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A B S T R A C T

The Bounding Surface (BS) plasticity model for metals is modified according to the proposition introduced in
the works of Burlet and Cailletaud (1986) and Delobelle (1993) for the kinematic hardening of a classical
Armstrong/Frederick (AF) model, called the BCD modification from the initials of the foregoing authors.
The BCD modification was introduced in the relative kinematic hardening between Yield Surface (YS) and
BS, unlike its introduction in the absolute and single kinematic hardening of YS for an AF model, hence,
achieving two objectives: first, maintaining the inherent feature of BS for decoupling plastic modulus and
direction of kinematic hardening, and, second, allowing a flexibility as to the relative kinematic hardening
direction without altering the value of the plastic modulus, a property of BCD modification. In addition, the
introduced BCD modification for the BS is significantly modified itself, by introducing a properly varying
modification parameter instead of the fixed one used in the original works. This simple feature of the novel
BCD modification provides a dramatically improved capability to simulate multiaxial ratcheting (MR), because
it affects directly the changing flow rule direction, due to the relative kinematic hardening, during complex
multiaxial loading, without sacrificing accurate simulations under uniaxial ratcheting (UR) since the plastic
modulus is not affected. An additional significant contribution to successful UR simulations is provided by
the free-to-choose kinematic hardening of the BS, since the BCD modification is applied only to the relative
kinematic hardening between BS and YS. The new model, named SANIMETAL-BCD, is shown to yield superior
or equal simulations of UR and very complex MR experimental data for three Carbon Steel specimens, in
comparison with other models, within a much simpler constitutive framework. Shortcomings and future
necessary improvements are discussed in details.
1. Introduction

Ratcheting is a term referring to the accumulation of plastic strain
under the imposition of stress or strain (in multiaxial cases) cyclic
loading; in the uniaxial case, the cyclic stress has a non-zero mean
value. It is in fact a more difficult response to model than ‘‘symmetric’’
cyclic loading where the cyclic stress has a zero-mean value, but it is
also more important in practice because this is the expected way metal
components are loaded in all kinds of structures, e.g., piping compo-
nents in chemical or nuclear plants, beam and column elements as well
as their connections in metal frames, etc. Ratcheting is distinguished
into Uniaxial and Multiaxial Ratcheting, henceforth abbreviated as UR
and MR, respectively.

As per its name, UR is characterized by one non-zero stress compo-
nent cycling over its own non-zero mean value and, therefore, causing
accumulation of the corresponding uniaxial plastic strain component,
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while because of incompressibility additional predefined strain compo-
nents appear. In stress-controlled MR, there is at least one cyclically
varying stress component of zero or non-zero mean value, imposed
on one (at least) pre-existing different non-zero stress component, that
usually remains fixed. In strain-controlled MR, a total strain component
is cycled instead of the stress. In stress-controlled MR there are more
than one plastic strain components that accumulate along the directions
of non-zero stress components, notwithstanding the additional strain
components needed for the satisfaction of plastic incompressibility for
metals. For strain-controlled MR, the cycled strain has fixed values, but
there is at least one other strain component that accumulates, while the
stress corresponding to the cycled strain component increases (harden-
ing) or decreases (softening). One very common and useful example
of MR occurs when a pipe is under fixed or varying internal pres-
sure and is cyclically loaded under axial stress or strain control. Both
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axial and circumferential strain components accumulate in a stress-
controlled experiment, while if one strain component is prescribed in
a strain-controlled experiment, it is the other strain component that
accumulates.

The research objective of this paper is to address the constitutive
modeling of UR and MR of metals, by proper modifications of the plas-
ticity constitutive model introduced in the mid-seventies by Dafalias
and Popov (1974, 1975, 1976) and updated by Mahan et al. (2011),
that uses the coupling interaction of two surfaces, the Yield Surface (YS)
and the Bounding Surface (BS) which encloses the YS. A similar theory
was simultaneously introduced by Krieg (1975), but the format was
very different and not applicable to the demands for MR simulations,
such as the necessity to have the BS obeying Isotropic Hardening (IH)
and special kind of Kinematic Hardening (KH) not existing in the Krieg’s
formulation.

UR and MR have been the objectives of a multitude of research
efforts and publications, yet simulation of many available data has not
been entirely satisfactory; in fact, it was rather unsuccessful in several
cases, particularly for MR, and often required the introduction of com-
plicated additional constitutive features. One can say that the problem
of MR simulations, despite its very long history that counts several
decades, is not resolved at a satisfactory level from the perspective of
both accurate predictions and relatively simple constitutive modeling.

There are two main categories of constitutive models used for metal
ratcheting, both based on the concept of back-stress and associated
KH, that can also include, if necessary, IH. The first kind is based on
the seminal work by Armstrong and Frederick (1966) who proposed
the so-called evanescent memory model, named AF model here for
abbreviation, that extended the linear KH models of Ishlinskii (1954)
and Prager (1956) to a non-linear KH format for the back stress. Due
to several inherent problems of this model, mainly for partial unload-
ing/reloading as explained later by Dafalias (1984), Chaboche et al.
(1979) have introduced a Multicomponent Armstrong/Frederick model,
named MAF for abbreviation, that additively combines several AF back-
stress components to get the total back stress, providing the tools for
successful cyclic loading simulations. It was used towards MR with
relative success, often requiring modification of the AF basic KH rule
by several authors who introduced additional constitutive features such
as non-hardening regions or memory surfaces in strain or stress space,
etc., a complete list of which is beyond the scope and objectives of this
paper. MAF-based models are by far the most used and investigated
models in cyclic plasticity for metals today. It is worth mentioning
that Marquis (1979) has shown that any classical AF model implies the
existence of a fixed limit surface in stress space, with which the back
stress converges without ever crossing it, such limit surface acting in
essence as a fixed BS for the back-stress rather than the stress.

The second category of constitutive models is based on BS plasticity,
mentioned earlier. The original two-surface BS version by Dafalias and
Popov (1974, 1975, 1976) and Krieg (1975) were motivated by the
multi-surface model of Mróz (1967) but were developed on an entirely
different platform. The Mróz (1967) model, while very successful for
certain kinds of cyclic loading simulations, has not been used for UR
and MR simulations because of an inherent early stabilization of the
strain accumulation due to its basic conception and formulation that
yields closed loops in uniaxial cyclic loading. The successful application
of the BS model to random cyclic loading in the uniaxial case and
some multiaxial loading paths was established earlier than that of
MAF models. However, its application to MR was delayed because,
unlike the inventors and followers of MAF models who pursued further
the development of their model, the inventors of BS have switched
their attention to its use for soil plasticity constitutive modeling under
triaxial and multiaxial cyclic loading, where now BS-based models hold
a dominant position under the code names SANICLAY and SANISAND
models.

It took more than 15 years after the introduction of BS in 1975,
2

for the research teams of Kyriakides and Hassan (e.g. Hassan and e
Kyriakides, 1992, 1994a,b; Hassan et al., 1992; Corona et al., 1996;
Bari and Hassan, 2001) to discover the importance of two special
constitutive features that characterize any BS model, in relation to
UR and MR simulations of metals. First, the freedom to choose any
kind of KH and IH for the BS, which allows one to obtain a bounding
plastic modulus that affects the actual plastic modulus by the stress
distance dependence of the two moduli within the general BS the-
ory (Dafalias, 1986). Second, the ability to define the direction of the
KH of the YS independently from the definition of the plastic modulus
as described above, which is an inherent property for any BS model.
This is often called the ‘‘decoupling’’ or ‘‘uncoupling’’ of these two
quantities (e.g., Hassan and Kyriakides, 1992; Bari and Hassan, 2001),
but note that the quantities are still connected to satisfy the consistency
condition of plasticity. These two features provide great modeling
flexibility because one could address the magnitude of plastic strain
increment and simulate successfully UR based on the value of plastic
modulus, and independently address the direction of KH for the YS that
affects the evolution of the flow rule direction, and consequently the
relative to each other norms of various plastic strain rate components,
a key for successful simulation of MR, without altering the value of
plastic modulus due to its independence from the choice of KH for the
YS.

These two constitutive features are lacking from all MAF models
because the AF KH rule and its variations define simultaneously plastic
modulus and KH direction in a coupled and inflexible way. The research
team of Kyriakides used the flexibility offered by BS with a small
twist, namely, choosing the direction of an AF KH rule for the YS and
independently the bounding plastic modulus resulting from a particular
KH for the BS introduced in the dissertation of Sayed-Ranjbari (1986)
and more recently updated in Mahan et al. (2011), where it was named
the Dafalias/Ranjbari (DR) KH. In other words they ended up not
using the direction of the DR KH for the BS but only the value of the
ensuing bounding plastic modulus, while the direction of KH for the
BS was defined by its interaction with the chosen AF KH of the YS.
This approach brought the simulation of UR and MR, mainly for Carbon
Steel (CS) specimens, in a better state than that of existing MAF models,
by simpler constitutive means.

Yet, the final simulation of MR was not very successful in several
cases, either by using MAF in all its variants or BS in the format used
by the aforementioned researchers. Therefore, as mentioned earlier, the
main objective of the present paper aims at modifying the BS model in
such a way as to achieve simulations of equal or better accuracy for
both UR and MR than those obtained by either MAF or previous BS
models and achieve this while maintaining the greatest possible sim-
plicity of the formulation. The proposed BS model modification in the
sequel is motivated by two modifications introduced quite earlier for
Prager and AF KH models. The first was a radial loading modification
of a Prager linear KH model to a non-linear one, introduced by Burlet
and Cailletaud (1986). The second, and more important modification
for the current development, was a KH resulting from combining the
aforementioned Prager non-linear and the usual evanescence memory
KH of an AF model, introduced by Delobelle (1993). For abbreviation, it
will be named the BCD modification from the initials of the aforemen-
tioned authors, without repeating the relevant references above. The
nice feature of the BCD modification for an AF KH model was that one
could modify the direction of KH by means of a new parameter 𝛿, called
ere the BCD modification parameter, that did not affect the value of
he plastic modulus once the consistency condition was imposed, as if
was never introduced. This provided AF with a flexibility similar to

hat of BS models (but not quite the same) on the choice of various KH
irections with same plastic modulus by varying the value of 𝛿, which
ould be a function of other quantities such as max and mean values
f back stress as well as of a non-radiality parameter (Delobelle, 1993;
elobelle et al., 1995). In fact, the BCD modification was applied to

ach component of a MAF model by Bari and Hassan (2001), with a
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fixed but different for each component BCD modification parameter,
which improved MR simulations in many but not all cases.

