, the other in
the direction of increasing x. This possibility is illustrated in figure 8 where u(0, t) and v(0, t)
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Figure 8. Momentum conservation with a ‘decaying’ defect (θ= 1.4). The lower dia-
gram indicates the initial discontinuity by plotting u(0, t) and v(0, t) and demonstrates
that the discontinuity disappears as the two solitons emerge.

are also indicated (though not to scale since they are dimensionally different to the momenta),
to demonstrate how the initial discontinuity ultimately disappears.

The colourmap in figure 9 reveals how the defect manages this trick by converting the
initial momentum of the splitting soliton arriving from the region x> 0 into a discontinu-
ity, which subsequently fades to zero as the two solitons emerge. However, the defect clearly
gains momentum in this manoeuvre and this is stored in the final state. This happens due to
a dependence on the parameter σ0 = sc in h(0, t), equation (3.46), which is part of the defect
contribution to the total momentum PD. Because of this, there is a contribution to the defect
momentum that persists even when the discontinuity u(0, t)− v(0, t) vanishes.

Taken together, this is an interesting collection of phenomena because in all other examples
of nonlinear wave equations that support defects of the type considered here the defects have
turned out to be purely transmitting. In those examples, a soliton might be captured for special
choices of parameter, or (for example in the sine-Gordon model [17]), a defect might convert a
soliton to an anti-soliton while not altering its momentum. The phenomena described above in
the Boussinesq context seem to provide the first examples of an integrable defect exhibiting,
with suitably chosen parameters, either mirror-like behaviour, transmission or capture, or even
decay into one or two solitons.
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Figure 9. A ‘decaying’ defect (θ= 1.4). The left hand diagram represents the soliton
(ux) without the defect, the right hand diagram represents the solitons ux for x< 0 and
vx for x> 0 as they emerge from the defect travelling in opposite directions.

6. Concluding remarks

Apart from increasing the store of examples of models able to support an ‘integrable’ defect,
this investigation was also motivated by references [11–13] where the wave equation

1
c2
utt =

(
ux+λ(u2x)+χ2u3x

)
x
−κ2uxxxx, (6.1)

associated with the Lagrangian (6.2), is relevant. In this context, however, there is an additional
quartic nonlinear term in the Lagrangian together with an extra dimensional parameter χ:

L=
1
2c2

u2t −
1
2
u2x −

λ

3
u3x −

χ2

4
u4x −

κ2

2
u2xx. (6.2)

Moreover, using the data supplied in [12] the parameter λ is negative, χ is real, and the dimen-
sionless combination of the two parameters λ and χ satisfies:

|λ/χ| ≈ 1.62. (6.3)

An interesting feature of (6.1) is the existence of a solitary wave solution [12]. Using the
conventions of the present article, this solution may be written as follows:

u= u0 +
3κγ
λϵ

ln
(
1− ϵ tanh

γ

2κ
(x− νt)

)
, ϵ=

3γχ√
2λ

, γ(ν) =
√
1− ν2/c2. (6.4)

For this solution to remain finite for all values of x and t, it is necessary that

|ϵ|=
∣∣∣∣3γ(ν)χ√

2λ

∣∣∣∣< 1, (6.5)
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which implies

1>
ν2

c2
> 1− 2λ2

9χ2
≈ 0.42, (6.6)

the last step using the approximation for |λ/χ| provided by equation (6.3). Then, equation (6.6)
provides upper and lower bounds for the speed ν of the soliton [12]. Moreover, expanding the
logarithm as a power series, the solution is approximated by

u= u0 −
3γ κ
λ

tanh
( γ

2κ
(x− νt)

)
+O(ϵ), (6.7)

which is exactly the Boussinesq soliton of equation (2.8) perturbed by contributions propor-
tional to ϵ.

The total momentum and energy of the solution (6.4) can also be calculated exactly and
then expanded as power series in ϵ. The expressions for these are:

P=
9γ3κν

c2λ2

1
ϵ3

[
ln

(
1+ ϵ

1− ϵ

)
− 2ϵ

]
=

9γ3κν

c2λ2

∞∑
k=0

2ϵ2k

2k+ 3

≈M0γ
3ν

(
1+

3ϵ2

5

)
+O(ϵ4), (6.8)

and

E=
3κγ3

λ2

1
ϵ5

[
γ2ϵ3 +

3
2

(
ln

(
1+ ϵ

1− ϵ

)
− 2ϵ

)((
1+

v2

c2

)
ϵ2 − γ2

)]
=M0c

2γ3

[ ∞∑
k=0

3ϵ2k

(2k+ 3)(2k+ 5)

(
1+ 2(k+ 2)

v2

c2

)]

≈ M0c2γ3

5

((
1+

4v2

c2

)
+

3ϵ2

7

(
1+

6v2

c2

))
+O(ϵ4), (6.9)

where M0 is the mass parameter introduced in (2.9). As expected, both expressions reflect
the fact that the solitary wave (6.4) is a perturbation of the Boussinesq soliton. However, for
the energy and momentum, the perturbations away from the Boussinesq soliton energy and
momentum are second order in the parameter ϵ.

It will be interesting to see to what extent the solution (6.4) will be able to navigate a defect,
given the perturbed Boussinesq equation (6.1) is not itself integrable. An analysis of that will
be presented in the future. It would also be interesting to explore the possible existence of
deformed merging or splitting soliton solutions to equation (6.1).

In this article nothing has been said about the quantum version of the Boussinesq model,
which has received attention in the past owing to its relationship toW3 conformal field theory
(see, for example, references [38, 39]). It would be interesting to investigate the existence and
properties of a ‘transmission/reflection’ matrix to represent the defect. This would have to be
compatible with the Boussinesq S-matrix, which itself deserves further study, especially given
the existence of classical solutions that do not preserve the total number of solitons. The idea
would be to parallel the developments made in this direction within the sine-Gordon model
and affine Toda field theories (see, for example, [15, 17, 20, 21, 28, 29]). Not all the features
noted here might be present in the Boussinesq quantum field theory but some might be.

There is more work to do to establish the integrability of the Boussinesq model with
one or more defects. In other integrable models, such as the sine-Gordon, KdV and non-
linear Schrödinger examples, it has turned out to be possible to show that the full integ-
rability is not destroyed by introducing momentum-preserving defects (for example, see
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[14, 18, 23–26, 30, 40, 41]. It is expected that similar arguments will apply also in the case
of the Boussinesq model though they have not been explored here. If for some reason a future
analysis shows that the Boussinesq theory provides a counter example to this expectation then
that too would be a worthwhile result.

Finally, as remarked in the previous section, the Boussinesq equation appears to be the
first example where an integrable defect with suitable choices of parameters allows reflec-
tion besides the transmission or capture of solitons. More remarkably, it is also possible to
set up a defect with a store of momentum (and energy) that is subsequently partially released
by the emission of one or two solitons. In other models, such as sine-Gordon, or nonlinear
Schrödinger, this simply does not happen: integrable defects allow transmission and capture,
while integrable boundaries imply perfect reflection. In the cases examined here the behaviour
is more typical, for example, of a linear wave equation with a point impurity represented by a
delta-function potential. Askingwhy the additional phenomena are possible for the Boussinesq
model but not for others will surely repay further study. The behaviour of solitons in the pres-
ence of Boussinesq defects also offers alternative means to control solitons, with the aim of
using them along the lines that have been suggested in [42]. Given the inspiration for this
study provided by references [11–13], one can speculate that nature might already be using
properties of ‘defects’, similar to those described in this article, to facilitate the control and
manipulation of solitons travelling along nerve fibres.
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