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Abstract

We uncover a precise relation between superblocks for correlators of superconformal field
theories (SCFTs) in various dimensions and symmetric functions related to the BC root sys-
tem. The theories we consider are defined by two integers (m,n) together with a parameter θ
and they include correlators of all half-BPS correlators in 4d theories with N = 2n supersym-
metry, 6d theories with (n, 0) supersymmetry and 3d theories with N = 4n supersymmetry,
as well as all scalar correlators in any non SUSY theory in any dimension, and conjecturally
various 5d, 2d and 1d superconformal theories. The superblocks are eigenfunctions of the
super Casimir of the superconformal group whose action we find to be precisely that of the
BCm|n Calogero-Moser-Sutherland Hamiltonian. When m = 0 the blocks are polynomials,
and we show how these relate to BCn Jacobi polynomials. However, differently from BCn

Jacobi polynomials, the m = 0 blocks possess a crucial stability property that has not been
emphasised previously in the literature. This property allows for a novel supersymmetric
uplift of the BCn Jacobi polynomials, which in turn yields the (m,n; θ) superblocks. Su-
perblocks defined in this way are related to Heckman-Opdam hypergeometrics and are non
polynomial functions. A fruitful interaction between the mathematics of symmetric functions
and SCFT follows, and we give a number of new results on both sides. One such example is
a new Cauchy identity which naturally pairs our superconformal blocks with Sergeev-Veselov
super Jacobi polynomials and yields the CPW decomposition of any free theory diagram in
any dimension.
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1 Introduction

In this paper we will obtain conformal and superconformal blocks for four-point functions of
half-BPS scalar operators in diverse dimensions. Our construction is based on a single unified
formalism, which uses analytic superspace [1–10] as its starting point, but includes various
generalisations. In particular, a parameter θ which allows us to move across dimensions.
By varying the value of θ, we will find superconformal blocks for theories in 1,2,3,4,6 and
conjecturally 5 dimensions.

The superconformal blocks that we present have a beautiful interpretation in the theory of
symmetric functions: they are in one-to-one correspondence with a natural supersymmetric
extension of a class of stable polynomials that we call dual BC Jacobi polynomials. While
the appearance of the BC root system in this context is not new,1 the results here set these
observations in a much more general context and apply them directly to the supersymmetric
case as well as the bosonic CFT case.

In a quantum field theory, correlation functions can be decomposed by using the opera-
tor product expansion (OPE). If the theory is a Conformal Field Theory (CFT), it is well
known that the OPE can be organised further by collecting the contribution of a primary
operator with all its infinite descendants [18–21]. The object representing the common OPE
between pairs of external operators in a four-point correlator is the conformal block. It can be
represented as the solution of a Casimir operator (for the correlation function under consid-
eration) with given boundary conditions [11,22–25]. The conformal block encodes an infinite
sum and is closely related to hypergeometric functions. We will show, more precisely, that
the mathematics underlying the physics of superconformal blocks is that of the multivariate

hypergeometric functions developed by Heckman-Opdam (applied to the BC root system).

The Heckman-Opdam (HO) hypergeometrics are rigorously defined as eigenfunctions of a
system of differential equations [16,17]. In the case of positive weights it was shown [26] that
the A- and BC-type solutions reduced to Jack and Jacobi polynomials. These polynomials,
on the other hand, were particularly well known in the literature because of their definition as
orthogonal polynomials associated to root systems [27–29]. In fact, the study of orthogonal
polynomials had its own independent trajectory, perhaps culminating with the introduction of
the Koornwinder polynomials [30–32] and the proof of evaluation symmetry by Okounkov [33].
In this framework, supersymmetry makes its first appearance in [34–36], where Sergeev and
Veselov used the Am−1|n−1 root system to construct a supersymmetric version of Jack and
Macdonald polynomials, i.e. super Jack and super Macdonald polynomials, which reduce to
the bosonic family for the An−1 root system.

The idea of expanding superconformal blocks in terms of super Jack polynomials was
developed in [7–9,11]. In particular the work of [9] showed that 4d superconformal blocks on
the super Grassmannian Gr(m|n, 2m|2n) admit a simple representation as a sum over super
Schur polynomials [37], the latter being a particular (θ=1) case of super Jack polynomials. In
this representation each super Schur polynomial contributes with a simple coefficient built out
of gamma functions. Quite nicely, the whole series was shown to re-sum into a determinant
of a matrix of Gauss hypergeometric functions.

1It was pointed out already in the foundational work [11], and more recently in [12–15], that bosonic
conformal blocks solve BC2-type differential equations.
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An essential property of the construction in [9] is stability, which states that the (m,n)
superconformal block reduces to the (m−1, n) or (m,n−1) superconformal block when one of
its m x-variables, or n y-variables, is switched off. This property is crucial. It implies that the
coefficients of a block expanded in super Schur polynomials are independent on m,n! Thus,
they can be obtained by examining the (m, 0) bosonic conformal blocks, or even simpler, the
(0, n) compact analogues, which are just polynomials. This simple property then leads to a
precise formula of all superblocks (in particular those of short or atypical representations) of
half BPS correlators in 4d N = 4, 2 supersymmetric theories.

As we will show here, it turns out that the (0, n) polynomial of [9] is actually a rewriting
of the BCn Jacobi polynomial Jλ with the parameter θ = 1. A BCn Jacobi polynomial is
a polynomial in n variables defined by a Young diagram λ = [λ1, .., λn] with row lengths
λi ≥ λi+1 ∈ Z≥0. We will use the recent definition given by Koornwinder in [41]. Then, the
precise relation between the (0, n) block and a Jacobi polynomial is quite interesting as it
involves taking a complementary Young diagram, βn\λ = [β−λn, .., β−λ1] and inverting the
original variables. Based on this observation we introduce a new class of polynomials, which
we call the dual Jacobi polynomials. These are defined by

J̃β,λ(y1, . . . , yn) ≡ (y1 . . . yn)
βJβn\λ(

1
y1
, . . . , 1

yn
) (1.1)

where the new parameter β here is an arbitrary integer, sufficiently large to ensure the Ja-
cobi in inverse variables is again polynomial. Remarkably, unlike the Jacobi polynomials
themselves, the dual Jacobi polynomials are stable! This surprisingly simple fact is a key
observation,2 and opens up the way towards the more general definition of superconformal
blocks in diverse dimensions that we give below. In fact, the above discussion was for θ = 1
but can be repeated for any value of θ by going from Schur to Jack polynomials.

We can now define a natural supersymmetric extension of J̃β,λ using stability in a crucial

way: We simply have to replace the expansion in Jack polynomials of J̃β,λ with super Jack
polynomials, keeping the same expansion coefficients. The sum over super Jack polynomials
now is no longer cut off, and becomes infinite in the direction of the conformal subgroup,
since the latter is non compact. We define in this way the BCn|m dual Jacobi functions.

The key claim then is that superconformal blocks Bγ,λ(x|y) in any (m,n; θ) theory are
given by these dual super Jacobi functions through a trivial redefinition, normalisation and
transposition

Bγ,λ(x|y) =
(∏

i x
θ
i∏

j yj

)γ
2

(−1)|λ
′|Πλ′(1θ ) J̃β,λ′(y|x) . (1.2)

The parameter θ will be related to the spacetime dimension in the four-point correlator,
and β is given in terms of the parameter γ, related to the scaling dimension of the operator
appearing in the block. Here and throughout the paper we use primed Young diagrams to
denote transposed Young diagrams, i.e. the row lengths of λ′ are the column lengths of λ and
viceversa. The factor Πλ′(1θ ) is an explicit known function of θ given later.

The dual Jacobi functions so constructed interpolate between the dual Jacobi polynomials
for m = 0, the (infinite series) bosonic conformal blocks of [11] for n = 0 and arbitrary θ, and

2The importance of stability for the construction of BC symmetric functions from BC polynomials was
discussed by E.Rains in [32].
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reproduce the θ = 1 (m,n) superconformal blocks in 4d. Quite remarkably, another class of
supersymmetric Jacobi polynomials was constructed by Sergeev and Veselov in [38], however
these are polynomial in both directions and are explicitly different from the super Jacobi
functions we defined above.

The correlators in this formalism, which are defined entirely by specifying (m,n; θ) and
charges for the external operators, include many cases of interest, for example 3d and 6d half
BPS superconformal blocks which are notoriously difficult to study. Importantly, it will treat
long and short representations on the same footing.

The use of symmetric polynomials, in relation with stability, has important payoffs for
both the study of CFT and the theory of symmetric functions. The first one is that we will
exhibit a formula for the expansion coefficients of our superconformal blocks, over the basis
of super Jack polynomials, in terms of a (super) binomial coefficient [38], after a physically
motivated redefinition of the external parameters. The second one, which is perhaps the
most beautiful, is that we will able to prove, and indeed generalise, a superconformal Cauchy
identity, which once properly interpreted yields the conformal partial wave expansion of any
free theory propagator structures within the formalism. The objects paired in this Cauchy
identity are, on the one side the superconformal blocks, on the other side the super Jacobi
polynomials of Sergeev and Veselov [38], which we mentioned above. Another pay off is that we
can read off and generalise explicit results derived for Heckman Opdam hypergeometrics with
θ = 1, allowing us to write down all higher order super Casimir operators for the superblocks.
Finally we will find an interpretation of the coefficients occurring in the decomposition of
superblocks into blocks as structure constants for dual Jacobi polynomials.

In the next section we will give a detailed outline of the whole paper before proceeding to
the main body.

2 Overview

We would like to facilitate the reading of our paper, by presenting an extended overview of
our results.

From a physics perspective, we will begin by presenting superconformal blocks in the
formalism of analytic superspace as eigenfunctions of the superconformal Casimir operator
which remarkably we will see is equivalent to a BCm|n CMS operator. This will anticipate
the more detailed discussion in section 3. Then, we will outline a practical method to solve
the differential equation associated to the BCm|n Casimir, by using a recursion relation. This
recursion is very important in our story. Full details will be given in section 5, and an extended
discussion about its analytic properties will be given in section 6.

From a more mathematically oriented point of view, we will motivate in section 2.3 our
construction of dual BCn Jacobi polynomials, and their supersymmetric extension to dual
super Jacobi functions. We will show that superblocks are essentially dual super Jacobi func-
tions. Properties of these functions, which parallel physical properties of the superconformal
blocks, will be reviewed in sections 2.4 and 2.5, and proved later on in the corresponding
sections. These have to do with the action of complementation, the Cauchy identity, and the
structure constants for superconformal blocks.
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2.1 Superconformal blocks

We will consider four-point functions of scalar operators living on certain coset spaces of appro-
priate superconformal groups with coordinates X. These operators include a number of cases
of interest including half-BPS correlators in many superconformal field theories in 1, 2, 3, 4, 6
and conjecturally 5 dimensions, as well as (non-supersymmetric) scalars on Minkowski space
of any dimension, as well as scalars in non supersymmetric CFTs and analogous reps on
purely internal (ie compact) spaces. These cases all belong to the more general family of the-
ories indexed by three parameters (m,n; θ) with m,n non-negative integers. The above group
theory interpretation exists only for certain values of (m,n; θ) and when there is such a group
theory interpretation, the complexified coset space in question will be a maximal (possibly
super and/or orthosymplectic) Grassmannian. They will all be given by a flag manifold which
can be denoted by a (super) Dynkin diagram with a single marked node (see section 3 for
more details, in particular section 3.1 gives a list of the physical CFTs to which the formalism
applies). Scalar operators in this space have a weight, p, under a C∗ subgroup.3 We denote
them by Op, and the four point functions by

〈Op1(X1)Op2(X2)Op3(X3)Op4(X4)〉. (2.1)

The operatorO1 is the basic representation, and corresponds to a representation whose highest
weight state is a scalar operator of scaling dimension θ = d−2

2 and internal charge 1. Then
the scaling dimension of Op is p θ with internal charge p. In the supersymmetric cases Op is
a half BPS multiplet. Full details of all theories that fit into this (m,n, θ) classification can
be found in section 3 and appendix A.

In a CFT we can bring two operators close to each other and replace their coincident limit
with a sum over operators at a single point, as follows,

Opi(X1)Opj (X2) =
∑

Oγ,λ

CpipjOγ,λ g
1
2
(pi+pj−γ)

12 Dγ,λ(X12, ∂2) Oγ,λ(X2) . (2.2)

Formula (2.2) is known as the Operator Product Expansion or OPE. As an equality in group
theory, the OPE corresponds to decomposing the tensor product of two (possibly infinite
dimensional) representations into its irreducible primary representations, denoted above with
Oγ,λ, when X1 → X2. In the (m,n; θ) theories that we consider here, the coordinates Xi can
always be written as a square (super)-matrix, and the propagator, i.e. the two point function
of two basic O1 operators, is4

gij = 〈O1(Xi)O1(Xj)〉 = sdet(Xi−Xj)
−# . (2.3)

The operator D appearing in (2.2) generates descendants of the exchanged primary operators
Oγ,λ, and CpipjOγ,λ is the OPE coefficient of Oγ,λ w.r.t. the external fields Opi(X1)Opj (X2).

In the OPE of two scalars, as is the case here, the primaries exchanged can always be

3This is the complexification of either a U(1) subgroup of the internal subgroup or the group of dilatations
when there is no internal subgroup (i.e. n = 0) and it corresponds to the single marked Dynkin node.

4The power # here is defined so that O1 has dimension θ and/or internal charge 1. It depends on the
theory in question: for θ = 1, 2 we will have # = 1 whereas for θ = 1

2
we will have # = 1

2
. This precise value

won’t play any further role in the following.
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specified by a weight under the afore-mentioned C∗, which we denote by γ, together with the
representation of the remaining isotropy group, λ, so Oγ,λ (and also the external operators
O can be specified in this way but with λ trivial). In a free theory,5 γ varies over the
range max(p1−p2, p4−p3) ≤ γ ≤ min(p1 + p2, p3 + p4) in steps ∈ 2Z where we will assume
p1 > p2, p4 > p3 without loss of generality. The representation of the isotropy group is
specified via a Young diagram λ, which will encode the various quantum numbers, for example
spin and twist, of the operator exchanged. The Young diagram will be consistent with that
describing an SL(m|n) representation, meaning it will have at most m rows longer than n
and at most n columns taller than m. Furthermore the overall height of the Young diagram
must be smaller than β ≡ min

(
1
2(γ−p12), 12(γ−p43)

)
. So a valid Young diagram λ must fit

inside the red area here

m
β

n

λ

(2.4)

Superconformal representations are conventionally specified via the dilation weight, ∆,
various conformal quantum numbers or Dynkin labels (e.g. Lorentz spin), and quantum
numbers or Dynkin labels describing the internal representation, whereas we specify the the
representation by the Young diagram λ and the parameter γ. The dilation weight is then
∆ =

∑m
i=1max(λi−n, 0) +mθ γ2 and the other conformal quantum numbers are specified by

differences of the first m row lengths λi − λi+1. The internal group quantum numbers are
given as differences of Young diagram column heights λ′i − λ′i+1 as well as the special marked
Dynkin label b = γ− 2λ′1. We refer to section 3 for a more detailed explanation about how to
read the Young diagram and relate it to conformal group representations. For now note that
whilst all parameters are integers in the free theory, in an interacting quantum theory ∆ alone
can become non integer, with all other quantum numbers remaining integer. In particular,
this means we can allow for anomalous dimensions by deforming the row lengths λi → λi + τ
for i = 1, ..,m, arbitrary real τ and/ or λ′j → λ′j + τ ′ for j = 1, .., n, arbitrary real τ ′ as
long as we also have γ → γ + 2τ ′ to ensure that b = γ − 2λ′1 remains integer. Furthermore
deforming thus, with τ = −θτ ′ leaves the representation unchanged. We will return to this
‘shift symmetry’.

The conformal structure of the theory and the use (twice) of the OPE, imply that we can
decompose a four-point function as follows:

〈Op1(X1)Op2(X2)Op3(X3)Op4(X4)〉 =

g
p1+p2

2
12 g

p3+p4
2

34

(
g14
g24

)p12
2
(
g14
g13

)p43
2 ∑

γ,λ

(
∑

O

CO
p1p2CO p2p3

)
B(m,n)

γ,λ (Xi; θ, p12, p43) (2.5)

5We will focus initially on the case where all parameters are integers as for example occurs in a (generalised)
free conformal field theory. However the analytic continuation to non integer values (for example to include
anomalous dimensions) is considered in detail in section 6.
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where Bγ,λ(Xi) is called the (super)conformal block.

The (super)conformal block Bγ,λ is the main subject of this paper. It represents the
contribution of an exchanged primary operator Oγ,λ with its tail of descendants, which is
common to the OPE of Op1Op2 and Op3Op4 .Thus the block depends on the particular theory
of interest (m,n; θ), as well as the external operators through the quantities

p12 ≡ p1−p2 ; p43 ≡ p4−p3. (2.6)

Furthermore, because of conformal invariance, Bγ,λ(Xi) only depends on cross ratios built
out of the four coordinates Xi=1,2,3,4.

The Xi=1,2,3,4 are square (super) matrices, and the cross ratios are the m+n independent
eigenvalues of the (super)-matrix Z = X12X

−1
24 X43X

−1
31 where Xij = Xi−Xj . These m+n

independent cross-ratios zi split into two types, corresponding to whether they arise from the
non-compact conformal group or the compact internal group, which we denote by xi and yj
respectively, so

Bγ,λ(Xi) = Bγ,λ(z)

z = (z1, . . . , zm|zm+1, . . . , zm+n), zi = xi, zj+m = yj . (2.7)

The details in all cases of physical interest will be given in section 3. For now note that

sdet(Z)# =
g24g13
g12g34

=

∏m
i=1 x

θ
i∏n

j=1 yj
sdet(1− Z)# =

g14g23
g12g34

=

∏m
i=1(1− xi)

θ

∏n
j=1(1− yj)

, (2.8)

where # is the power in (2.3).

We can characterise Bγ,λ(z) group theoretically, as eigenfunctions of the quadratic Casimir
acting at points 1 and 2 on the correlator. Pulling the Casimir through the prefactor of (2.5)
to act on the block itself, it becomes a differential operator in z. This differential operator,
denoted hereafter by C, has been computed explicitly in a number of cases6 and we find,
quite remarkably, that in all these cases it is equivalent to the BCm|n operator of the type of
Calogero-Moser-Sutherland. We give the details of this identification in appendix B. We are
led to conjecture that such an identification is true for all cases. Under this assumption we
define superconformal blocks group theoretically through the eigenvalue equation:

C(θ,− 1
2
p12,− 1

2
p43,0)Bγ,λ(z) = E(m,n;θ)

γ,λ Bγ,λ(z) . (2.9)

The Casimir C(θ,a,b,c) is a second order differential operator in the variables z given explicitly
in (5.5). It depends on θ, a, b, c and implicitly on m,n. The eigenvalue is

E(m,n;θ)
γ,λ = h(θ)λ + θγ|λ|+

[
γθ|mn|+ h

(θ)
[em] − θh

( 1
θ
)

[sn]

]
(2.10)

6The cases are: (m,n) = (2, 0) and (0, 2) in [11]. Then, θ = 1, m,n ∈ Z+, in [9], by using a supermatrix
formalism, and partially in the case of θ = 2, m,n ∈ Z+ in [39]
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where e = + θγ
2 , s = −γ

2 , and

h(θ)λ =
∑

i

λi(λi−2θ(i−1)−1) ; |λ| =
∑

i

λi (2.11)

with λ = [λ1, . . .] denoting the row lengths of the Young diagram, and

h
(θ)
[em] = mθ γ2 ((

γ
2 + 1−m)θ − 1) ; θh

( 1
θ
)

[sn] = nγ
2 (θ(

γ
2 + 1)− 1 + n) (2.12)

In particular, [em] and [sn] are the diagrams with m rows of ‘length’ + θγ
2 , and n columns of

‘height’ −γ
2 .

What is important about (2.10) is that h(θ)λ + θγ|λ| does not depend on m,n but only de-
pends on the Young diagram λ, whereas the other terms clearly have explicitm,n dependence.
We will revisit this key point shortly.

2.2 Solving the Casimir equation

From OPE considerations, it has been shown in a number of cases7 that in the limit z → 0

Bγ,λ(z) =

(∏
i x

θ
i∏

j yj

)γ
2

×
(
Pλ(z; θ) + . . .

)
(2.13)

where Pλ is the super Jack polynomial of Young diagram λ. (Jack and super Jack polynomials
are reviewed in appendix C). The physics behind (2.13) is quite simple to understand: When
there is a group theory interpretation, the prefactor corresponds to the limit zi → 0 of a four-
point propagator structure in which an operator of twist θγ is the first operator exchanged,
and Pλ accounts for the corresponding superprimary operator in Bγ,λ(z).

The eigenvalue equation (2.9), together with the asymptotics (2.13), gives a unique defi-
nition of the superblocks Bγ,λ(z).

For θ = 1, 2 the whole superblock is known to be representable as a series over super Jack
polynomials [7–9]. Thus for arbitrary θ we will seek a representation of Bγ,λ(z) as such a
series, explicitly as,

Bγ,λ(z) =

(∏
i x

θ
i∏

j yj

)γ
2

Fγ,λ(z) ; Fγ,λ(z; θ, p12, p43) =
∑

µ⊇λ

(Tγ;θ,p12,p43)
µ
λ Pµ(z) , (2.14)

where the sum is over all Young diagrams µ which contain λ, i.e. λ ⊆ µ. The expansion
coefficients (Tγ)

µ
λ will be sometimes referred to as the Jack→Block matrix. These coefficients

depend on (θ, p12, p43) as well as γ and the two Young tableaux λ, µ. In principle they should
depend also on (m,n), but as we will see quite remarkably they in fact don’t! The super
Jacks themselves vanish if the Young diagram is not of SL(m|n) shape (ie if the mth row

7For a direct derivation of this limit from the OPE see the discussion around eq. (20) in [9] for the θ = 1
case and the discussion around (33)-(35) of [8] for θ = 2. This limit is also implicit in earlier work for θ = 1 [6]
as well as in the bosonic case [11] for any θ.
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is bigger than n, λm+1 > n). Furthermore we will see that the coefficients Tγ vanish if the
height of the Young digram is larger than β. So the non-vanishing contributions to the sum
are only from Young diagrams µ which fit inside the red area of (2.4).

From the defining Casimir for the blocks (2.9) we obtain a differential equation for Fγ,λ(z)
by conjugating the original Casimir in (2.9) by the γ-prefactor in (2.14). It turns out that the
result can be written in terms of a shifted version of the same differential operator C, with a
modified eigenvalue:

C(θ,α,β,γ)Fγ,λ(z) = (h(θ)λ + γ|λ|)Fγ,λ(z) , (2.15)

where

α ≡ max
(
1
2 (γ−p12), 12(γ−p43)

)
, β ≡ min

(
1
2(γ−p12), 12(γ−p43)

)
. (2.16)

A remarkable outcome of conjugating the Casimir is that the eigenvalue of Fγ,λ does not
depend explicitly on (m,n), since the m,n dependent term of the original eigenvalue (2.10),
the one in [. . .], is now missing. In other words, the eigenvalue of Fγ,λ depends only on λ and
γ. This fact underlies a property known as ‘stability’ in the maths literature, which means
that Fγ,λ depends only on the number of non-vanishing variables of each type. So the Fγ,λ

of type (m + 1, n) in which one of the x’s is set to zero reduces to the Fγ,λ of type (m,n).
Similarly if one of the ys is set to zero. In formulae

Fγ,λ(x1, . . . xm, 0|y1, . . . yn) = Fγ,λ(x1, . . . xm|y1, . . . yn, 0) = Fγ,λ(x1, . . . xm|y1, . . . yn) .
(2.17)

Stability is clear when there is a (super) matrix interpretation for the superconformal block
(as for θ = 1

2 , 1, 2), but the generalisation to arbitrary θ is non-trivial.

The next observation is that since super Jack polynomials are also stable,8 the expansion
coefficients (Tγ)

µ
λ must be independent of (m,n)! Indeed this was the main insight of [9],

which reduces the study of (Tγ)
µ
λ for m,n superconformal blocks to the study of the simpler

generalised bosonic conformal blocks.

The representation of the super blocks Bγ,λ(z) as a sum over super Jack polynomials,
(2.14), is not accidental. In fact, building on the observation that the Casimir is a differential
operator for the BCm,n root system, as mentioned above, we are led to consider writing it in
terms of operators H and

∑
i zi∂i, the Am−1,n−1 differential operators for which super Jack

polynomials are eigenfunctions.9 The corresponding decomposition takes the form,

C(θ,a,b,c) = H(θ) + θc

m+n∑

i=1

zi∂i

− θ(a+ b)
m+n∑

i=1

z2i ∂i − 1
2

[
H(θ),

m+n∑

i=1

z2i ∂i

]
− θ2ab

m+n∑

i=1

zi(−θ)−πi . (2.18)

The operators on the first line thus map Jack polynomials to themselves whereas those on
the second line take a Jack polynomial to another Jack polynomial with an additional box in

8Notice also that the eigenvalue for Fγ,λ is the same as for Pλ, since HPλ = hλPλ and
∑

i zi∂iPλ = |λ|Pλ.
9More precisely, H is the supersymmetric version of the Calogero-Moser-Sutherland (CMS) Hamiltonian

found in [34,35]. A- and BC-type differential operators are reviewed in appendix B.
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its Young diagram and will thus be interpreted as one-box raising operators. The action of
the Casimir on the sum of super Jack polynomials, decomposed as in (2.18), thus turns the
differential equation (2.15) into a recursion relation on the coefficients (Tγ)

µ
λ. A particularly

convenient representation of this recursion is

(Tγ)
µ
λ =

∑
i=1 (µi−1−θ(i−1−α)) (µi−1−θ(i−1−β)) f (i)µ−�i

(Tγ)
µ−�i
λ(

hµ−hλ+θγ (|µ|−|λ|)
) . (2.19)

Here µ−�i represents a Young diagram obtained by removing the last box at row i from
µ, when allowed, and f is a simple function given in (5.30). Let us emphasise that the
recursion (2.19) is straightforward to implement on a computer, and very efficient up to high
order.

The recursion (2.19) actually depends only on objects which can be defined combinato-
rially, and admits different equivalent representations, depending on whether we read the
Young diagram just along the rows, or the columns, or we mix rows and columns as it is more
appropriate in the supersymmetric theory. By the (m,n) independence, the value of (Tγ)

µ
λ

does not depend on the chosen representation. This is particularly useful when construct-
ing superconformal blocks for short (protected) representations, a case which is notoriously
difficult to study with other methods.

As mentioned the above discussion is true for (generalised) free theory blocks where all
quantum numbers are integers. In an interacting CFT however, the dilation weight can
become non integer. Further it is interesting to consider analytic continuations of other
quantum numbers such as spin. We then study possible analytic continuations of the recursion
in the variables that describe the Young diagrams. We do so by promoting the external λ
to complex values, and taking µ = λ + ~n with ~n ∈ Z+. It turns out that each one of the
following representations of the recursion, either row type, column type, or supersymmetric
one, now gives a distinct analytic continuation (thus analytic continuation breaks the m,n
independence), which however coincide with the others when λ reduces to a valid Young
diagram.

For long (non protected) representations we show in section 6 that a suitable (m,n)
analytic continuation of (Tγ)

µ
λ exists, such that the following shift,

λi → λi − θτ ′

µi → µi − θτ ′

i = 1, . . . m

;

λ′j → λ′j + τ ′

µ′j → µ′j + τ ′

j = 1, . . . n

; γ → γ + 2τ ′ . (2.20)

is a symmetry of the solution. For integer values this shift symmetry corresponds to the well
understood equivalence of different Young diagrams describing SL(m|n) reps for θ = 1 and
similarly for the other group theoretic cases (e.g. when n = 0 you can see it as the fact that
full m columns correspond to the trivial SL(m) rep and thus can be deleted). It can also be
seen directly from the relation between the Young diagram and Dynkin labels (see (3.16)) that
there is a redundancy in the Young diagram description of representations which is precisely
this shift.
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2.3 Superblocks as dual super Jacobi functions

In this section we start from scratch and motivate, from a purely mathematical point of view,
the introduction of a certain supersymmetric generalisation of BC Jacobi polynomials [31,41].
More precisely, we will define a family of polynomials that we call dual Jacobi polynomials.
These are closely related to the BC Jacobi polynomials of Koornwinder [41], but differently
from those, they are stable, and thus allow a straightforward supersymmetric generalisation.
The supersymmetric generalisation of a dual Jacobi polynomial is however not polynomial, in
general. We will denote them as dual super Jacobi functions. It will turn out that superblocks
are equivalent to these dual super Jacobi functions.

This section can be read largely independently of the previous sections (up to the point
where we make the identification with blocks).

Dual Jacobi polynomials

Consider the following operation: take a BCn Jacobi polynomial Jλ() in inverse variables
y−1
i , and multiply by a sufficiently high power of (y1...yn)

β for β ∈ N in order to ensure the
result is polynomial again in the yi. We will call this a dual Jacobi polynomial.

Note that when the above operation is performed on a Jack polynomial the result is again
a Jack polynomial of the complementary Young diagram βn\λ:

(y1 . . . yn)
βPλ(

1
y1
, . . . , 1

yn
) = Pβn\λ(y1, . . . , yn) , (2.21)

where the complement of λ in βn, i.e. βn\λ, is defined as the Young diagram with row lengths

n

β

λ

βn\λ
(βn\λ)j = β − (λ)n+1−j ;

(2.22)

The integer β should be large enough to take the complement, i.e. β ≥ λ1.

The aforementioned operation maps a BCn Jacobi polynomial, J(y; θ, p−, p+) to a different
polynomial, which we thus define as the dual Jacobi polynomial,

J̃β,λ(y1, . . . , yn) ≡ (y1 . . . yn)
βJβn\λ(

1
y1
, . . . , 1

yn
) . (2.23)

Crucially, dual Jacobi polynomials turn out to be stable (meaning that switching off one of
the variables reduces the polynomial to the polynomial with one variable fewer)

J̃λ(y1, .., yn−1, 0) = J̃λ(y1, .., yn−1) . (2.24)

12



This is the same stability property possessed by Jack polynomials, Pλ(y, 0) = Pλ(y), but
which is absent for the original Jacobi polynomials themselves: Jλ(y, 0) 6= Jλ(y).