Dafalias and Feigenbaum (2011) have proven analytically a serious
theoretical shortcoming of the BCD modification, namely the choice of
𝛿 < 0.5 can cause under specific loading conditions a crossing of the
previously mentioned AF implied limit surface (Marquis, 1979), by the
corresponding back-stress, i.e., the center of the YS, that can induce
unwanted negative plastic modulus value and softening. Many of the
successful simulations of prior works using MAF models with the BCD
modification were employing such values of 𝛿 < 0.5, but the unwanted
negative plastic modulus value did not appear simply because the
corresponding necessary loading conditions were not encountered in
these particular simulations. Subsequently, Dafalias and Feigenbaum
(2011) used in lieu of a fixed BCD modification parameter 𝛿, the
variable ratio 𝑟𝑖 of the norm of the YS center, i.e., the norm of the
𝑖th back stress component, to the size of the 𝑖th AF limit surface,
in their own MAF model with BCD modification that also included
a multiplicative version of AF (Dafalias et al., 2008), avoiding the
foregoing shortcoming because 𝑟𝑖 = 1 on the 𝑖th limit surface. These
changes improved further MR but still with unsatisfactory deviations
for several data.

It seems, therefore, that MAF models, even with the BCD modifi-
cation in various variants, are not capable of addressing satisfactorily
MR in all cases, and often need to use additional constitutive features
that complicate the formulation. We believe the cause is still the lack
of complete decoupling between the KH direction of the YS and the
plastic modulus in MAF models, as well as their lack of freedom to
choose specific KH for the BS with the aforementioned beneficiary
effects on plastic modulus, features that only BS models can offer
together. Hence, it was decided to use two novel constitutive ingre-
dients within the general BS theory. First, the introduction of a BCD
modification into the relative KH of the YS with respect to the KH of
the BS, such BS acting on the back stress of the YS rather than the
stress on YS (as done by the limit surface in any AF model, clearly
explained in Marquis, 1979). Second, the use of a variable quantity
for the BCD modification parameter, that remains greater than 0.5
when the YS back stress reaches the BS to avoid the aforementioned
shortcoming. Such quantity is motivated by, but also is quite different
from, the one used in Dafalias and Feigenbaum (2011) for AF models,
and its exact definition will be presented in the relevant part of this
work. In addition, the BS will obey the DR KH, yielding not only the
ensuing bounding plastic modulus used in Kyriakides and collaborators’
works but also the implied DR KH direction. This relatively simple and
straightforward approach produced successful simulations for both UR
and MR that are equal or better than the existing ones by other models
of greater complexity. Such simulations will be reported in the sequel,
following first a rigorous analytical formulation as well as a guideline
for calibration.

All tensors will be represented in direct notation by boldface sym-
bols, a dot superposed on a quantity will imply its rate, while the
symbol ‘‘:’’ between two tensors will imply the summation operation
over the adjacent two pairs of indices in reverse order, which become
the trace of the product of the two tensors if they are of the same rank.
It is also convenient to list below the meaning of the main abbreviations
used so far, to be repeated very often in this work:
MR: Multiaxial Ratcheting
UR: Uniaxial Ratcheting
BS: Bounding Surface
YS: Yield Surface
KH: Kinematic Hardening
IH: Isotropic Hardening
AF: Armstrong/Frederick
MAF: Multicomponent Armstrong/Frederick
DR: Dafalias/Ranjbari
BCD: Burlet/Cailletaud/Delobelle
3

CS: Carbon Steel
2. Classical plasticity formulation with IH and BCD modification
of AF KH

A general classical plasticity formulation with Mises’s type YS obey-
ing IH and KH, consists of the following equations:

𝑓 = 3
2
(𝒔 − 𝜶) ∶ (𝒔 − 𝜶) − 𝑘2 = 0 (1)

𝑘̇ = ⟨𝜆⟩𝑘̄ (2)

𝜶̇ = ⟨𝜆⟩𝜶̄ (3)

𝜺̇𝑝 = ⟨𝜆⟩𝒏 (4)

with 𝑓 = 0 the analytical expression of YS, 𝒔 the deviatoric stress
tensor, 𝜶 the deviatoric back stress tensor, 𝑘 the ‘‘size’’ of the YS, 𝜺̇𝑝
the plastic strain rate tensor, 𝑘̄ and 𝜶̄ appropriate scalar and tensor
valued functions, respectively, of the state variables 𝒔 (external) and

, 𝑘 (internal), 𝒏 =
√

3∕2(𝒔 − 𝜶)∕𝑘 the unit-norm tensor normal to the
S such that 𝒏: 𝒏 = 1, 𝜆 the loading index (or plastic multiplier), < >
he Macauley brackets such that < 𝐴 > = 𝐴 when 𝐴 > 0 and < 𝐴 >

0 when 𝐴 ≤0. Since 𝒏 is a deviatoric tensor it follows that 𝜺̇𝑝 =𝒆̇𝑝,
ith 𝒆̇𝑝 the deviatoric plastic strain rate. Clearly the plastic volumetric

train rate 𝑡𝑟𝜺̇𝑝 = 0, where ε𝑡𝑟ε signifies the trace of a tensor.
The loading index 𝜆 is obtained from the consistency condition

̇ = 0, which in conjunction with Eqs. (2) and (3), the preferred
nit normal formulation, i.e., use of 𝒏 instead of 𝜕𝑓∕𝜕𝝈 for the def-

inition of 𝜆 and the relations 𝜕𝑓∕𝜕𝑘 = −2𝑘 and 𝜕𝑓∕𝜕𝝈 =3(𝒔 − 𝜶) =
−𝜕𝑓∕𝜕𝜶 =|𝜕𝑓∕𝜕𝝈|𝒏 =

√

6𝑘𝒏, with |𝑿| =
√

𝑿 ∶ 𝑿 signifying the norm of
a tensor 𝑿, yields:

𝜆 = 1
𝐾𝑝 𝒏 ∶ 𝒔̇ (5)

𝐾𝑝 = −
|

|

|

|

𝜕𝑓
𝜕𝝈

|

|

|

|

−1 ( 𝜕𝑓
𝜕𝑘

𝑘̄ +
𝜕𝑓
𝜕𝜶

∶ 𝜶̄
)

=
√

2
3
𝑘̄ + 𝜶̄ ∶ 𝒏 (6)

where 𝐾𝑝 is the all-important plastic modulus and use of 𝒏 ∶ 𝜶̄ = 𝜶̄ ∶ 𝒏
as made for the last member of Eq. (6). Notice that the plastic strain

ate Eq. (4), does not affect the loading index and plastic modulus
ecause the plastic strain does not enter Eq. (1), thus, it does not appear
n the consistency condition, ̇𝑓 = 0. Eqs. (1)–(6) provide the complete

set of equations for any IH and KH plasticity model with YS given by
Eq. (1), and the various forms of such models depend exclusively on
the choice of the functions 𝑘̄ and 𝜶̄.

With 𝒆̇𝑝𝑒𝑞 =
√

(2∕3)𝒆̇𝑝 ∶ 𝒆̇𝑝 the equivalent plastic strain rate, the fol-
lowing most common and effective rate evolution equation is adopted
for the IH rule:

𝑘̇ = 𝑐𝑘
(

𝑘𝑠 − 𝑘
)

𝑒̇𝑝𝑒𝑞 = ⟨𝜆⟩
√

2
3
𝑐𝑘(𝑘𝑠 − 𝑘) = ⟨𝜆⟩𝑘̄ (7)

here use of Eq. (4) with 𝜺̇𝑝 =𝒆̇𝑝 was made in deriving the third member
f Eq. (7), 𝑘𝑠 denotes the saturation value (limit value) of 𝑘, and 𝑐𝑘 is a

model constant controlling the pace at which 𝑘 approaches 𝑘𝑠. Notice
hat depending on whether 𝑘𝑠 > 𝑘 or 𝑘𝑠<𝑘 one has isotropic hardening
increase of 𝑘) or softening (decrease of 𝑘), respectively. Often 𝑘𝑠 is also
ade a function of other quantities, such as max strain amplitude, etc.

t follows from Eq. (7) that 𝑘̄ =
√

2∕3 𝑐𝑘(𝑘𝑠 − 𝑘).
Before we introduce the BCD modification, it is expedient to present

the format of AF KH used in this paper, which offers some elements of
convenience for calibration purposes and helps in the subsequent con-
nection with the BCD modification when applied to the BS model. Arm-
strong and Frederick (1966) in their seminal paper proposed the follow-
ing rate equation for KH:

𝜶̇ = 2
3
ℎ𝜺̇𝑝 − 𝑐𝑒̇𝑝𝑒𝑞𝜶 = ⟨𝜆⟩

√

2
3
𝑐

(
√

2
3
ℎ
𝑐
𝒏 − 𝜶

)

= ⟨𝜆⟩
√

2
3
𝑐

(
√

2
3
𝛼𝑠𝒏 − 𝜶

)

= ⟨𝜆⟩
√

2
3
𝑐(𝜶𝒔 − 𝜶)

(8)
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with ℎ and 𝑐 being the original AF parameters. Observe the use of
𝛼𝑠 = ℎ∕𝑐 and 𝑐 in the final expression. The preference to use 𝛼𝑠 = ℎ∕𝑐
instead of ℎ, stems from the fact the 𝜶𝑠 =

√

2∕3𝛼𝑠𝒏 is the saturation
or limit tensor towards which the back stress 𝜶 tends to converge
with, at a pace defined by the constant 𝑐, such limit providing an easy
to measure important material property; to the contrary, ℎ represents
the more difficult to measure initial value of uniaxial plastic modulus
(initial slope of stress-plastic strain curve).

The BCD modification of Eq. (8) yields:

𝜶̇ = ⟨𝜆⟩
√

2
3
𝑐(𝜶𝒔 − [𝛿𝜶 + (1 − 𝛿)(𝒏 ∶ 𝜶)𝒏]) = ⟨𝜆⟩𝜶̄ (9)

with the obvious definition of 𝜶̄ following from the last two members
of Eq. (9). 𝛿 is the relevant modification parameter whose role is to
create a mixture of AF KH rule occurring for 𝛿 = 1, and a Burlet and
Cailletaud (1986) non-linear Prager type KH rule along 𝒏, occurring for
𝛿 = 0 and accounting for the fact 𝜶𝑠 =

√

2
3𝛼

𝑠𝒏. Substitution of 𝑘̄ and 𝜶̄
as defined by Eqs. (7) and (9), respectively, in Eq. (6), yields for plastic
modulus after some simple algebra the expression:

𝐾𝑝 = 2
3
𝑐𝑘(𝑘𝑠 − 𝑘) +

√

2
3
𝑐 (𝜶𝑠 − 𝜶) ∶ 𝒏 (10)

Notice that 𝛿 disappears from the value of the plastic modulus and
this is a great advantage because one can calibrate the plastic modulus
value for UR or any radial ratcheting loading, and then calibrate the
value of 𝛿 only for the KH direction that affects MR. Dafalias and
Feigenbaum (2011) showed analytically that one must have 𝛿 > 0.5
when the back stress 𝜶 lies on the implied limit or saturation surface
with radius 𝜶𝑠 =

√

2
3𝛼

𝑠𝒏, for guaranteeing it will not ‘‘cross’’ it and
yield unrealistic negative plastic modulus due to the negative value of
the term (𝜶𝑠 − 𝜶) ∶ 𝒏 in the foregoing Eq. (10) for 𝐾𝑝, that occurs when
𝜶 is outside the surface with radius 𝜶𝑠 and 𝒏 is properly chosen. In
addition, Dafalias and Feigenbaum (2011) proposed replacing the fixed
BCD modification parameter 𝛿 with the variable ratio:

𝑟 =

√

(3∕2)𝜶 ∶ 𝜶
√

(3∕2)𝜶𝑠 ∶ 𝜶𝑠
= 𝛼

𝛼𝑠
(11)

with 𝛼, 𝛼𝑠 the norms of 𝜶, 𝜶𝑠, respectively, measuring the proximity
of the back stress to its saturation value lying on a saturation surface;
naturally 𝑟 = 1 when the back stress is on the saturation surface, hence,
being greater than 0.5, it does not induce any negative plastic modulus
ever as per the discussion preceding Eq. (11). The fact that 𝑟 varies,
implies a variation of the mixture of the two KH rules, as explained
after Eq. (9).

3. Bounding surface formulation with BCD modification

3.1. General formulation

The methodology for the formulation follows closely, but not iden-
tically, the one in Mahan et al. (2011) where the resulting constitu-
tive model was named SANISTEEL, from the initial letters of Simple
ANIsotropic STEEL, addressing mainly steel materials. Since the main
theoretical novelty will be the use of the BCD modification while ad-
dressing all kinds of different metals, the adopted name for the present
model will be SANIMETAL-BCD, even though the materials simulated in
this work will belong to the Carbon Steel (CS) family. Another change
from Mahan et al. (2011) is that in this paper an evolving BS for the YS
back stress, instead of the stress, will be adopted, as already done for
soils (Manzari and Dafalias, 1997; Dafalias and Manzari, 2004). Recall
from the Introduction that Marquis (1979) interpreted the limit surface
for the back stress implied in any AF model, as a corresponding fixed
BS for such back stress.

Fig. 1 serves as the key illustration of the analytical description
that follows, and one must automatically refer to this figure in the
following. The YS, given analytically by Eq. (1), is shown as a circle
4

Fig. 1. Illustration of the concepts of YS, BS for the stress 𝒔, BS for the back stress 𝜶,
unit norm tensor 𝒏 normal to YS at current stress 𝒔, stress rate 𝒔̇, image back stress
𝜶𝑏, image stress 𝒔̄, and an indication of the KH rates 𝜶̇ and 𝜷̇.

(sphere in deviatoric multiaxial stress space) of center 𝜶 and radius
√

2∕3𝑘. The current deviatoric stress tensor 𝒔 and unit norm tensor 𝒏,
normal to the YS at 𝒔, are also shown, as well as the imposed stress rate
𝒔̇. The classical BS for the stress is shown as a dashed circle of center
𝜷 and radius

√

2∕3𝐾 on which the image stress 𝒔̄ is located along the
radius with direction 𝒏 emanating from 𝜷. The BS for the back stress is
analytically expressed by:

𝐹 = 3
2
(

𝜶𝑏 − 𝜷
)

∶
(

𝜶𝑏 − 𝜷
)

− (𝐾 − 𝑘)2 = 0 (12)

and shown in Fig. 1 as a solid line circle with same center 𝜷 and radius
the difference

√

2∕3(𝐾 − 𝑘) between the radii of BS for stress and YS.
The image back-stress 𝜶𝑏 of the back-stress 𝜶, lies on the above BS
and is located along the radius with direction 𝒏 emanating from 𝜷 as
illustrated in Fig. 1, and analytically defined by:

𝜶𝑏 = 𝜷 +
√

2
3
(𝐾 − 𝑘)𝒏 (13)

This variable 𝜶𝑏 is the tensor with which the back stress 𝜶 of the
YS converges. Notice the difference of 𝜶𝑏 from its counterpart 𝜶𝑠 =
√

2∕3𝛼𝑠𝒏 entering Eqs. (7) and (9), had no BS been introduced. The
isotropic hardening of the BS follows the scheme of IH for the YS as
per Eq. (7) and reads:

𝐾̇ − 𝑘̇ =
[

𝐶𝐾 (𝐾𝑠 −𝐾) − 𝑐𝑘(𝑘𝑠 − 𝑘)
]

𝑒̇𝑝𝑒𝑞 = ⟨𝜆⟩
√

2
3
[

𝐶𝐾 (𝐾𝑠 −𝐾) − 𝑐𝑘(𝑘𝑠 − 𝑘)
]

= ⟨𝜆⟩(𝐾̄ − 𝑘̄)

(14)

where 𝐾𝑠 denotes the saturation value (limit value) of 𝐾, 𝐶𝑘 is a model
constant controlling the pace at which 𝐾 approaches 𝐾𝑠, and from the
last two members of Eq. (14) clearly follows that 𝑘̄ =

√

2∕3𝑐𝑘(𝑘𝑠 − 𝑘)
and 𝐾̄ =

√

2∕3𝐶𝑘(𝐾𝑠 −𝐾).
Postponing for later the definition of the KH of the BS by means

of the analytical expression of the rate of its center 𝜷, we focus on
the modification of the KH for the back stress, center of the YS, in the
presence of the BS in association with the BCD modification, i.e., on the
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modification of Eq. (9). First and foremost the 𝜶𝑏, as given by Eq. (13),
must substitute for 𝜶𝑠 in both Eqs. (8) and (9). Assuming next radial
loading from zero along a fixed direction 𝒏, observe first that Eq. (9),
the KH rule with the BCD modification, becomes identical to AF KH as
per Eq. (8), because 𝜶 develops along 𝒏 and consequently all the terms
with 𝛿 cancel out. Because 𝜶𝑏 lies on a BS, it evolves also along 𝒏 due
to IH and KH of the BS, as eloquently implied by taking the rate of
Eq. (13), providing a moving ‘‘target’’ for the evolving 𝜶. Because the
rate of 𝜶 depends on the distance 𝜶𝑏 − 𝜶 as per Eq. (8) resulting from
Eq. (9) for radial loading along 𝒏 (recall substitution of 𝜶𝑏 for 𝜶𝑠 in
he foregoing equations), it will eventually approach the 𝜶𝑏 sufficiently
lose to have a small enough distance from it that necessarily causes
he same rate of 𝜶 with that of 𝜶𝑏 along 𝒏. Thus, the back stress 𝜶 may

never be able to reach the BS at 𝜶𝑏 as it is supposed to do, unless the
𝜶𝑏 stops evolving in the case of a fixed BS, as it happens for the fixed
limit surface of a classical AF model. The remedy of this unrealistic
eventuality, which did not exist for the simple BCD modification of AF
as per Eq. (9) where 𝜶𝑠 was fixed, is very simple. First, the rate of 𝜶𝑏 is
obtained by taking the rate of Eq. (13) and using Eq. (14). Second, one
can modify Eq. (9) by just adding the rate of 𝜶𝑏 to the rate of 𝜶 while
substituting for the fixed 𝛿 a variable BCD modification parameter 𝑟𝛼
(to be defined in the sequel), and write:

𝜶̇ = 𝜶̇𝑏 + ⟨𝜆⟩
√

2
3
𝑐
(

𝜶𝑏 −
[

𝑟𝛼𝜶 +
(

1 − 𝑟𝛼
)

(𝜶 ∶ 𝒏)𝒏
])

= 𝜷̇ +
√

2
3

(

𝐾̇ − 𝑘̇
)

𝒏 + ⟨𝜆⟩
√

2
3
𝑐
(

𝜶𝑏 −
[

𝑟𝛼𝜶 +
(

1 − 𝑟𝛼
)

(𝜶 ∶ 𝒏)𝒏
])

= ⟨𝜆⟩
[

𝜷̄ + 2
3
[

𝐶𝐾
(

𝐾𝑠 −𝐾
)

− 𝑐𝑘
(

𝑘𝑠 − 𝑘
)]

𝒏

+
√

2
3
𝑐
(

𝜶𝑏 −
[

𝑟𝛼𝜶 +
(

1 − 𝑟𝛼
)

(𝜶 ∶ 𝒏)𝒏
])

]

= ⟨𝜆⟩ 𝜶̄

(15)

where for the KH of the BS the general expression 𝜷̇ = ⟨𝜆⟩ 𝜷̄ was
ssumed, the 𝜷̄ to be defined in the sequel, and where the 𝜶̄ is clearly
efined by the last two members of Eq. (15) as the quantity in brackets
hat is multiplied by ⟨𝜆⟩. In Fig. 1 𝜶̇ is shown schematically along a
irection between 𝒏 and 𝜶𝑏 − 𝜶, as expected by the mixture of two
inds of KH implied by the BCD modification; the 𝜶𝑏 − 𝜶 is indicated
y a dashed–dotted line connecting 𝜶 and 𝜶𝑏.

The all-important plastic modulus 𝐾𝑝 is obtained by substitution of
̄ from Eq. (7) and 𝜶̄ from Eq. (15) in Eq. (10), yielding:

𝑝 = 2
3
𝑐𝑘

(

𝑘𝑠 − 𝑘
)

+ 𝜶̄ ∶ 𝒏 = 𝜷̄ ∶ 𝒏 + 2
3
𝐶𝐾

(

𝐾𝑠 −𝐾
)

+
√

2
3
𝑐
(

𝜶𝑏 − 𝜶
)

∶ 𝒏

(16)

As expected, notice that the BCD modification parameter 𝑟𝛼 of
Eq. (15) disappears from Eq. (16) for the plastic modulus, indicating
that the role of 𝑟𝛼 is only to define the KH direction of the YS in
reference to the KH of the BS as per Eq. (15). The IH of the YS does not
appear in the last member of Eq. (16) for the plastic modulus but has its
place in Eq. (15) for the updating of the YS back stress. Finally, compare
Eq. (16) with Eq. (10) for the classical AF model with (or without) BCD
modification; they are entirely different due to the BS role, such role
becoming more prominent when the quantities 𝜷̄ and 𝑐 are defined as
functions of the state in the sequel.

3.2. Three important and novel constitutive functions

Eq. (15) constitutes the main novel contribution of the present
SANIMETAL-BCD model. It expresses the much sought-after KH of
the YS in relation to the KH of the BS using a variant of the BCD
modification, such variant depending on the constitutive function that
5

𝒏

yields the BCD modification parameter 𝑟𝛼 . In addition to the usual IH
constants 𝑐𝑘, 𝑘𝑠, 𝐶𝑘, 𝐾𝑠 for YS and BS entering Eqs. (14) and (15), there
are three remaining very important constitutive functions that must be
specified for the application of Eq. (15) and the ensuing Eq. (16): the
𝑐, 𝜷̄ and 𝑟𝛼 . Each one will be addressed separately in the following.