This stability property is key to a direct supersymmetric uplift of the dual Jacobi poly-
nomials to BCn|m functions. As we will see, this uplift lands precisely on our superconformal
blocks!

The BCn Jacobi polynomial has as an explicit expansion in Jack polynomials (just like
the blocks)10

Jλ(y; θ, p
−, p+) =

∑

µ⊆λ

(S
(n)
θ,p−,p+

)µλ Pµ(y; θ) . (2.25)

The coefficients, (S(n))µλ are not stable, meaning they have explicit n dependence and don’t
just depend on the Young diagrams λ, µ. Indeed, this is what prevents stability of the Jacobi
polynomial J . Let us note that the (S(n))µλ can be computed quite explicitly, either through
a recursion, investigated by Macdonald [28], or independently by using a binomial formula
due to Okounkov [33,40,41]. In the latter case, S(n), is written in terms of BCn interpolation
polynomials (IPs). We will discuss this in much more detail in section 7.

We can understand the stability of the dual Jacobi polynomials by considering their defin-
ing differential equation. The original eigenvalue equation for the Jacobi polynomials, trans-
lated to the dual Jacobi polynomials, can be written in terms of the Casimir (2.18) as

C( 1
θ
,a,b,c)(|y) J̃β,λ(y1, . . . yn; θ, p−, p+) = e

(θ)
β,λ J̃β,λ(y1, . . . yn; θ, p

−, p+) (2.26)

a = β ; b = β + p− ; c = 2β + p− + p+ .

where the eigenvalue is

e
(θ)
β,λ = −1

θh
(θ)
λ + 1

θ (2β + p− + p+)|λ| (2.27)

Both h(θ)λ and |λ|, given already in (2.11), are functions of the Young diagram λ only, (unlike
the corresponding eigenvalue for the Jacobi polynomial which has explicit n dependence) and
stability (2.24) follows. In our conventions, the normalisation of J̃ will be chosen so that the
leading term of J̃β,λ is Pλ.

Dual Jacobi polynomials depend on θ, p±, as the Jacobi polynomials do, and in addition
depend on β, which sets the boundary for the Young diagram in (2.22). From the definition
of J̃β,λ, in terms of the Jacobi polynomials (2.23), the expansion of Jacobi polynomials (2.25),
and the relation (2.21), we obtain the following expansion of the dual Jacobi polynomials in
Jack polynomials with coefficients given by binomial coefficients, S, in complemented Young
diagrams

J̃β,λ(y1, . . . , yn) =
∑

µ:λ⊆µ

(
S̃β
)µ
λ
Pµ(y1, . . . , yn) ;

(
S̃β
)µ
λ
=
(
S(n)

)βn\µ
βn\λ . (2.28)

Note that if the Young diagram µ is wider than β (ie µ1 > β) the coefficient S̃ will vanish

10We have momentarily suppressed the parameters in Jλ(; θ, p
−, p+), since they do not play an immediate

role. Note that Pµ(y1, . . . , yn) here is P (n,0)
µ (y1, . . . , yn|; θ) in supersymmetric notation, not to be confused

with the P (0,n)
µ (|y1, . . . , yn; θ) polynomials. See appendix C and C.5 for further details.
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and so the sum is finite, µ ⊆ βn giving a polynomial.

Stability of dual Jacobi polynomials implies that the coefficients (S̃β)
µ
λ are independent

of n. Looking at the way this is related to S(n) (2.28), we see that even though S(n) is n
dependent, remarkably it becomes independent of n when specified by complemented Young
diagrams as is the case for (S̃β)

µ
λ.

Dual super Jacobi functions

The supersymmetric extension of the dual Jacobi polynomial which we call dual super Jacobi

functions is now immediate from stability: replace the expansion over Jack polynomials with
super Jack polynomials, keeping the same expansion coefficients S̃. This operation defines
the n|m dual super Jacobi function

J̃β,λ(y|x) =
∑

µ⊇λ

(S̃β)
µ
λ Pµ(y|x) . (2.29)

When m > 0, the sum is over all Young diagrams µ such that λ ⊆ µ. As before, if µ is wider
than βn, the coefficient S̃ will vanish and so µ1 ≤ β. But now µ can have arbitrary height,
unlike in the non supersymmetric case (2.28) where it was naturally cut-off by n since the
Jack polynomials would vanish for µ′1 > n. This means that the sum is infinite in the vertical
Young diagram direction, and this is why we call J̃β,λ a function rather than a polynomial.

As a result, the dual Jacobi functions J̃β,λ are explicitly different from the super Jacobi
polynomials introduced in [38]. The latter also provide a supersymmetric generalisations of
Jacobi polynomials but the generalisation is polynomial in both x and y variables and not
stable. We will have something to say about these other supersymmetric Jacobi polynomials
in section 7.

Blocks as dual super Jacobi functions

The claim is then that the dual super Jacobi functions are precisely the superconformal blocks
up to changes of conventions. Explicitly the relation is

Fγ,λ(x|y; θ, p12, p43) = (−1)|λ
′|Πλ′(1θ ) J̃β,λ′(y|x; 1θ , p−, p+) (2.30)

where11

γ = 2β + p+ + p− ; p± = 1
2 |p12 ± p43| (2.31)

then Π(θ) is a numerical factor, given explicitly later on in (7.10), and p43 and p12 can be
solved as linear combinations of p+ and p−. Specialising to the internal case (0, n) we have a
direct relation between internal blocks and Jacobi polynomials

n∏

i=1

y
1
2
(p++p−)

i ×Bγ=2β+p++p−, λ(y; θ, p12, p43) = (−)|λ|Πλ′(1θ )× Jβn−λ′

(
1
y
; 1θ , p

−, p+
)

(2.32)

11In other words, β = min
(

1
2
(γ−p12),

1
2
(γ−p43)

)

.
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where the original Jacobi polynomial J appears on the RHS with complemented, transposed
Young diagram.

Equation (2.32), is an equation purely between symmetric polynomials, and provides the
cleanest way to prove the more general supersymmetric relation (2.30). Indeed it was the
discovery of this relation which lead us to dual Jacobi polynomials and their supersymmetric
generalisation. This polynomial identification (2.32) can be proved by simply showing they
obey the same Casimir equation. Then the general supersymmetric relation (2.30) follows
directly because both sides can be uplifted supersymmetrically in the same way, i.e. by ex-
panding in Jack polynomials, and uplifting the bosonic polynomials to super Jack polynomials
thanks to stability.

The relation between dual super Jacobi functions and superconformal blocks gives a way of
seeing why there must be an infinite expansion in the x variable, at least in cases where there
is a supergroup interpretation. This infinite sum is a consequence of the non compactness of
the conformal subgroup.

To summarise this subsection then, we have a link between internal blocks and Jacobi
polynomials, both of which, through stability, naturally uplift to superblocks and dual super
Jacobi functions respectively:

(dual) BCn Jacobi polynomial ∼ internal (0, n) block

↓ (supersymmetric uplift) ↓

dual BCn|m super Jacobi function ∼ (m,n) superblock

2.4 Binomial coefficient and Cauchy identities

The previous subsection outlined the relation between Jacobi polynomials and blocks. In this
section we consider some consequences of this relation, summarising the results of section 7.

After computing the Jack→Block matrix (Tγ)
µ
λ in many specific cases by solving the

recursion (2.19) we find that, for generic θ, it is a rational functional with an increasingly
complicated numerator as a function of γ. To understand this non-trial dependence on γ we
use the relation to Jacobi polynomials of the m = 0 theory described in the previous section.

The relation between blocks and dual Jacobis (2.30) leads to a relation between the coef-
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ficients, S̃ and Tγ in their respective Jack expansions (2.14),(2.28), explicitly:12

(Tγ;θ,p12,p43)
µ
λ = (S̃β; 1

θ
,p−,p+)

µ′

λ′ ×
(−1)|µ|Πµ(θ)

(−1)|λ|Πλ(θ)
. (2.34)

Hence from (2.28) the coefficients Tγ are related to the binomial coefficients S (2.25)

(Tγ;θ,p12,p43)
µ
λ =

(−)|µ|Πµ(θ)

(−)|λ|Πλ(θ)
× (S

(n)
1
θ
; p−,p+

)
βn\µ′

βn\λ′ , (2.35)

where β, p± are read off γ, p12, p43 through (2.31).

Now the BCn Jacobi polynomials are very well studied objects. In particular, the co-
efficients in the expansion over Jack polynomials can be computed by Okounkov binomial

formula. Okounkov’s binomial formula for S(n) (see [32, 33, 40, 41]) is computed via objects
called BC interpolation polynomials (IPs) evaluated on partitions. The combinatorics is
thus completely different from the combinatorics induced by the recursion and so the above
rewriting of Tγ (2.35) is quite non trivial.

In fact, a very non trivial feature of this relation (2.35) is the way the RHS depends on
γ. In the binomial coefficient we have γ = 2β + p+ + p− where β is an integer specifying the
complemented Young diagram. On the other hand in the recursion, γ is a free parameter, and
the solution of the recursion is a rational function of γ and thus straightforwardly analytically
continued. This should also be the case for the binomial coefficient then. In the process of
understanding how this works we find that the complicated γ dependence of (Tγ)

µ
λ is precisely

captured by the interpolation polynomial. We also find that the inverse of the Jack→Block
matrix (i.e. the Block→Jack matrix) T−1

γ , has an even more direct characterisation in terms
of the binomial coefficient.

Note that since (Tγ)
µ
λ does not depend on (m,n), for integer quantum numbers, the above

characterisation via the binomial coefficient, through the (0, n) case, can be used to compute
any superconformal block for arbitrary (m,n). However, from this insight we understand that
the binomial coefficient can also be upgraded to a super binomial coefficient which uses the
super interpolation polynomials introduced by Sergeev and Veselov [38]. We will investigate
this whole story in detail in section 7, and then in appendix E we collect a number of explicit
solutions for Tγ found by solving the recursion, and we show explicitly how the two sides of
(2.35) match.

We will conclude the main body of the paper by giving two nice applications of the relation
between blocks and Jacobi polynomials, together with stability. Firstly, in section 8 we see
how upon re-interpreting a Cauchy identity for Jacobi polynomials, given by Mimachi in [42],
we can obtain (essentially with no effort) a formula for the conformal partial wave expansion
of any generalised free theory within the class analysed here, i.e. whose supergroup descrip-
tion fits (m,n, θ) for specific values. In the process of investigating this we discover a new

12To derive this relation one also needs to use the fact that super Jack polynomials are well behaved under
transposition

Pλ′(y|x; 1
θ
) = (−1)|λ|Πλ(θ)Pλ(x|y; θ) (2.33)

For more details see the discussion around (C.47).
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non-trivial double uplift of Mimachi’s Cauchy identity to a doubly supersymmetric Cauchy
identity involving both dual super Jacobi functions and Sergeev and Veselov’s super Jacobi
polynomials. Secondly in section 5.1 we use results from the study of BC hypergeometric
functions in the special θ = 1 case of Shimeno [43] to give simple explicit formulae for all
higher order super Casimirs.

2.5 Superblock to block decomposition: a conjecture

Our formalism for constructing superconformal blocks might be classified as top-down, because
we start from a supergroup perspective in which superconformal symmetry is built-in, and
we derive its consequences for the superconformal blocks. Instead, a bottom-up approach
constructs superconformal blocks starting from an ansatz made of a sum of products of
conformal and internal blocks, and afterwards imposes the constraints of superconformal
symmetry, i.e. the superconformal Ward identity and the Casimir equation [44–51].

The top-down and the bottom-up approaches should obviously give the same final result.
However, the two paths are quite different, and the crucial point is that decomposing a
superconformal blocks, say for example on a basis of conformal and internal blocks, is quite
hard. In fact, we will now show that all the nice properties about stability and the Jack→Block
matrix, explained in the previous sections, become hidden in the details.

From the top-down approach we are able to provide an implicit formula for decomposing
a (m,n) superconformal in subgroups. Mathematically, this formula is the equivalent of
decomposing a super Jack polynomial (m+m′, n+n′) into sum of products of two super Jack
polynomials for (m,n) and (m′, n′). This decomposition is achieved by using the structure
constants for super Jack polynomials (S)µνλ ,

J (m+m′,n+n′)
λ =

∑

µ,ν

(S)µνλ J (m,n)
µ J (m′,n′)

ν (2.36)

which by stability are the same as those for bosonic Jack polynomials. For θ = 1 these are the
Littlewood-Richardson coefficients. Combining (2.36) with the expansion of superconformal
blocks in super Jack polynomials we arrive at

F (m+m′,n+n′)
γ,λ =

∑

µ,ν

F (m,n)
γ,µ (Sγ)

µν
λ F (m′,n′)

γ,ν , (2.37)

where the block structure constants Sγ depend on θ, p12, p43 and are related to the Jack
structure constants via the matrices Tγ and T−1

γ ,

(Sγ)
µν
λ =

∑

λ̃⊇λ
µ̃⊆µ
ν̃⊆ν

S µ̃ν̃
λ̃ (Tγ)

λ̃
λ(T

−1
γ )

µ
µ̃(T

−1
γ )

ν
ν̃ . (2.38)

Let us point out that [52–54] obtained a recursive formula for the Jack structure constants
S, but we are not aware of a more explicit formula, and to the best of our knowledge there
is no closed formula expression for it, and therefore for Sγ . The bottom-up construction of
superblocks in terms of conformal and internal blocks mentioned above is a special case of
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the more general decomposition (2.37) when m′ = n = 0, and the ignorance about S is what
makes it complicated.

Not only is S not known explicitly, but a very non-obvious fact about (2.38) is the fol-
lowing: the Jack→Block matrix and its inverse are infinite size triangular matrices, however
(Sγ)

µν
λ should truncate, because, for example, superconformal group theory for specific values

of θ = 1
2 , 1, 2 tells us that (2.37) is a finite sum. Consider again the case of conformal block

× internal block decomposition, m′ = n = 0. Whilst a truncation in the number of rows of
ν is expected, since Fγ,λ is polynomial in the y, the truncation over finitely many conformal
block Fγ,µ is not at all manifest.

We conjecture that the subgroup decomposition in (2.37) is a finite sum. In section
9 we discuss in more detail various aspects of this conjecture, relating it to a more specific
conjecture for a general decomposition and providing a number of examples. We have checked
the conjecture with computer algebra, in many cases, and find that it holds for generic θ,
even beyond the cases θ = 1

2 , 1, 2 related to superconformal groups. Perhaps the connection
with the binomial coefficient will provide a simple mechanism to prove it in the future.

That concludes our extended outline of the paper. The methods employed throughout the
paper strongly rely on the use of Young diagrams and symmetric polynomials. To help the
reader familiarise themself with the relevant mathematics, we have summarised in appendix
C a number of results on the theory of symmetric polynomials.

3 Supergroups, physical theories, and beyond

In this section we detail the theories and the external operators for which we are computing
superconformal blocks, as a function of (m,n; θ). We also explain the field theory interpreta-
tion of the labels assigned to the superconformal block Bγ,λ, namely γ and λ.

A unified description of all relevant theories can be achieved by using the formalism
based on harmonic/analytic superspace, and building on previous literature. In particular,
4d superconformal theories with θ = 1 discussed in [1–3, 6–10, 55, 56], 6d superconformal
field theories with θ = 2 discussed in [5, 8, 57], and 3d superconformal field theories with
θ = 1

2 discussed in some detail in [4,57]. This is explained in section 3.2, with supplementary
material given in appendix A.

Let us emphasise that we will be able to construct Bγ,λ for any (m,n; θ) (for m,n positive
integer), but only some values of (m,n; θ) appear to have a group theoretic meaning (and
even fewer will correspond to a physical CFT). The spacetime dimension d and the parameter
θ are identified as θ = d−2

2 , apart for special cases, that we will explicitly mention. A useful
summary of the different cases is given here below.

3.1 List of theories and their superconformal blocks

The main examples to have in mind are three complete families of supergroups with θ = 1, 2, 12
and arbitrary m,n. These include the cases of four-point functions of half-BPS operators in
4d,6d,3d superconformal field theories respectively:
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• SU(m,m|2n): (m,n) arbitrary and θ = 1. For (m,n) = (2, 1) and (2, 2) we compute
N = 2, 4 superblocks, respectively, in four-dimensions. For (m,n) = (1, 1) we compute
N = 4 superblocks in one-dimension.

• OSp(4m∗|2n): (m,n) arbitrary and θ = 2. For m = 2 we compute N = (n, 0)
superblocks in six-dimensions.

• OSp(4n|2m): (m,n) arbitrary and θ = 1
2 . For m = 2 we compute N = 4n superblocks

in three-dimensions.

Alternatively, fixing (m,n) = (2, 0) or (0, 2) with arbitrary (half-integer) θ gives blocks in
purely bosonic theories

• SO(2, 2θ + 2): (m,n) = (2, 0) with arbitrary θ: We compute standard conformal blocks
for scalar correlators in dimensions d = 2θ + 2.

• SO(2/θ + 4): (m,n) = (0, 2) with arbitrary θ: We compute “compact blocks”, i.e.
blocks where the external operators are finite dimensional representations. These are the
dual Jacobi polynomials.

Note the apparent duality

m↔ n ; θ ↔ 1

θ
. (3.1)

It means that whenever there is a group theory interpretation, there should be a corresponding
interpretation for the dual case, although this exchanges non-compact groups with compact
groups.

There are other theories, in addition to the ones listed above, which we would like to point
out. We have not spelled out the details and therefore the discussion here will be in a sense
speculative. Nevertheless we will provide evidence that these other cases appear as special
cases in our formalism:13

• m = 1, n = 1, and arbitrary θ. There is a one-parameter family of one-dimensional
N = 4 superconformal groups called D(2, 1;α) [58]. For special values of α, D(2, 1;α)
is isomorphic (at the level of the algebra at least) to the following

– OSp(4∗|2), for α = −2, 1

– SU(1, 1|2) × SU(2), for α = −1, 0,

– OSp(4|2) for α = −1
2

Noting the relation with the supergroups discussed above for general m,n, we relate
θ = −α (or θ = α + 1) and speculate that for m = 1, n = 1, arbitrary θ we obtain
superblocks for D(2, 1;α) superconformal theories.

13We thank Tadashi Okazaki for pointing out D(2, 1;α) in the list.
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• m = 1, n = 2, for various θ. There are four different possibilities for a one-dimensional
N = 8 CFT [58]:

OSp(8|2), SU(1, 1|4), Osp(4∗|4) and F (4) . (3.2)

The first three correspond to supergroup theories discussed above for θ = 1
2 , 1, 2 and

m = 1, n = 2. To understand F (4) note first that F (4) has R-symmetry SO(7). The
blocks for this group belong to the family of SO(2/θ + 4) bosonic blocks mentioned
above, and would correspond to m = 0, n = 2, θ = 2

3 . Thus we conjecture that the F (4)
supergroup corresponds to m = 1, n = 2, θ = 2

3 .

• Five-dimensional blocks. There is also an F (4) superconformal group in five dimensions,
and since the 5d bosonic blocks correspond to m = 2, n = 0 and θ = 3

2 , we conjecture
that the 5d superblocks correspond to m = 2, n = 1 and θ = 3

2 . Note that, nicely, upon
considering the duality m↔ n and θ ↔ 1

θ , we obtain the other F (4) group in (3.2).

• Two-dimensional blocks. In this case holomorphic/anti-holomorphic factorisation sug-
gests that superconformal blocks are obtained from a basis constructed by first taking
products of one-dimensional blocks, i.e. the ones that appeared at the previous points,
and then by rearranging the product basis according to the relevant representations.
An example of this has been worked out in [59].

3.2 Coset space formalism

In the previous section we introduced the groups corresponding to superconformal blocks with
various values of (m,n; θ). In order to make our discussion self-contained we will now specify
the space on which the superconformal reps lie, both the external and the exchanged states
in the four-point function.

The external states we consider are scalar (super)fields (line bundles) on a certain coset
space of the group. For example, it is well known that complexified Minkowski space in
d = 2θ + 2 dimensions, Md, can be viewed as a coset of the complexified conformal group
SO(d+ 2;C) divided by the subgroup consisting of Lorentz transformations, dilatations and
special conformal transformations. This corresponds to the case (m,n) = (2, 0) with arbitrary
half integer θ. More generally, the coset space for arbitrary (m,n; θ) will always be a special
type of (super) flag manifold, which can be specified by a (super) Dynkin diagram with a
single marked node, also known as generalised (super) Grassmannian spaces.

A beautiful classification and description of flag manifolds, together with representations
on them, can be found in [60]. A flag manifold and its field content, i.e. the irreducible
representations of the group, can be read off from a marked Dynkin diagram and its associ-
ated Dynkin labels [60]. From a root system and a Dynkin diagram one can construct the
corresponding Lie algebra. Similarly, from a root system and a marked Dynkin diagram one
constructs a parabolic subalgebra by simply omitting the positive simple roots corresponding
to the marked nodes and retaining all the negative roots. The coset space is then the group
G divided by this parabolic subgroup H. Irreducible representations are defined by Dynkin
labels giving the transformation properties of the highest weight state.

20



The generalisation of Dynkin diagrams to the supersymmetric case is well known (we rec-
ommend [61] for a nice introduction) and the generalisation of the flag manifold techniques
of [60] to supergroups proceeds fairly straightforwardly and has been considered in the θ = 1, 2
cases explicitly in [6–8, 56]. We should point out that, compared to the bosonic cases, when
dealing with supergroups there is no longer a unique (super) Dynkin diagram.14 A super
Dynkin diagram will have even (black) and odd (white) nodes, and then the coset space of
this superspace will be indicated by marked nodes (represented by crosses). Remarkably all
unitary superconformal representations of the superconformal group are obtained as uncon-

strained analytic superfields on the the coset superspaces we use here. This is proven for
4d superconformal theories θ = 1,m = 2 in [7] and is conjectured in other supersymmetric
cases.15

Various details about the coset construction for the specific cases listed in section 3.1 are
given in appendix A. We repeat the main points here.

In the following will consider the complexified, e.g. SU(m,m|2n) C−→ SL(2m|2n;C), of
the superconformal groups. One can return to the real case by choosing the appropriate real
coordinates at the end. The marked super Dynkin diagrams specifying the relevant coset
space for the three families θ = 1, 2, 12 are16

m− 1 n− 1 n− 1 m− 1

SL(2m|2n)

2m− 1 n− 1

OSp(4m|2n)

m− 1 2n− 2

OSp(4n|2m)

(3.3)

We consider a matrix representation for the (complexified) (super)group such that all positive
roots correspond to upper triangular matrices. Crucially, in all cases the basis can be chosen

14An easy way to understand the existence of inequivalent Dynkin diagrams for the case of SL(M |N) is to
notice that a change of basis (in particular swapping even and odd basis elements) can not always be achieved
via an SL(M |N) transformation (unlike in the bosonic case). For each inequivalent change of basis there is
a different Dynkin diagram. In the case of interest here, for θ = 1 the standard basis for the complexified
superconformal group SL(2m|2n) would give a Dynkin diagram with 2m − 1 even nodes then one odd node
then 2n− 1 even nodes. If instead we choose the basis (m|2n|m) we end up with the diagram (3.3a) involving
two odd nodes.

15These results suggest the existence of a supersymmetric generalisation of the Bott-Borel-Weil theorem,
which would be interesting to explore further.

16Other cases will be discussed in appendix A.
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such that (super)coset space H\G has the following block 2× 2 structure

G =

{(
âAB b̂AB′

ĉA′B d̂ B′

A′

)}
H =

{(
aAB 0

cA′B d B′

A′

)}
. (3.4)

where â, b̂, ĉ, d̂, a, c, d are square (super-)matrices of equal dimensions (in general they will
have some constraints). For θ = 1 they are (m|n) × (m|n) matrices; for θ = 2 they are
(2m|n)× (2m|n) matrices; for θ = 1

2 they are (m|2n)× (m|2n) matrices.17 For example, the
special case (m,n; θ) = (2, 0; 1) corresponds to 4d Minkowski space viewed as the coset space
of the complexified conformal group SL(4) modded out by dilatations, Lorentz and special
conformal transformations. Here the 2× 2 matrices a, b give Lorentz and dilatations whereas
c represents special conformal transformations.

Fields living on the coset space transform non-trivially under the block diagonal part
of the parabolic subgroup H (known as the Levi subgroup, L). This subgroup consists of
the matrices a, d (e.g. in the Minkowski space example these correspond to Lorentz and
dilatations under which conformal operators transform). The Levi subgroup is read off from
the same Dynkin diagrams (3.3) upon deleting the marked node (and replacing it with C∗).
In the above cases they are as follows,

θ 1 2 1
2

G SL(2m|2n) Osp(4m|2n) Osp(4n|2m)

L SL(m|n)⊗ SL(m|n)⊗ C∗ SL(2m|n)⊗ C∗ SL(m|2n)⊗ C∗

(3.5)

There is an overall constraint to take into account: for h ∈ H, sdet(h) = sdet(a) sdet(d) = 1.
The C∗ subgroup of the parabolic group is then identified with sdet(a) = 1/(sdet(d)).

The coset space H\G is finally the collection of all the orbits under the equivalence g ∼ hg
for g ∈ G and h ∈ H. A representative for each orbit is18

g ∼ s(X) =

(
1 XAA′

0 1

)
. (3.6)

17More precisely, the second half of the basis is reversed compared to the first half. Taking θ = 1 as the
illustrative example, then a is (m|n)× (m|n), X is (m|n)× (n|m), c is (n|m)× (m|n) and d is (n|m)× (n|m).
However when referring to a, c, d,X we will consider them with the bases rearranged, so they all have the same
dimensions (m|n)× (m|n).

18A toy model for the coset construction, corresponding to (m,n; θ) = (0, 1; 1) is just the Riemann sphere,

realised by taking g =
(

â b̂
ĉ d̂

)

in SL(2,C) and h =
(

a 0
c d

)

. Then
(

1 x
0 1

)

is the coset representative and
(

1 x
0 1

)

g =

h
( 1 f(x)
0 1

)

∼
( 1 f(x)
0 1

)

where f(x) = (d̂x+ b̂)/(ĉx+ â) and a = â+ xĉ, c = ĉ, d = d̂− ĉf(x). From f we recognise
Möbius transformations acting on the Riemann sphere as the coset H\SL(2,C). By taking just the top row
of the coset representative, (1, x), we recognise this construction to be completely equivalent to the projective
space P 1. Similarly, the general (m,n; θ) construction is equivalent to a Grassmannian space.
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This supermatrix X are then coordinates for the coset space, which we write as

X =

(
x ρ

ρ y

)
. (3.7)

For θ = 1, x is m×m, y is n×n and both are bosonic, whereas ρ is m×n, ρ̄ is n×m and they
are fermionic. The other cases are similar except m → 2m when θ = 2 and n → 2n when
θ = 1

2 (and the supermatrix is generalised (anti-)symmetric in its indices, see appendix A
for more details). For θ = 1 the cosets are equivalent to super Grassmannians which can
be seen by considering the upper half of the group matrix (1,X) ∼ a(1,X), which is indeed
Gr(m|n, 2m|2n), the space of m|n planes in 2m|2n dimensions. Then the θ = 2, 12 cases
are generalised Grassmannians. For θ = 1, 2, 12 note that xαα̇ represents coordinates for
Minkowski space in dimensions Md=4,6,3 respectively written in a (Weyl) spinor notation.

Now we can connect with the superblocks. The four-point superconformal invariant com-
binations of four coordinates X1,X2,X3,X2 can be viewed as the independent eigenvalues of
the cross-ratio matrix:

Z = X12X
−1
23 X34X

−1
41 ; Xij = Xi −Xj . (3.8)

These independent eigenvalues then correspond to the arguments of the blocks, z (2.7). Fur-
ther the building block two-point function gij in (2.3) is

gij = sdet−#(Xi−Xj). (3.9)

where sdet is the superdeterminant (Berezinian) and the exponent # is discussed in footnote 4.

The external representations appearing in the four-point function (2.5) are scalars, Op(X),
on this coset space, thus they transform non-trivially, with a certain weight p under C∗ and
are invariant under the rest of the parabolic group (3.5). In terms of the Dynkin labels,
the label above a marked node gives the weight under the C∗ subgroup of the parabolic
subgroup associated with that node. The Dynkin labels next to the unmarked nodes give
the representation under non-trivial subgroups of the parabolic subgroup.19 The external

19Although we will be dealing with infinite dimensional representations, the representation of the parabolic
subgroup itself will always be finite dimensional.
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operators Op are therefore written as,

p
SL(2m|2n)

p
OSp(4m|2n)

p

OSp(4n|2m)

(3.10)
where all unlabelled nodes are understood to have the label 0. These fields transform under
a general superconformal transformation g as follows:

s(X) g = h s(X ′) Op(X) → O′
p(X

′) = sdet(a)pOp(X) . (3.11)

The superblock gives the contribution of an exchanged representation appearing in the
common OPE (or tensor product) between the first two, O1O2, and last two, O3O4, external
operators (see (2.2)). The representations which can appear in the OPE are summarised by
the labelled Dynkin diagrams given below, for n > 0,

l1 lm−1 δ a1 an−1 b an−1 a1 δ lm−1 l1
SL(2m|2n)

l1 l2 lm−1 δ 2a1 2an−1 b
OSp(4m|2n)

2l1 2lm−1 2δ a1 an−2 an−1

b

OSp(4n|2m)

θ = 1

θ = 2

θ = 1
2

(3.12)
The Dynkin labels li=1,...,m−1 and aj=1,...n−1, are all positive integers, and denote generalised
spins of the conformal and compact subgroups respectively, of the superconformal groups.
Note that for OSp(4m|2n), the Dynkin labels for the SO(2m) conformal subgroup are alter-
nately vanishing. Similarly, for OSp(4n|2m) the internal spins are alternately vanishing. All
of the above representations are specified by the same set of labels li, δ, aj , b even though they
are describing representations of different groups.

The special cases ofm = 1, 0 and n = 1, 0 require a small discussion. The Dynkin diagrams
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above indeed include the special cases: m = 1, which corresponds to having external nodes
with li absent; m = 0, which corresponds to having external and odd nodes absent; n = 1,
which corresponds to having internal uncrossed nodes labelled by aj absent. However, the
case n = 0, which corresponds to a bosonic scalar conformal field theory, can not be read
off directly from the above diagrams, even though it follows directly from the same matrix
construction. The relevant Dynkin diagrams for n = 0 is instead

l1 lm−1 −b′ lm−1 l1
SL(2m)

l1 l2 lm−1

−b′

OSp(4m)

2l1 2lm−1 −b′ Sp(2m)

θ = 1

θ = 2

θ = 1
2

(3.13)

From all of the above Dynkin digrams we can immediately read off the corresponding field
in the appropriate coset space. The weight under the C∗ is the label on the marked node,
and the non trivial transformation under the Levi subgroup, i.e. under the supermatrices a, d
in (3.4) is that dictated by the rest of the Dynkin diagram. All of these reps can equivalently
be given by a parameter γ and a Young diagram λ consistent with an SL(m|n) rep. We will
give the precise equations relating γ, λ to the above Dynkin labels shortly, but first we explain
how the Young diagram arises as it slightly different in the three cases θ = 1, 2, 12 .

First note that the representations appearing in the OPE of two scalars, Op1Op2 , are not
the most general possible (indeed these would have arbitrary Dynkin labels above every node
in the diagrams above). Rather the representation of a must be identical to that of d. This
statement can be understood most directly in the free theory, where the operators appearing
in the OPE have the form

OAA′ = Op1−w(∂
k)AA′Op2−w+.. ; (∂k)AA′ := (δR)

A1..Ak
A (δR)

A′
1..A

′
k

A′

k∏

i=1

∂

∂XAiA′
i

(3.14)

with A and A′ multi-indices and Ai, A
′
i (anti-)symmetrised into irreps R via the invariant

tensors δR. Since partial derivatives ∂AA′ commute with each other, the representation of
A and A′ must be the same as each other for this to be non-vanishing. Here the A indices
carry the rep of a and A′ indices carry the rep of d so we see these must be the same. Now
for θ = 1, a and d are independent and form the two SL(m|n) subgroups of L ( see (3.12)).
Associating this common representation with its Young diagram, we define λ. For θ = 2, 12 ,
the matrices a and d are essentially equal to each other (see appendix A.2) and this means that
the representation of SL(2m|n) and SL(m|2n) has a particular special form. For θ = 2, the
Young diagram of the SL(2m|n) rep, [r1, . . .], will have duplicated rows so that r2i−1 = r2i.
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Thus, the only relevant information is given in a Young diagram λ defined by λi = r2i,
i.e. half the height, and this λ will label the blocks. Furthermore since the Young diagram
[r1, . . .] is consistent with SL(2m|n) the resulting Young diagram λ will be consistent with
SL(m|n). For θ = 1

2 on the other hand, the resulting SL(m|2n) Young diagram will always
have duplicated columns so r′2j−1 = r′2j . Thus,we will label the blocks with the Young diagram
λ defined to have column lengths λ′j = r′2j .

Summarising: In all cases with a group theory interpretation we have specified a represen-
tation exchanged in the OPE of two scalars, through a Young diagram, λ. Thus λ, together
with a parameter γ, is the data we will use to specify the superconformal blocks Bγ,λ. It will
turn out that this same data is very natural from the point of view of BCm|n functions!

A closing remark regarding the non-supersymmetric degeneration for either n = 0 or
m = 0, which we discuss in appendix A. This has a group theory interpretation for any half
integer (or inverse of a half integer) θ, and it is interesting to mention that the group theoretic
interpretation we give here meshes closely with a previously understood interpretation of
the BCn Heckman Opdam hypergeometric functions as spherical functions on certain coset
spaces [62]. The latter are Grassmannians in SU(p, q), SO(p, q) and Sp(p, q), for θ = 1, 2, 12
respectively. Upon setting p = q = m (or n) they look very reminiscent of the ones that we
are using and it would be interesting to pursue this connection further.

Young diagrams vs representation labels

A Young diagram λ with a GL(m|n) structure has a hook shape in which the row lengths
λi=1,2,... are such that λm+1 ≤ n. Equivalently, the column heights λ′j=1,2,... are such that

λ′n+1 ≤ m. Graphically, the diagram fits inside the red dashed lines:20

n

m

(3.15)

We shall say that a box � ∈ λ has integer coordinates (i, j), where i corresponds to the
row index and j to the column index. For example, the rightmost boxes of λ from top to
bottom have coordinates (i, λi) for i = 1, 2, . . .. Equivalently, from bottom to top they have
coordinates (λ′j , j) for j = 1, 2, . . ..

Young diagrams λ with a hook shape might or might not contain the rectangle nm.
In the supersymmetric case, a Young diagram λ which contains the box with coordinates
(m,n), and therefore contains the full rectangle nm, will correspond to a typical or long

20In this specific drawing m = 4, n = 7, then λ1 = 20 and λ9 = 1, while λ′
1 = 9 and λ′

20 = 1.
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representation. Otherwise the representation is atypical. We will discuss concrete examples
related to physical theories later on (see discussion around (C.40) and (C.41) for examples
and a fuller description).

The Dynkin labels given in (3.12) (and (3.13) for the case n = 0) translate to the data
specifying a Young diagram λ, and a parameter γ, for θ = 1, 2, 12 as follows

lm−i = (λi−n)+ − (λi+1−n)+ i = 1, . . . ,m− 1 ; δ = (λ1−n)+ + θλ′n

an−i = (λ′i−λ′i+1) i = 1, . . . , n− 1 ; b = γ − 2λ′1

b′ = γ + 2
θλ1

(3.16)

where (x)+ = max(x, 0). In physical applications it is useful to read off the dilation weight,
especially as this is the only quantum number which can become non integer in an interacting
CFT. The following equality gives the dilation weight in terms of the Dynkin labels, and then
γ, λ

∆ = −
m−1∑

i=1

ili +m


δ + θ

n−1∑

j=1

aj + θ b
2


 =

m∑

i=1

(λi−n)+ +mθ γ2 . (3.17)

Note now that for long representations (those for which the box with coordinates (m,n) lies
in the Young diagram λ) the dictionary (3.16) is invariant under

λi → λi − θτ ′

i = 1, . . . ,m
;

λ′j → λ′j + τ ′

j = 1, . . . , n
; γ → γ + 2τ ′ . (3.18)

We will refer to this redundancy as the shift invariance.

The shift invariance (3.18) arises from the fact that SL(m|n) reps are not uniquely specified
by a Young diagram. This is very familiar in the bosonic case n = 0. In fact, for SL(m)
reps one can add arbitrarily many height m columns to a Young diagram without changing
the rep. This leads directly to (3.18) for n = 0. In the same way, SL(n) reps have a shift
invariance, and therefore when m = 0 one can add arbitrarily many length n rows (since the
Young diagram in SL(0|n) is transposed w.r.t. SL(n)). For the supergroup SL(m|n) what
happens is that if there is a full width n row below the nm rectangle in the Young diagram,
this can be removed and replaced by a full height m column to the right of the rectangle
without changing the representation. The presence of θ in the shift (3.18) reflects the fact
that this shift applies to the reps of SL(2m|n) or SL(m|2n) with double numbers of rows or
columns around (3.14). The implications of this shift for λ then give the θ dependence in
(3.18).

Let us exemplify the relevant Young diagrams in some cases of physical interest. Blocks
for maximally supersymmetric theories

N = 4, 4d for θ = 1

N = (2, 0), 6d for θ = 2

N = 8, 3d for θ = 1
2





all correspond to m = 2, n = 2 (3.19)

These blocks are labelled by γ and a Young diagram with at most two rows of length λ1, λ2
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and two columns of length λ′1, λ
′
2. There are two quantum numbers for the conformal group,

dilation weight ∆ = (λ1−2)+ + (λ2−2)+ + θγ and spin l1 = (λ1−2)+ − (λ2−2)+ (only
symmetrised Lorentz indices appear in these four-point functions) and two analogous quantum
numbers for the internal subgroup a1, b.

21 When λ2 ≥ 2 the representation exchanged in the
OPE (assuming integer dilation weight) is long or typical . If λ2 = 1, 0 the diagram is a thin
hook, with at most a single row and a single column, and the representation is short. When
the Young diagram is empty it is half BPS. We emphasise that in our formalism there is no
need to distinguish the different shortening conditions!

Another case of physical interest is given by blocks with m = 2, n = 1, which includes
N = 2 superconformal theories in 4d, the N = (0, 1) superconformal theories in 6d, and
also N = 4 in 3d. In this case the Young diagram has at most a single long column λ′1 and
therefore a single integer classifies the internal representations that can appear in the OPE.
The reps are often defined by ∆, l and b. This time the atypical diagrams can only be the
single row diagrams, since these do not contain the rectangle [12]. The rest of the allowed
diagrams, [λ1, λ2, 1

λ′
1−2], are necessarily long/typical.

4 Rank-one invitation

Before presenting the most general (m,n) superconformal block, we describe in some detail
the bosonic (1, 0) and (0, 1) blocks, since these are simple enough to familiarise with the
formalism based on super Jack polynomials.

4.1 Rank-one bosonic blocks

(1, 0) blocks

Consider first the (1, 0) blocks, i.e. a single x variable and no y variables. The only allowed
Young diagrams have a single row shape λ = [λ]. The Casimir (5.5) reduces to a one-variable
Gauss hypergeometric equation, from which follows the solution (normalised according to
(2.13)),

CBγ,[λ](x|) = (λ+ θγ
2 )(λ+ θγ

2 −1)Bγ,λ(x|)

Bγ,[λ](x|) = x
θγ
2
+λ

2F1

(
λ+θα, λ+θβ; 2λ + θγ;x

) (4.1)

where recall α = max
(
1
2(γ−p12), 12(γ−p43)

)
, β = min

(
1
2(γ−p12), 12(γ−p43)

)
(2.16). The

Casimir and the solution is symmetric in α and β. Furthermore, let us point out that out of
the five parameters λ, γ, θ, p12, p43 only the three quantities λ+ θγ

2 , p12θ and p43θ appear.22

Writing the (1, 0) block as a series over superJack polynomials is very simple since the
(1, 0) Jack is simply P[λ](x|) = xλ, therefore the Jack→Block matrix is just the coefficient in

21It might be instructive to compare with [45], which also treats all maximally supersymmetric cases together.
They use internal labels (athere, bthere) where athere = 1

2
γ−λ′

2, bthere = 1
2
γ−λ′

1.
22The combination λ+ θγ

2
appears in the Dynkin diagram (A.14) for the (1, 0) bosonic theory.
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the Taylor expansion of the Gauss hypergeometric:

Bγ,[λ](x|) = xθ
γ
2

∞∑

µ=λ

(Tγ)
[µ]
[λ]P[µ](x|) , (Tγ)

[µ]
[λ] =

(λ+ θα)µ−λ(λ+ θβ)µ−λ

(µ−λ)!(2λ + θγ)µ−λ
. (4.2)

(0, 1) blocks

Consider now the (0, 1) blocks, i.e. no x variables and a single y variable. Here the only
allowed Young diagrams have a single column shape λ = [1λ

′
]. The Casimir reduces again to

a hypergeometric equation, and is solved by:

CBγ,[1λ′ ](|y) = −θ(λ′−γ
2 )(λ

′−γ
2−1)Bγ,[1λ′ ](|y)

Bγ,[1λ′ ](|y) =
(−1)λ

′
( 1
θ
)λ′

λ′! y−
γ
2
+λ′

2F1

(
λ′−α, λ′−β; 2λ′−γ; y

)
.

(4.3)

Notice that the entries of the 2F1 this time are independent of θ. Then, λ′ and γ only enter
through the combination γ

2 − λ′.23

The normalisation of Bγ,[1λ′ ](|y) has been chosen as for the the (0, 1) superJack polyno-

mials (in agreement with (2.13)). In fact, the series expansion in superJack polynomials this
time reads

B
γ,[1λ′ ]

(|y) = y−
γ
2

∞∑

µ′=λ′

(Tγ)
[1µ

′
]

[1λ′ ]
P
[1µ′ ]

(|y) , P
[1µ′ ]

(|y) = (1θ )µ′

µ′!
(−y)µ′

(4.4)

where

(Tγ)
[1µ

′
]

[1λ′ ]
=

(λ′−α)µ′−λ′(λ′−β)µ′−λ′

(µ′ − λ′)!(2λ′−γ)µ′−λ′

µ′!(1θ )λ′

λ′!(1θ )µ′

(−1)µ
′−λ′

, (4.5)

An important observation to make at this point is that this series truncates when the ar-
guments of the Pochhammers are negative. Thus it truncates for values of µ′ greater than
β.

Properties of Tγ

We can already with this information perform do a very rudimentary check that the coefficients
Tγ are (m,n) independent i.e. they only depend on the Young diagrams, θ, and p12, p43. This
implies that when the Young diagrams coincide, evaluating (4.2) and (4.4) should give the
same result. In the (1, 0) case the Young diagram has a single row, and in (0, 1) case a single
column, thus they can only be compared when the Young diagram is empty or consists of a
single box i.e. the cases (λ, µ) = ([0], [0]), ([1], [1]), ([0], [1]). We indeed see that for both (1, 0)

23This combination is the value appearing in (A.15) sitting on crossed through Dynkin node.

29



and (0, 1) we obtain:

([0], [0]) ; (Tγ)
[0]
[0] = 1

([1], [1]) ; (Tγ)
[1]
[1] = 1

([0], [1]) ; (Tγ)
[1]
[0] = θαβγ .

(4.6)

The above computation is limited, but nevertheless it is nice to see that (4.2) and (4.4) do
indeed give the same results where they overlap. This illustrates the more general (m,n)
independence of Tγ which we will consider further in section 5.

4.2 Relation with the Heckman-Opdam hypergeometrics

Despite the fact that both (1, 0) and (0, 1) blocks are given by the same building block, a
Gauss hypergeometric, there is an important difference, which we emphasised already: the
(0, 1) block is a polynomial, while the (1, 0) block is an infinite series. However, since both
external and internal blocks are based on the same 2F1, comparing the two expressions (4.1)
and (4.3), we read off the following formal relation between them:

B
(1,0)
γ, [λ](y|; θ, p12, p43) =

λ!

(−1)λ(θ)λ
B

(0,1)

−θγ, [1λ]
(|y; 1θ ,−θp12,−θp43) . (4.7)

So the (1, 0) and (0, 1) blocks can be viewed as analytic continuations of each other. In
particular, if α, β, γ are assumed to be positive on the (1, 0) side, they become negative on
the (0, 1) side, specifically, (α, β, γ) → −θ(α, β, γ). This can be also understood from the
general relation satisfied by the defining Casimir

C(θ,a,b,c)(x|y) = −θC( 1
θ
,−aθ,−bθ,−cθ)(y|x) . (4.8)

Let us then try and understand this analytic continuation in the parameters and relate it to
the Heckman Opdam hypergeometric function.

In section 2.3 we identified the internal (0, n) block with the dual BCn Jacobi polynomial,
up to a normalisation, and we showed how the latter is obtained from the BCn Jacobi poly-
nomial (in particular see (2.32)). Now the BCn Jacobi polynomials are also Heckman Opdam
(HO) hypergeometric functions for positive weights [26], but the BCn HO hypergeometric are
defined more generally for arbitrary parameters. It is therefore interesting to compare these
functions with our (1, 0) and (0, 1) blocks, and discuss in this context the analytic continuation
w.r.t. the external parameters.

Both the BC1 Jacobi polynomial and the dual Jacobi polynomial can be given explicitly
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in terms of 2F1 Hypergeometrics as follows,24

J[λ](y; θ, p
−, p+) =

(−)λ(1 + p−)λ
(1 + λ+p++p−)λ

2F1(1 + λ+p++p−,−λ; 1+p−; y) λ ∈ Z≥0 (4.9)

J̃β,[λ](y; θ, p
−, p+) = yλ 2F1(λ−β−p−,−(β − λ); 2(λ−β)−p+−p−; y) β−λ ∈ Z≥0

= yλ2F1(λ−α, λ−β; 2λ−γ; y) (4.10)

where α = β + p− and γ = 2β + p+ + p−. The use of the Gauss hypergeometric to write
the polynomials has the bonus that they give a natural analytic continuation to arbitrary
values of the parameters, i.e. away from the polynomial restriction λ ∈ Z+ for J and β−λ ∈
Z+ for J̃ . The key point here is that even though the Jacobi polynomial and the dual
Jacobi polynomial are directly related to each other, the above expressions in terms of Gauss
hypergeometrics yield two inequivalent analytic continuations of the parameters. The first is
the HO hypergeometric, the second is the one relevant for blocks. In both cases the analytic
continuation gives a function that is regular at y = 0 with a branch cut between y = 1 and
y = ∞.

Let us explore how this works in more detail. The point is that when β − λ ∈ Z+, the
hypergeometrics are polynomial and there is a hypergeometric identity [63]

(−1)λ−β

c(α, β, γ, λ)
2F1(1−λ+γ−β,−(β − λ); 1−β+α; 1y ) = yλ−β

2F1(λ−α,−(β − λ); 2λ−γ; y) ,
(4.11)

where

c(α, β, γ, λ) =
Γ[1+α−β]Γ [1 + γ−2λ]

Γ [1 + α−λ] Γ [1−β+γ−λ] . (4.12)

This is precisely the identity between the Jacobi and dual Jacobi polynomials J[β−λ](1/y) =

y−βJ̃β,[λ](y).

But as soon as we continue away from β − λ ∈ Z+, the above identity relaxes to a three
term identity [64]:

2F1(1−λ+γ−β, λ−β; 1−β+α; 1y ) = (−1)λ−βc(α, β, γ, λ) × yλ−β
2F1 (λ−α, λ−β; 2λ−γ; y)

+ (−1)λ̃−β̃c(α̃, β̃, γ̃, λ̃)× yλ̃−β̃
2F1(λ̃−α̃, λ̃−β̃; 2λ̃−γ̃; y)

(4.13)

where α̃ = α − γ, β̃ = β − γ, γ̃ = −γ, λ̃ = 1 − λ. This is a well know connection formula for
the 2F1. Notice in particular that c(α̃, β̃, γ̃, λ̃) → 0, as β − λ→ n ∈ Z+, therefore we recover
the previous identity (4.11).

Now the combination on the RHS of (4.13) is precisely the expression for the BC1 HO
hypergeometric (in 1/y) given as a specific sum of independent solutions of its defining equa-
tion (which is equivalent to the Casimir equation). In general the BCn HO hypergeometric

24These can be obtained by solving their defining differential equations. In the dual case this is (2.26). For
the Jacobi polynomial we refer to [28]. Alternatively, the 1d combinatorial formula in [41] straightforwardly
gives the result. The normalisation of the Jacobi is taken such that J[λ] = yλ+ . . ., and this gives the prefactor
w.r.t. to the 2F1 series.
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is defined as a sum over W = Sn ⋉ (Z2)
n of building block functions called Harish Chandra

functions [16,17] each of which are independent solutions of the same defining equation. For
BC1 this sum is just a sum over Z2 and the two functions on the RHS of (4.13) are pre-
cisely these building block Harish Chandra functions (the normalisations are known as the
Harish-Chandra c functions). More details for this BC1 case can be found for example in [43].

In our context however on the RHS of (4.13), the first contribution is (up to a normal-
isation) the (1, 0) block in (4.1) with parameters B−θγ, [λ](y|; 1θ ,−θp12,−θp43). The second
contribution is B−θγ;[1−λ], and corresponds to an independent solution of the same Casimir
equation (4.1), with different properties in the small y expansion. In the CFT context this is
also an important object known as the shadow block.

So we see therefore that the block and the shadow block are both Harish-Chandra func-
tions25. The blocks have different analyticity properties to the Heckman Opdam hyperge-
ometrics, explaining why they are not the same even though they are trivially related for
certain integer values of their parameters. In particular, in the variables we are using the
blocks are regular at y → 0, whereas instead the Heckman Opdam hypergeometrics are regu-
lar at 1/y → 0. For a more detailed analysis of the analytic structure of the standard bosonic
conformal m = 2, n = 0 blocks and the relation to Harish Chandra functions see [12,14].

Summarising. The BC1 HO hypergeometric is the analytic continuation of the BC1 Jacobi
polynomial when β − λ ∈ C which is regular when its argument approaches zero. The dual
Jacobi polynomials however have a different natural analytic continuation which is regular
when its argument (which is the inverse of that of that of the Jacobi polynomial) approaches
zero. This latter analytic continuation gives the Harish Chandra functions, the building blocks
in the sum over W = ±1 giving the HO hypergeometric. Furthermore this latter analytic
continuation interpolates between the (1, 0) or (0, 1) blocks as we vary the parameters.

This story would appear to have a natural generalisation to higher n. The BCn Jacobi
polynomials have a natural analytic continuation in their parameters as BCn HO Hyperge-
ometrics. The dual Jacobi polynomials (internal (0, n) blocks) however will have a natural
analytic continuation as Sn ⊂ W = Sn × (Z2)

n invariant combinations of Harish Chandra
functions. This combination will then coincide with external (n, 0) blocks for certain values
of their parameters. Indeed this latter story can be seen explicitly in the θ = 1 case from
the results of [9] where both external and internal blocks are given in terms of a determinant
of Gauss Hypergeometric functions which indeed coincide on mapping the parameters appro-
priately. It is then interesting to consider the generalisation to the supersymmetric (m,n)
case and if there is a relation between the dual super Jacobi functions and super Jacobi
polynomials via analytic continuation. We consider (m,n) analytic continuations further in
section 6

5 Superconformal blocks (I): recursion

Having considered in detail the (1, 0) and (0, 1) blocks in the previous section we return to
the general case. In this section we explain how to solve the Casimir equation (2.9) for the

25In fact twisted Harish Chandra functions since we exclude the (−1)λ−β in the definition of the block.
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superconformal blocks, defined via the expansion

Bγ,λ =

(∏
i x

θ
i∏

j yj

)γ
2

Fγ,λ ; Fγ,λ =
∑

µ⊇λ

(Tγ)
µ
λ Pµ(z) ; (5.1)

for any values of the m|n variables z as well as any θ, p12, p43 and γ. We will use a recur-
sion, as anticipated in section 2, and to find it we will first derive the representation of the
Casimir (2.18) suited for acting on the basis of super Jack polynomials, Pµ and then use this
to turn the differential equation into a recurrence relation for the coefficients (Tγ)

µ
λ.

We will write the recursion in a way which is manifestly independent of the dimension
of the blocks, and the m,n labels for the super Jack polynomials, purely in terms of the
Young diagram (5.16). Later this is made very explicit in a manner prepared for different
possible analytic continuations, see for example (5.35), (5.36). Appendix C provides a concise
summary of properties and definitions of Jack and super Jack polynomials which might serve
as a helpful guide for the reader.

Various properties of the recursion, and therefore of its solution, the Jack→Block matrix
Tγ , will then be discussed. First we will exemplify the special case of the half-BPS block
λ = [∅], which admits a simple hypergeometric solution. This is instructive because the
details are still quite non trivial, despite the final simplicity of the solution. Then, we will
consider the most general case. We do not obtain an explicit solution for the general case,
however, it is very efficient to implement the recursion on a computer, and we use this to
explore properties of (Tγ)

µ
λ, for example its dependence on θ, γ, p12 and p43. The most

intriguing is the dependence on γ, which becomes highly non-trivial and takes the form of
a more and more complicated mostly non factorisable polynomial. In section 7 we will find
a surprising interpretation for the γ dependence, by elaborating on the connection between
superconformal blocks and Jacobi polynomials.

5.1 Derivation of the recursion and higher order Casimirs

Recall briefly our construction. Superconformal blocks as eigenfunctions of the Casimir op-
erator introduced in (2.9)-(2.10). On Fγ,λ, the eigenvalue problem reduces to

C(θ,α,β,γ)Fγ,λ = (h(θ)λ + θγ|λ|)Fγ,λ , (5.2)

where
h(θ)λ =

∑

i

λi(λi−2θ(i−1)−1) (5.3)

and |λ| = ∑i λi, with λ = [λ1, . . .]. As highlighted already, the eigenvalue for Fγ,λ does not
depend explicitly on (m,n) unlike the original eigenvalue for Bγ,λ in (2.10). Recall also the
definitions of α and β in terms of p12, p43, γ given in (2.16)

α ≡ max
(
1
2(γ−p12), 12 (γ−p43)

)
, β ≡ min

(
1
2 (γ−p12), 12(γ−p43)

)
(5.4)

As discussed above (2.9), the Casimir can be nicely related to the BCm|n CMS operator,
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and we do so in appendix B. The explicit result in our notation takes the form,

C(θ,a,b,c) =

m+n∑

I=1

(−θ)πID
(θ,a,b,c)
I + 2θ

m+n∑

I=1

∑

J 6=I

zIzJ
zI − zJ

(−θ)−πJdI (5.5)

where the two operators dI and DI are defined as

dI = (1− zI)∂I (5.6)

D
(θ,a,b,c)
I = z2I∂I(1− zI)∂I − (−θ)1−πI (c− (a+ b)zI)zI∂I − (−θ)2−2πIabzI . (5.7)

We use the vector z = (z1, . . . , zm|zm+1, . . . , zm+n) to label the variables zi = xi=1,...m and
zm+j = yj=1,...n. The parity πi = 0 is assigned to the non-compact direction i = 1, ..,m,
otherwise πj = 1 is assigned to the compact direction j = m+ 1, ..,m + n.

The identification of the Casimir with a BCm|n differential operator helps deducing the
decomposition (2.18) of the Casimir into operators with well defined actions on Pµ:

C(θ,a,b,c) =H(θ) + θc
m+n∑

i=1

zI∂I

− θ(a+ b)
m+n∑

I=1

z2I∂I − 1
2

[
H(θ),

m+n∑

I=1

z2I∂I

]
− θ2ab

m+n∑

I=1

zI(−θ)−πI (5.8)

where H(θ) is the Am|n CMS Hamiltonian (see appendix B)26

H(θ) =

m+n∑

I=1

(−θ)πIz2I∂
2
I + 2θ

∑

I 6=J

zIzJ
zI − zJ

(−θ)−πJ∂I . (5.9)

The operator decomposition in (5.8) is perfectly suited to acting on the expansion Fγ,λ =∑
(Tγ)

µ
λPµ because super Jack polynomials are eigenfunctions of both

∑
I zI∂I (reflecting

the fact that they are homogeneous polynomials) and H(θ),27 and moreover, the other two
operators are themselves related to the simplest one-box super Jack polynomial, P�

∑

I

zI(−θ)−πI = P�(z), and
∑

I

z2I∂I =
1
2 [H

(θ), P�(z)] . (5.10)

The action of all the operators zI∂I , H, P� on super Jack polynomials yields a linear
combination of Jack polynomials whose coefficients are independent of m,n. This will imply
that the recursion for Tγ , which we derive from the Casimir, will be independent of m,n at
every stage.

26Notice that H shows up directly in (5.8), since it is found by replacing DI → z2I∂
2
I and dI → ∂I . Terms

of the Casimir in which DI → −z3I∂
2
I and dI → −zI∂I , are generated by the commutator.

27Indeed these are the first two Hamiltonians of a tower found in [34], which establishes the classical inte-
grability of the system.
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Let us begin with the simplest operator in (5.8), i.e. the momentum operator,

m+n∑

I=1

zI∂I Pµ(z) = |µ|Pµ(z) . (5.11)

The eigenvalue here simply counts the number of boxes of the Young diagram µ (which
obviously does not depend on (m,n)). This operator just reflects the fact that super Jack
polynomials are homogeneous functions of the zI of degree |µ|.

For the Hamiltonian, we have

H(θ) Pµ(z) = h(θ)µ Pµ(z) . (5.12)

This equation is part of the standard definition of the super Jack polynomials and the eigen-
value h(θ)µ in (5.3) has no explicit dependence on (m,n).

Next, the two ‘off-diagonal’ operators in (5.10). The first of the two is simply the multi-
plicative operator acting with P�. In general the product Pµ1

Pµ2
gives a linear combination

of super Jacks whose coefficients, Cµ3
µ1µ2

(θ), known as structure constants, are independent of
m,n. When θ = 1 Jack polynomials reduce to Schur polynomials and the structure constants
become precisely the standard Littlewood-Richardson coefficients. Finding an explicit for-
mula for the structure constants for general θ however is a difficult problem/task in modern
mathematics [54]. Here however we only need the case in which one of the Young diagrams
is a single box. This case reduces to the simplest case of the Pieri rule for Jack and super
Jack polynomials, and Cν

�µ is known combinatorially [65, 66]. It is perhaps less known that
this combinatorial formula can be made fully explicit, as we will show shortly.

So the action of the first off-diagonal operator in (5.10) coincides with the product P�Pµ

and returns
P�(z)Pµ(z) =

∑

ν∈{µ+�}
Cν
�µPν(z) . (5.13)

where the RHS spans all polynomials labelled by the Young diagram ν obtained by adding
an extra box to the Young tableau µ, in all possible ways.

The action of the second off-diagonal operator in (5.10),
∑

i z
2
i ∂i, can then be obtained

straightforwardly from its representation as a commutator together with (5.12),(5.13). We
have

∑

I

z2I∂IPµ(z) =
1
2 [H

(θ), P�(z)]Pµ(z) =
∑

ν∈{µ+�}

1
2(hν − hµ)Cν

�µPµ+�i(z) . (5.14)

Having understood the action of all the operators appearing in the operator decomposition
of the Casimir, and having observed that all of them decompose into Jack polynomials with
coefficients which only depend on the Young diagram, we can now write the representation of
the Casimir itself in the basis of superJack polynomials. The result is quite neat and nicely
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generalises the structure noticed for θ = 1 in [9],

C(θ,a,b,c)Pµ =
(
hµ + θc|µ|

)
Pµ −

∑

ν∈{µ+�}

(
1
2(hν−hµ) + θa

) (
1
2 (hν−hµ) + θb

)
Cν
�µ Pν .

(5.15)

From this and the definition Fγ,λ =
∑

µ(Tγ)
µ
λPµ, then the Casimir equation (5.2) gives the

following recursion equation for the coefficients Tγ

(Tγ)
µ
λ =

∑
ν∈{µ−�}

(
1
2(hµ−hν) + θα

) (
1
2(hµ−hν) + θβ

)
Cµ
� ν (Tγ)

ν
λ(

hµ−hλ+θγ (|µ|−|λ|)
) (5.16)

with α, β as defined earlier in terms of γ, p12, p43 (5.4). Here we see that the recursion
initiates from the Young diagram µ (which contains λ) and goes back to λ (for which we
know (Tγ)

λ
λ = 1) recursively by subtracting boxes. Thus if µ is compatible with the (m,n)

structure (i.e. µm+1 ≤ n) then ν ∈ {µ − �} is also compatible with it and the recursion
always remains inside the (m,n) Young diagram. This means the recursion can be solved
quite efficiently on a computer.