3.2.1. The function 𝑐
The first two terms of the last member of Eq. (16) express the

bounding plastic modulus 𝐾̄𝑝 obtained by the consistency condition
applied to the BS for the stress (Mahan et al., 2011), when BS obeys
KH and IH, respectively, for each term. Thus, Eq. (16) can be written
as 𝐾𝑝 = 𝐾̄𝑝 +

√

2∕3𝑐(𝜶𝑏 − 𝜶) ∶ 𝒏, which is the quintessential feature
f any classical BS plasticity model, namely that the plastic modulus
quals the bounding plastic modulus (on BS for stress) plus a projected
long 𝒏 ‘‘distance’’ (𝜶𝑏 − 𝜶) ∶ 𝒏 of the current back stress 𝜶 from its
volving image bounding value 𝜶𝑏 on the BS for back stress, multiplied
y
√

2∕3𝑐. Observe that the aforementioned projection along 𝒏 of the
‘‘distance’’ between back stress quantities, substitutes for the exactly
equal projection along 𝒏 of the ‘‘distance’’ (𝒔̄ − 𝒔) ∶ 𝒏 between stress
quantities of the classical BS development, as already mentioned (the
𝒔̄ − 𝒔 tensor can easily be visualized, but not shown, in Fig. 1). If
the pre-multiplying quantity 𝑐 is fixed, the distance dependence is
linear, resembling the linear dependence on the distance of 𝜶 from
its saturation value 𝜶𝑠 in Eq. (10) for a typical AF model. However,
a linear dependence is inadequate to simulate the stress–strain curves
accurately, hence, a non-linear dependence on the distance will be
introduced by means of the function 𝑐, along the lines of flexibility
provided within the BS constitutive framework.

As early as in Dafalias (1975) and Dafalias and Popov (1976), it
was recognized that the value of such distance at the initiation of a
new plastic loading process plays a very important role in the deter-
mination of 𝑐. While in the aforementioned references the distances
and BS were referring to stress, in the present development the BS and
corresponding distances are related to the back stress and so must the
corresponding initial values. Along the lines of models developed for
soil plasticity (Manzari and Dafalias, 1997; Dafalias and Manzari, 2004)
with BS for the back stress, the following definition of 𝑐 is proposed:

𝑐 =
ℎ0

√

3∕2⟨
(

𝜶 − 𝜶𝑖𝑛
)

∶ 𝒏⟩
(17)

In Appendix the difference of the denominator of Eq. (17) from the
orresponding denominator in Dafalias and Popov (1976) and Mahan
t al. (2011) where initial values refer to stress rather than back stress,
s elaborated in detail.

The value of the parameter ℎ0 is normally fixed, but if a more
ophisticated data set, like random cyclic loading or UR must be
imulated, the original suggestion of Dafalias (1975) and Dafalias
nd Popov (1976) to render ℎ0 function of the initial distance 𝛿𝑖𝑛 =
3∕2

(

𝒔̄𝑖𝑛 − 𝒔𝑖𝑛
)

∶ 𝒏𝑖𝑛 between initial values of deviatoric stress 𝒔𝑖𝑛 and
its image stress 𝒔̄𝑖𝑛 on the BS in multiaxial space, projected on the initial
value 𝒏𝑖𝑛 of 𝒏 is adopted, as:

ℎ0 =
𝑎

1 + 𝑏(𝛿𝑖𝑛∕𝜎𝑟)𝑚
(18)

with 𝜎𝑟 a reference normalization stress quantity, as for example the
double radial ‘‘size’’ 2𝐾 of the BS for stress, or 2(𝐾 − 𝑘) of the BS for
back stress; in this work, the value 2𝐾 was used. Eq. (18) introduces
three constants 𝑎, 𝑏, 𝑚, for which closed-form analytical expressions in
terms of specific measurements on the experimental stress–strain curves
are obtained in Dafalias and Popov (1976) with additional examples
in Behravesh and Dafalias (2022) and will not be repeated here. Since
we are working in a formulation with BS for back stress instead of
stress, 𝛿𝑖𝑛 should be given in terms of back stress quantities. Thus,
accounting for Eq. (13) and the relations 𝒔𝑖𝑛 = 𝜶𝑖𝑛 +

√

2∕3𝑘𝑖𝑛𝒏𝑖𝑛 and
̄ 𝑖𝑛 = 𝜷 𝑖𝑛+

√

2∕3𝐾𝑖𝑛𝒏𝑖𝑛, one can easily show that 𝛿𝑖𝑛 =
√

3∕2
(

𝒔̄𝑖𝑛 − 𝒔𝑖𝑛
)

∶
=
√

3∕2
(

𝜶𝑏 − 𝜶
)

∶ 𝒏 , to be used in Eq. (18) for ℎ .
𝑖𝑛 𝑖𝑛 𝑖𝑛 𝑖𝑛 0
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3.2.2. The function 𝜷̄
This function defines the KH of the BS according to 𝜷̇ = ⟨𝜆⟩𝜷̄. One

can use a simple linear Prager-type KH, or an AF KH with or without a
BCD modification, or anything else one finds most appropriate. As men-
tioned in the introduction the special KH called the Dafalias/Ranjbari
(DR) KH, was found by Hassan and Kyriakides (1992, 1994a) to be
very appropriate for UR, because it induces a parallel translation of
the bounds towards the direction of ratcheting in the uniaxial case, a
feature that helps to simulate accurately UR, and it is therefore adopted
here. The analytical expression for 𝜷̇ can be found in Mahan et al.
(2011) and is rewritten below as:

𝜷̇ = ⟨𝜆⟩

(

2
3
ℎ𝛽𝒏 + 1

2

√

2
3
𝑐𝛽

[

√

𝜷 ∶ 𝜷𝒏 − 𝜷
]

)

= ⟨𝜆⟩𝜷̄ (19)

introducing two constants ℎ𝛽 and 𝑐𝛽 with an obvious definition of
𝜷̄ as the quantity in parentheses of the second member of Eq. (19)
which is identical to Eq. (34a) of Mahan et al. (2011). Based on this
definition the term 𝜷̄ ∶ 𝒏 of Eq. (16) becomes 𝜷̄ ∶ 𝒏 = (2∕3) ℎ𝛽 +
(1∕2)

√

2∕3𝑐𝛽 [
√

𝜷 ∶ 𝜷−𝜷 ∶ 𝒏], i.e., identical to Eq. (34b) of Mahan et al.
(2011). In Fig. 2(c) of the foregoing reference, a graphic illustration of
the DR KH response in uniaxial loading is presented, while Eq. (18a) of
that same reference yields the uniaxial expression of the above Eq. (19).
Upon monotonic loading it exhibits a linear hardening with slope ℎ𝛽 ,
while upon unloading and reloading in the opposite direction, the
hardening becomes an AF non-linear type controlled by both constants
ℎ𝛽 and 𝑐𝛽 till again switches smoothly to linear hardening in the
opposite direction. It is exactly this smooth interchange between linear
and non-linear hardening that induces the parallel translation of the
bounds in the direction of ratcheting, discovered and used by Hassan
and Kyriakides (1992, 1994a) for better simulation of UR.

3.2.3. The function 𝑟𝛼
As already mentioned, the 𝑟𝛼 substitutes for the fixed BCD modifica-

tion parameter 𝛿 that was replaced in Dafalias and Feigenbaum (2011)
by the ratio 𝑟 which is defined in Eq. (11) for an AF model. In our
approach, we will consider 𝑟𝛼 a function of 𝑟, but now the latter must
be redefined because the BS center 𝜷 moves with KH, unlike the center
of the implied limit or saturation surface in an AF model that stays fixed
at the origin in stress space. The new 𝑟 definition reflects the proximity
of the back stress 𝜶 to its bounding value 𝜶𝑏 on the BS, such proximity
measured relatively to 𝜷, thus, it is given by:

𝑟 =

√

(𝜶 − 𝜷) ∶ (𝜶 − 𝜷)
(

𝜶𝑏 − 𝜷
)

∶
(

𝜶𝑏 − 𝜷
) (20)

A very simple power function of 𝑟 is proposed for the BCD modifi-
cation parameter 𝑟𝛼 as follows:

𝑟𝛼 (𝑟) = 𝑐𝑟1𝑟
𝑐𝑟2 (21)

introducing two constants 𝑐𝑟1, 𝑐𝑟2 with the only requirement 𝑐𝑟1> 0.5 at
𝑟 = 1 so that 𝑟𝛼(1) = 𝑐𝑟1> 0.5. This is necessary in order to avoid for the
BCD modification the possible eventuality of the YS center crossing its
BS and inducing softening due to a negative plastic modulus resulting
from the last term of Eq. (16), as discussed after Eq. (10). The rigorous
analytical proof of the foregoing is given in Dafalias and Feigenbaum
(2011).

It is now important to investigate the effect of 𝑟𝛼 on the YS back-
stress translation direction 𝜶̄ defined in Eq. (15). It can be seen from
Eq. (20) that 𝑟 takes values from 0 to 1, as 𝜶 varies from 𝜷 to 𝜶𝑏,
respectively. When 𝑟 = 0, it follows from Eq. (21) that 𝑟𝛼 = 0 and
the relative translation of the YS’s center 𝜶 with respect to its image
back stress 𝜶𝑏 on the BS, is along 𝜶𝑏 − (𝜶 ∶ 𝒏)𝒏 as per Eq. (15); this
is a variation of a non-linear Prager-type KH suggested by Burlet and
Cailletaud (1986), because from Eq. (13) the 𝜶𝑏 is not along 𝒏, as it was
the case for 𝜶𝑠 in Eq. (9) had it been a BCD modification for a typical AF
KH. When 𝑟 = 1 and for 𝑐 = 1, one has 𝑟 = 1, and the aforementioned
6

𝑟1 𝑎
Fig. 2. The power law function for 𝑟𝛼 to show how the weighting between AF and
Prager KH can vary with the choice of parameters.

relative translation is along 𝜶𝑏 − 𝜶, i.e., a KH of the AF or Mroz type.
If the 𝑐𝑟1 is not equal to 1, then at 𝑟 = 1 one has 𝑟𝛼 = 𝑐𝑟1 which yields
a variation of the non-linear AF KH rule for the relative translation of
𝜶 with respect to 𝜶𝑏. Therefore, the effect of the function 𝑟𝛼 on the
direction of the relative YS center translation with respect to its image
back stress 𝜶𝑏 is very significant, and essentially the 𝑟𝛼 defines this
direction as an interpolation between the aforementioned directions of
a variation of a non-linear Prager KH rule when 𝑟 = 0 and a variation
of the non-linear AF KH rule when 𝑟 = 1. The absolute translation 𝜶̄ is
also affected by the KH rule chosen for the BS, namely the tensor 𝜷̄, as
well as by the IH of both YS and BS yielding a component along 𝒏, as
per the first two terms in the brackets of the fourth member of Eq. (15),
respectively.