It is also interesting to consider the inverse of Tγ , i.e. the Block→Jack matrix, T−1
γ . This

gives Jack polynomials as a sum of blocks, via the inverse of (5.1),

Pλ =
∑

µ

(T−1
γ )µλ Fγ,µ. (5.17)

Note that Fγ,µ, when m > 0 is an infinite series, and the sum, an infinite sum. Many non
trivial cancellations take place in order to recover a polynomial. From (5.15) and (5.2) we
obtain a recursion for T−1

γ which is very similar looking to that of Tγ

(T−1
γ )µλ =

∑
ν∈{λ+�}

(
1
2 (hν−hλ) + θα

) (
1
2 (hν−hλ + θβ

)
Cν
� λ (T

−1
γ )µν(

hλ−hµ+θγ (|λ|−|µ|)
) (5.18)

The main difference is that here the recursion gives (T−1
γ )µλ in terms of (T−1

γ )
µ
λ+�

, obtained

by adding boxes to λ, whereas the recursion for (Tγ)
µ
λ is in terms of (Tγ)

µ−�
λ , is obtained by

subtracting boxes from µ.

We will return to the relation between T and T−1 later on in section 7.3.

Higher order Casimirs for θ = 1

Before considering the recursion in more detail we would like to discuss higher order Casimirs
in the CFT. These arise from the relation between the Casimir and CMS system with BC
root system. In fact, higher order Casimirs correspond to the defining higher order differential
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operators of the Heckman Opdam BC hypergeometric functions. This is a general statement,
but here we will specialise to θ = 1, where formulae are both explicit and simple. Generalising
the work of [43] (who focussed on the purely bosonic case n = 0) we now show that higher
order Casimirs in the supersymmetric case are given by simply replacing the variables zI in a
super Schur with the corresponding second order operator DI of (5.7) and conjugating with
the Vandermonde (super-) determinant

C(θ=1,a,b,c)
µ = V −1(zI)Pµ

(
D

(θ=1;a,b,c)
I ; θ = 1

)
V (zI) (5.19)

where the super van der Monde determinant is

V (zI) =

∏
1≤i<j≤m(x−1

i − x−1
j )

∏
1≤i<j≤n(y

−1
i − y−1

j )
∏

1≤i≤m
1≤j≤n

(x−1
i − y−1

j )
, (5.20)

and where DI is given in (5.7). The quadratic Casimir of (5.5) correspond to the above for
the one-box super Schur, i.e. µ = �. The latter is simply the sum

∑
i xi −

∑
j yj.

The superblocks Bγ,λ are eigenvalues of C(θ,− 1
2
p12,− 1

2
p43,0)

λ for all Young diagrams µ

Cµ
(θ,− 1

2
p12,− 1

2
p43,0)Bγ,λ(z) = (Eµ)

(m,n;θ=1)
γ,λ Bγ,λ(z) , (5.21)

The corresponding eigenvalue is

(Eµ)
(m,n;θ=1)
γ,λ = Pµ((EI)γ,λ)− 1

3(m− n− 1)3 (5.22)

obtained by replacing zI by EI in the corresponding Schur polynomial Pµ where

(EI)
(m,n;θ=1)
γ,λ =

{
(λi − i+ 1

2γ + 1)(λi − i+ 1
2γ) I = i = 1, ..,m

(λ′j − j − 1
2γ + 1)(λ′j + j − 1

2γ) I −m = j = 1, .., n
. (5.23)

The case µ = � is the one we discussed in our overview: one can check that putting the single
box Young diagram, this agrees with (2.10) for θ = 1.

Note that an eighth order super Casimir in N = 4 SYM considered in [70] corresponds
to (5.19) withm=n=2 and µ=[2, 2] for which Pµ(zI)=(x1−y1)(x1−y2)(x2−y1)(x2−y2). Higher
order Casimirs both in 1d CFTs (m=n=θ=1) and inN=4 SYM (m=n=2, θ=1) are considered
in [73].

5.2 Explicit formulae for the recursion

So far the recursion (5.16) is entirely combinatoric, written in terms of Young diagrams, and
our main concern has been to emphasize this property, that it depends only on objects that are
(m,n) independent. We will now make the discussion more concrete by considering explicit
formulae. Remarkably, there are different explicit forms that the recursion can take. The
difference is simply a preference for rows over columns when reading the Young diagrams, or
vice-versa, or even mixing rows and columns as is more natural in the supersymmetric (m,n)
case.
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Eigenvalue

Let us begin from h(θ)λ which in (5.3) we wrote as

h(θ)λ =
∑

i=1,2,..

λi(λi−2θ(i−1)−1) . (5.24)

It is simple to see that it admits an equivalent representation in which instead we take the
sum to run over columns,

h(θ)λ = −θ
∑

j=1,2,..

λ′j(λ
′
j − 1− 2

θ (j − 1)) = −θh(
1
θ
)

λ′ , (5.25)

or if λ is a typical (m,n) Young diagram (ie it has λm ≥ n, λn+1 ≤ n see (C.40)) then it can
be rewritten as a combination of these row and column formulae:

h(θ)λ =
m∑

i=1

λi(λi−2θ(i−1)−1)− θ
n∑

j=1

λ′j(λ
′
j − 1− 2

θ (j − 1))− h
(θ)
nm . (5.26)

where h
(θ)
nm = nm((n− 1)− θ(m− 1)). All these forms for the eigenvalue can be easily derived

from the following combinatoric formula

h(θ)λ = 2
∑

(i,j)∈λ

(
(j−1)− θ(i−1)

)
. (5.27)

where the eigenvalue is given as a sum over boxes in the Young tableau where each box is
understood to have row i column j. Then one obtains the equivalent formulae (5.3) or (5.25)
by simply performing the first sum in each of the following ways of writing the sum over
Young diagram boxes explicitly

∑

(i,j)∈λ
=

∑

i=1,2,..

λi∑

j=1

=
∑

j=1,2,..

λ′
i∑

i=1

=
m∑

i=1

λi∑

j=1

+
n∑

j=1

λ′
i∑

i=1

−
m∑

i=1

n∑

j=1

. (5.28)

with the last formula for typical (long) (m,n) Young diagrams only.

In the numerator of the recursion (5.16) we have the expression

(
1
2 (hµ−hν) + θα

) (
1
2(hµ−hν) + θβ

)
ν ∈ {λ−�} . (5.29)

Since ν is related to µ by subtracting a box in position (i, j), clearly from (5.27) we have
1
2(hµ − hν) = (j−1)− θ(i−1).
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Structure constants

Let us come to Cµ+�

�µ in (5.16). The corresponding combinatorial formula is well known and

can be found in [65]. It can be rearranged quite explicitly and we find28

Cµ+�ij

�µ = f (i)µ (θ) =

i−1∏

k=1

(θ(i−k+1)−1+µk−µi) (θ(i−k−1)+µk−µi)
(θ(i−k)−1+µk−µi) (θ(i−k)+µk−µi)

. (5.30)

where we are using the notation µ+�ij to mean that we add a box to row i and column j of
the Young tableau so that we have j = µi+1 and i = µ′j +1. The above formula is written in

terms of Young diagram row lengths µi. Alternatively, we might prefer a rewriting of Cµ+�ij

�µ

over columns.

To do so we define first, g(i)
µ , obtained by multiplying f (i)µ by the following normalisation

in terms of C symbols (defined more generally later in (7.9))

g(i)
µ (θ) ≡ Πµ(θ)

Πµ+�ij(θ)
f (i)µ (θ) (5.31)

Πκ(θ) =
C−
κ (θ; θ)

C−
κ (1; θ)

=

∏
(ij)∈κ

(
κi−j + θ(κ′j−i) + θ

)

∏
(ij)∈λ

(
κi−j + θ(κ′j−i) + 1

) . (5.32)

Note that this can be rewritten as an explicit function of the row lengths µi (i = 1, .., n)
only29

g(i)
µ (θ) =

µi − µi+1 + 1

µi − µi+1 + θ

n∏

k=i+1

(θ(k − i+ 1) + µi − µk)(θ(k − i) + µi − µk+1 + 1)

(θ(k − i+ 1) + µi − µk+1)(θ(k − i) + µi − µk + 1)

(5.33)

(with µn+1 defined to vanish).

The structure constant (5.30) then has an alternative writing in terms of column lengths

using g
(j)
µ′ as follows30

Cµ+�ij

�µ = f (i)µ (θ) = 1
θ g

(j)
µ′ (

1
θ ) , µ′j = i− 1 , µi = j − 1 . (5.34)

28See also [66]. We actually first derived this formula using computed algebra, by seeking a generalisation
of the formula for two-row polynomials, which can be derived with pencil and paper. Then, we confirmed its
expression by rewriting the combinatorial formula coming from the Pieri rule [29].

29To do this we use explicit formulae for C−
κ (w; θ)from [26],

C−
µ (θ; θ) =

∏µ′

1

k=1
(µk+θ(µ′

1
−k)+θ−1)!

(θ−1)!
∏

1≤k1<k2≤µ′

1

(µk1
−µk2

+θ(k2−k1))θ
C−

µ (1; θ) =

∏µ′

1

k=1(µk + θ(µ′
1 − k))!

∏

1≤k1<k2≤µ′

1

(µk1
−µk2

+θ(k2−k1)− (θ−1))θ
.

after which the majority of contributions to Πµ(θ)
/

Πµ+�ij
(θ) simplify in the ratio.

30A posteriori, f can also be written in terms of the A-type binomial coefficient, built out of the A-type
interpolation polynomials of Okounkov [67], which can be seen as the limit u = ∞ in (C.30). The duality
f ↔ g can be proven using the identification with the A-type binomial coefficient.
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where recall that (i, j) are the coordinates of �ij.

Equivalent forms of the recursion

Choosing all row-type formulae is the most natural from a bosonic CFT point of view, since
in a physical theory with conformal symmetry, we would be summing over Pµ with a finite
number of rows but an arbitrary number of columns such that λ ⊆ µ, in order to construct
Bγ,λ. With this choice then we use (5.24) and (5.30) to write the recursion (5.16) in terms of
row lengths explicitly as

(Tγ)
µ
λ =

∑
i (µi−1−θ(i−1−α)) (µi−1−θ(i−1−β)) f (i)µ−�i

(θ) (Tγ)
µ−�i
λ∑

i(µi − λi)(λi + µi + θγ − 2θ(i− 1)− 1)
(5.35)

where µ−�i := [µ1, .., µi−1, µi−1, µi+1, ...]. Note that f imposes that µi > µi+1 automatically.
In fact if it was the case that µi = µi−1 + 1 for some i, then second term in the denominator

of f
(i)
µ−�i

in (5.30) would vanish for k = i− 1.

If instead we choose all column-type explicit formulae then using (5.25) and (5.31) we
write the recursion (5.16) in terms of column lengths explicitly as

(Tγ)
µ
λ =

∑
j

(
µ′j−1−α− j−1

θ

)(
µ′j−1−β− j−1

θ

)
g
(j)
µ′−�j

(1θ )(Tγ)
(µ′−�j)′
λ

∑
j(λ

′
j − µ′j)(λ

′
j + µ′j − γ − 2

θ (j − 1)− 1)
(5.36)

where µ′−�j := [µ′1, .., µ
′
j−1, µ

′
j − 1, µ′j+1, ...].

Finally we could also split the sum
∑

ν∈{µ−�} in (5.16) into east and south part arbi-
trarily. The outcome for (Tγ)

µ
λ will remain unchanged. This is most natural for an (m,n)

supersymmetric theory and indeed is crucial if we wish to analytically continue consistently
with the (m,n) structure. We will discuss this supersymmetric splitting in the section 6.

5.3 Special solutions: the half-BPS superconformal block

There is a special case in which we can solve the recursion for all coefficients explicitly with
a particularly simple solution. It is the case corresponding to an empty diagram λ = [∅],
and therefore corresponding to a half-BPS superconformal block exchanged in a propagator
structure with γ propagators going from Op1Op2 to Op3Op4 . The solution is

(Tγ)
µ
[∅] =

C0
µ(θα; θ)C

0
µ(θβ; θ)

C0
µ(θγ; θ)

1

C−
µ (1; θ)

(5.37)
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where the combinatorial symbols are

C0
λ(w; θ) =

∏

(ij)∈λ
(j−1− θ(i−1) + w)

C−
λ (w; θ) =

∏

(ij)∈λ

(
λi−j + θ(λ′j−i) + w

)
. (5.38)

Let us verify that this solution indeed satisfies the recursion using the row-type recur-
sion (5.35). We will see that despite the final simplicity of the result, the recursion is solved
in a very non trivial way. Afterwards we will present a more direct argument based on the
fact that the Casimir annihilates the half-BPS superconformal block, therefore it can be split
into simpler independent hypergeometric equations studied by Yan in [68].

Consider the recursion (5.35) with λ = [∅]

(Tγ)
µ
[∅] =

∑
i (µi−1−θ(i−1−α)) (µi−1−θ(i−1−β)) f (i)µ−�i

(θ) (Tγ)
µ−�i

[∅](
hµ + θγ |µ|

) . (5.39)

Inserting the solution (5.37) the terms (µi−1−θ(i−1−α)) and C0
µ−�i

(θα; θ) combine and

simplify with the LHS C0
µ(θα; θ). Similarly for the terms with β. We are left with needing to

prove the non trivial statement

1 =
1(

hµ + θγ |µ|
)
∑

i

(
f
(i)
µ−�i

C−
µ (1; θ)

C−
µ−�i

(1; θ)

)
((µi − 1)− θ(i− 1) + θγ) . (5.40)

We can deal with C−
µ by using the explicit formulae of footnote 29 and find that

f
(i)
µ−�i

C−
µ (1; θ)

C−
µ−�i

(1; θ)
= (µi + θ(µ′1 − i))

∏

k 6=i

µi − µk + θ(k − i− 1)

µi − µk + θ(k − i)
. (5.41)

Proving the recursion is now equivalent to proving that

∑

i

(µi + θ(µ′1 − i))
∏

k 6=i

µi − µk + θ(k − i− 1)

µi − µk + θ(k − i)
= |µ| (5.42)

∑

i

(µi + θ(µ′1 − i))
∏

k 6=i

µi − µk + θ(k − i− 1)

µi − µk + θ(k − i)
(µi − θi) = 2

∑

(ij)∈µ
(j − 1

2)− θ(i− 1
2)

where the RHS corresponds to a decomposition of hµ + θγ. Note that even the first one of
these relations is quite non trivial, since the common denominator in the LHS has to cancel
out in the end, and this only happens after taking the sum. These two relations are proven
in a beautiful way in [69] by using the Lagrange Lemma for alphabets.

The superconformal block Bγ,[∅] itself is now obtained by summing up (Tγ)
µ
[∅] with super
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Jack polynomials. It takes the form of a multivariate 2F1 series,

Bγ,[∅] =

(∏
i x

θ
i∏

j yj

)γ
2 ∑

µ

C0
µ(θα; θ)C

0
µ(θβ; θ)

C0
µ(θγ; θ)

Pµ(z; θ)

C−
µ (1; θ)

. (5.43)

In the bosonic (m, 0) theory this is indeed equal to a well known multivariate hypergeometric
function [68].31 In particular, it is known to satisfy a set of m hypergeometric equations,
which in our notation take the form

z−1

I D
(θ,α,β,γ)
I −θ(m−1)(1−zI)+θ

∑

J 6=I

zI(1−zI)∂I−zJ(1−zJ )∂J
zI−zJ


Bγ,[∅] = 0 ; I = 1, . . . m

(5.44)
where DI is the same operator introduced in (5.7). The trick to recover our Casimir C is to
sum

∑
I zI × (5.44) and put together −(m− 1)+

∑
J 6=I

zI
zI−zJ

= +
∑ zJ

zI−zJ
.

Since h∅ + γ|∅| = 0, the half-BPS block is annihilated by the Casimir, and therefore the
system of equations (5.44) is equivalent to the original Casimir eigenvalue problem.

5.4 General features and non-trivial γ-dependence

The solution of the recursion for Tγ reveals many non trivial features. In order to systematise
the discussion, let us first show that the α and β dependence of (Tγ)

µ
λ always takes the

following form
(Tγ)

µ
λ = C0

µ/λ(θα; θ)C
0
µ/λ(θβ; θ)× (T rescaled

γ )µλ (5.45)

with (T rescaled
γ )µλ then independent of α, β. Here by definition C0

µ/λ ≡ C0
µ/C

0
λ, thus

32

C0
µ/λ(θα; θ)C

0
µ/λ(θβ; θ) =

∏

(ij)∈µ/λ

(j−1−θ(i−1−α))(j−1−θ(i−1−β)). (5.46)

The proof of (5.45) is immediate. In fact, the ratio of C0 satisfies the relation

C0
µ/λ(θw; θ) = (µi − 1− θ(i− 1− w))C0

µ−�i/λ
(θw; θ) (5.47)

and therefore in the row-type formulae (5.35) for the recursion, the α and β dependence drops.
This is indeed the same argument we saw at work in the half-BPS solution, around (5.39),
with λ = [∅]. Then, it follows from (5.45) that (T rescaled

γ )µλ satisfies a simpler recursion,

(T rescaled
γ )µλ =

∑
i f

(i)
µ−�i

(θ) (T rescaled
λ )µ−�i

λ∑
i(µi − λi)(λi + µi + θγ − 2θ(i− 1)− 1)

, (5.48)

and (T rescaled
γ )µλ is only a function of γ, θ and the Young diagrams µ and λ.

The recursion for (T rescaled
γ )µλ can be turned into column or mixed type formulae, exactly

31As discussed at the end of section 4.2 we believe this is also a certain Sn combination of Harish Chandra
contributions to the corresponding Heckman-Opdam hypergeometric.

32The C0
µ(w; θ) was defined in (5.38). Here we are giving the final result for C0

µ/λ(θα; θ)C
0
µ/λ(θβ; θ).
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as for (Tγ)
µ
λ itself, as we did in section 5.2. The C0 rescaling will change accordingly, see in

particular section D.2.

Given the various explicit formulae provided in the previous section 5.2, it is not difficult
to implement the recursion on a computer and solve it in many cases. Let us look at a couple
of examples to illustrate the general features:

(T rescaled
γ )

[5,3]
[3,1] =

162 + 222θ + 67γθ − 168θ2 + 109γθ2 + 7γ2θ2 + 24θ3 − 36γθ3 + 13γ2θ3

2(1 + θ)(3 + θ)2(6 + γθ)2(2− 2θ + γθ)2(4− θ + γθ)2
(5.49)

The dependence on γ in the denominator as a product of linear factors in γ is simple to
understand: it can only come from putting together all denominators encountered upon
solving the recursion, and these are all of the form (θγ − θN+ N) with integers coming from
Young diagrams. The numerator on the other hand is fairly complicated, degree two in γ and
degree three in θ. This degree depends on the Young diagrams. Another example shows this
more clearly,

(T rescaled
γ )

[6,5,3]
[3,2,1] ∼ + 21208 + 6(1861γ + 7012)θ +

(
1943γ2 + 26524γ − 56312

)
θ2

+
(
111γ3 + 5312γ2 − 17918γ + 11112

)
θ3

+
(
339γ3 − 965γ2 − 796γ + 2560

)
θ4

+
(
66γ3 − 410γ2 + 800γ − 480

)
θ5 . (5.50)

(we only display the complicated polynomial factor, and we omitted the various linear factors
of the form (θγ − θN+ N).)

The point is that guessing the γ dependence of (Tγ)
µ
λ, for arbitrary λ, µ, and θ, would

be quite challenging. However, as anticipated in the introduction, due to the relation with
Jacobi polynomials we will find in section 7.2 an alternative description for this complicated
factor as an interpolation polynomial.

6 Superconformal blocks (II): analytic continuation

We have understood in the previous section how to construct a superconformal block Bγ,λ

given a Young diagram λ for which e.g. its row lengths λi ∈ N with λi ≥ λi+1.

For physical applications in an interacting CFT however, non-protected operators ex-
changed in the OPE acquire an anomalous dimension and thus it is crucial to be able to
understand non-integer quantum numbers, at least for the dilation weight. Even though the
other quantum numbers remain integer in a unitary CFT, it is nevertheless also very useful
to consider analytically continuing these too (for example the spin, see [70] for example).

For general θ, we do not have explicit solutions for either Bγ,λ or (Tγ)
µ
λ to look at, in

order to discuss analytic continuation beyond Young diagrams. In fact, only the case θ = 1
has been solved for both Bγ,λ and (Tγ)

µ
λ in [9]. We will then have to look at the recursion.

The combinatorial form given in (5.16) is not immediately useful, since does not lend itself
to analytic continuation. However, from the explicit forms of the recursion (5.35),(5.36) we
can obtain analytic results for the coefficients Tγ as rational functions of the row lengths λi
or column lengths λ′i respectively.

43



The logic will be quite simple. For the row type recursion (5.35) we will think of (Tγ)
µ
λ as

a function of λ ∈ C, with µ given by µ = λ+~n with ni ∈ Z+. The recursion takes µ and goes
back to λ by negative integer shifts, regardless of whether the λi are integer or not. In this
framework, the various representations of the recursion, i.e. whether row-type or vertical-type
or a mixed one, lead to different ways of analytically continuing the (Tγ)

µ
λ in the variables

describing the Young diagrams. Crucially we know that all these analytic continuations of
Tγ must coincide in the cases when λ and µ return to values such that they represent a valid
Young diagrams.

6.1 Row-type representation on the east

The row-type representation of the recursion on the east, which we derived in the previous
section using Young diagrams technology, is given in (5.35). This has the following (m, 0)
analytic continuation in the row lengths λi,

(Tγ)
µ
λ =

∑m
i=1 (µi−1−θ(i−1−α)) (µi−1−θ(i−1−β)) f (i)µ−ei

(θ) (Tγ)
µ−ei
λ∑m

i=1(µi − λi)(λi + µi + θγ − 2θ(i− 1)− 1)
(6.1)

λi ∈ C, µi = λi + ni, ni ∈ Z+, (Tγ)
λ
λ = 1, (Tγ)

µ
λ = 0 if ni < 0

Here µ and λ are parameters such that µi − λi = ni is a positive integer, but λi ∈ C and ei
is the usual basis vector with a 1 in position i and zeroes elsewhere. As we discussed below
(5.35) this recursion automatically gives (Tγ)

µ
λ = 0 if µi = µi−1+1. Thus if λ corresponds to a

Young diagram, meaning that λi−λi−1 ∈ Z+, then (Tγ)
µ
λ = 0 unless µ also corresponds to the

row lengths of a Young diagram. This is a key point which allows the analytic continuation
away from the Young diagram: if this was not the case, then the solution to the above
recursion would not recover the correct solution when λ becomes a Young diagram. The
expression for f (i)µ (θ) is given in (5.30) and is rational in λi and θ. For fixed, integer µi − λi,
the recursion (6.1) has a solution which is manifestly rational in λi, θ, α, β, γ. We can thus
view the solution of (6.1) as an analytic continuation of the solution of (5.35) which is valid
only when λi are the row lengths of Young diagrams.

An important bonus of the solution of (6.1) is the manifest shift symmetry (2.20) (for any
value of θ)

λi → λi−θτ ′ , µi → µi − θτ ′ , γ → γ + 2τ ′ , i = 1, . . . m . (6.2)

We can see this invariance immediately. First, the combinations (µi + θα), (µi + θβ), are
manifestly invariant, since both α and β have the form

γ−pij
2 . Then, the combination of

eigenvalues appearing in the denominator, i.e. (µi − λi)(λi + µi + θγ − 2θ(i− 1)− 1), is also
manifestly invariant. Finally, fµ−ei only depends on differences µi − µj and so is invariant.

The simplest analytic continuation we can think of is the (1, 0) solution given in section
4.1, which we repeat here for convenience,

(Tγ)
[µ]
[λ]

=
(λ+ θα)µ−λ(λ+ θβ)µ−λ

(µ−λ)!(2λ+ θγ)µ−λ
. (6.3)

We see that indeed, for fixed integer µ − λ this is a rational function of λ, θ, α, β, γ. (Of
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course, having an explicit solution we can now also see how to analytically continue in µ if
we desired, just by changing the Pochhammers to Gamma functions.)

Summarising, we have shown that defining (Tγ)
µ
λ via (6.1) produces a rational (and hence)

analytic function of λ, θ, α, β, γ, which is also invariant under the shift symmetry (6.2).

6.2 Column-type representation on the south

An alternative analytic continuation of (Tγ)
µ
λ can be obtained by viewing the Young diagram

as function of the column lengths λ′j, rather than the row lengths λi. The column-type
representation of the recursion on the south was derived in (5.36). It has the following (0, n)
analytic continuation,

(Tγ)
µ
λ =

∑n
j=1

(
µ′j−1−α− j−1

θ

)(
µ′j−1−β− j−1

θ

)
g
(j)
µ′−ej

(1θ )(Tγ)
(µ′−ej)

′

λ
∑n

j=1(λ
′
j − µ′j)(λ

′
j + µ′j − γ − 2

θ (j − 1)− 1)
(6.4)

λ′j ∈ C, µ′j = λ′j + n′j, n′j ∈ Z+, (Tγ)
λ
λ = 1, (Tγ)

µ
λ = 0 if n′j < 0

where the explicit formula for g was given already in (5.33) Similarly to the recursion on the
east, for fixed integer µ′j − λ′j, the solution is clearly a rational function of λ′j , θ, α, β, γ.

The simplest solution of (6.4) we can look at is the (0, 1) solution studied in section 4.1.
Namely

(Tγ)
[1µ

′
]

[1λ′ ]
= (−1)µ

′−λ′ (λ′−α)µ′−λ′(λ′−β)µ′−λ′

(µ′ − λ′)!(2λ′−γ)µ′−λ′

(λ′ + 1)µ′−λ′

(λ′ + 1
θ )µ′−λ′

. (6.5)

Comparing with the row-type solution from (6.1) there is one small difference, which can
appreciated also in (6.5). This (Tγ)

µ
λ is not quite invariant under the n = 1 case of the shift

symmetry (6.2)

λ′j → λ′j+τ
′ , µ′j → µ′j+τ

′ , γ → γ + 2τ ′ , j = 1, . . . n . (6.6)

The problem is a simple normalisation issue, due to the fact that we are expanding in BC0,n

super Jack polynomials rather than directly in BCn Jack polynomials. These two are essen-
tially equal but have a different normalisation, (e.g see (C.47) with m = 0)

P
(n)
λ′ (y; 1θ ) = (−1)|λ|Πλ(θ)P

(0,n)
λ (|y; θ) . (6.7)

Thus the combination of superJack × coefficient Tγ does satisfy shift invariance.

6.3 Supersymmetric representation

We now come to a form of the recursion which gives analytic (indeed rational) results in the
variables λi, λ

′
j , the first m row lengths and first n column lengths, for long (or typical, the

see discussion around (C.40) for these meanings) (m,n) Young diagrams λ. This is suited for
supersymmetric theory described by a (m,n) theory. It includes the previous cases as special
cases by taking m = 0 or n = 0.
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We first give a version of the recursion (5.16) for long reps λ in the (m,n) theory, which
gives rational results in λi, λ

′
j . To do this we split the RHS of the recursion into south and

east components and define it as follows,

(
hµ−hλ+θγ (|µ|−|λ|)

)
(Tγ)

µ
λ =

m∑

i=1

(µi−1−θ(i−1−α)) (µi−1−θ(i−1−β)) f (i)µ−ei
(θ)(Tγ)

µ−ei
λ +

+θ

n∑

j=1

(
µ′j−1−α− j−1

θ

)(
µ′j−1−β− j−1

θ

)
g
(j)
µ′−ej

(1θ )(Tγ)
(µ′−ej)

′

λ (6.8)

λi, λ
′
j ∈ C, µ′j = λ′j + n′j, µi = λi + ni ni, n

′
j ∈ Z+, (Tγ)

λ
λ = 1, (Tγ)

µ
λ = 0 if ni, n

′
j < 0

where (5.26) is used for hµ, hλ in the above. As in previous cases, for given integers ni, n
′
j

this recursion yields a solution which is manifestly rational in λi, λ
′
j , θ, α, β, γ and therefore

gives a supersymmetric-type analytic continuation in the variables λi, λ
′
j of Tγ .

For example the explicit solution for the (1, 1) theory (relevant for 1d and 2d supersym-
metric theories) is

(Tγ)
µ
λ =

(µ′1 − 1)!(1θ )λ′
1−1

(λ′1 − 1)!(1θ )µ′
1−1

θ2λ
′
1−2µ′

1 C0
µ/λ(θα; θ)C

0
µ/λ(θβ; θ)

(µ′1 − λ′1)!(µ1 − λ1)!
×

(λ1 + θλ′1 − θ)(µ1 + θµ′1 − 1) + (1− θ)(λ1 − µ1)
(θγ+λ1−θµ′

1)
(θγ+λ1−θλ′

1)

(λ1 + θλ′1 − 1)(µ1 + θµ′1 − θ)(2λ1 + θγ)µ1−λ1(2λ
′
1 − γ)µ′

1−λ′
1
(−1)µ

′
1−λ′

1
(6.9)

where µ = [µ1, 1
µ′
1−1] and λ = [λ1, 1

λ′
1−1]. Note that this (1, 1) coefficient reduces to the (1, 0)

case for µ′1 = λ′1 = 1 and to the (0, 1) case for µ1 = λ1 = 1.

In appendix D we discuss in detail the shift symmetry of this form of the recursion relation
and various other features.

We conclude with some comments.

Note that the recursion has been explicitly solved analytically for arbitrary λi and/or λ
′
j

in only a few cases: using both row and column variables, the determinantal formula of [9]
for θ = 1, which we repeat in appendix E.3, and the (1, 1) solution presented above, with
arbitrary θ. In this latter case the solution is precisely a formula depending on one row length
and one column height.

In the next section 7 we will give a completely different description of the coefficients Tγ
and T−1

γ , closely related to the BC binomial formula of Okounkov [33] involving evaluating
BC interpolation polynomials at partitions arising via the identification between (0, n) blocks
and BCn Jacobi polynomials. It is tempting to speculate that this form should also have a
supersymmetric representation, more suited for a (m,n) theory and indeed we will find that
the super interpolation polynomials of Sergeev and Veselov [38] do the job, but only for T−1

γ

not Tγ itself.
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7 SCFT perspective on the binomial coefficient

In previous sections we defined superconformal blocks as an expansion in super Jack polyno-
mials and solved for the coefficients of this expansion, Tγ , by setting up a recursion relation.
As we pointed out in the overview, see section 2.3, the blocks can be viewed as supersym-
metric generalisations of the BC Jacobi polynomials defined in [31,41], which we called dual
super Jacobi functions. Then, the claim about stability of superconformal blocks implies that
the coefficients Tγ are directly related to the coefficients in the Jack expansion of BCN Jacobi
polynomials, (S(N). In our notation the explicit relation reads

(Tγ)
µ
λ =

(−)|µ|Πµ(θ)

(−)|λ|Πλ(θ)
× (S

(N)
1
θ
; p±

)
βN\λ′

βN\µ′ . (7.1)

Specifically, the starting relation is the one between (0, N) blocks and BCN Jacobi polyno-
mials (see (2.32)), and therefore (7.1) is valid for any integer N ≥ µ1. Here we will use N
rather than n to avoid confusion with the (m,n) labels of the superblock. Indeed, as em-
phasised in previous sections, we know that the (Tγ)

µ
λ on the LHS of (7.1) do not depend

on the particular (m,n) theory (when λ is a strict Young diagram), and therefore do not
depend on the number of variables of the superblock. The crucial point about (7.1) is that
the coefficients S can be given explicitly in terms of the BCN interpolation polynomials P ∗

of Okounkov [33,40].33 evaluated at partitions. These polynomials are an important class of
symmetric polynomials in N variables, whose definitions and properties are given explicitly
below and in the appendices.

To begin appreciating the subtle aspects of (7.1) it is useful to picture how the Young
diagrams involved change from LHS to RHS. On the LHS we have λ, µ and on the RHS we
have their transposed complements in βN

β

N

λ

βN\λ′

(7.2)

where βN\λ′ is to be read along the columns, and bottom-up w.r.t. λ.

At this point the relation (7.1) is quite intriguing because superficially the LHS appears
to have many properties that are not manifest for the binomial coefficient on the RHS :

1. We know from the recursion that we can obtain the LHS as an explicit rational function
of γ, whereas the RHS depends on γ only through the integer β ≡ min

(
1
2 (γ−p12), 12(γ−p43)

)
.

33In these refs, the more general Koornwinder polynomials are discussed, but the coefficients we are interested
in are obtained by taking a limit on the Koornwinder polynomials as explained in [31,41]
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2. To obtain superblocks we sum over Young diagrams with arbitrarily large width µ1. On
the RHS this translates to arbitrarily large N and so we need interpolating polynomials
with arbitrarily large number of variables which is very inefficient.

3. Moreover, the LHS depends mostly on the skew diagram µ/λ (indeed the recursion of
the previous sections is solved along this skew diagram), the RHS instead depends on
the increasing large (as N gets large, and also when β is large) Young diagrams βN\λ′
and βN\µ′. Again this looks very inefficient.

From the above considerations we expect the binomial coefficient, S(N), to have various non-
trivial hidden properties, in order to recover those of (Tγ)

µ
λ.

Our plan is thus the following: After giving a detailed definition of the binomial coeffi-
cient in terms of interpolating polynomials we will examine the above properties from this
perspective. In the process we will obtain a rewriting of the binomial coefficient which deals
with the first two of these points. Furthermore we will find that the inverse coefficient (T−1

γ )µλ
i.e. the coefficient in the expansion of a super Jack polynomial in terms of blocks, has a form
which deals with all three points.

7.1 The binomial coefficient

Recall (2.25), we wrote the coefficients of a BCN Jacobi polynomial, expanded in terms of
Jack polynomials,

Jλ(y1, . . . , yN ; θ, p−, p+) =
∑

µ⊆λ

(S
(N)
θ,p−,p+

)µλ Pµ(y; θ) . (7.3)

Now these binomial coefficients S(N) have been well studied and are known to be given, up
to normalisations, by BCN interpolation polynomials P ∗

µ evaluated on λ. The interpolation
polynomials themselves are symmetric polynomials, depending on a single parameter u, and
are uniquely defined [32,33] by the property that they vanish when evaluated on a partition
λ which is strictly contained in µ, i.e.

P ∗
µ(λ; θ, u) = 0 if λ ⊂ µ . (7.4)

Quite remarkably, the interpolation polynomials admit a combinatorial definition which gen-
eralises the one of Jack polynomials in a simple way. See appendix C.3.

Now for some normalisation of the Jacobi polynomial, say Ĵλ(y) = Jλ(y)/Nλ, and some

normalisation of the Jack polynomials, say P̂µ(y) = Pµ(y)/Mµ, the corresponding binomial

coefficients in the expansion of Ĵλ in the P̂µ really are simply interpolating polynomials with
the variables taking the values of the Young diagram λ

Ĵλ(y1, . . . , yN ; θ,A1, A2) =
∑

µ⊆λ

P ∗(N)
µ (λ; A1+A2+1

2 ) P̂µ(y; θ) . (7.5)

Returning to the standard choice of normalisations (such that the coefficient of Pλ in the
expansion (2.25) is 1 and that Pµ(0) = δµ,∅) we can see that the normalisation of S will have
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the more complicated looking form:

(S
(N)

θ, ~A
)µλ =

Jλ(0; θ,A1, A2)

Jµ(0; θ,A1, A2)

P ∗(N)
µ (λ; θ, u)

P ∗(N)
µ (µ; θ, u)

∣∣∣∣∣
u=

A1+A2+1
2

. (7.6)

However, the only non trivial part of (7.6) is still P ∗(N)
µ (λ; θ, u)! The remaining objects

entering this formula are explicitly known formulae which are all products of linear factors in
the parameters

P ∗(N)
µ (µ; θ, u) = C+

µ (2u−1+2θN ; θ)C−
µ (1; θ) (7.7)

J (N)
λ (0; θ,A1, A2) =

(−)|λ| C0
λ(A1+1+θ(N − 1); θ)C0

λ(θN ; θ)

P ∗
λ (λ; θ, u)Πλ(θ)

∣∣∣∣∣
u=

A1+A2+1
2

, (7.8)

where the combinatorial symbols C0,± are

C0
λ(w; θ) =

∏

(ij)∈λ
(j−1− θ(i−1) + w)

C−
λ (w; θ) =

∏

(ij)∈λ

(
λi−j + θ(λ′j−i) + w

)

C+
λ (w; θ) =

∏

(i,j)∈λ
(λi + j − θ(λ′j + i) +w), (7.9)

and
Πλ(θ) ≡ C−

λ (θ; θ)
/
C−
λ (1; θ) ; Πλ(

1
θ ) = 1

/
Πλ′(θ). (7.10)

Although these evaluation formulae may look complicated at first sight, they consist simply
of products of linear factors. For later use we will sometimes use the notation C0

λ(A,B; θ) =

C0
λ(A; θ)C

0
λ(B; θ) and and C0

µ/λ ≡ C0
µ/C

0
λ whenever λ ⊆ µ.

Putting the above definitions in we arrive at the expression for the binomial coefficient

(
S
(N)

θ, ~A

)µ
λ
= (−)|λ|−|µ|Πµ(θ)

Πλ(θ)
C0
λ/µ(A1+1+θ(N−1), θN ; θ)×

P ∗(N)
µ (λ; θ, u)

P ∗(N)
λ (λ; θ, u)

∣∣∣∣∣
u=

A1+A2+1
2

.

(7.11)
Note that the P ∗ in the denominator now involves P ∗

λ .

7.2 Binomial representation of the Jack→Block matrix

From this expression (7.11) we can obtain an expression for Tγ in terms of interpolation
polynomials via (7.1). Manipulating this with the help of some identities for interpolation
polynomials of Rains [32] (the details will be given shortly), we obtain:

(Tγ)
µ
λ = (N )µλ ×

P
∗(M)

NM \µ(N
M \λ; θ, u)

P
∗(M)

NM \λ(N
M \λ; θ, u)

∣∣∣∣∣
u=

1
2−θ

γ
2−N

. (7.12)
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The normalisation is

(N )µλ = C0
µ/λ (θα, θβ; θ)×

(−)|µ|Πµ(θ)

(−)|λ|Πλ(θ)

C0
µ/λ(1+θ(M − 1); θ)

C0
µ/λ

(Mθ; θ)
(7.13)

where α, β are as defined in (D.2), and the symbols Π and C0 are given in (7.9).

Crucially the whole expression is independent of M,N as long as the rectangle NM con-
tains the Young diagram µ (which in turn contains λ). For practical computations we would
always choose the minimal case M = µ′1 and N = µ1.

Note that the manipulations we performed have produced a formula which solves the
first two problems listed on page 47. Firstly, the non factorisable γ dependence of Tγ now
appears entirely in the parameter of P ∗

NM \µ(N
M \λ; θ, u), and can thus be continued to

arbitrary non-integer values. This polynomial is precisely the complicated polynomial in γ in
(Tγ)

µ
λ discussed in section 5.4. Secondly, when the Young diagrams λ and µ are arbitrarily

wide with limited height, i.e. less than or equal to β for superblocks, the dimension of the
interpolating polynomials M is limited (since we can choose M = β for example) and does
not grow indefinitely as for the original formula.

Finally, note that the bosonic (m, 0) case of the shift symmetry (D.1) is manifest in this
formula: choosing N = µ1, we see that γ only appears through the combination µ1 + θ γ2 and
the row lengths λi, µi only appear as differences with µ1 via µM1 \λ and µM1 \µ all of which
leave the shift invariant.

Proof of (7.12)

To show that (7.1) is equivalent to (7.12) we will need two formulae which can both be
found in [32], by taking the appropriate classical limits. The first relates BCN interpolation
polynomials with a Young diagram κ to one with a Young diagram with additional ν full (ie
height N) columns

P
∗(N)

κ+νN
(w1 . . . wN ; θ, s) =

N∏

i=1

ν∏

j=1

(w2
i − (s+ j − 1)2) P ∗(N)

κ (w1 . . . wN ; θ, s+ ν) . (7.14)

The second relation is an identity between a BCN interpolation polynomial with Young dia-
gram µ evaluated on a Young diagram κ and a BCM interpolation polynomial with transposed
Young diagram µ′ evaluated on the transposed Young diagram κ′. Here M,N can be arbi-
trary (this freedom to choose M,N in fact arises from the previous relation) as long as they
are big enough to contain the relevant Young diagrams, so M ≥ µ′1 and N ≥ µ1. It reads

P ∗(N)
µ (κ; θ, u)

P ∗(N)
µ (µ; θ, u)

=
P

∗(M)
µ′ (κ′; 1θ , u

′)

P
∗(M)
µ′ (µ′; 1θ , u

′)
(7.15)

where θu′ + (M − 1
2) = −u− θ(N − 1

2) .
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We can now use (7.14) to remove the explicit β dependence in the Young diagram of the
non-trivial P ∗ term in (7.1) with (7.11). Taking ν =M − β positive we find

P
∗(N)

βN\µ′(β
N\λ′; θ−1, 12(p++p−+1)) = P

∗(N)

MN\µ′(M
N\λ′; θ−1, 12(γ + 1)−M)×N1 (7.16)

where we recalled the relation between β, γ, p± in (2.31) to get this. Note however that this
equation is true for both ν positive or negative and indeed is valid for any M ≥ µ1. The
normalisation N1 is given in terms of the known evaluation formula (7.7) for P ∗

µ(µ) as

N1 =
P

∗(N)

βN\λ′(β
N\λ′; 1θ , 12(p++p−+1))

P
∗(N)

MN\λ′(MN\λ′; 1θ , 12(γ + 1)−M)
(7.17)

Next we use the relation (7.15) to transpose the Young diagrams. Thus obtaining

P
∗(N)

MN\µ′(M
N\λ′; 1

θ ,
1
2(γ+1)−M) = P

∗(M)

NM\µ(N
M\λ; θ, 12(1−γθ)−N)×N2 , (7.18)

with the normalisation N2 also given in terms of explicitly known formulae as

N2 =
P

∗(N)

MN\µ′(M
N\µ′; 1

θ ,
1
2 (γ+1)−M)

P
∗(M)

NM\µ(N
M\µ; θ, 12(1−γθ)−N)

. (7.19)

So inserting these into the formula for Tγ (7.1) using the definition of the binomial coeffi-
cient (7.6) we obtain (7.12) with the normalisation:

(N )µλ =
(−)|µ|Πµ(θ)

(−)|λ|Πλ(θ)
×
JβN\λ′(0; 1θ , p

−, p+)

JβN\µ′(0; 1θ , p
−, p+)

×N1N2 ×
P

∗(M)

NM \λ(N
M \λ; θ, 12(1− γθ)−N)

P
∗(N)

βN\µ′(βN\µ′; 1θ , 12(p++p−+1)))
.

(7.20)

This normalisation, despite its complicated appearance, is just made of known linear factors.
Moreover, it dramatically simplifies!! We know this in advance because it is clear from the
recursion for Tγ that only the γ dependence is non factorisable and complicated. In particular
all factors of C+ occurring in the evaluation formulae for (7.7) appear in ratios with transposed
Young diagrams and appropriate parameters such that they cancel using the relations

C0
µ(x; θ) = (−θ)|µ| C0

µ′(−x
θ ;

1
θ ) (7.21)

C−
µ (x; θ) = (+θ)|µ| C−

µ′(+
x
θ ;

1
θ )

C+
µ (x; θ) = (−θ)|µ| C+

µ′(−x
θ ;

1
θ ) ,

together with the identities

C0
NM\µ(x; θ)

C0
NM (x; θ)

=
(−)|µ|

C0
µ(1−N + θ(M−1)− x; θ)

, (7.22)
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and

ΠNM\µ(θ)ΠNβ\λ(θ)

ΠNM\λ(θ)ΠNβ\µ(θ)
=

C0
µ/λ (βθ; θ)

C0
µ/λ

(Mθ; θ)
×

C0
µ/λ(1+θ(M − 1); θ)

C0
µ/λ

(1+θ(β − 1); θ)
(7.23)

The remaining products of linear factors give the much simpler expression quoted in (7.13).

Comparing the recursion formula with the binomial coefficient

The binomial formula for Tγ in (7.12) can be tested, on a computer, against the recursion
of section 5, very much exhaustively. It can also be tested analytically in all known cases
in which the recursion has been solved explicitly. These are: rank-one (1, 0) and (0, 1) cases
for any θ; rank-two (2, 0) for any θ and finally (m,n) for θ = 1. We explicitly check all of
them in appendix E, where we refer the reader for a detailed discussion. The computation is
instructive since, as we pointed out in various occasions, the interpolation polynomials and
the recursion are based on two very different combinatorics, therefore there will be many non
trivial operations involved in order for the two to agree.

7.3 Inverse Jack→Block matrix and complementation

We now have two completely different methods for computing the Jack→Block matrix Tγ ,
via the binomial formula (7.12) in terms of interpolation polynomials or via the recursion
of section 5. The recursion has the advantage that in order to compute (Tγ)

µ
λ, we only run

over Young diagrams in between µ/λ, and therefore we use the minimum number of steps.
Moreover, in the super case the steps respect the (m,n) hook structure of the Young diagrams.
This structure is broken in the binomial formula (7.12) because we take the complement Young
diagrams NM \λ. For physical applications, where m,n are small, this is not efficient because
the diagrams generically will have a slim hook structure, but in order to compute the P ∗ we
would need to consider the red diagram in the following picture,

λ µ

M

N

m

n

NM \µ
(7.24)

which can become quite ‘fat’, compared to the skew shape µ/λ.
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In a number of applications, (T−1
γ ), the inverse of the Jack→Block matrix, shows up and

plays an important role. This matrix is such that

Pλ(z) =
∑

µ:λ⊆µ

(T−1
γ )µλ Fγ,µ(z) (7.25)

where as usual we understand the dependence on θ, p12, p43 in Fγ,µ. Note that when m > 0
the Jack polynomials is represented as an infinite sum. We will now see that the inverse of
the Jack→Block matrix, the Block→Jack matrix, has a very nice interpretation in terms of
interpolation polynomials, and avoids the above mentioned problems with complementation.

An illuminating way of obtaining the Block→Jack matrix is to apply the Casimir (5.15)
and obtain a recursion very similar to the recursions for Tγ , see (5.18). By carefully examining
and comparing the two recursions (5.16) and (5.18), in particular the denominator term in
each, one can deduce that there is a direct relation between T−1

γ and Tγ̃ with complemented
Young diagrams. This complementation then accounts for the difference that in (5.16) we
sum over Young diagrams with one subtracted box, whereas in (5.18) we sum over Young
diagrams with one added box. The precise relation is then

(
T−1
γ

)µ
λ
(θ, p12, p43) =

C0
(NM\λ)/(NM \µ)(Mθ; θ)

C0
(NM\λ)/(NM \µ)(1 + θ(M − 1); θ)

×
ΠNM\µ(θ)

ΠNM\λ(θ)
(Tγ̃)

NM\µ
NM\λ (θ,−p12,−p43)

(7.26)

where
γ̃ = −γ + 2(M − 1)− 2

θ (N − 1) . (7.27)

This identity is valid for any γ, p12, p43 and N ≥ µ1, M ≥ µ′1. The intuition behind (7.26)
is that µ/λ and (NM\λ)/(NM\µ) represent the same skew diagram, seen from different
orientations. Then, the map γ → γ̃ is the only real non trivial transformation in going from
left to right in (7.26), since the γ dependence is the non factorisable one. Analyticity in γ of
Tγ is also crucial, since γ might be an integer but γ̃ is certainly not. The factors of C0 can be
eventually rewritten/simplified by using (7.22)-(7.23).34 The form given above is useful for
the computation that follows.

Now notice that the binomial formula for the Jack→Block matrix, Tγ (7.12) involves
complemented Young diagrams, as does the RHS formula (7.26) for T−1

γ in terms of Tγ .
We thus conclude that the inverse matrix T−1

γ is very naturally computed by a binomial
coefficient, given by interpolation polynomials directly in µ and λ! In fact, by using (7.12)
on the RHS of (7.26), a number of simplifications take place,35 and the final formula is very

34For example, the RHS can be transposed by using

(T−θγ)
µ′

λ′ (
1
θ
,−θp12,−θp43) =

(−)|λ|Πλ(θ)

(−)|µ|Πµ(θ)
(Tγ)

µ
λ(θ, p12, p43)

which follows from C(θ,a,b,c)(x|y) = −θC( 1

θ
,−aθ,−bθ,−cθ)(y|x), and properties of the (super) Jack polynomials

under transposition.
35Upon writing (Tγ̃)

NM \µ

NM \λ
(θ,−p12,−p43) note that C0

µ/λ (θα, θβ; θ) is recovered by using (7.22).
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clean and reads:

(T−1
γ )µλ =

(−)|µ|

(−)|λ|
C0
µ/λ (θα, θβ; θ)

P ∗(M)
λ (µ; θ, v)

P ∗(M)
µ (µ; θ, v)

∣∣∣∣∣
v=−1

2+θ
γ
2−θ(M−1)

(7.28)

where P ∗
λ are BCM interpolation polynomials with any M ≥ µ′1 and α, β, as always, given

by (D.2). Note, the formula above is independent of M with the minimal choice M = µ′1.
One can also deduce this relation from formulae in Rains [32], together with the identification
(7.12), where it is seen that both the binomial coefficient and its inverse are given by inter-
polation polynomials with complemented Young diagrams (see [32] (4.1),(4.2),(4.22),(4.23)).
Observe that this expression for T−1

γ is very similar to the expression for the binomial coeffi-
cients S written in (7.11). We will make use of this observation when examining the Cauchy
identity in the next section.

The nice feature of (7.28) is that the Young diagrams labelling the interpolation polyno-
mials are now λ and µ rather than their complements. As a result, computing T−1

γ by using
the binomial coefficient is also quite efficient. Finally, the evaluation of the interpolation
polynomial in the numerator, P ∗

λ (µ; θ, v), is again the only term not involving products of
linear factors, and depends non trivially on γ.

Even though (7.28) has nice properties, it still has the inconvenience that the number
of variables in the interpolation polynomials grows with M . Therefore, if we are considering
blocks with large β, since µ1 ≤ β andM ≥ µ′1, withM = µ′1 being the minimal choice, we will
will have to consider interpolation polynomials with fixed but large number of variables. In
fact, (7.28) is still a bosonic formula, which reads the Young diagram only by rows, whereas
in the super block the typical Young diagram is a (m,n) hook. We can then ask if there
is an interpolation polynomial type formula which respects the (m,n) structure. Nicely
enough, this problem has a simple solution which is suggested by the independence of the
dimension of the interpolation polynomials, M , of the expression T−1 (7.28). This stability
property immediately suggests that one might be able to replace the bosonic interpolation
polynomials with super-interpolation polynomials, where the latter have a natural hook-type
parametrisation of their variables.

Sergeev and Veselov introduced the BCM |N super interpolation polynomials in [38] that
we need. They first modified the free parameter on which the interpolation polynomials
depend, to h = v + θM and defined the modified interpolation polynomial P̃ ∗(M)

λ as

P̃ ∗(M)
λ (x; θ, h) := P ∗(M)

λ (x; θ, h−θM) . (7.29)

They then showed that these modified IPs have a natural supersymmetric generalisation, de-
noted by P̃ ∗(M |N)

λ (x|y; θ, h), where taking N = 0 returns the bosonic interpolation polynomial

P̃ ∗(M)
λ (x; θ, h) = P̃ ∗(M |0)

λ (x| ; θ, h) . (7.30)

We spell out the conventions [38] in appendix C.7.

In [38] these super polynomials were used to obtain super binomial coefficients, i.e. the
coefficients of the expansion of super Jacobi polynomials in terms of super Jacks. We will
return to this point in the next section. Here we notice that stability of T−1

γ in (7.28) gives
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further insight into these objects. Indeed, we understand from stability that the ratio of
interpolation polynomials in (7.28) is independent of M ,

P̃ ∗(M)
λ (µ; θ, h)

P̃ ∗(M)
µ (µ; θ, h)

=
P̃ ∗(M)
λ (µ; θ, h)

P̃ ∗(M)
µ (µ; θ, h)

(7.31)

for any M,M ≥ µ′1. This in turn suggests that one can further replace this ratio with the
appropriate ratio of super interpolation polynomials evaluated on Young diagrams. Namely,

P̃ ∗(M)
λ (µ; θ, h)

P̃ ∗(M)
µ (µ; θ, h)

=
P̃ ∗(M |N)
λ (µe|µs; θ, h)
P̃ ∗(M |N)
µ (µe|µs; θ, h)

. (7.32)

where µs = [µ′1, .., µ
′
N ] and µe ≡ µ/µ′s = [(µ1−N)+, .., (µM−N)+] with (x)+ ≡ max(x, 0).

An example illustrating the decomposition of µ into µs and µe relevant here is the follow-
ing,

µ = [10, 7, 3, 3, 2, 2]

µs = [6, 6, 4, 2, 2]

µe = [5, 2, 0]

µ′s

µe

N = 5

M = 3

(7.33)

We have checked extensively that (7.32) equality is true.

Putting the above reasoning together, we conclude that the inverse block coefficients can
be written in terms of super-interpolation polynomials as

(T−1
γ )µλ =

(−)|µ|

(−)|λ|
C0
µ/λ (θα, θβ; θ)

P̃ ∗(M |N)
λ (µe|µs; θ, v)
P̃ ∗(M |N)
µ (µe|µs; θ, v)

∣∣∣∣∣
v=−1

2+θ
γ
2+θ

, (7.34)

and this expression is independent of M,N .

Thus in the expansion of an (m,n) superblock we are free to take M = m and N = n,
and then we will only ever need to evaluate super interpolation polynomials in a fixed number
(m+ n) of variables.

An interesting application of (7.34) for the inverse matrix will involve a transformation
of the dual Cauchy identity. This is explained in the next section, and will lead to a formula
for decomposing any free theory diagram into superconformal blocks for any θ, therefore any
dimension.
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8 Generalised free theory from a Cauchy identity

The most straightforward application of the identification of superblocks with dual super Ja-
cobi functions consists in borrowing from the maths literature a Cauchy identity for Jacobi
polynomials, found by Mimachi [42], and re-interpreting it to yield a formula for every coef-
ficient in the superblock expansion of any generalised free theory in any theory of the type
described by this formalism (summarised in section 3.1). Inspired by this we also conjecture
the uplift of this Cauchy identity to a new dually supersymmetric Cauchy identity.

In the following we will have in mind the following picture,

λ µ

M,m

N,n

NM \µ

(8.1)

as in the previous section.

8.1 Super Cauchy identity

Let us consider eq. (4.2) of Mimachi [42], which gives a Cauchy identity involving BCn and
BCM Jacobi polynomials. Looking at that identity, we immediately see that out of the two
Jacobi polynomials entering the formula, one depends on a complemented Young diagram
Mn\λ′ and is more naturally written in terms of our dual Jacobi polynomial (2.23). Mimachi’s
Cauchy formula then reads

M∏

i

n∏

j

(1− yiy
′
j) =

∑

λ

(−1)|λ|J (M)
λ (y; θ, p̃−, p̃+)J̃ (n)

M,λ′(y
′; 1θ , p

−, p+) (8.2)

p̃− = θp− + θ − 1 ; p̃+ = θp+ + θ − 1 . (8.3)

Note that the sum on the RHS is automatically cut off, so that λ ⊆ nM . Indeed, the BCM

Jacobi polynomial, Jλ vanishes if λ has more than M rows and the BCn dual Jacobi J̃M,λ′

vanishes if λ′ has more than n rows. Also note that the LHS is manifestly stable in both M
and n: setting yM = 0 or yn = 0 yields the same formula with M →M−1 or n→ n−1. The
RHS is also manifestly stable in n since, as we know, the dual Jacobi’s J̃ are stable. However
the RHS is not manifestly stable in M . It depends on M both in the Jacobi J (M), which is
not stable, and in J̃M,λ′ . Remarkably these two M dependencies must precisely cancel each
other out! To understand how this is possible, in the next subsection we will re-derive (8.2)
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starting from the simpler and well known Cauchy identity involving Jack polynomials. The
derivation will then explain the stability property in N and also explain the appearance of
the modified parameters p̃±.

But first let us motivate various supersymmetric generalisations of this Jacobi Cauchy
identity which we will explicitly prove in the next section. Through stability, we know that
dual Jacobi polynomials have a natural uplift to dual super Jacobi functions. Thus we can

uplift J̃
(n)
M,λ′(y′) on the RHS of the previous formula (8.2) to (n,m) variables. Regarding the

LHS of (8.2), the eigenvalue interpretation of the variables in the super matrix formalism
for θ = 1, 2, 12 (see appendix A) provides intuition for the corresponding uplift. Namely, we
interpret the LHS as the product of determinants

∏
i det(1 − yiZ) where Z is the diagonal

matrix with eigenvalues y′j, and therefore we simply lift the matrix Z to the supermatrix
(see (A.1),(A.6),(A.11)).

This then leads to propose the following supersymmetric Jacobi Cauchy identity

M∏

i

∏n
j (1− yiy

′
j)∏m

k (1− yix′k)
θ
=
∑

λ

(−1)|λ|J (M)
λ (y; θ, p̃−, p̃+)J̃ (n|m)

M,λ′ (y
′|x′; 1θ , p

−, p+) , (8.4)

involving BCN Jacobi polynomials and BCn|m super dual Jacobi functions.

Now, the dual super Jacobi functions on the RHS of (8.4) are simply superblocks (2.30).
Thus, redefining variables this becomes

β∏

r=1

∏n
j=1(1− sryj)∏m
i=1(1− srxi)θ

=
∑

λ

J (β)
λ (s; θ, p̃−, p̃+) Πλ(θ)Fγ,λ(z; θ, p12, p43) , (8.5)

where M = β and therefore γ = 2β + p+ + p−, as usual. Upon setting sr=1,...,β to the values
0 or 1, the LHS of this formula can be interpreted as a diagram contributing to a generalised
free theory correlator in a (m,n, θ) SCFT as we show in section 8.3. The RHS then gives
the expansion in superconformal blocks of this diagram and we see that the coefficients in a
superblock decomposition of any generalised free theory diagram are simply bosonic Jacobi
polynomials J (β)

λ (s; θ, p̃−, p̃+) evaluated on 0s and 1s, (up to multiplication by an explicitly
known factor Πλ(θ)).

Indeed, if we now specialise back to m = 0, the coefficients of this expansion don’t change
and we get

β∏

r=1

n∏

j=1

(1− sryj) =
∑

λ

J (β)
λ (s; θ, p̃−, p̃+) Πλ(θ)Fγ,λ(|y; θ, p12, p43) . (8.6)

which is just Mimachi’s formula (8.2). The above is a formula involving only polynomials!
Nevertheless it gives the same information, the superblock coefficients i.e. J (β)

λ (s; θ, p̃−, p̃+)Πλ,
as (8.5), which instead contains the full (infinite series) superconformal blocks.

But before discussing this generalised free CFT interpretation of the Cauchy formula let
us try to first generalise the formula further. Having lifted the dual Jacobi polynomials to
supersymmetric functions, it is natural to also lift the Jacobi polynomials! We will do so
in two steps. By looking at (8.4), we first consider that BCM Jacobi polynomials have an

57



uplift to BCM |N super Jacobi polynomials, J (M |N)
λ (y|x) discussed below (7.29). Once we

disentangle the various pieces, we arrive at the doubly supersymmetric Cauchy identity:

∏M,n
i,j (1− yiy

′
j).
∏N,m

l,k (1− xlx
′
k)∏M,m

i,k (1− yix′k)
θ.
∏N,n

l,j (1− xly
′
j)

1
θ

= (8.7)

∑

λ

(−1)|λ|J (M |N)
λ (y|x; θ, p̃−, p̃+)J̃ (n|m)

M− 1
θ
N,λ′(y

′|x′; 1θ , p
−, p+)

which is therefore the master formula for all Cauchy identities previously discussed.

In the next section we will prove the supersymmetric Cauchy identities (8.4) and (8.7)
and in the process, illuminate the appearance of the parameters p̃± as well as explaining how
stability manifests in all parameters.

8.2 Proof of the super Cauchy identity

The idea of the proof is to start from analogous super Cauchy identities involving superJack
polynomials [71] and by using properties of the Jack→Block matrix and its inverse, derive
from them the super Jacobi Cauchy identities (8.4) and (8.7). We will first use formulae
involving interpolation polynomials, in order to have a direct connection with mathematics.
Then we will give a perspective based on our Jack→Block matrix T and its inverse T−1.