It is now clear that the use of 𝑟𝛼 , as the modification parameter,
rather than 𝑟 or a fixed 𝛿, allows for a more flexible interpolation of the
variations of the nonlinear Prager and AF KH rules as per Eq. (15). In
Fig. 2 the variation of the ‘‘interpolating’’ BCD modification parameter
𝑟𝛼 with 𝑟 is shown for various choices of the constants 𝑐𝑟1, 𝑐𝑟2 including
the case of 𝑐𝑟1 = 𝑐𝑟2 = 1, namely the case where 𝑟𝛼(𝑟) = 𝑟. Based on
attempted simulations for these various choices it was concluded that
ratcheting would be better predicted if the direction of 𝜶̄ is closer to
𝒏 for a larger part of each cycle after the initiation of a new loading
process (load reversal). It means that 𝑟𝛼 must be close to 0 for a wider
initial part of the range in the [0, 1] 𝑟 domain, after the loading
reversal, compared to what could be achieved with the simple 𝑟𝛼 = 𝑟
equation. Accounting for the fact 0<𝑟< 1, this can be achieved with
the power function 𝑟𝛼 (𝑟) = 𝑐𝑟1𝑟𝑐𝑟2 with 𝑐𝑟2 > 1, and the larger the 𝑐𝑟2 is,
the more pronounced this effect is. This is illustrated in Fig. 2 by the
dashed line with 𝑐𝑟2 = 1.5 against the solid line with 𝑐𝑟2 = 3.5, where
there is a larger range where 𝑟𝛼 is near zero for the latter case.

4. Model calibration

Uniaxial and multiaxial ratcheting simulations and comparisons
with published experimental data are presented in the next section.
Those experiments were published in Hassan and Kyriakides (1992),
Hassan et al. (1992) and Corona et al. (1996) and performed on
three different carbon steels, namely CS1018, CS1020 and CS1026,
respectively. The input model constants for each material, together with
some notes for their determination, are presented in this section.



International Journal of Solids and Structures 281 (2023) 112412Y.F. Dafalias et al.
Table 1
Model constants for three steel materials, CS1018, CS1020 and CS1026.

Equation Symbol CS1018 CS1020 CS1026

– 𝜈 0.33 0.33 0.33
– 𝐸 26320 ksi 25125 ksi 26320 ksi
1 𝑘𝑖𝑛 , 𝑘𝑠 23, 23 ksi 25, 25 ksi 19, 20.2 ksi
12 ∗𝐾𝑖𝑛 , 𝐾𝑠 43, 43 ksi ∗60.15, 60.15 ksi 38.5, 38.5

ksi
7 𝑐𝑘 0 0 250
14 𝐶𝑘 0 0 0
18 𝑎, 𝑏, 𝑚 91100, 27, 2 146200, 40, 3 71100, 27,

2
19 𝑐𝛽 30 73.5 15
19 ℎ𝛽 650 700.35 300
21 𝑐𝑟1 , 𝑐𝑟2 0.8, 3.5 0.8, 3.5 0.8, 3.5

∗ In few sets of uniaxial experiments, an adjusted 𝐾𝑖𝑛 was used. In those cases, the adjusted values are reported explicitly in the relevant locations.
Fig. 3. Uniaxial ratcheting experiments on CS1020. Same applied stress, varying mean
stress.

Table 1 presents the model constants used for the simulations of
both UR and MR for all three materials. In all the experiments, the
specimens were cyclically stabilized by strain symmetric cycles in the
range of ±1%. For details, the reader is referred to the introduc-
tion section of Hassan and Kyriakides (1992), Hassan et al. (1992)
and Corona et al. (1996). This cyclic stabilization process was not
explicitly simulated in either the above references or here, and the
simulations start with cyclic ratcheting from the stabilized state of
each specimen. The model constants for UR are derived based on
the stabilized strain symmetric cycles results, thus, they reflect the
stabilized state of the material. Hassan and Kyriakides (1992), Hassan
et al. (1992) and Corona et al. (1996) provided such material constants
for a Dafalias/Popov bounding surface plasticity model, with the plastic
modulus resulting from the Dafalias/Ranjbari KH for the BS, while
an AF KH direction was used independently for the YS (see detailed
comments made in Introduction). These model constants constitute a
basis for a trial-and-error process of constants determination for the
present model because for uniaxial conditions the two formulations are
very close to each other, and the constants end up being the same or
slightly modified.

The elastic Young’s modulus 𝐸 can be easily measured from the
slope of the elastic stress–strain curve of the stabilized cycle. A single
Poisson’s ratio 𝜈 = 0.33 is used for all three carbon steels, following the
proposition of Hassan and Kyriakides (1992) and Hassan et al. (1992).
The initial value 𝑘𝑖𝑛 of the size of the YS that corresponds to the initial
yield stress point in uniaxial loading, is measured approximately at
the smooth transition from linear elastic to curved elastoplastic stress–
strain curve. The initial value 𝐾𝑖𝑛 of the size of the BS can be measured
approximately as the image stress point of the initial yield stress point
on the bound, such bound representing the significantly ‘‘slower’’ non-
linear part of the stress–strain curve with which the stress merges
7

Fig. 4. Uniaxial ratcheting experiments on CS1020. Same mean stress, varying applied
stress.

eventually upon continual loading. No isotropic hardening of the YS
and BS are applied for the materials CS1018 and CS1020, thus, the
constants 𝑐𝑘, and 𝑐𝐾 of Eqs. (7) and (14), respectively, are set equal
to zero, and the saturation values 𝑘𝑠 and 𝐾𝑠 of Eq. (14) are set equal
to their initial values, as reported in Table 1, and plotted with dashed
lines in Figs. 3 and 4. For CS1026 a small IH was introduced only for
the YS, because it was found that a very small increase in the size of
the YS (from 𝑘𝑖𝑛 = 19 ksi to 𝑘𝑠 = 20.2 ksi) improves the simulations,
especially for UR; correspondingly a value of 𝑐𝑘 = 250 was used. The
saturation value of 𝐾𝑠 is set equal to its initial value as reported in
Table 1. The calibration of 𝑘𝑠 and 𝑐𝑘 was done by optimizing the results
for the three UR tests presented in Fig. 6.

The constants 𝑎, 𝑏 and 𝑚 of Eq. (18) determine how the parameter
ℎ0 changes, which controls the curvature of the non-linear part of the
stress–strain curve, as a function of a measure of the initial distance
in stress space between stress and its image on the BS for stress at the
initiation of a new loading process, that has been observed to strongly
affect the shape of the curve. Instead of using the available closed-
form analytical expressions for these constants that require special
measurements as mentioned after Eq. (18), it was decided to use a
trial-and-error process to define an optimum shape for the highly non-
linear part of the stress–strain curve before the stress merges with the
image-stress on the bound. This was facilitated by the simple numerical
implementation of the model in uniaxial loading and the knowledge
of the effect ℎ0 has on the curve shape. For the CS1020 material, the
values for the 𝑎, 𝑏 and 𝑐 constants provided in Hassan and Kyriakides
(1992) for the Dafalias/Popov model was not changed, since they were
the optimum values for the UR simulations of Fig. 3. Hassan and
Kyriakides (1992) and Corona et al. (1996) proposed 𝑎 = 71000, 𝑏 = 27,
and 𝑐 = 2 for both CS1018 and CS1026 materials. Those parameters
were used in this work for the CS1026 UR and MR tests. Since there
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are no UR CS1018 tests available to use for 𝑎, 𝑏, and 𝑐, 𝑎 was slightly
odified to 𝑎 = 91000, to improve the response in the three simulated
S1018 MR experiments of Fig. 23, while keeping 𝑏 and 𝑐 as reported

n Hassan and Kyriakides (1992).
The constants ℎ𝛽 and 𝑐𝛽 for the kinematic hardening of the BS are

determined by trying to optimize the simulations of the UR response.
The value of ℎ𝛽 that yields a linear KH, reflects the slope of the bound
in stress–strain space, thus, the higher its value is the smaller will be
the parallel translation of the bound along the direction of ratcheting
and, hence, the larger the number of cycles to reach a certain value
of accumulated strain. A similar conclusion applies to the constant 𝑐𝛽
that in conjunction with ℎ𝛽 controls the AF type non-linear KH for
he BS, in reverse loading. For each material, one UR experiment is
eeded to optimize the values of ℎ𝛽 and 𝑐𝛽 . For the CS1020 material,

the optimization was performed against the result of the test with
𝜎𝑥𝑚 = 0.159 (Fig. 3). For the CS1026 material, the optimization was
performed against the result of the test with 𝜎𝑥𝑚 = 0.225. Since there
are no UR CS1018 tests available, the optimization was done for all
three MR tests of Fig. 23.

For the power law in Eq. (21), defining the BCD weighting param-
eter 𝑟𝛼 , the values 𝑐𝑟1 = 0.8 and 𝑐𝑟2 = 3.5 led to successful simulations
for all the materials tested in this paper. One strain-symmetric cyclic
MR test at constant pressure (in this case the case of 𝜖𝑥𝑐 = 0.5% of
Fig. 3) was enough for their calibration, and then, the same values
used successfully in all other UR and MR tests for all the materials.
As shown in Fig. 2, these values maintain 𝑟𝛼 close to zero for a
large initial portion of the range 0 < 𝑟 < 1, thus, inducing a larger
contribution of the variant of Prager non-linear KH type than that of an
AF KH, on the relative overall KH of the YS relatively to the BS. Such
initial predominance of Prager KH is necessary for the more accurate
simulation of the MR response.

5. Model validation

The following notation is used in all subsequent plots for UR and
MR:

• The 𝜎𝑥 signifies the axial stress, 𝜎𝑥𝑚 signifies the mean values of
𝜎𝑥 during cyclic loading, and 𝜎𝑥𝑎 half the peak-to-peak amplitude
of the applied cyclic 𝜎𝑥.

• The 𝜎𝜃 signifies the circumferential stress, induced by internal
pressure on thin-walled cylindrical samples. 𝜎𝜃𝑚 the mean value
of the cyclic 𝜎𝜃 , and 𝜎𝜃𝑎 half the peak-to-peak amplitude of the
cyclic 𝜎𝜃 .

• The 𝜀𝑥 signifies the axial strain, 𝜀𝑥𝑐 half the peak-to-peak ampli-
tude of the cyclic 𝜀𝑥, while the 𝜀𝑥𝑝 signifies the peak 𝜀𝑥.

• The 𝜀𝜃 signifies the circumferential strain, and 𝜀𝜃𝑝 signifies the
peak 𝜀𝜃 .

• A superposed bar on a stress symbol implies normalization by the
yield limit.