It is useful to begin with the internal case, namely derive (8.2), the Jacobi Cauchy identity
in Mimachi [42], from the Cauchy identity for Jack polynomials,

M∏

i=1

n∏

j=1

(1− yiy
′
j) =

∑

λ

(−)|λ|P (M)
λ (y; θ)P

(n)
λ′ (y′; 1θ ) . (8.8)

The rough idea is to change basis from Jacks to Jacobis and dual Jacobis, noting that the
change of basis matrices are inverses of each other.

So to convert this into (8.2) recall first the relevant definitions for S̃, S (2.28),

J (M)
µ =

∑

λ⊆µ

(S
(M)
θ,p−,p+

)λµ Pλ(y1, . . . , yM ; θ) (8.9)

J̃
(n)
β,λ =

∑

λ⊆µ

(
S̃β;θ,p−,p+

)µ
λ
Pµ(y1, . . . , yn; θ) ;

(
S̃β
)µ
λ
=
(
S(n)

)βn\µ
βn\λ . (8.10)

We will proceed by using the observation that the inverse of the dual Jacobi coefficient S̃−1
β ,

once written via interpolation polynomials is very similar to the binomial coefficient S for
Jacobi polynomials. Given the precise relation S ∼ S̃−1, we will use it in (8.8) to obtain the
desired identity (8.2).

Let us go into details. Continuing from (7.28), with the P̃ given in (7.29)-(7.31), and
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using (2.34), we find

(S̃−1
β; 1

θ
,p−,p+

)
µ′

λ′ =
Πλ(θ)

Πµ(θ)
C0
µ/λ (θα, θβ; θ)

P̃ ∗(M)
λ (µ; θ, v)

P̃ ∗(M)
µ (µ; θ, v)

∣∣∣∣∣
v=− 1

2
+θ(p

++p−

2
+1+β)

(8.11)

where on the RHS we are assuming the usual relations

α = max
(
1
2(γ−p12), 12(γ−p43)

)
, β = min

(
1
2(γ−p12), 12 (γ−p43)

)
, p± = 1

2 |p12 ± p43|,

and therefore γ = 2β + p+ + p− and α = β+p−.

Recall that M is arbitrary in (8.11) as long as M ≥ µ′1. Now compare this with the
binomial coefficient for the Jacobi polynomial (7.11)

(
S
(M)

θ, ~A

)λ
µ
= (−)|µ|−|λ|Πλ(θ)

Πµ(θ)
C0
µ/λ(A1+1+θ(M−1), θM ; θ)×

P̃ ∗(M)
λ (µ; θ, u)

P̃ ∗(M)
µ (µ; θ, u)

∣∣∣∣∣
u=

A1+A2+1
2

+θM

.(8.12)

where the M-dimensional P̃ are introduced to display the same M independence as (8.11).
Comparing (8.12) with (8.11) we see that if we match the parameters as

β ↔M ; A1 ↔ p̃− ; A2 ↔ p̃+ (8.13)

as defined in (8.3), i.e. p̃± = θp± + θ − 1, there is a precise matching (up to a sign) between
S(M) and S̃−1

M , namely

(
S
(M)
θ,p̃−,p̃+

)λ
µ
= (−)|µ|−|λ|(S̃−1

M ; 1
θ
,p−,p+

)µ′

λ′ . (8.14)

If we now expand the Jack polynomial P
(n)
λ′ (y, 1θ ) on the RHS of the Cauchy identity (8.8)

in terms of dual Jacobi polynomials, and then use the relation (8.14), we will recognize a
Jacobi polynomial (7.3), for specific values of the parameters. Let us explain the reasoning
step by step: First

M∏

i=1

n∏

n=1

(1− yiy
′
j) =

∑

λ

(−)|λ|P (M)
λ (y; θ)P

(n)
λ′ (y′, 1θ )

=
∑

λ

(−)|λ|P (M)
λ (y; θ)

∑

µ

(S̃−1
β; 1

θ
,p−,p+

)
µ′

λ′ J̃
(n)
β,µ′(y

′; 1θ , p
−, p+) (8.15)

where β is still arbitrary, since it was not entering the Cauchy identity for Jack polynomials
we started with. Then, we fine tune β =M and A1,2 as in (8.13), so to use (8.14)

M∏

i=1

n∏

n=1

(1− yiy
′
j) =

∑

µ

∑

λ

(−)|µ|
(
S
(M)
θ,p̃−,p̃+

)λ
µ
P (M)
λ (y; θ) J̃

(n)
M,µ′(y

′; θ−1, p−, p+)

=
∑

µ

(−)|µ|J (M)
µ (y; θ, p̃−, p̃+) J̃ (n)

M,µ′(y
′; 1θ , p

−, p+) . (8.16)
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To obtain the second line we recognised that the sum over λ gives the Jacobi polynomial.36

Our proof of (8.2) is thus concluded. Our derivation here explains both the appearance of
the parameter combinations p̃± in the Cauchy identity, needed to obtain the relation (8.14), as
well as its stability inM . The latter follows because the Cauchy identity for Jack polynomials
we started with is manifestly stable in M .

A bonus of our discussion is that following the logic that leads to (8.16) we can prove other
supersymmetric generalisations of the Cauchy identity for Jacobi and dual Jacobi polynomials,
starting from known Cauchy identity involving supersymmetric Jack polynomials [71].

There is an immediate supersymmetrisation of P (n)(y′) → P (n|m)(y′|x′) that we can
perform and will lead to (8.4). The known Cauchy identity for this case is [71]

M∏

i

∏n
j (1− yiy

′
j)∏m

k (1− yix′k)
θ
=
∑

λ

(−1)|λ|P (M)
λ (y; θ)P

(n|m)
λ′ (y′|x′; 1θ ) , (8.17)

The key point is that the super expansion of P
(n|m)
λ′ in terms of J̃

(n|m)
M,λ′ depends exactly on

the same coefficients (S̃−1
M )

µ′

λ′ as in the bosonic case, because J̃ is stable. Thus, by the very

same manipulations as in (8.16), we arrive at (8.4),

M∏

i

∏n
j (1− yiy

′
j)∏m

k (1− yix′k)
θ
=
∑

µ

(−1)|µ|J (M)
µ (y; θ, p̃−, p̃+)J̃ (n|m)

M,µ′ (y
′|x′; 1θ , p

−, p+) . (8.18)

For completeness we point out that the sum over µ is now unbounded on the east, since it
only truncates to M rows due to J (M). The J (n|m) is instead an infinite series in small x′, as
it is the LHS.

Next, we want to supersymmetrise P (M)(y) → P (M |N)(y|x) and obtain the doubly super-
symmetric Cauchy identity (8.7). As before, the starting point is the doubly supersymmetric
Cauchy identity for super Jack polynomials [71]

∏M,n
i,j (1− yiy

′
j).
∏N,m

l,k (1− xlx
′
k)∏M,m

i,k (1− yix′k)
θ.
∏N,n

l,j (1− xly
′
j)

1
θ

=
∑

λ

(−1)|λ|P (M |N)
λ (y|x; θ)P (n|m)

λ′ (y′|x′; 1θ ) . (8.19)

and the initial step is the same as (8.15), for arbitrary β. But this time we will need to
carefully understand how to fine tune β with both M and N .

In [38] super Jacobi polynomials were defined and shown to have an expansion in terms
of super Jacks with coefficients given in terms of super interpolation polynomials:

J (M |N)
µ (y|x; θ, p−, p+) =

∑

λ⊆µ

(S
(M |N)
θ,p−,p+

)λµ P
(M |N)
λ (y|x; θ) , (8.20)

36The sum over λ in (8.15) we kept unbounded (since it automatically truncates to Mn) will now also
automatically truncate since (S(M))λµ = 0 when µ ⊂ λ. The result is therefore a polynomial, i.e. the Jacobi
polynomial.

60



where

(
S
(M |N)
θ,A1,A2

)λ
µ
= (−)|µ|−|λ|Πλ(θ)

Πµ(θ)
C0
µ/λ(a, b; θ)×

P̃ ∗(M |N)
λ (µe|µs; θ, u)
P̃ ∗(M |N)
µ (µe|µs; θ, u)

a = A1+1+θ(M−1)−N, b = θM−N, u = A1+A2+1
2 +θM−N , (8.21)

with µs, µe defined below (7.32).

In the above formula the dimensions of the interpolation polynomials (M |N) is tied di-
rectly to the dimension of the super Jacobi. However in (7.32) we saw that the dimensions
of the interpolation polynomials can be arbitrary (as long as they are big enough to contain
the corresponding Young diagram). So we can write the more general expression:

(
S
(M |N)
θ,A1,A2

)λ
µ
= (−)|µ|−|λ|Πλ(θ)

Πµ(θ)
C0
µ/λ(a, b; θ)×

P̃ ∗(M|N)
λ (µe|µs; θ, u)
P̃ ∗(M|N)
µ (µe|µs; θ, u)

∣∣∣∣∣
u=

A1+A2+1
2 +θM−N

(8.22)

with a, b as above, any M|N. (In particular, we could choose N = 0 and obtain the super
Jacobi coefficients in terms of non supersymmetric interpolation polynomials).

Compare (8.22) with S̃−1
β , in which we use the analogue of the supersymmetric for-

mula (7.34) for T−1
γ , namely,

(S̃−1
β; 1

θ
,p−,p+

)
µ′

λ′ =
Πλ(θ)

Πµ(θ)
C0
µ/λ (θα, θβ; θ)

P̃ ∗(M|N)
λ (µs|µe; θ, v)
P̃ ∗(M|N)
µ (µs|µe; θ, v)

∣∣∣∣∣
v=− 1

2
+θ(p

++p−

2
+1+β)

(8.23)

we see that

(
S
(M |N)
θ,p̃−,p̃+

)λ
µ
= (−)|µ|−|λ|(S̃−1

M− 1
θ
N ; 1

θ
,p−,p+

)µ′

λ′ . (8.24)

We can now apply manipulations similar to the ones performed in (8.16) to derive the doubly
supersymmetric Jacobi Cauchy (8.7) from the doubly supersymmetric Jack Cauchy (8.19).

8.3 Free theory block coefficients

We now turn to our main interest in the Cauchy formulae, namely, we will compute conformal
partial wave (CPW) coefficients, in generalised free theories, with no effort, just using Cauchy
identities and nothing else.

Four-point functions of generalised free theories are given simply as sums of products of
propagators with the correct weights:

〈Op1Op2Op3Op4〉free =
∑

{bij}
a{bij}

∏

1≤i<j≤4

g
bij
ij ,

∑

i

bij = pj . (8.25)
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Diagrammatically each term in the sum looks as

γ

Op1(X1)

Op2(X2) Op3(X3)

Op4(X4)

b12 b34

b14

b23

b24 b13 (8.26)

Here there are six bij connecting operators between insertion points, and four constraints∑
i bij = pj leaving two degrees of freedom. We parametrise these with γ := p1 + p2 − 2b12

and k := b23.
37 The free four-point correlator can then be re-written as

〈Op1Op2Op3Op4〉free = g
p1+p2

2
12 g

p3+p4
2

34

(
g24
g14

)p21
2
(
g14
g13

)p43
2 ∑

γ,k

aγ,k

(
g13g24
g12g34

) γ
2
(
g14g23
g13g24

)k

(8.27)

where γ ∈ {γm, γm + 2, . . . , γM} with γm = max(|p12|, |p43|), γM = min(p1 + p2, p3 + p4) and
k = 0, 1, .., 12(γ − γm). So the propagator structures are classified firstly by the total number
of bridges γ going from the pair of operators Op1Op2 to the pair Op3Op4 , and secondly by
the the number of bridges k connecting Op2 with Op3 . The parameters aγ,k are arbitrary
coefficients, determined by the particular microscopic theory in question.

The form of (8.27), has exactly the same prefactor as the superconformal blocks (2.5).
Moreover, changing from Bγ,λ to Fγ,λ, as in (2.14), we can drop the first γ-dependent prefac-
tor. Thus the superconformal block decomposition of the above propagator structure (8.26)
reduces to

(
g14g23
g13g24

)k
=
∑

λ

Aγ,k,λFγ,λ (8.28)

where the expansion coefficients Aγ,k,λ also depend on θ; p12, p43, as Bγ,λ does.

37This then gives

b12 = 1
2
(p1 + p2 − γ) ; b34 = 1

2
(p3 + p4 − γ) ; b13 = 1

2
(p3 − p4 + γ)− k

b24 = 1
2
(p2 − p1 + γ)− k ; b23 = k ; b14 = 1

2
(p1 − p2 − p3 + p4) + k .

An equivalent parametrisations, γij = pi − pj − 2bij , counts the number of bridges going from OpiOpj to the
opposite pair. γ12 + γ13 + γ23 =

∑

i pi, is a Mandelstam-type constraint for free theory four-point correlators.
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The LHS of (8.28) is simple to understand, using from (2.8) we have that:

(
g14g23
g13g24

)k
= sdet(1−Z)−k# =

β∏

r=1

∏n
j=1(1− sryj)∏m
i=1(1− srxi)θ

;
si=1,...,k = 1

si=k+1,...,β = 0
(8.29)

where β = 1
2 min(γ − p43, γ − p12) as usual. We recognise here the LHS of the supercon-

formal Cauchy identity (8.5). Thus comparing (8.28) with this Cauchy identity (8.5) we
can immediately identify the CPW coefficients Aγ,k,λ as an evaluation formula for a Jacobi
polynomial:

Aγ,k,λ;θ,p12,p43 = Πλ(θ)J
(β)
λ (s; θ, p̃−, p̃+)|

s=(1k ,0β−k) (8.30)

with p̃± defined in the same way, i.e. p̃± = θp± + θ − 1 and p± = 1
2 |p12 ± p43|.

Finally then, through Okounkov’s binomial formula (7.3), the free theory CPW coeffi-
cients, Aγ,k,λ, can be written as a sum over interpolation polynomials evaluated at partitions
multiplied by Jack polynomials evaluated at 1 and 0, Pµ(1

k, 0β−k; θ). Note that such a
Jack polynomial, Pµ(1

k, 0β−k; θ), truncates to a Young diagram with just k rows out of β,
P[µ1,...,µk ](1

k; θ), from stability. The latter is a known explicit evaluation formula due to Stan-
ley [65]. Putting this together then we arrive at an explicit formula for the CPW coefficients
as a sum of binomial coefficients,

Aγ,k,λ;θ,p12,p43 = Πλ(θ)
∑

µ⊆λ

(S
(β)
θ,p̃−,p̃+

)µλ ×
∏

1≤i<j≤k

(θ(j−i+1))µi−µj

(θ(j−i))µi−µj

. (8.31)

This formula provides the decomposition of any free theory diagram in superconformal blocks.
It depends on γ, k, then θ and the external charges p12 and p43. It does not of course depend on
(m,n) by stability of the super Cauchy identity. Indeed, because of stability, the derivation
of (8.31) doesn’t rely on any supersymmetry at all, and can be derived directly from the
original bosonic Cauchy identity of Mimachi (8.2).

We will investigate this formula for free theory CPW coefficients further in a separate
publication [72] giving even simpler and completely explicit formulae for the θ = 1 case.

9 Decomposing superblocks

The superconformal block (or equivalently dual super Jacobi functions) Bγ,λ has been so far
defined as the multivariate series

Bγ,λ =

(∏
i x

θ
i∏

j yj

)γ
2

Fγ,λ , Fγ,λ =
∑

µ⊇λ

(Tγ)
µ
λ Pµ(z; θ) (9.1)

with (Tγ)
µ
λ computed either from the recursion of section 5 or by the binomial coefficient of

section 7.

In this section we want to relate this to a more common approach where instead Bγ,λ is
decomposed into its constituent bosonic blocks. It is useful to view this in a more general
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context of decomposing superblocks into smaller superblocks,

(m+m′|n+ n′) → (m|n)⊗ (m′|n′) . (9.2)

Then we will specialise to the case of decomposing into bosonic blocks an internal blocks by
considering m′ = n = 0.

9.1 General decomposition of blocks

The analogous decomposition (9.2) for superJack polynomials is given in (C.59), and it in-
volves the structure constants S. Note that these structure constants are independent of the
dimensions m,n,m′, n′, because of stability! Combining this with the expansion of Blocks
into Jacks (9.1) we arrive at the decomposition of superblocks as

F (m+m′,n+n′)
γ,λ =

∑

µ,ν

F (m,n)
γ,µ (Sγ)

µν
λ F (m′,n′)

γ,ν , (9.3)

where the block structure constants Sγ depend on θ, p12, p43 and are related to the Jack
structure constants via the (inverse) block to Jack matrices Tγ as

(Sγ)
µν
λ =

∑

λ̃⊇λ
µ̃⊆µ
ν̃⊆ν

S µ̃ν̃
λ̃ (Tγ)

λ̃
λ(T

−1
γ )

µ
µ̃(T

−1
γ )

ν
ν̃ . (9.4)

Note we distinguish the Jack structure constants S from the block structure constants Sγ

purely by the presence of the subscript for the latte.r Since we know Tγ infinite triangular
matrices, the issue in this formula is to understand when and how the Sγ are non vanishing.

For the structure constants of Jack polynomials, since these are homogeneous, we clearly
require |λ̃| = |µ̃|+|ν̃| for S µ̃ν̃

λ̃ 6= 0. A stronger statement conjectured by Stanley (conjecture 8.4
in [65]) is that the Jack structure constants are non vanishing if and only if the corresponding
Schur structure constants (given by the Littlewood-Richardson rule) are non vanishing

S µ̃ν̃
λ̃ (θ) 6= 0 ⇔ S µ̃ν̃

λ̃ (1) 6= 0 . (9.5)

In any case, clearly for a given λ̃ there are only a finite number of non vanishing Jack structure
constants S µ̃ν̃

λ̃ and thus a finite number of terms in the decomposition of Pλ̃ into smaller Jacks.

What about the block structure constants? Since the Jack→Block matrix Tγ is triangular

we see that (9.4) gives the (Sγ)
µν
λ in terms of S µ̃ν̃

λ̃ with λ̃ ⊇ λ. Thus λ̃ can become arbitrarily
large and the decomposition of a superblock into smaller superblocks might involve an infinite
number of terms. However let us consider more carefully the structure of the Young diagrams
which can survive.

First note that the decomposition (9.3) has a vertical cut-off: the height of the Young
diagram λ̃ can be no larger than β = min

(
1
2 (γ−p12), 12(γ−p43)

)
, since Tγ has such a vertical

cut-off (see discussion above (D.20)).

Now we claim that if µ is much wider than λ (i.e. µ1 >> λ1 ) then ν will also have to be
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very wide in order for (Sγ)
µν
λ 6= 0. More precisely we make the following conjecture:

(Sγ)
µν
λ 6= 0 ⇒ ∃ µ̃, ν̃, κ, such that S µ̃ν̃

λ 6= 0, S µ̃κ
µ 6= 0, S ν̃κ

ν 6= 0 . (9.6)

To get a feel for this claim, consider the case λ = ∅ (corresponding to half BPS operators
in a superconformal theory). Then the above conditions will require µ̃ = ν̃ = ∅ and so
µ = ν(= κ). Therefore the conjecture implies the following in this case

(Sγ)
µν
∅ 6= 0 ⇒ µ = ν , (9.7)

so the decomposition of a superblock with a trivial Young diagram is diagonal. This is not
obvious from (9.4) and requires non trivial relations between the Jack structure constants S
and the block to Jack matrix Tγ .

More generally, the conjecture (9.6) can be proven in the case θ = 1 where there is a group

theory interpretation. In the θ = 1 case the decomposition of the superblock F
(m+m′|n+n′)
γ,λ

in (9.3) has the group theoretic interpretation of decomposing reps of U(2m+2m′|2n+2n′) →
U(2m|2n)⊗U(2m′|2n′) and taking only the states which are diagonal under the decomposition
U(2m+2m′|2n+2n′) → U(m+m′|n+n′)⊗U(m+m′|n+n′) ( equivalently taking only those
reps whose Dynkin labels are symmetric as only such states contribute to the block).38 Let
us perform this decomposition U(2m + 2m′|2n + 2n′) → U(2m|2n) ⊗ U(2m′|2n′) for the
induced U(2m + 2m′|2n + 2n′) representations Oγ,λ(X

AA′
) (described in section 3.2. We

must first decompose the U(m+m′|n+n′) rep λ into U(m|n) ⊗ U(m′|n′) reps. In fact we
do this decomposition twice but then take the same reps for both copies of U(m+m′|n+n′).
Under the decomposition let the U(m+m′|n+n′) index A split into the U(m|n) indices (α, a)
and similarly A′ → (α̇, a′). So

Oγ,λ(A)λ(A′)(X
AA′

) →
⋃

µ̃ν̃

Oγ,µ̃(α)ν̃(a)µ̃(α̇)ν̃(a′)(X
AA′

)

(this decomposition is dictated by S µ̃ν̃
λ and explains the appearance of this in (9.6)). We

must now also consider the derivatives ∂AA′ acting on these. In particular the off-diagonal
derivatives ∂αa′ and ∂aα̇ will yield new induced representations of the subgroup U(2m|2n)⊗
U(2m′|2n′). Since the derivatives commute (and we again project onto the diagonal rep) we
arrive at

Oγ,µ̃(α)µ̃(α̇)ν(a)ν(a′)(X
AA′

) →
⋃

κ

∂
|κ|
κ(α)κ(α̇)κ(a)κ(a′)Oγ,µ̃(α)µ̃(α̇)ν(a)ν(a′)(X

αα̇,Xaa′) ,

and arrive at the tensor products κ ⊗ µ̃ and κ ⊗ ν̃ which explains the structure constants
S µ̃κ
µ ,S ν̃κ

ν appearing in (9.6).

We believe a similar argument for (9.6) can be made for the other group theoretic cases
θ = 2, 12 although we haven’t gone carefully through the details.

38Note the difference with the corresponding group theory interpretation of the Jack decomposition (C.59)
which is instead equivalent to decomposing reps of U(m+m′|n+ n′) → U(m|n)⊗U(m′|n′) in the θ = 1 case.
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9.2 Superblock to block decomposition

We now focus on the main interest, the case most relevant for physics application, namely
that of decomposing a superblock into its corresponding bosonic blocks. This corresponds to
taking m′ = n = 0 in the general case described in the previous section. Specialising to this
case the decomposition (9.3) becomes

F (m,n)
γ,λ (x|y) =

∑

µ,ν

F (m,0)
γ,µ (x) (Sγ)

µν
λ F (0,n)

γ,ν (y) . (9.8)

Now note that the conjecture (9.6) together with Stanley’s conjecture (9.5) implies that the
sum on the rhs is finite in this case. First, as already noted, the Young diagrams µ, ν can
not extend vertically below row β. Since ν is a (0, n) rep it can not be wider than n, ν1 ≤ n
(and cannot have no more than n columns, since this is a U(n) rep transposed). Thus ν
is restricted to sit inside the rectangle [nβ]. But what about µ? If this was much wider
than λ it would be impossible to satisfy the conjecture (9.6). To see this, first note that
the Littlewood-Richardson rule (and Stanley’s conjecture (9.5)) means that S µ̃ν̃

λ 6= 0 implies
µ̃1, ν̃1 ≤ λ1 ≤ µ̃1 + ν̃1. Then this together with conjecture (9.6) means that (Sγ)

µν
λ 6= 0 only

if µ1 − λ1 ≤ µ1 − µ̃1 ≤ κ1 ≤ ν1 ≤ n. So in particular the width µ1 of µ can not be bigger
than λ1 + n, i.e. the width of λ+ n. There are tighter bounds but this is already enough to
show that there are a finite number of terms. Note that specialising to m = n = 2, θ = 1 the
decomposition should reproduce the diagonal component reps in the decomposition of N = 4
superconformal multiplets which were written out in great detail in appendix B of [44].

9.3 Examples of the superblock to block decomposition

To ground the discussion about the conformal and internal block decomposition of a super-
conformal block, we give some explicit examples here.

Let us fix the external data to be γ
2 = α = β = 5, θ = 1

2 , and λ = [3, 1], and consider
different values of (m,n). This also illustrates the m,n independence.

In the (1, 1) theory, the decomposition of Fγ=10,[3,1](x|y; 12) gives

(Sγ=10)
νµ
[3,1] :

[1] [2] [3] [4]

[0]

[1]

[2]

[3]

[4]

[5]

µ
ν ′

0 0 0 0

0 0 1 0

0 7
9 0 1573

40320

0 0 39
1120 0

0 0 0 0

0 0 0 0

(9.9)

Now let us look at the same external data but in the (m,n) = (2, 1) theory, thus considering
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the decomposition of Fγ=10,[3,1](x1, x2|y; 12 ). We find

(Sγ=10)
µν
[3,1] :

[1] [2] [3] [4] [1, 1] [2, 1] [3, 1] [4, 1] [2, 2] [3, 2] [4, 2] [3, 3] [4, 3] [4, 4]

[0]

[1]

[2]

[3]

[4]

[5]

µ
ν ′

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 0 28
45 0 1573

53550 0 4096
133875 0 0 0 0

0 7
9 0 1573

40320 0 0 93428
1461915 0 64

2025 0 37752
33632375 0 0 0

0 0 39
1120 0 0 8

225 0 1573
937125 0 1664

1561875 0 0 0 0

0 0 0 0 0 0 13
7875 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

(9.10)
Note that the red diamond is the same as in the (1, 1) theory. The other contributions
correspond to conformal blocks with two full rows, which therefore did not exist in the previous
case with m = 1.

Finally let us look in the (m,n) = (3, 1) theory at the decomposition of Fγ=10,[3,1](x1, x2, x3|y; 12).
We find (Sγ=10)

µν
[3,1] =

[1] [2] [3] [4] [1, 1] [2, 1] [3, 1] [4, 1] [2, 2] [3, 2] [4, 2] [3, 3] [1, 1, 1] [2, 1, 1] [3, 1, 1] [4, 1, 1] [2, 2, 1] [3, 2, 1] [4, 2, 1] [3, 3, 1]

[0]

[1]

[2]

[3]

[4]

[5]

µ
ν ′

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 28
45 0 1573

53550 0 4096
133875 0 0 0 0 169

4320 0 0 0 0 0

0 7
9 0 1573

40320 0 0 93428
1461915 0 64

2025 0 37752
33632375 0 0 8

243 0 1573
1049580 0 1352

1136025 0 0

0 0 39
1120 0 0 8

225 0 1573
937125 0 1664

1561875 0 0 0 0 13
4080 0 5

3564 0 11583
241076864 0

0 0 0 0 0 0 13
7875 0 0 0 0 0 0 7

4050 0 1573
19992000 0 3328

66268125 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 13
129600 0 0 0 0 0

(9.11)

The m ⊗ n decomposition generically will have a diamond/rhomboid structure w.r.t. to
the products basis of conformal and internal blocks. However we should say that in order
to see such a diamond structure, one has to considered a generic Young diagram λ, and a
generic γ, otherwise parts of the diamond might be reflected on the boundaries.

One interesting aspect that the above example illustrates is the appearance of the coeffi-
cients ‘1’ at the top of each diamond. In the cases θ = 1

2 , 1, 2, where there is a group theory
interpretation, this ‘1’ is easily explained by considering the corresponding decomposition in
Minkowski superspace.39 There the decomposition simply corresponds to the standard super-

39Minkowski superpsace corresponds to the coset space obtained by putting cross through all odd (white)
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space expansion of the corresponding superfield over Grassmann odd variables and the first
term in the expansion (the term obtained by switching off all Grassmann odd variables) has
corresponding coefficient ‘1’. We can view this superspace expansion for different values of
(m,n), thus giving different ‘1’ coefficients. So for example in the (1, 1) theory this gives the
red ‘1’ in (9.10) and in the (2, 1) theory it gives the blue ‘1’. But of course stability means
the red ‘1’ remains there even for the (2, 1) theory.

It is interesting to see how to recover the “1 at the top of the diamond”, i.e. the leading
conformal block in the decomposition of a superblock from the formula (9.4) and show that
it is true for all θ regardless of whether there is a group theory interpretation. This follows
directly from the observation that the Jack structure constants are ‘1’ whenever the large
Young diagram is built from the smaller ones put on top of each other (C.27). A similar
result then follows for the block structure constants

(Sγ)
µν
λ (θ) = 1 if λ = [µ, ν] . (9.12)

since S and Sγ are simply related via a triangular change of (infinite) basis with 1’s on the
diagonal (9.4) (recall (Tγ)

λ
λ = 1).

Testing the conjecture (9.6) in general turns into a sophisticated computation, because the
Jack structure constants S themselves are non-trivial and explicit formulae are not known.
The works [52–54] obtain a recursive formulation which can be used to carry out the com-
putation, but we are not aware of a more explicit formula. A naive approach we used, for
generic number of rows, which nevertheless gives the desired result, is to start from the defi-
nitions, and use computer algebra. But we point out that the remarkable consequence of the
conjecture (9.6) is that even though Sγ involves infinite matrices Tγ , the result always has
only finitely many non zero values. In particular if we keep α, β, γ arbitrary in the recursion
relation for Tγ this truncation does not occur, but only takes place when β (or α) is an integer
larger than the height of λ. To help clarify these points we now give some explicit results for
the two row case.

Explicit formulae for two-rows

For Young diagrams with two rows we can give alternative explicit (i.e. non combinatorial)
formulae for the building blocks of the block structure constants (9.4). Indeed, the Jack
structure constants for two-row diagrams are known thanks to a result quoted in [100],

C[µ1,µ2]
[κ1,κ2] [ω1,ω2]

=
(θ, 2θ + µ−, ω2 + κ1 − µ2 + 1, ω1 + κ2 − µ2 + 1)µ2−κ2−ω2

(1, 1 + θ + µ−, ω2 + κ1 − µ2 + θ, ω1 + κ2 − µ2 + θ)µ2−κ2−ω2

(9.13)

and

Sκω
µ =

Πκ(θ)Πω(θ)

Πµ(θ)
Cµ
κω . (9.14)

(Where (a, b, c)n represents a product of Pochhammers anbncn.) Note this formula is man-
ifestly symmetric in κ ↔ ω. It is also clear that for θ = 1 the value of C collapse to unity,
when it is non vanishing.

nodes in the relevant super Dynkin diagram rather than the crossed through nodes of analytic superspace (3.3).
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Now, we assemble the block structure constants Sγ in (9.4). The two-row Jack→Block
matrix Tγ can be taken from (E.18), and the inverse T−1

γ is given by the formula (7.28), in
terms of the interpolation polynomials in (E.22). Putting them together then gives the block
structure constants Sγ .