5.1. Model validation in uniaxial ratcheting (UR)

In this section, UR model simulations are compared with data
from Hassan and Kyriakides (1992). The uniaxial ratcheting experi-
ments are stress-controlled with varied amplitude of stress cycles and
positive mean stress values. The mean stress and amplitude are normal-
ized by the yield stress which is approximately 𝜎𝑜 = 73 ksi (based on
a 0.2% strain offset yield stress) for CS1020, and 𝜎𝑜 = 40.50 ksi (based
on the ‘‘plateau’’ stress) for CS1026.

5.1.1. Material CS1020
Two sets of UR experiments on CS1020 specimens are simulated in

Figs. 3 and 4. In the first set, the cycling amplitude was kept constant,
and the mean stress was varied (Fig. 3), while in the second set, the
8

mean stress is constant, and the cycling amplitude is varied (Fig. 4).
In both figures, the experimental data are presented with open circles,
and the simulation results with colored dashed and solid lines. Before
the discussion of the numerical simulation results and their comparison
against the experimental data, two key aspects must be discussed; first,
the applied correction of the predicted maximum axial strain, 𝜀𝑥𝑝, at
the first cycle, and second, the difference between the dashed and solid
lines that are used in some cases for the numerical simulations in Figs. 3
and 4.

Regarding the first aspect, a direct specification of the maximum
axial strain 𝜀𝑥𝑝, that is generated at the end of the first cycle (𝑁 = 1) is
used in the numerical simulations. Practically, this means that the very
first point at 𝑁 = 1 in all the curves of the numerical simulations of
Figs. 3 and 4 is directly specified to match the corresponding experi-
mental data point exactly. This same process was followed in Hassan
and Kyriakides (1992), Hassan et al. (1992) and allowed them to focus
on the predicted ratcheting rate after the first cycle (𝑁> 1). The reason
is that the symmetric cyclic stabilization process of the sample prior
to ratcheting is not explicitly simulated, and consequently, the initial
state of the material at the start of ratcheting is unknown. Had the
stabilization process been simulated, it would have produced slightly
different initial points at the end of the first ratcheting cycle than what
is shown in the data due to model error in simulating the stabilization
and the first cycle.

Regarding the second aspect, notice that there are cases where the
numerical simulation results are presented with both solid and dashed
lines for the same test (e.g., the purple solid and dashed lines for the
case 𝜎̄𝑥𝑚 = 0.169 in Fig. 3). When the numerical simulation results
are with solid lines, the model constants are those in Table 1. When
a dashed line is used for a simulation, the results with those constants
did not match well the experimental data and an adjustment of the
value of 𝐾𝑖𝑛 only (single parameter adjustment) is applied for higher
model accuracy. More specifically, in Fig. 3, the tests with 𝜎̄𝑥𝑚 = 0.169
and 0.185 are also simulated with a slightly adjusted 𝐾𝑖𝑛 = 59.65
ksi value compared to 𝐾𝑖𝑛 = 60.15 ksi in Table 1, and plotted with
dashed lines. In Fig. 4, the tests with 𝜎̄𝑥𝑎 = 0.658, 0.670, 0.709 and
0.711 are also simulated with adjusted 𝐾𝑖𝑛 = 60.912, 60.912, 62 and
59.5 ksi values, respectively, and plotted with dashed lines. It is worth
noting that Hassan and Kyriakides (1992, 1994a) reported the results
of their simulations with only adjusted, when needed, values of 𝐾𝑖𝑛. In
this work, the results with both adjusted and non-adjusted unique 𝐾𝑖𝑛
values, the latter given in Table 1, are presented for completeness.

The results in Fig. 3 suggest that the model predicts with high
accuracy the UR. Moreover, it successfully considers the effect of the
applied mean stress, since it predicts with acceptable accuracy the
ratcheting rate for the 6 tests of varying mean stress in Fig. 3, with
a single set of model constants (solid lines). When the adjusted value
of 𝐾𝑖𝑛 is applied for the cases of 𝜎̄𝑥𝑚 = 0.169 and 0.185 (dashed lines),
the accuracy is improved and agreement between the predictions and
the experimental data is excellent.

Before we address the results of Fig. 4, it is instructive to clarify
the three stages of a typical stress–strain relationship in a simulation
by the BS model, namely, the linear elastic loading (Stage 1, 𝑓 < 0
and 𝐹 < 0); the non-linear elastoplastic loading with axial stress on the
YS but within the BS (Stage 2, 𝑓 = 0 and 𝐹 < 0); and the non-linear
elastoplastic loading with axial stress on the YS and on the BS (Stage 3
with 𝑓 = 0 and 𝐹 = 0). In the case of the UR experiments of Fig. 4, if
the maximum axial stress to be applied 𝜎𝑥 = 𝜎𝑥𝑚 + 𝜎𝑥𝑎 > 𝑘𝑖𝑛 then Stage
2 is initiated, and if 𝜎𝑥 = 𝜎𝑥𝑚 + 𝜎𝑥𝑎 > 𝐾𝑖𝑛 Stage 3 is initiated because 𝛽
has a significant smaller value compared to 𝐾𝑖𝑛 and the stress (and thus
the YS) reaches the image stress (and thus the BS) when 𝜎𝑥 = 𝐾𝑖𝑛 + 𝛽.
Stage 1 is always simulated after the initiation of a new loading event.
Clearly the same increment of axial stress 𝑑𝜎𝑥 acting during each of the
three stages would cause a significantly larger increment of axial strain
𝑑𝜖𝑥 in Stage 3, compared to Stage 2 and 1, in that order. This can be

visualized by looking at the initial loading part of the simulated Stable
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Fig. 5. Stress–strain response of CS1020 in uniaxial ratcheting. (a) Experiment
after Hassan and Kyriakides (1992); (b) Simulation.

Fig. 6. Uniaxial ratcheting on CS1026. Constant applied stress. Data after Hassan and
Kyriakides (1992).

Hysteresis Loop of Fig. 5(b) (black dashed line), where the slope of the
stress–strain curve is much flatter just before unloading (Stage 3).

Addressing now the results of Fig. 4, let us focus on the cases of
𝜎̄𝑥𝑎 = 0.627, 0.658, 0.670 and 0.683 (gray, blue, green, and purple lines,
respectively), where the maximum applied axial stress 𝜎𝑥 = 𝜎𝑥𝑚+𝜎𝑥𝑎 is
55.26, 57.52, 58.4 and 59.34 ksi, respectively, lower than the calibrated
𝐾𝑖𝑛 = 60.15 ksi (Table 1), hence, also 𝜎𝑥 = 𝜎𝑥𝑚 + 𝜎𝑥𝑎 < 𝐾𝑖𝑛 + 𝛽.
The simulated stress–strain relationship, in all the ratcheting cycles,
is characterized by loading Stages 1 and 2 (linear elastic, and non-
linear elastoplastic on the YS but within the BS) and thus the model
did not predict as large increments of strains as it would had Stage
3 been activated, as explained before. This simulated response was
qualitatively accurate with what was observed in the experiments, and
thus those cases were simulated with adequate accuracy when the non-
adjusted common 𝐾𝑖𝑛 is used (solid lines). When a small adjustment
of 𝐾𝑖𝑛 is applied in the cases of 𝜎̄𝑥𝑎 = 0.658 and 0.670 the accuracy
increased (dashed lines), not because the response is qualitatively
different by entering for example in the large strain regime of Stage
3, but because the ratcheting slope is slightly improved within each
9

cycle at Stage 2 by making the distance of the current axial stress to
the image stress slightly larger in average.

In the last two cases of 𝜎̄𝑥𝑎 = 0.709, 0.711, the maximum axial
stress reached in each of the experiments is 61.247 and 61.393 ksi,
respectively. When those two experiments are simulated, the maximum
applied axial stress per cycle is larger than the calibrated 𝐾𝑖𝑛 = 60.15
ksi. Thus, in both cases, the model predicts large strain increments
since part of loading is characterized by Stage 3, and thus, significantly
larger accumulated strain at the end of each cycle is predicted, as
demonstrated by the black and cyan solid lines in Fig. 4 for the cases
of 𝜎̄𝑥𝑎 = 0.709, and 0.711, respectively. For the 𝜎̄𝑥𝑎 = 0.711 case
(cyan open circles), the simulation results are in good agreement with
the experimental results, and the simulation of large strain increments
within each cycle (loading Stage 3) explains the steep slope of the cyan
experimental and numerical curves. A small adjustment to the value
of 𝐾𝑖𝑛 (dashed cyan line) improves the slope of the numerical curve
not because the response gets qualitatively different, but by improving
the stress–strain curve within each cycle by making the distance of
the current axial stress to the image stress slightly larger in average.
However, in the case of 𝜎̄𝑥𝑎 = 0.709, the simulation with non-adjusted
𝐾𝑖𝑛 (black solid line) over-predicts the accumulated total axial strain
compared to the corresponding experiment, due to the fact that the
model predicts large total stains within each cycle (loading Stage 3).
However, this is not observed in the experimental results and thus,
a significant adjustment (increase) of 𝐾𝑖𝑛 = 62 ksi was needed to
improve accuracy (dashed black line in Fig. 4), by practically forcing
the elastoplastic response of the model to remain within Stage 2,
i.e. the total applied axial stress 61.247 to remain smaller than 𝐾𝑖𝑛 =
60.15 ksi. Note that Hassan and Kyriakides (1992) also applied similar
adjustments to 𝐾𝑖𝑛 to increase the accuracy of the Dafalias/Popov BS
model in their work.

A full experimental stress–strain curve for uniaxial ratcheting is
plotted in Fig. 5(a), taken from Hassan and Kyriakides (1992), and its
simulation is shown in Fig. 5(b). In the experiment, the CS1020 spec-
imen was first cyclically stabilized by strain-symmetric cyclic loading
of 1% axial strain amplitude. During cyclic stabilization, it exhibited
cyclic softening (Hassan and Kyriakides, 1992) that is not simulated and
presented in this work as explained in Section 4. When the specimen
was stabilized, and cyclic softening finished, the specimen exhibited
a stable hysteresis loop under strain-symmetric cyclic loading, which
is indicated in Fig. 5(a) for the experiment and simulated in Fig. 5(b)
with good accuracy (black dashed line). After the stabilization process,
45 cycles of UR were applied, with 𝜎̄𝑥𝑎 = 0.658 and 𝜎̄𝑥𝑚 = 0.159. At
the end of UR another strain-symmetric cycle of the same amplitude
with the stabilized loop was applied and is indicated as Hysteresis Loop
in Fig. 5(a) and simulated in Fig. 5(b). The maximum accumulated
axial strain in the experiment after 45 UR cycles is approximately
2.6% and the model predicts it with high accuracy, as can be seen in
Fig. 5(b). The model can simulate all the features of this complicated
loading history, and the numerical results compare very well with the
experimental data.

5.1.2. Material CS1026
Nine additional UR experiments are simulated in this section and

compared with experimental data on CS1026 presented in Hassan
and Kyriakides (1992). In those experiments, a single set of model
constants (including a single 𝐾𝑖𝑛) is used, as presented in Table 1.
Fig. 6 presents the simulations and experimental data for three tests
with the same cyclic amplitude but varying mean stress. The model
shows good accuracy compared to the experimental data, except for
the simulation of the experiment with the low 𝜎̄𝑥𝑚 = 0.104, which is
significantly less accurate than the other two. Fig. 7 presents four tests
with constant mean stress and varying cyclic amplitude. With a single
set of parameters, the model shows good accuracy for the three tests,
except the test when 𝜎̄𝑥𝑎 = 0.771, where it under-predicts significantly

the maximum accumulated strain per cycle.
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Fig. 7. Uniaxial ratcheting on CS1026. Constant mean stress. Hassan and Kyriakides
(1992).

Fig. 8. Uniaxial ratcheting on CS1026 with a large number of cycles. Data after Hassan
and Kyriakides (1992).

Fig. 9. Uniaxial ratcheting on CS026 with varying axial stress amplitude. Hassan and
Kyriakides (1992).

Fig. 8 presents the experimental data and numerical simulations of a
UR test on CS1026 with 𝜎̄𝑥𝑎 = 0.79 and 𝜎̄𝑥𝑚 = 0.193, and a large number
10
Fig. 10. Stress–strain relationship in uniaxial ratcheting with varying applied axial
stress for CS1026. Applied stress history of Fig. 9. (a) Experiment after Hassan and
Kyriakides (1992) (b) Simulation.

of cycles (𝑁 = 90). These results suggest that the model can be very
accurate even when a high number of cycles are applied. Fig. 9 presents
the experimental data and numerical simulations of a UR with varying
̄𝑥𝑎 during the test and mean normalized applied stress 𝜎̄𝑥𝑚 = 0.16. The
agreement between the simulation and experimental data is very good.
The full stress–strain relationship of this simulation and the comparison
with the experiment is presented in Fig. 10.

5.2. Model validation in multiaxial ratcheting (MR)

In this section, multiaxial ratcheting simulations are compared with
experimental data on CS1018 and CS1026 specimens, reported in Has-
san et al. (1992) and Corona et al. (1996). Six simulated loading
histories are illustrated in Fig. 11, all in the space of the axial strain
𝜀𝑥, versus circumferential stress 𝜎𝜃 , which is induced by pressure. The
loading types of Fig. 11 can be described as follows: (1) axial strain-
symmetric cycling at constant pressure, (2) inclined path, positive
slope, (3) inclined path, negative slope, (4) bowtie path, (5) reverse
bowtie path, and (6) hourglass path. Both CS1018 and CS1026 spec-
imens are tested after a cyclic stabilization process, as explained in
the uniaxial section. In the simulations, only the multiaxial ratcheting
stages are simulated, but the stabilized state of the materials is reflected
in the chosen model constants and simulations are adjusted such that
the initial point matches that seen experimentally, as explained in the
uniaxial section, to account for any previous loading.

5.2.1. Material CS1026
The model constants for the multiaxial ratcheting simulations are

the same as those used for CS 1026 uniaxial ratcheting simulations
and are presented in Table 1. Fig. 12 presents the experimental data
and numerical simulations for four axial strain-symmetric cycling tests
at constant pressure (Type 1 in Fig. 11), for the same applied axial
strain amplitude of 𝜀𝑥𝑐 = 0.5% at various circumferential stresses 𝜎𝜃 ,
each one obtained by a corresponding constant internal pressure of the
tubular specimen. In Fig. 12, as well as in all subsequent figures, the
stress quantities are normalized by the yield stress value, hence, the bar
over the stress symbol 𝜎̄. Fig. 13 presents the experimental data and
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Fig. 11. Cycling types of loading histories (after Corona et al., 1996).
Fig. 12. Axial strain-symmetric cycling at constant pressure. Type 1 of Fig. 11. Constant
applied axial strain across tests. Material CS1026. Data after Hassan et al. (1992).

numerical simulations for three axial strain-symmetric cycling tests at
constant pressure (again Type 1 in Fig. 11), but now with the same
11
Fig. 13. Axial strain-symmetric cycling at constant pressure. Type 1 of Fig. 11. Constant
applied circumferential stress across tests. Material CS1026. Data after Hassan et al.
(1992).

𝜎̄𝜃 = 0.24 at various axial strain amplitudes, 𝜀𝑥𝑐 . Fig. 14 presents the
experimental data and simulation of the same Type 1 loading, with
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Fig. 14. Axial strain-symmetric cycling at constant pressure. Type 1 of Fig. 11. A large
number of cycles. Material CS1026. Data after Hassan et al. (1992).

𝜀𝑥𝑐 = 0.5% and 𝜎̄𝜃 = 0.178, and a high number of cycles (𝑁 =
69). In all three cases, the model predicts the experimental data with
very good accuracy. Finally, Fig. 15 presents the simulated strain-path
𝜀𝑥 − 𝜀𝜃 with 𝜀𝑥𝑐 = 0.5% and 𝜎̄𝜃 = 0.245 and the comparison against
the corresponding experiment. It can be concluded that the model
predictions are quite successful.

Two of the more advanced loading histories, namely the inclined
path with positive slope (Type 2 in Fig. 11) and bowtie path (Type 4 in
Fig. 11), were also simulated and compared with the experimental data
in Corona et al. (1996). In both simulations, 𝜀 = 0.5%, 𝜎̄ = 0.06 and
12

𝑥𝑐 𝜃𝑎
̄𝜃𝑚 = 0.24. The experimental data and the simulation results versus
the number of cycles 𝑁 , are plotted in Fig. 16. An excellent fit of
the numerical simulations with the experimental data was achieved. In
addition, for those two loading histories, the simulated strain-paths and
the corresponding experimental data are plotted in Fig. 17 (Type 2) and
Fig. 19 (Type 4), while the simulated stress-paths and corresponding
experimental data are plotted in Fig. 18 (Type 2) and Fig. 20 (Type 4).
The model reproduces stress and strain paths with high accuracy.

Finally, a set of simulations and their comparison with the ex-
perimental data for the case of axial cyclic stress-symmetric loading
with constant internal pressure are presented in Fig. 21. Those tests
induce double ratcheting, i.e., the plastic strain accumulates in both the
axial and circumferential directions, simultaneously. This is possibly
the most difficult loading to simulate. The proposed model shows
qualitative and partially not quantitative accuracy in this case.

To clarify the source of this quantitative inaccuracy, it is first
emphasized that the CS1026 specimens tested in Hassan et al. (1992),
and simulated in this work, are cyclically stabilized. Thus, any tendency
for cyclic hardening/softening does not appear due to the method of
material treatment, but it might be related to the characteristics of
this MR case. Moreover, Fig. 21 emphasizes the role of the increasing
magnitude of the applied internal pressure, and thus, the role of the
increasing magnitude of 𝜎𝜃 on the rates of ratcheting in both the
axial and circumferential directions. In Fig. 21, when 𝜎𝜃 increased
from 0 (red open circles) to 0.353 (black open circles), a decrease in
both the accumulated positive axial and negative circumferential strain
components was observed first (e.g., case of 𝜎𝜃 = 0.210), while further
𝜎𝜃 increase led to an increased ratcheting rate in both axial and circum-
ferential directions ratcheting and an increased rate of circumferential
ratcheting, evident in the case of 𝜎𝜃 = 0.353 when compared against
the case of 𝜎𝜃 = 0.210. This complex effect on the two ratcheting
mechanisms is thoroughly discussed in Hassan et al. (1992) and is
simulated with qualitative accuracy and partial quantitative accuracy
Fig. 15. Strain-path for axial strain-symmetric cycling at constant pressure. Type 1 of Fig. 11. Material CS1026. (a) Experiment after Hassan et al. (1992); (b) Simulation.
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Fig. 16. Inclined path, positive slope, Type 2 in Fig. 11, and bowtie, Type 4 in Fig. 11,
multiaxial ratcheting data and simulations. Material CS1026. Data after Corona et al.
(1996).
13
by our model as can be seen in Fig. 21, which shows a significant
improvement if compared to Fig. 19 of the aforementioned reference.
We want to emphasize that this improvement is mainly related to the
fact that our model simulated accurately the direction of ratcheting,
as shown for all the cases in Fig. 21 by the accurate slopes of the
graphs, with only the exception of the slope for 𝜎̄𝜃 = 0.249. This
accurate slope simulation is mainly due to the varying flow rule of the
model induced by the BCD modification parameter 𝑟𝑎 given by Eq. (21).
However, our model fails to simulate accurately the magnitude of
the accumulated ratcheting in both directions for most of the cases,
reflected in the length of the graphs, hence, we characterized the
simulations as partially quantitatively accurate.

To further highlight the source of this inaccuracy, the simulated
axial stress–strain and axial–circumferential strain relationships and
their comparison against the experimental data in the case of 𝜎𝜃 =
0.353 are plotted in Fig. 22. It is concluded that the model overesti-
mates the ratcheting rates in both directions (Figs. 22(c) and 22(d))
by about the same factor, hence the success in simulating the slope
in Fig. 21, since it does not predict the instant ‘‘hardening’’ in the
axial stress–strain relationship observed in the experiment (Fig. 22(a))
that leads to a decrease in the rate of ratcheting in the circumfer-
ential direction also (Fig. 22(b)). A more detailed investigation of
this response is needed, and it will be included in future research
work. Overall, though, the model performs better than the original
Dafalias/Popov BS model and other state-of-the-art constitutive models

in the literature (Welling et al., 2017; Hassan et al., 1992). Future
Fig. 17. Strain-path for an inclined path with positive slope. Type 2 in Fig. 11. Material CS1026. (a) Experiment after Corona et al. (1996); (b) Simulation.
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Fig. 18. Stress-path for an inclined path with positive slope. Type 2 in Fig. 11. Material CS1026 (a) Experiment after Corona et al. (1996); (b) Simulation.

Fig. 19. Strain-path, bowtie. Type 4 in Fig. 11. Material CS1026. (a) Experiment after Corona et al. (1996); (b) Simulation.
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Fig. 20. Stress-path, bowtie (Type 4 in Fig. 11). (a) Experiment after Corona et al. (1996); (b) Simulation. Material CS1026.
Fig. 21. Mean axial versus mean circumferential strain recorded at each cycle in stress-
controlled axial cycling experiments at different values of 𝜎̄𝜃 . Each data point (open
circles) equals the values at every fifth cycle. Data after Hassan et al. (1992).

research is needed to accurately predict the material behavior under
this loading condition.