In the recursion we may leave all variables α, β, γ unspecified in Tγ and T−1
γ . We find that

in this case there is actually no truncation and there are infinitely many non-zero structure
constants (Sγ)

µν
λ (θ) for given λ. However one finds that for arbitrary α, β, γ, for ν large

enough they always appear with a factor of (α − 2)(β − 2). So for any λ, µ exists a ν∗ such
that

(Sγ)
µν
λ (θ) = (α− 2)(β − 2)

[
. . .
]

∀ ν ⊃ ν∗ (9.15)

where the terms understood in
[
. . .
]
might be cumbersome, but their knowledge is not needed

to understand the truncation. It is then clear from (9.15) that upon specifying either β or
α to be the value of the maximal number of rows of the Young diagram, in the case of this
section β = 2, the block structure constants Sγ will truncate. We checked explicitly that the
very same mechanism generalises to any number of rows.

Them⊗n decomposition then can be carried out in practice for arbitrary Young diagrams
and theories (m,n; θ). It depends on the Young diagrams and θ through rational functions.
For example, consider the (2, 2) theory and Bγ=4,[λ1,λ2]. Then, we know that

Bγ=4,[λ1,λ2] =

(∏2
i=1 x

θ
i∏2

j=1 yj

)γ
2 (

F
(2,0)
γ,[λ1,λ2]

(x)× F
(0,2)
γ,∅ (y) + . . .

)
. (9.16)

The coefficients of the next terms beyond Fγ=4,[λ1,λ2] × Fγ=4,∅, with p12 = p43 = 0, are

(Sγ=4)
[λ1,λ2−1],�
[λ1,λ2]

= θλ2
λ2+θ−1

(Sγ=4)
[λ1−1,λ2],�
[λ1,λ2]

= θ(λ1+θ)(λ1−λ2)(λ1−λ2+2θ−1)
(λ1+2θ−1)(λ1−λ2+θ−1)(λ1−λ2+θ)

(Sγ=4)
[λ1+1,λ2],�
[λ1,λ2]

= θ(λ1+2θ)(λ1+3θ−1)(λ1+λ2+2θ)(λ1+λ2+4θ−1)
4(2λ1+4θ−1)(2λ1+4θ+1)(λ1+λ2+3θ−1)(λ1+λ2+3θ)

(Sγ=4)
[λ1,λ2+1],�
[λ1,λ2]

= θ(λ1−λ2)(λ1−λ2+2θ−1)(λ2+θ)(λ2+2θ−1)(λ1+λ2+2θ)(λ1+λ2+4θ−1)
4(λ1−λ2+θ−1)(λ1−λ2+θ)(λ1+λ2+3θ−1)(3θ+λ1+λ2)(2λ2+2θ−1)(2λ2+2θ+1)

(9.17)
The complexity of these rational functions comes both from the complexity of the struc-
ture constants and the solution of the recursion, equivalently the complexity of interpolation
polynomials evaluated at partitions.

10 Conclusions and outlook

Let us summarise our findings and conclude with an outlook.

In this paper we have uncovered a non trivial connection between the theory of con-
formal and superconformal blocks for four-point correlators of scalar fields, and the the-
ory of symmetric functions (as well as Heckman Opdam hypergeometric functions, Calogero
Sutherland Moser wave functions and supersymmetric generalisations of all of these). This
connection generalises previous work done in [9] for theories defined on a super Grassman-
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nian Gr(m|n, 2m|2n), corresponding to the case (m,n; θ = 1), where the connection between
symmetric functions and superconformal blocks passed through the use of super Schur poly-
nomials [37]. It also generalises the connection between bosonic external/internal blocks and
BC2 hypergeometric functions/Jacobi polynomials uncovered in [11–15]. The starting point
has been to consider four-point functions of scalar operators on certain special generalised
(m,n) analytic superspaces in 3,4 and 6 dimensions following [1–10]. We then looked at the
very concrete problem of solving a Casimir eigenvalue differential equation, and we have found
that:

• The Casimir operator for these theories coincides with the BCm|n CMS operator for

special values of a parameter θ (θ = 1
2 , 1, 2). This then immediately suggests to define

(m,n; θ) analytic superspaces for more general θ as discussed in section 3.1.

• The eigenfunctions of the BCm|n Casimir admit a representation as a multivariate series
over super Jack polynomials,

Bγ,λ(z) =

(∏
i x

θ
i∏

j yj

)γ
2

Fγ,λ(z) , Fγ,λ(z) =
∑

µ⊇λ

(Tγ)
µ
λ Pµ(z) , (10.1)

with expansion coefficients Tγ enjoying special properties.

• The expansion coefficients (Tγ)
µ
λ do not depend on m,n as long as λ, µ are Young

diagrams. Since super Jack polynomials are themselves stable, by construction, our
superconformal blocks are stable!

• Although the coefficients Tγ do not depend on (m,n) when λ, µ are Young diagrams,
the recursion (and its solution) can non-the-less be represented in various forms, in
terms of the row lengths of the Young diagram, the column lengths, or a mixture of
the two. All representations give the same result, as shown in section 5.2, when the
parameters coincide with those of a Young diagram. However, the different choices
yield inequivalent analytic continuations (section 6). A mixed representation consistent
with the (m,n) Young diagram structure is then most appropriate for superblocks in
an (m,n; θ) theory and will give the correct superblocks for operators with non-integer
(anomalous) dimensions. Such an (m,n) representation satisfies the shift symmetry (2.20)
for arbitrary θ (which is a manifest symmetry for the physical cases θ = 1

2 , 1, 2).

• We exemplified this (m,n) analytic continuation in the simplest (1, 1) theory, for
arbitrary θ. This shows, in a concrete case, that the recursion can be solved by using a
mixed, or supersymmetric, representation where the Young diagrams are read both along
rows and columns.

The above results find immediate application for superconformal theories not only in di-
mensions 3,4,6, but also in 1,2 and possibly also 5 dimensions, as well as ordinary bosonic
theories in any dimension, as explained in section 3.1. The superconformal block understand-
ing is particularly important for theories that have a gravity dual through the AdS/CFT
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correspondence, where we expect the SCFT to provide important insights towards the quest
for a theory of quantum gravity. The simplest examples which have made full use of this
(m,n; θ) formalism have been so far AdS5 × S5 [74–76]. There has been some use of the
formalism also for AdS7×S4 but restricted to the lowest charge correlators [8,78].40 It would
be interesting to extend this further and consider other AdS×S backgrounds. An interesting
case that has not been attacked yet is AdS3 ×S3×S3, which realises a one-parameter family
of two-dimensional superconformal theories with D(2, 1;α) ×D(2, 1;α) symmetry.41

The connection between (super)conformal blocks and symmetric functions, that we have
uncovered, yielded in turn a number of mathematical results, providing further inspiration
on the mathematics of BCn|m symmetric functions, as well as further insights for the super-
conformal blocks themselves. In this context, we found that:

• The reduction our blocks from BCm|n to BCn produces the dual Jacobi polynomials

J̃β,λ(; θ, p
±) in n variables, which are stable, and were not noticed before. From the

knowledge of these polynomials (in particular their stability), we showed that they admit
a natural supersymmetric extension which give superconformal blocks.

• Jacobi polynomials Jλ(; θ, p
±) have a binomial formula due to Okounkov [32,33,41], and

so do the dual Jacobi polynomials. The difference is the way the Young diagrams enter
the interpolation polynomials P ∗. For the dual Jacobi polynomials, the Young diagrams
are complemented and transposed w.r.t. a given rectangle R. This manipulation stabilises
the binomial formula for the Jacobi polynomials.

• The dependence on the variables of the interpolation polynomials
P ∗
NM \µ(N

M \λ; θ, u=1
2−θ

γ
2−N), provides the highly non-trivial γ dependence of

(Tγ)
µ
λ, which was quite challenging to understand from the point of view of the recursion.

• Elaborating on the way complementation works on the Jack→Block matrix, we showed
that its inverse, the Block→Jack matrix, Tγ , has a natural representation in terms of
interpolation polynomials, which we upgraded to super interpolation polynomials of
Sergeev and Veselov [36]. Thus, whenever an identity pairs a Young diagram with its
complement, we can use the Jack→Block and the Block→Jack matrix to uplift that
identity to an identity for superconformal blocks.

40More recent work has considered superblocks for higher charge correlators in the AdS7×S4 case using the
Ward identity approach discussed at the start of section 2.5 [51,79]

41In the context of integrability this has been studied in, e.g. [80].
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• From the (m,n) Cauchy identity for superJack polynomials we proved a superconformal
Cauchy identity,

β∏

r=1

∏n
j=1(1− sryj)∏m
i=1(1− srxi)θ

=
∑

λ

Jλ(s; θ, p̃
−, p̃+) Πλ(θ)Fγ,λ(z; θ, p12, p43) (10.2)

Then we showed that the LHS becomes a propagator structure when s = (1k, 0β−k), up
to the overall prefactor (

∏
i,j x

θ
i /yj)

γ
2 , which distinguishes Bγ,λ from Fγ,λ. It follows that,

with no effort, the above Cauchy identity provides the decomposition of any (generalised)
free theory diagram within our formalism.

• The physics understanding of the (m,n) super Cauchy identity allowed us to prove
a new doubly supersymmetric Cauchy identity (8.7) involving superconformal blocks
(dual super Jacobi functions) and the super Jacobi polynomial of Sergeev and Veselov [36].

• Finally we could read off known results on higher order operators for Heckman Opdam
hypergeometrics to obtain all higher order Casimirs in θ = 1 theories (in particular N = 4
SYM).

Overall, we showed in section 7 and 8 that the connection between superconformal blocks
and symmetric functions comes with a non trivial exchange of information, which is fruitful
for both sides. The superconformal Cauchy identity is a beautiful example of this exchange.
On one side the understanding of stability clarifies the proofs greatly, on the other side, the
Cauchy formula allows us to read off, with no effort, the superconformal block decomposition
of any free theory diagram.

There are a number of topics one could investigate further. There is still more to be
understood about the analytic properties of the superblocks. In [12, 14] bosonic blocks were
identified with twisted versions of the Harish Chandra functions giving Heckman Opdam
hypergeometric functions. We give here two new viewpoints on this. Both viewpoints start
with the much simpler BCn Jacobi polynomials or more accurately the dual BCn Jacobi
polynomials which are stable. This stability then leads immediately to a family of (n,m)
supersymmetric dual Jacobi functions, and then specialising to n = 0 we obtain the conformal
blocks (which are certain Sn symmetric combinations of Harish Chandra functions). But the
rank one considerations suggest another viewpoint, namely that the analytic continuation,
regular at the origin, of the dual Jacobi polynomials to negative row lengths also yield the
conformal blocks. We then expect similarly that analytic continuation of the super dual
Jacobi functions to negative row lengths for the infinite non compact direction will give the
super Jacobi polynomials of [36].

Besides the immediate relevance of our work for theories that have a generalised free
limit, the superconformal block expansion has a non perturbative nature, and recent work
in [81–85] has shown that a fully non perturbative reconstruction of a four-point correlator
can be given within the framework of the inversion formula [70]. A prominent role is played
by the Polyakov-Regge block.We think that this discussion should have a counterpart in the
theory of symmetric functions worth investigating.42

42For similar reasons, it would be interesting to investigate the diagonal limit [86] of the superconformal
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It would be interesting to try to adapt our story beyond scalar representations, as well as
for higher points, possibly by adapting the techniques of [88–91].

10.1 Outlook on the q-deformed superblocks

Finally, it would be fascinating to find a place for a possible q-deformation of the superblocks,
since the various group theoretic objects that we have been discussing, i.e. Jack, Jacobi,
interpolation polynomials etc., have well known q-deformed generalisations. In particular,
the expansion coefficients (7.12) of the superblocks

(Tγ)
µ
λ = (N )µλ ×

P
∗(M)

NM \µ(N
M \λ; θ, u)

P
∗(M)

NM \λ(N
M \λ; θ, u)

∣∣∣∣∣
u=

1
2−θ

γ
2−N

. (10.3)

written as binomial coefficient has such a q-deformation. A simple question to ask is whether
the q-deformed binomial coefficient plays a role in physical theories.43 For example, is there a
notion of q-deformed CFTs in any dimension? In these theories, how do q-deformed conformal
blocks compare to our multivariate series? For applications within the AdS/CFT correspon-
dence, is it possible to investigate the field theory dual to the q-deformed world-sheet σ-model
on AdS5 × S5 [96–98].

In a little more detail, the q-deformed binomial coefficient can be used to define the
Koornwinder polynomialsKλ(z, q, t; ai=1,2,3,4), as shown by Okounkov [33]. The latter are BC
orthogonal (Laurent) polynomials in the bosonic variables z, and for a choice of parameters
~a, the q → 1 defines the BC Jacobi polynomials (see e.g. [41]):

lim
q→1

Kλ(z) = (−4)|λ|Jλ
(
−1

4(
√
zi − 1√

zi
)2
)
. (10.4)

An obvious proposal to build the q-deformed generalisation of the (0, n) internal block would
be to start from the Koornwinder polynomials. Koornwinder polynomials have a binomial
expansion, but the polynomials involved are themselves q-deformed BC interpolation poly-
nomials.44 One might have expected the generalisation of the internal block would rather
correspond to a series over Macdonald polynomials, instead of BC interpolation polynomi-
als. After all the super Jack polynomials, which provided the relevant basis for the (m,n)
superconformal blocks, admit a natural generalisation to the super Macdonald operators of
Sergeev and Veselov [36]. On the other hand, there is a fundamental reason why Koornwinder
polynomials sum over BC interpolation polynomials, and this is evaluation symmetry, i.e. the
property that evaluating Kµ at partition λ is invariant under µ↔ λ. This property is mani-
fest in the binomial coefficient formalism [33], precisely because the expansion coefficients on
the basis of BC interpolation polynomials are again BC interpolation polynomial evaluated
at a partition, and therefore evaluation symmetry “swaps” the two.

A proposal for the q-deformed generalisation of the (0, n) internal block can be read from

blocks, as well as the change of variables to the radial coordinate proposed in [87].
43In this paper, we used the limit q → 1 and t → qθ, in the notation of [32].
44The limit to the Jacobi polynomials is designed to degenerate the BC interpolation polynomials to Jack

polynomials and the q-deformed binomial coefficient to its classical counterpart [41].
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E.Rains’ results in [32].45 It is the virtual Koornwinder “polynomial” K̂Q,λ (see Definition 7
and Theorem 7.13 in [32]). This is a stable Sn (rather than BCn) function which provides a
1-parameter, Q, generalisation of Koornwinder polynomials K(n)

λ in the following sense,

K̂Q,λ(. . . , zn; q, t;~a)
∣∣∣
Q=qm

=
∏

i

zmi K
(n)
mn\λ(z; q, t,~a) . (10.5)

In more detail, K̂Q,λ is defined by a binomial formula that sums over Young diagrams µ such
that λ ⊆ µ, and uses the equivalent of the q-deformed Jack→Block matrix, as in our dual
Jacobi function J̃β,λ(y| ) in (2.29), analytically continued in β (see the discussion in section
6 and appendix D.2.) The similarity is even more precise because when Q = qm the sum
truncates to the polynomial on the r.h.s. of (10.5), which indeed has the same characteristics
as dual Jacobi polynomials:

J̃β,λ(y| )
∣∣∣
β=m

≡
∏

i

ymi Jmn\λ(. . . ,
1
yn
) . (10.6)

We can see now that by taking the limit from Koornwinder polynomials to Jacobi polynomials
in (10.5), and re-expressing the result in terms of our dual Jacobi polynomials we find that

lim
q→1

K̂Q,λ(z)
∣∣∣
Q=qm

=
∏

i

(1− zi)
2mJ̃m,λ

( −4zi
(1− zi)2

)
(10.7)

The argument of J̃ might be surprising at first, but Z(z) = −4z/(1 − z)2 is just a conformal
mapping which sends the unit disk in the z plane to Z ∈ C\(1,+∞). Stability of the r.h.s. of
(10.7) then follows from that of K̂Q,λ, and coincides with the stability of J̃β,λ which we

discussed in this paper (since that of
∏

i(1 − zi)
2m is obvious). We thus conclude that K̂Q,λ

is the q-generalisation of our J̃β,λ(y| ) where Q = qβ.

From stability, following the same logic that led us from dual Jacobi polynomials to super
Jacobi function J̃β(y|x) in section 2.3, we infer that there is a supersymmetric uplift of the

virtual K̂ to a “super virtual Koornwinder” K̂Q(y|x) obtained by supersymmetrising the

expansion polynomials that define K̂, called virtual P ∗ for reference, but keeping the same
expansion coefficients, i.e. the q-deformed Jack→Block matrix. It is crucial here that such
virtual P ∗ are again Sn stable polynomials, the “super virtual” P ∗ will then generalise the
super Macdonald polynomials of [36]. The super virtual Koornwinder K̂Q(y|x) would then
give the q-generalisation of our superconformal blocks. Following our general motivations,
it would be fascinating to study in more detail the properties of the super K̂Q(y|x) and
understand their role in the context of q-deformed CFTs.
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A Super/conformal/compact groups of interest

Here we give details about the supercoset construction of section 3, and in particular show
how the general formalism ties in with the more standard approach in the case of non-
supersymmetric conformal blocks.

A.1 θ = 1: SU(m,m|2n)

The SU(m,m|2n) is the simplest family of theories with a supergroup interpretation for any
value of m,n positive integers. This corresponds to the case θ = 1.

The supercoset here is the most straightforward of the three general classes: Firstly view
the complexified group SU(m,m|2n) = SL(2m|2n;C) as the set of (m|2n|m) × (m|2n|m)
matrices (this is a straightforward change of basis of the more standard (2m|2n) × (2m|2n)
matrices). Then the supercoset space we consider has the 2× 2 block structure of (3.4) with
each block being a (m|n)× (m|n) matrix (or rearrangement thereof - see footnote 17.) These
blocks are unconstrained beyond the overall unit superdeterminant condition: sdet(G) =
sdet(H) = 1. So in particular the coordinates XAA′

of (3.6) are unconstrained (m|n)× (m|n)
matrices. Here A and A′ are both superindices carrying the fundamental representation of two
independent SL(m|n) subgroups. This supercoset corresponds to the super Grassmannian
Gr(m|n, 2m|2n). For more details see [2, 3, 6, 7, 56].

Then a four point function (and in particular the superconformal blocks) can be written
in terms of a function of the four points X1,X2,X3,X4 invariant under the action of G. This
in turn boils down to a function of the (m|n)× (m|n) matrix Z invariant under conjugation
(see [7] for more details)

Z = X12X
−1
23 X34X

−1
41 ∼ diag(x1, .., xm|y1, .., yn) . (A.1)

The m+ n eigenvalues xi, yi then yield the m+ n arguments of the superblocks Bγ,λ.

Thus any function of Z invariant under conjugation will automatically solve the super-
conformal Ward identities associated with the four point function. As first pointed out in this
context in [7] the simplest way to construct a basis of all such polynomials associated with a
Young diagram λ naturally yields (super) Schur polynomials (which are just the Jack poly-
nomials with θ = 1). The construction is as follows. Take |λ| copies of ZB

A and symmetrise
the upper (B) indices according to the Young symmetriser of λ. Then contract all upper and
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lower indices. For example

λ = → ZA
A = Tr(Z) = Pλ(z; θ=1)

λ = → Z
(A1

A1
Z

A2)
A2

= 1
2

(
Tr(Z)2 +Tr(Z2)

)
= Pλ(z; θ=1)

λ = → Z
[A1

A1
Z

A2]
A2

= 1
2

(
Tr(Z)2 − Tr(Z2)

)
= Pλ(z; θ=1) (A.2)

Inputting the eigenvalues of Z (A.1) into these we obtain (up to an overall normalisation)
precisely the corresponding Schur polynomials i.e. Jack polynomials with θ = 1, Pλ(z; θ = 1).
This correspondence works for any Young diagram λ.

A.2 θ = 2 : OSp(4m|2n)

Details of this supercoset construction can be found (specialised to the m = 2 case) in [5, 8].
We summarise here.

When θ = 2 the relevant (complexified) supergroup is OSp(4m|2n) which has bosonic
subgroup SO(4m) × Sp(2n) with SO(4m) non-compact and Sp(2n) compact. Of physical
interest is the case m = 2 in which SO(8) is the complexification of the 6d conformal group
SO(2, 6) and Sp(2n) is the internal symmetry group for (0, n) superconformal field theories.

The supercoset space is defined by the marked Dynkin diagram (3.12)b (or (3.13)b if
n = 0) and can be realised in the block 2 × 2 matrix form of (3.4). To see this one needs to
realise the group osp(4m|2n) as the set of supermatrices orthogonal wrt the metric J :

osp(4m|2n) =




M ∈ C(2m|2n|2m)×(2m|2n|2m) :MJMT = J =




12m
1n

−1n
12m








.

(A.3)
InputtingM = H in the block form of (3.4) into this we find that a is related to d but is itself
unconstrained. Thus the Levi subgroup (under which the operators transform explicitly) is
isomorphic to GL(2m|n). Similarly, inputting M = s(X) in the form of (3.6), we find that
the coordinates are (2m|n)× (2m|n) antisymmetric supermatrices

X = −XT . (A.4)

Note that here and elsewhere XT denotes the supertranspose (XAB)T = XBA(−1)AB . Four-
point functions are written in terms of a function of four such Xs, X1,X2,X3,X4 invariant
under OSp(4m|2n). We can use the symmetry to set X3 → 0 and then X−1

2 → 0. Then we
can use the remaining symmetry to set

X1 → K =




1m
−1m

1n


 . (A.5)

Finally we end up with the problem of finding a function of X4 which is invariant under X4 →
AX4A

T where AKAT = K. The group of matrices satisfying AKAT = K is OSp(n|2m). So
letting Z = X4K we seek functions of Z invariant under conjugation under OSp(n|2m) ⊂
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GL(2m|n). Ultimately, an invariant function of X1,X2,X3,X4 will be a function of the
eigenvalues of this matrix Z. The eigenvalues of the m×m piece of the matrix Z (3.8) are
repeated

Z = X12X
−1
23 X34X

−1
41 ∼ diag(x1, x1, x2, x2, .., xm, xm|y1, .., yn) . (A.6)

As always the independent ones yield the m|n arguments of the superblocks (2.7).

This construction again provides a completely manifest way of solving the superconformal
Ward identities. Fascinatingly the simplest way to construct a basis of functions solving these
Ward identities yields the super Jack polynomials! To construct a basis of such functions in 1-
1 correspondence with Young diagrams λ proceed as follows. Take |λ| copies of W = X4, and
symmetrise all indices according to the Young symmetriser of λ̂ the Young diagram obtained
from λ by duplicating all rows. Then contract all indices with |λ| copies of K.

Let us illustrate this with the simplest examples:

λ = ⇒ λ̂ = A
B

→ WABKAB = Tr(Z) = Pλ(z; θ=2)

λ = ⇒ λ̂ = AC
BD

→ −WB(AWC)DKABKCD = 1
2

(
Tr(Z)2 +Tr(Z2)

)
= Pλ(z; θ=2)

λ = ⇒ λ̂ =
A
B
C
D

→ W [ABWCD]KABKCD = 1
3

(
Tr(Z)2 − 2Tr(Z2)

)
= Pλ(z; θ=2)

(A.7)

Inputting the eigenvalues of Z (A.6) into these we obtain (up to an overall normalisation)
precisely the corresponding Jack polynomial with θ = 2, Pλ(z; θ = 2). This correspondence
continues for any Young diagram λ.

Note that this derivation of superblocks and super Jacks from group theory makes manifest
the stability in m,n of both, since they arise from formulae derived from matrices Z of
arbitrary dimensions. A combinatoric description of (super)Jack polynomials with θ = 2
along these lines has also been discussed in [92].

A.3 θ = 1
2
: OSp(4n|2m)

The other value of θ for which there is a supergroup interpretation for any m,n is θ = 1
2 .

Here the relevant (complexified) supergroup is OSp(4n|2m), the same complexified group as
previously but with the roles of m,n reversed. This has bosonic subgroup Sp(2m)× SO(4n)
but now with Sp(2m) non-compact (for m = 2 this is the complexified 3d conformal group
Sp(4) ∼ SO(5) ∼ SO(2, 3)) and SO(4n) compact the internal subgroup.

The following is then essentially identical to the θ = 2 case but with the role of Grassmann
odd and even exchanged. The supercoset space defined by the marked Dynkin diagram (3.12)c
(or (3.13)c if n = 0) can also be realised in the block 2× 2 matrix form of (3.4) by realising
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the group osp(4n|2m) in the following form46:

osp(4n|2m) =




M ∈ C(m|4n|n)×(m|4n|m) :MJMT = J =




1m
12n

12n
−1m








(A.8)

The Levi subgroup (under which the operators transform explicitly) is isomorphic toGL(m|2n)
and the coordinates are (m|2n)× (m|2n) symmetric supermatrices

X = XT . (A.9)

Four-point functions are written in terms of a function of four such Xs, X1,X2,X3,X4 in-
variant under OSp(4n|2m). We can use the symmetry to set X3 → 0 and then X−1

2 → 0.
Then we can use the remaining symmetry to set

X1 → K =




1m
1n

−1n


 . (A.10)

We then are left with a function ofX4 which invariant underX4 → AX4A
T where AKAT = K

i.e. under OSp(m|2n). Letting Z = X4K we seek functions of Z invariant under conjugation
under OSp(m|2n) ⊂ GL(m|2n). Thus ultimately, an invariant function of X1,X2,X3,X4 will
be a function of the eigenvalues of this matrix Z. The eigenvalues of the internal n× n piece
of the matrix Z (3.8) are repeated and the independent eigenvalues yield the m|n arguments
of the superblocks (2.7)

Z = X12X
−1
23 X34X

−1
41 ∼ diag(x1, .., xm|y1, y1, y2, y2, .., yn, yn) . (A.11)

As for θ = 2 this construction provides a completely manifest way of solving the super-
conformal Ward identities naturally giving θ = 1

2 super Jack polynomials! Take |λ| copies of
W = X4, and symmetrise all indices according to the Young symmetriser of λ̂ which is this
time the Young diagram obtained from λ by duplicating all columns rather than rows. Then
contract all indices with |λ| copies of K.

In the simplest examples:

λ = ⇒ λ̂ = AB → WABKAB = Tr(Z)

λ = ⇒ λ̂ = ABCD → W (ABWCD)KABKCD = 1
3

(
Tr(Z)2 + 2Tr(Z2)

)

λ = ⇒ λ̂ = AB
CD

→ W (B[AWC]DKABKCD = 1
2

(
Tr(Z)2 − Tr(Z2)

)

(A.12)

Inputting the eigenvalues of Z (A.11) into these we obtain (up to an overall normalisation)
precisely the corresponding Jack polynomials with θ = 1

2 , Pλ(z; θ = 1
2). This correspondence

works for any Young diagram λ.

46This is a change of basis of the matrix form in (A.3)
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As for θ = 1, 2 this derivation of superblocks and super Jacks from group theory makes
manifest the stability in m,n of both, since they arise from formulae derived from matrices
Z of arbitrary dimensions.

A.4 Non-supersymmetric conformal and internal blocks

We conclude our discussion by considering non-supersymmetric conformal and compact blocks.
These were first analysed in [11] using an embedding space formalism for Minkowski space.
Here we see how an unusual coset representation of Minkowski space relates these cases to
the general matrix formalism we have presented.

Conformal blocks (m,n) = (2, 0) with any θ ∈ Z+/2

Complexified Minkowski space in d dimensions, Md, can be viewed as a coset of the complex-
ified conformal group SO(d + 2;C) divided by the subgroup consisting of Lorentz transfor-
mations, dilatations and special conformal transformations. It is both an orthogonal Grass-
mannian and a flag manifold and can be conveniently denoted by taking the Dynkin diagram
of SO(d+ 2;C) and putting a single cross through the first node (see [60])

Md:
d−2
2

or
d−1
2

This crossed-through node represents the group of dilatations and the remaining Dynkin
diagram (with the crossed node omitted) represents the Lorentz subgroup SO(d;C) with
d = 2θ + 2.

The coset construction for θ = 1
2 , 1, 2 in the previous section suggests to start now from

the spinorial representation of SO(d + 2), with d = 2θ + 2, rather than the fundamental
representation. This representation is 2d/2 dimensional for d even (the Weyl representation)
and 2(d+1)/2 dimensional for d odd. In this representation, the coset space can be written in
the block form (3.6) and the coordinatesX are 2⌈θ⌉×2⌈θ⌉ matrices. The matrices will be highly
constrained in general. The cross-ratios arise as eigenvalues of the matrix Z which are now
repeated (due to the constraints, this matches (A.6) for the case θ = 2 when m = 2, n = 0):

Z = X12X
−1
23 X34X

−1
41 ∼ diag(x1, .., x1, x2, .., x2) . (A.13)

thus there are always just two independent cross-ratios x1, x2 which become the variables of
the conformal blocks in (2.7).

Representations of the conformal group are specified by placing Dynkin weights below the
nodes, so for example a fundamental scalar is given by placing a -1 by the first node and
zero’s everywhere else. The scalars of dimension ∆, O∆ appearing as external operators in
the four-point function (2.5), have a −∆ by the first node

O∆(X):
−∆

or
−∆
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The fact that it has a negative Dynkin label is consistent with the fact that this corresponds to
an infinite dimensional representation of the (complexified) conformal group (positive Dynkin
labels give finite reps). One reads off from the diagram the representation as a field on
Minkowski space: it has dilatation weight ∆ and is a scalar under the Lorentz subgroup
(since it has zero’s under all nodes of the uncrossed part of the Dynkin diagram).

The only reps which occur in the OPE of two such scalars has dimension ∆ and Lorentz
spin l. The corresponding Dynkin diagram is

Oγ,λ(X):
−b′ l

or
−b′ 2l

where the Young tableau λ is at most two row (the only shape consistent with (m,n) = (2, 0))
and

b′ = ∆+l
θ = γ + 2

θλ1, ; ∆ = θγ + λ1 + λ2, ; l = λ1 − λ2 . (A.14)

Notice again the redundancy in the description in terms of γ and λ. The two operators
Oγ,[λ1,λ2] = Oγ−2k,[λ1+θk,λ2+θk] give the same representation for any k as long as it leaves a
valid Young tableau. We could use this to set γ = 0 in this case and just have a description
in terms of the Young tableau λ only.