5.3. Material CS1018

Three MR experiments, namely the inclined path, negative slope (3),
the reverse bowtie path (5), and hourglass (6) shown in Fig. 11, are
simulated for CS1018 specimens. Similarly, to the previous cases, the
stabilization cycling of the specimens is not simulated, however, the
choice of model parameters reflects the stabilized state of the material,
and the initial point is adjusted to match the experimental findings.
The results are presented in Fig. 23. A very good agreement of the
simulation results with the experimental data is observed when plotted
15
against the number of cycles 𝑁 . In addition, the simulated strain paths
of those three loading conditions are presented in Fig. 24 (hourglass
(6), 17 cycles), Fig. 26 (inclined path, negative slope (3), 40 cycles) and
Fig. 28 (reverse bowtie (5), 20 cycles). Similarly, the simulated stress-
paths are presented in Fig. 25 (hourglass (6)), Fig. 27 (inclined path,
negative slope (3)), and Fig. 29 (reverse bowtie (5)). The corresponding
experimental data from Corona et al. (1996) are juxtaposed to the
simulations of Figs. 24–29 for comparison. The conclusion is that model
can predict very accurately these observed stress and strain paths.

6. Conclusion

The new SANIMETAL-BCD Bounding Surface (BS) model is based
on a simple modification of the existing SANISTEEL BS model (Mahan
et al., 2011), without introducing additional complex constitutive fea-
tures, such as memory surfaces in stress space or non-hardening regions
in strain space proposed mainly in conjunction with MAF models.
Still, it can provide equally good or better simulations than these
other more complex constitutive models for UR and MR cases, without
losing the simulative capabilities for the much simpler monotonic or
symmetric cyclic loading. This is because all the endemic advantages
of BS plasticity are still present in the new model, in particular, the
following two:

1. The decoupling of the value of the plastic modulus from the
direction of the KH of the YS, and

2. The option to choose any kind of KH for the BS that is deemed
necessary for more accurate simulation, without changing the
other constitutive features.

One then can identify the following novel constitutive ingredients of
the SANIMETAL-BCD model, in order of appearance in the paper. First,
the BS acts as a changing bounding locus in stress space for the back
stress (center of the YS) rather than the stress itself; this is a feature
already introduced in soil models (Manzari and Dafalias, 1997; Dafalias
and Manzari, 2004; Taiebat and Dafalias, 2008), but it is the first time
it was applied to metals.

Second, and most important, is the introduction of the BCD mod-
ification into the relative KH of the YS in regard to the KH of the
BS, as eloquently portrayed by the key Eq. (15). So far, the BCD
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Fig. 22. Stress-controlled multiaxial axial cycling. Axial stress–strain experimental (a) and simulated (c) response. Axial–circumferential experimental (b) and simulated (d) response.
Data after Hassan et al. (1992).
Fig. 23. Multiaxial ratcheting, reverse bowtie path (Type 5), inclined path, negative
slope (Type 3), and hourglass (Type 6). Data after Corona et al. (1996). Material
CS1018.
16
modification was applied to AF type of models, in which case there is no
notion of relative KH. This modification was the key to controlling the
direction of the plastic strain rate tensor (associative flow rule) during
the loading process, hence, it is the basis for the successful simulation
of MR.

The third novel ingredient, closely related to the second and moti-
vated by a prior suggestion of Dafalias and Feigenbaum (2011) within
the setting of MAF models, was the substitution of the variable 𝑟𝛼 for
the fixed-value modification parameter 𝛿 in the classical BCD mod-
ification of AF and MAF models. The 𝑟𝛼 was expressed in Eq. (21)
as a function of 𝑟, defined in Eq. (20) and measuring the proximity
of the back stress to its BS. Despite its simplicity, Eq. (21) plays a
role of cardinal importance for the effectiveness of the introduced
BCD modification in regard to the successful simulations of MR for
complex cyclic loading shown in previous figures for many cases. This
has been confirmed by attempting the same simulations with a fixed
value of 𝑟𝛼 , as is the case of fixed-value modification parameter 𝛿,
which yielded significantly inferior simulations. In addition, the use
of 𝑟𝛼 easily satisfies the requirement 𝑟𝛼> 0.5 at 𝑟 = 1 on the BS, for
avoiding crossing of the BS by the back stress of the YS under some
loading conditions that can induce unjustified softening, a shortcoming
of several MAF models which use 𝛿 < 0.5 (Dafalias and Feigenbaum,
2011).

The fourth novel constitutive ingredient is the use of the special
Dafalias/Ranzbari (DR) KH (see Mahan et al., 2011) for the BS, which



International Journal of Solids and Structures 281 (2023) 112412

17

Y.F. Dafalias et al.

Fig. 24. Strain-path, hourglass (Type 6 in Fig. 11). (a) Experiment after Corona et al. (1996); (b) Simulation. Material CS1018.

Fig. 25. Stress-path, hourglass (Type 6 in Fig. 11). (a) Experiment after Corona et al. (1996); (b) Simulation. Material CS1018.
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Fig. 26. Strain-path for an inclined path with a negative slope (Type 3 in Fig. 11). (a) Experiment after Corona et al. (1996); (b) Simulation. Material CS1018.

Fig. 27. Stress-path for an inclined path with a negative slope (Type 3 in Fig. 11). (a) Experiment after Corona et al. (1996); (b) Simulation. Material CS1018.
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Fig. 28. Strain-path for a reverse bowtie path (Type 5 in Fig. 11). (a) Experiment after Corona et al. (1996); (b) Simulation. Material CS1018.

Fig. 29. Stress-path for a reverse bowtie path (Type 5 in Fig. 11). (a) Experiment after Corona et al. (1996); (b) Simulation. Material CS1018.
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induces a parallel ‘‘translation’’ of the bounds in uniaxial case towards
the direction of ratcheting to maintain the continuation of UR, as
observed in experiments. As already mentioned in the Introduction, this
was a discovery made by Hassan and Kyriakides (1992, 1994a), but
in these references the DR KH for the BS was used only for obtaining
the ensuing bounding plastic modulus, while the KH direction of the
YS was defined by an independent AF KH, followed by the KH for
the BS via its interaction with it. In the present work, the approach
is simpler and more straightforward: the DR KH was used directly for
the BS for obtaining both the important bounding plastic modulus by
the consistency condition for the BS, and the direction of KH for the BS,
entering Eq. (15) for the relative KH of YS and BS, without the need to
specify an independent AF type of KH for the YS. The flexibility of such
YS KH was delegated instead to the use of the aforementioned third
novel ingredient, namely the BCD variable modification parameter 𝑟𝛼 .
A word of caution is that the DR KH for prolonged monotonic loading
behaves like a linear KH, and its unrealistic effect when no reverse
loading takes place must be appropriately modified if the need for such
prolonged monotonic loading ever arises.

The results show that, in general, the model’s simulations agree
quite satisfactorily with experimental findings under a wide array of
UR and MR loading conditions for all three kinds of carbon steel
examined in this work. The lower accuracy of the model in the case
of multiaxial cyclic stress-symmetric loading with constant internal
pressure, which induces double ratcheting of plastic strain in the axial
and circumferential directions simultaneously, was highlighted in this
work and is a shortcoming characterizing all other available state-
of-the-art models at present. More research is needed to improve its
performance in this most complex case.

Another issue not addressed yet with the present model, is the
possible effect of non-proportionality under multiaxial loading on the
IH (Hassan and Kyriakides, 1994b); one of the reasons it was not
addressed here is that materials used were cyclically stabilized before
being subjected to UR and MR loading paths and after this stabiliza-
tion, no additional IH is expected. The IH can include also isotropic
softening under cyclic loading, and that can be another objective to
be investigated in subsequent research. Finally, it will be important
to address non-proportional loading that involves also a change of
stress principal axes (non-coaxiality), as it happens when shear stress
is cyclically applied; the non-proportional (non-radial) cases presented
here, maintained the same stress principal axes directions. A prominent
tool for such cases may be the novel formulation of split stress rate
plasticity by Dafalias (2022), which differentiates the effect of a stress
rate part causing change of stress principal stress axes, only, from the
stress rate part causing change of stress principal values, only.
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Appendix

In a formulation where the BS refers to the stress rather than the
back-stress (the original formulation), the 𝑐 was given as Mahan et al.
(2011):

𝑐 =
ℎ0

√

3∕2⟨
(

𝜹𝑖𝑛 − 𝜹
)

∶ 𝒏⟩
(A.1)

nstead of Eq. (17), with ℎ0 a parameter, tensor 𝜹 = 𝒔̄ − 𝒔 representing
he ‘‘distance’’ of current stress 𝒔 from its image bounding stress 𝒔̄,
nd the subscript ‘‘in’’ implying its value at the initiation of a loading
rocess. The 𝑐 of Eq. (A.1) was multiplied by 𝜹 ∶ 𝒏 = (𝒔̄ − 𝒔) ∶ 𝒏
n Mahan et al. (2011). Based on Eq. (13) one can derive that 𝜹 = 𝒔̄−𝒔 =
𝑏 − 𝜶 and similarly for the initial values 𝜹𝑖𝑛 = 𝒔̄𝑖𝑛 − 𝒔 = 𝜶𝑏

𝑖𝑛 − 𝜶𝑖𝑛 (the
atter relation was already used in what follows Eq. (18)). Therefore,
irstly one has 𝜹 ∶ 𝒏 = (𝒔̄ − 𝒔) ∶ 𝒏 =

(

𝜶𝑏 − 𝜶
)

∶ 𝒏, hence, the same
quantity multiplies the 𝑐 of Eq. (A.1) in Mahan et al. (2011), and the
𝑐 of Eq. (17) when it appears in Eq. (16) for the plastic modulus 𝐾𝑝.
However, this is not the case with the denominators of Eqs. (17) and
(A.1) that determine the corresponding 𝑐 in each case. Based on the
foregoing one can write:

(

𝜹𝑖𝑛 − 𝜹
)

∶ 𝒏 =
[(

𝜶𝑏
𝑖𝑛 − 𝜶𝑖𝑛

)

−
(

𝜶𝑏 − 𝜶
)]

∶ 𝒏
[

(𝜶 − 𝜶𝑖𝑛) − (𝜷 − 𝜷𝑖𝑛) +
√

2∕3
[

(𝐾𝑖𝑛 −𝐾) − (𝑘𝑖𝑛 − 𝑘)
]

𝒏
]

∶ 𝒏
(A.2)

here use of Eq. (13) was made in deriving the last member of
q. (A.2). It follows from Eq. (A.2) that the denominators of Eqs. (17)
nd (A.1) are not the same. If one assumes that the change of the values
f 𝐾 and 𝑘 due to IH is not large and their current values are close

to their initial values, and simultaneously the change of the BS back
stress 𝜷 is small, hence 𝜷 ≈ 𝜷𝑖𝑛, it then follows that

(

𝜹𝑖𝑛 − 𝜹
)

∶ 𝒏 ≈
(

𝜶 − 𝜶𝑖𝑛
)

∶ 𝒏 and the 𝑐’s of Eqs. (17) and (A.1) are approximately
equal. The foregoing approximation assumptions on IH and 𝜷, are not
far from reality in practical terms.
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