Note that there are different ways of realising Md as a coset. The above way is a bit
complicated for large d. Had we started instead from the fundamental representation of
SO(d+ 2), the coset construction would be equivalent to the embedding space formalism, in
which Md is viewed as the space of null d + 2 vectors in projective space Pd+1. This is the
approach used in [11]. This approach does not fit directly into the general (m,n, θ) matrix
formalism we worked out in the previous cases with θ = 1

2 , 1, 2 however. In particular the
coset is not in the 2× 2 block form of (3.6), and the independent cross-ratios have no natural
origin arising from a diagonal matrix.

Internal blocks: SO(2θ + 4) blocks: (m,n) = (0, 2) with θ ∈ 2/Z+

A very similar case occurs for m = 0, n = 2, corresponding to internal blocks. Namely instead
of four conformal scalars we have four finite dimensional reps of SO(4 + 2

θ ). Blocks for these
were again discussed in Dolan and Osborn [11]. Here the complexified coset space is the
same as in the previous case with θ ↔ 1

θ (although the real forms will be different, previously
SO(2, 2 + 2θ), now SO(4 + 2

θ )).

1
θ

or
1
θ + 1

2

The discussion of these spaces as explicit matrices is also identical to the previous section.

The external states are a specific representation of SO(4+2/θ) specified by placing p above
the first node and zeros everywhere else. Note that this time the Dynkin label is positive as
it is a finite dimensional representation.
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Op(X):
p

or
p

The only reps which occur in the ‘OPE’ (in this case equivalent to the tensor product) of two
such reps have Dynkin labels

Oγ,λ(X):
b a

or
b 2a

.

The Young tableau λ is at most two column (the only shape consistent with (m,n) = (0, 2)
this is a rotation of a standard SL(2) Young tableau) and we have

b = γ − 2λ′1 ; a = λ′1 − λ′2 . (A.15)

Again there is redundancy in the description in terms of γ and λ withOγ,[λ′
1,λ

′
2]

′ = Oγ+2δ,[λ′
1+δ,λ′

2+δ]′

for any δ as long as it leaves a valid Young tableau. Here we could use this to force λ′2 = 0,
so only allow 1 column Young tableaux.

B From CMS Hamiltonians to the superblock Casimir

Jack polynomials (in suitable variables) are eigenfunctions of the Hamiltonian of the Calogero-
Moser-Sutherland system for An root sytem whilst Jacobi polynomials (as well as dual Jacobi
functions/ blocks) are eigenfunctions of the BCn root system. Similarly deformed (i.e. super-
symmetric) Calogero-Moser-Sutherland (CMS) Hamiltonians of the generalised root systems
An|m and BCn|m yield super Jack polynomials and dual super Jacob fucntions (superblocks)
as eigenfunctions.

In this section we review the deformed Calogero-Moser-Sutherland (CMS) Hamiltonian
associated to generalised root systems and show explicitly how the BC type relates to the
super Casimir for superblocks in our theories.

B.1 Deformed CMS Hamiltonians.

The (non-deformed) Calogero-Moser-Sutherland (CMS) operator for any (not necessarily re-
duced) root system was first given in [93] via the Hamiltonian

H = −∂I∂I +
∑

α∈R+

kα(1 + kα + 2k2α)α
2

sin2 αIuI
, (B.1)

where

• the uI are coordinates in a vector space, ∂I := ∂/∂uI , and the indices are raised and
lowered using the Euclidean metric gIJ .

• the roots {αI} are a set of covectors (the roots of the root system) and R+ is the set of
positive roots. α2 denotes the length squared of root α, α2 = αIαJg

IJ .
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• Finally to each root α is associated a parameter kα, which is constant under Weyl
transformations, so kwα = kα for w in the Weyl group. For any covector α which is not
a root then we have kα = 0.

In [35] this story was generalised and deformed CMS operators were defined in terms of
generalized (or supersymmetric) root systems. The irreducible generalized root systems were
first classified by Serganova [94]. The generalized root systems are no longer required to have
a Euclidean metric but can have non-trivial signature, and they have the analogous relation
to Lie superalgebras as root systems do to Lie algberas. In the classification there are just
two infinite series, Am,n and BCm,n (which we will concentrate on) together with a handful
of exceptional cases.

The deformed Hamiltonian has the same form as (B.1) but with some additional subtleties

• The metric gIJ need not be Euclidean.

• There are odd (also known as imaginary) roots which must have kα = 1.

• There will be relations between some of the parameters kα even when they are not
related by Weyl reflections.

We will give the two main cases, An|m and BCn|m explicitly in the next subsections.

In all cases there is a special eigenfunction (the ground state) of H which takes the
universal form,

Ψ0(uI , {kα}) =
∏

α∈R+

sin−kα αIu
I . (B.2)

This is automatic in the non-deformed case but in the deformed case it requires the additional
relations between parameters kα.

It is useful to then write other eigenfunctions of H as the product Ψ0f for some function
f(uI , {kα}). The function f is then an eigenfunction of the conjugate operator Ψ−1

0 HΨ0. This
is the one we shall relate to the super Casimir. This conjugate operator also has a universal
(and indeed simpler ) form for all such (generalised) root systems

L := Ψ−1
0 HΨ0 + c = −∂I∂I +

∑

α∈R+

2kαcot(αJu
J)αI∂I (B.3)

for some constant c.

Our presentation in this appendix collects a number of known results and follows [35].
In addition, we will rewrite the differential operators L, by using the (orthogonal) measures
associated to the root systems.
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B.2 A-type Hamiltonians and Jack polynomials

The An−1|m−1 generalised root system can be placed inside an n + m dimensional vector
space. The positive roots will be parametrised as

An−1|m−1 : R+ =





ei−ej
ei−ej′
ei′−ej′

; 1 ≤ i < j ≤ n, n+ 1 ≤ i′ < j′ ≤ m+ n



 (B.4)

where eI=1,...m+n give the basis of unit vectors. The (inverse) metric is

gIJ =

{
δij i, j = 1, .., n

−θδi′j′ i′, j′ = n+1, ..,m+n
(B.5)

R+ splits into three separate Weyl orbits (therefore there will be three distinct kα) and the
three families of roots are

α = ei−ej : α2 = 2, kα = −θ
α = ei−ej′ : α2 = 1− θ, kα = 1

α = ei′−ej′ : α2 = −2θ, kα = −1
θ

(B.6)

Plugging in these, the CMS operator (B.1) thus becomes

HA = −
∑

i

∂2i + θ
∑

i′

∂2i′ −
∑

i<j

2θ(1− θ)

sin2 uij
+
∑

i

∑

j′

2(1 − θ)

sin2(ui−uj′)
+
∑

i′<j′

2(1 − 1/θ)

sin2 ui′j′

= −
n+m∑

I=1

(−θ)πI∂2i + 2(1 − θ)
∑

1≤I<J≤n+m

(−θ)1−πI−πJ

sin2(uI − uJ)
(B.7)

where the parity assignment is πi=1,...n = 0 and πi′=n+1,...n+m = 1.

The ground state is given by

Ψ0 =

∏
i<j sin

θ(ui−uj)
∏

i′<j′ sin
1
θ (ui′−uj′)∏

i

∏
j′ sin(ui−uj′)

(B.8)

and the conjugated operator (B.3) is

LA = Ψ−1
0

(
HA − |ρθ|2

)
Ψ0 =−

n+m∑

I=1

(−θ)πI∂2I + 2
∑

i,j′

cot(ui−uj′)(∂i + θ∂j′)

− 2θ
∑

i<j

cot(ui−uj)(∂i − ∂j) + 2
∑

i′<j′

cot(ui−uj)(∂i′ − ∂j′)

where ρθ =
∑

α kαα =
∑

I<J(−θ)1−πI−πJ (eI − eJ ), and |ρθ|2 is the norm of ρθ under gIJ .

Notice that LA contains in principle all terms coming from
∑

I(−θ)πI∂2IΨ0 and in partic-
ular the terms

∑
β

∑
α6=β kαkβ (αIg

IJβJ) cot(αIu
I) cot(βIu

I), which have mixed nature and
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do not cancel immediately with the ones from HA. However these can be replaced in favour
of a θ dependent constant, −∑β

∑
α6=β kαkβ (αIg

IJβJ), because of the following relation

∑

β

∑

α6=β

kαkβ (αIg
IJβJ)

(
cot(αIu

I) cot(βIu
I) + 1

)
= 0 (B.9)

This condition is automatically satisfied by the kα assignment of the roots, and can be un-
derstood as a consistency condition on Ψ0 being the ground state.

Finally, by changing variables to zI = e2iuI , we find cot(uI − uJ) = i(zI + zJ)/(zI − zJ )
and ∂uI

= 2izI∂zI . Therefore,

1
4LA =

n+m∑

I=1

(−θ)πI (zI∂I)
2 + θ

n+m∑

I<J

zI + zJ
zI − zJ

((−θ)−πJzI∂I − (−θ)−πIzJ∂J ) . (B.10)

and one can check that

1
4LA = H + (θ(m− 1)− (n− 1))

∑

I

zI∂I (B.11)

where H is defined in (5.9) and is the defining operator of super Jacks (5.12) .

At this point it is also interesting to note that superJack operators are orthogonal in an
A(m,n) measure [95]

S(m,n)(z; θ) =
∏

I

∏

J 6=I

(
1− zI

zJ

)−(−θ)1−πI−πJ

(B.12)

(where the parity assignment is πi=1,...n = 0 and πi′=n+1,...n+m = 1) and the A-type CMS
operator (B.10) can be rewritten in a very simple way in terms of this measure as

1
4LA = S−1

∑

I

(−θ)πIzI∂I [SzI∂I ] . (B.13)

Finally, we point out that Jack polynomials are also eigenfunctions of the one-parameter
family of Sekiguchi differential operators [67].

B.3 BC-type Hamiltonians and superblocks

We now move on to the CMS operator for the generalised BC root system and relate it to
the Casimir which give superblocks.

The positive roots of the BCn|m root system live in an m + n dimensional vector space
and are as follows

RBC+ =





ei
ei′

;
2ei
2ei′

;
ei ± ej
ei ± ej′

ei′ ± ej′
; 1 ≤ i < j ≤ n, n+ 1 ≤ i′ < j′ ≤ m+ n



 (B.14)
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where again eI=1,...m+n are the basis of unit vectors and the inverse metric is the same as in
the An|m case (B.5). The parameters are assigned as follows,

α = ei±ej : α2 = 2, kα = −θ
α = ei±ej′ : α2 = 1− θ, kα = 1

α = ei′±ej′ : α2 = −2θ kα = −1
θ

(B.15)

and

α = ei : α2 = 1, kα = p

α = ei′ : α2 = −θ, kα = r
;

α = 2ei : α2 = 4, kα = q

α = 2ei′ : α2 = −4θ, kα = s
(B.16)

Plugging these values into the general formula (B.1) we obtain the Hamiltonian

HBC =−
n+m∑

I=1

(−θ)πI∂2I + 2(1 − θ)
∑

1≤I<J≤n+m

(−θ)1−πI−πJ

sin2(uI ± uJ)
(B.17)

+
n∑

i=1

(
p(p+ 2q + 1)

sin2 ui
+

4q(q + 1)

sin2 2ui

)
− θ

(
n+m∑

i′=n+1

r(r + 2s+ 1)

sin2 ui′
+

4s(s+ 1)

sin2 2ui′

)

where the first line is a trivial modification of (B.7).

The ground state (B.2) becomes

Ψ0 =

∏
i<j sin

θ(ui ± uj)
∏

i′<j′ sin
1
θ (ui′ ± uj′)∏n

i=1

∏m+n
j′=n+1 sin(ui ± uj′)

∏n
i=1(sin

p(ui) sin
q(2ui))

∏n+m
i′=n+1(sin

r(ui′) sin
s(2ui′))

(B.18)

and the conjugated operator is

LBC = Ψ−1
0

(
HBC − |ρθ|2

)
Ψ0 =−

n+m∑

I=1

(−θ)πIDI∂I + 2
∑

i,j′

cot(ui±uj′)(∂i ∓ θ∂j′)

− 2θ
∑

i<j

cot(ui ± uj)(∂i ± ∂j) + 2
∑

i′<j′

cot(ui′ ± uj′)(∂i′ ± ∂j′)

where ρθ =
∑

α kαα and DI = (∂I + 2cot(2uI))− 2(−θ)−πI (p cot uI + (2q + 1) cot(2uI)).

Going through the computation notice that for the ground state to be so, the following
relation had to be satisfyied

∑

β

∑

β≁α

kαkβ (αIg
IJβJ)

(
cot(αIu

I) cot(βIu
I) + 1

)
= 0 ;

p = −θr
2q + 1 = −θ(2s+ 1)

(B.19)

This was not automatic for the kα assignment but puts a constraint which we used to solve
for r and s. The summation over β ≁ α excludes roots which are parallel in the vector space.
The origin of this constraint again can be understood as a rewriting of the potential terms
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arising from
∑

(−θ)πI∂2IΨ0 coming from mixed products which do not cancel immediately
against the potential terms in HBC .

We now change variables to exponential coordinates ẑI = e2iuI , and we get

1
4LBC =

n+m∑

I=1

(
(−θ)πI

(
ẑI ∂̂I +

ẑ2I + 1

ẑ2I − 1

)
−
(
p
ẑI + 1

ẑI − 1
+ (2q + 1)

ẑ2I + 1

ẑ2I − 1

))
(ẑI ∂̂I)

+ θ

n+m∑

I<J

ẑI + ẑ±J
ẑI − ẑ±J

((−θ)−πJ ẑI ∂̂I ∓ (−θ)−πI ẑJ ∂̂J ) (B.20)

We can rearrange the sum over many-body interactions as a sum over I 6= J , then for a single

derivative we can add up the two terms
ẑI+ẑ±J
ẑI−ẑ±J

to find
2ẑJ(1−ẑ2I )

(ẑI−ẑJ )(1−ẑiẑJ )
.

Finally we need to change variables again to47

zI =
1

2
− 1

4

(
ẑI +

1

ẑI

)
(B.21)

and we obtain

1
4LBC(z, θ) =

n+m∑

I=1

(
(−θ)πI∂IzI(zI − 1)∂I −

(
p(zI − 1) + (2q + 1)

(
zI − 1

2

))
∂I

)

− 2θ
∑

I 6=J

(−θ)−πJ

zI − zJ
zI(1− zI)∂I (B.22)

At this point we can understand the relation between the super Casimir C, defining the
superblocks, and LBC . One can check that they are closely related after conjugation and a
shift

(∏m
i=1 x

θ
i∏n

j=1 yj

)−β

1
4LBC( 1

x1
. . . 1

xm
; 1
y1
. . . 1

yn
; θ)

(∏m
i=1 x

θ
i∏n

j=1 yj

)+β

=

C(θ, 1
2
(γ−p12),

1
2
(γ−p43),γ) −

[
β(n −mθ)((n− 1)− (m− 1)θ + (γ − β)θ)

]
(B.23)

with β = min
(
1
2(γ−p12), 12(γ−p43)

)
. We have thus shown that the differential operator

corresponding to BC root system is equivalent to our Casimir operator.

Before concluding this section however, we point that there is an analogue of the measure
based relation (B.13) in the super BC case which we have not seen in the literature previously.

47Note the following useful relations















zI = − 1
4

(

1√
ẑI

−
√
ẑI

)2

zI − 1 = − 1
4

(

1√
ẑI

+
√
ẑI

)2 ;







ẑI
∂zI
∂ẑI

= 1
4

(1−ẑ2I )

ẑI
=

√

zI(zI − 1)

1
4

(1+ẑ2I )

ẑI
= −(zI − 1

2
)
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Macdonald used a measure to define BCn Jacobi polynomials as orthogonal (see for example
[28] page 52). This measure has a natural generalisation to the BCn|m case as follows

S(p−,p+)(z; θ) =

n+m∏

I=1

(zI)
p−(−θ)1−πI (1− zI)

p+(−θ)1−πI
∏

I<J

(zI − zJ)
−2(−θ)1−πI−πJ . (B.24)

We then find that the operator 1
4LBC has the simple form

1
4LBC(z; θ, p, q) = −S−1

n+m∑

I=1

(−θ)πI∂zI

[
zI(1−zI) S ∂zI

]
(B.25)

where p = θ(p− − p+) and q = −1
2 + θp+. Recall that p± = |p43±p12|

2 in terms of the external
charges.

C Symmetric and supersymmetric polynomials

In this section we review relevant background regarding Young diagrams and symmetric
polynomials (Jacks and interpolation Jacks), both in the bosonic and supersymmetric case.
We shall view multivariate Jack polynomials and interpolation polynomials as fundamental,
in the sense that they are homogeneous polynomials in certain variables. In particular they
can be constructed as a sum over semistandard Young tableaux, or filling, as we will see. On
the other hand, Jacobi polynomials (and blocks) we view as ‘composite’: they naturally can
be thought of as a sum of Jacks as we have done throughout the paper. In this appendix we
focus on the fundamental objects themselves.

C.1 Symmetric polynomials

A Young diagram is a collection of boxes drawn consecutively on rows and columns, with the
number of boxes on each row decreasing as we go down, for example

λ = [10, 6, 6, 5, 2, 2]

λ′ = [6, 6, 4, 4, 4, 3, 1, 1, 1, 1]

(C.1)

By counting the number of boxes on the rows we define a representation of the Young diagram
of the form λ = [λ1, . . .]. Equivalently, by counting the number of boxes on the columns we
define the transposed representation λ′ = [λ′1, . . .]. Both λ and λ′ are partitions of the total
number of boxes. A box � in the diagram has coordinates (i, j) where for each row index i,
1 ≤ j ≤ λi, and for each column index j, 1 ≤ j ≤ λ′i.

Physics-wise, Jack and Jacobi polynomials are best known as eigenfunctions of known
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differential operators, but more abstractly, the theory of symmetric polynomials associates
polynomials to Young diagrams in such a way that polynomials are characterised by properties
and uniqueness theorems [27, 28, 32, 33], which are equivalent to solving the corresponding
differential equations.48

In this appendix we will highlight a combinatorial definition for Jack and interpolation
polynomials, which is very efficient in actual computations. We focus on bosonic polynomi-
als first, for which there is no distinction among {x1, . . . xm} variables, differently from the
supersymmetric case discussed afterwards.

For a polynomial P of m variables, the combinatorial formula takes the form

Pλ(x1, . . . xm;~s) =
∑

{T }
ΨT (~s)

∏

(i,j)∈λ
f
(
xT (i,j);~s

)
. (C.2)

The functions Ψ and f depend on the polynomials under consideration (i.e. Jack or Inter-
polation polynomials). Note that in some cases the function f may depend explicitly on the
integers (i, j) and the integer T (i, j), in addition to the variable xT (i,j), but we will usually
suppress this dependence in order to avoid cluttering the notation. Both Ψ and f may also
depend on various external parameters, which we denoted collectively by ~s. As a concrete
example to have in mind: Jack polynomials have simply f(x, i, j; θ) = x and for the special
case with θ = 1 (corresponding to Schur polynomials) the coefficient ΨT (θ = 1) = 1.

The sum in (C.2) is over all fillings (also known as semistandard Young tableaux) of
the Young diagram λ, denoted here and after by {T }. A filling T assigns to a box with
coordinates (i, j) ∈ λ, a number in {1, . . . m} in such a way that T (i, j) is weakly decreasing
in j, which means from left-to-right, and strongly decreasing in i, from top-to-bottom, which
means T (i, j) > T (i− 1, j), T (i, j) ≥ T (i, j − 1).

Note that the fillings precisely correspond to the independent states of the U(m) repre-
sentation λ which one typically views as a tensor with |λ| indices symmetrised via a Young
symmetrizer.

For example, if λ = [3, 1] and m = 2, the fillings {T } are

2 2 2

1

2 2 1

1

2 1 1

1
(C.3)

which correspond to the three states in the corresponding rep of U(2), the independent states
in a tensor of the form Sabcd = T(abc)d − T(dbc)a where the indices a, b, c, d = 1, 2. Then for
example the Schur polynomial can be directly read off from (C.2) with f(x) = x and Ψ = 1
as

P[3,1](x1, x2; θ = 1) = x31x2 + x21x
2
2 + x1x

3
2 . (C.4)

We immediately see from this definition that if the number of rows of λ is greater than the
number of variables m then Pλ = 0 since it is not possible to construct a valid semistandard
tableaux and the sum is empty (just as for U(m) reps).

48See [29] for a comprehensive introduction.
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In order to define Ψ it is first useful to note that there is a simple way to generate all
the fillings {T } given a Young diagram λ, via recursion in the number of variables m. (See
for example the discussion in [67].) This recursion in fact gives a way of generating the
polynomial itself also, equivalent to the combinatorial formula (C.2). It reads

Pλ(x1, . . . xm, xm+1;~s) =
∑

κ≺λ

ψλ,κ(~s)


 ∏

(i,j)∈λ/κ
f(xm+1;~s)


Pκ(x1, . . . xm;~s)

P[∅] =1 (C.5)

where λ/κ is the skew Young diagram obtained by taking the Young diagram of λ and
deleting the boxes of the sub Young diagram κ (see section C.2). Here ψ is closely related to
Ψ mentioned above (we will give the precise relation shortly), and the symbol κ ≺ λ means
that κ belongs to the following set,49

{ [κ1, . . . , κm] : λm+1 ≤ κm ≤ λm , . . . , λ2 ≤ κ1 ≤ λ1 } . (C.6)

In this formula, if λ is a partition with less than m+1 rows, it is extended with trailing zeros.
The recursion generates sequences of Young diagrams of the form

[∅] ≡ κ(0) ≺ κ(1) ≺ . . . ≺ κ(m) ≺ κ(m+1) ≡ λ, (C.7)

with a strict inclusion, i.e. κ(i−1) ⊂ κ(i). This is the same as considering the set of fillings
{T }. For example, for the above case with λ = [3, 1] in (C.3) the sum in (C.5) would be over
κ ∈ {[3], [2], [1]}. These sub Young diagrams are then filled with x1’s and the remaining bits
λ/κ filled with x2 reproducing (C.3).

It follows that for a filling T corresponding to a sequence (C.7),

ΨT (~s) =
m+1∏

i=1

ψκ(i), κ(i−1) ,
∏

(i,j)∈λ
f(xT (i,j);~s) =

m+1∏

l=1

∏

(i,j)∈κ(l)/κ(l−1)

f(xl;~s) (C.8)

and the recursion and the combinatorial formula (C.2) are the same. In particular l is the
level of nesting in the recursive formula. In the example above with m + 1 variables, the
relation between l and T (i, j) is

l = (m+ 1)− T (i, j) + 1. (C.9)

Given the above facts it is enough for us to define ψλ,κ and the function f(x;~s) in order
to fully define the symmetric function.

We will now examine the various specific cases, beginning with the Jack polynomials.

49The skew diagram λ/κ is sometimes known as a horizontal strip.
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C.2 Jack polynomials

Jack polynomials depend on one parameter, θ. The defining function is (for example [67])

ψλ,κ(θ) =
∏

1≤i≤j<m+1

(κi − λj+1 + 1 + θ(j − i))λi−κi

(κi − λj+1 + θ(j − i+ 1))λi−κi

(κi − κj + θ(j − i+ 1))λi−κi

(κi − κj + 1 + θ(j − i))λi−κi

. (C.10)

with,

f(x; θ) = x (C.11)

Considering the top-left Pochhammer symbol, notice that ψλ,κ vanishes when,

(κi − λi+1 + 1)λi−κi
= (κi + 1− λi+1) . . . (λi − λi+1) = 0 (C.12)

i.e. when one of the terms vanishes. This happens precisely when κ ⊀ λ.

As a simple example then consider P[2,1](x1, x2; θ). The case with θ = 1 (Schur polynomial)
is given in (C.4). For arbitrary θ we need the coefficient ΨT (θ) for the three fillings T in (C.3).
The first and third filling have Ψ = 1 whereas the second has Ψ = 2θ

1+θ and we thus obtain

P[3,1](x1, x2; θ) = x31x2 +
2θ
1+θx

2
1x

2
2 + x1x

3
2 . (C.13)

Notice that Jack polynomials are stable, i.e. Pλ(x1, . . . xm, 0; θ) = Pλ(x1, . . . xm; θ) as can
be shown directly from the combinatorial formula (as well as from their definition as the unique
polynomial eigenfunctions of the differential equation (5.12) with eigenvalues and differential
operator independent of m, and with the same normalisation).

Also note that Jack polynomials have the following property

Pλ+τm = (x1 . . . xm)τPλ . (C.14)

It is instructive to prove (C.14) by showing again that both RHS and LHS are eigenfunctions of
the An CMS operator H in (5.12). Applying H on the LHS we simply find the corresponding
eigenvalue hλ+τm . On the RHS we need to consider what happens upon conjugation,

(x1 . . . xm)−τ ·H · (x1 . . . xm)τ = H+ 2τ
∑

i

xi∂i + h
(θ)
τm (C.15)

Thus applying H· to (C.14) we find

h
(θ)
λ+τm = h(θ)λ + 2τ |λ|+ h

(θ)
τm (C.16)

which is an identity, and proves (C.14), since both RHSand l.h.s have the same small variable
expansion.

Remark. When there is an ambiguity in the notation, in relation to the supersymmetric
case, we will specify P (m,0)(z; θ) to mean the bosonic Jack polynomial.
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Dual Jack polynomials

Jack polynomials are orthogonal but not orthonormal (except when θ = 1 where they reduce
to Schur polynomials) under the Hall inner product. The dual Jack polynomials (where dual
here denotes the usual vector space dual under the Hall inner product) are thus simply a nor-
malisation of the Jacks, defined so that they have unit inner product with the corresponding
Jack. Given a Jack polynomial, the dual Jack polynomial has the form [29]

Qκ(x; θ) =
C−
κ (θ; θ)

C−
κ (1; θ)

Pκ(x; θ) ; C−
κ (t; θ) =

∏

(ij)∈κ

(
κi−j + θ(κ′j−i) + t

)
(C.17)

where, as throughout

Πκ(θ) =
C−
κ (θ; θ)

C−
κ (1; θ)

; Πκ(
1
θ ) =

(
Πκ′(θ)

)−1
. (C.18)

Skew Jack polynomials

For one way of defining super Jack polynomials shortly we will also need the concept of skew
Jack polynomials.

A skew Young diagram λ/µ, where µ ⊆ λ is obtained by erasing µ from λ. The Figure
below gives a simple example,

λ = [10, 6, 6, 5, 2, 2]

µ = [4, 3, 3, 1, 1, 1]

Skew Jack polynomials are then defined by a similar combinatorial formula but where one
sums only over semi standard skew Young tableaux. Or equivalently by the recursion formula

Pλ/µ(x1, . . . xm, xm+1; θ) =
∑

µ�κ≺λ

ψλ,κ(θ) x
|λ|−|κ|
m+1 Pκ/µ(x1, . . . xm; θ) . (C.19)

Notice that m + 1 ≥ λ′1 − µ′1. The number of variables here is the number of variables that
can fill in the Young diagram according to recursion in (C.6). The recursion goes on as long
as µ ≺ κ(1) ≺ . . . ≺ κ(m) ≺ κ(m+1) ≡ λ and the condition µ ≺ κ(1) is non trivial, since it
implies that a skew Jack polynomial has the vanishing property

Pλ/µ(x1, . . . xm) = 0 if λm+i > µi . (C.20)

For example, imagine a λ with very long rows, and take a very small µ, then no horizontal
strip of λ will contain µ. Indeed the minimal diagram κ generated by the table (C.6) at each
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step of the recursion is given by components of λ properly shifted upwards.

An example of a skew Jack polynomial is

P[3,1,1]/[1](x1, x2; θ) = x31x2 + x1x
3
2 +

2θ

1 + θ
x21x

2
2 (C.21)

Skew polynomials have the property that

Pλ(x; θ) =
∑

µ⊂λ

Pµ(x1, . . . xm−n; θ)Pλ/µ(xm−n+1, . . . xm; θ) (C.22)

Structure constants and decomposition formulae for Jacks

The Jack structure constants Cν
λµ(θ) are defined as follows

PλPµ =
∑

ν

Cν
λµ(θ)Pν . (C.23)

For θ = 1 they are just the Littlewood-Richardson coefficients.

Then there are related coefficients Sλµ
ν (θ) obtained from decomposing skew Jack polyno-

mials into Jack polynomials

Pν/λ =
∑

µ

Sλµ
ν (θ)Pµ . (C.24)

The property (C.22) then yields the decomposition formula for decomposing higher dimen-
sional Jacks into sums of products of lower dimensional Jacks

Pλ(x1, .., xm+n) =
∑

µ,ν

Pµ(x1, .., xm)Sµν
λ (θ)Pν(xm+1, .., xm+n) . (C.25)

For θ = 1 these decomposition coefficients are also the Littlewood-Richardson coefficients,
Cν
λµ(1) = Sλµ

ν (1), but for general θ they are related via normalisation:

Sµν
λ (θ) =

Πµ(θ)Πν(θ)

Πλ(θ)
Cλ
µν(θ) . (C.26)

Note that the structure constants Cν
λµ(θ) and Sλµ

ν (θ) do not depend on the dimensions of
the Jack polynomials in any of the above formulae.

Also note that if the Young diagram λ is built from two Young diagrams µ, ν on top of
each other then the corresponding structure constant is 1:

Sµν
λ (θ) = 1 if λ = [µ, ν] . (C.27)

This can be seen by (C.24) noting that the Jack polynomial of dimension equal to the height
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of µ is equal to the skew Jack

Pµ(x1, .., xµ′
1
) = Pλ/ν(x1, .., xµ′

1
) if λ = [µ, ν] . (C.28)

This can be verified from the respective combinatoric formulae.

C.3 Interpolation polynomials

The interpolation polynomials of relevance here (i.e. the BC-type which appear in section 7)
depend on two parameters, θ, and a new one denoted here by u. They can be defined in
a very similar way to the Jack polynomials and we will denote them P ip(x; θ, u). They are
symmetric polynomials in the variables x = (x1, .., xm). Generically P ip is a complicated, non
factorisable polynomial and it is uniquely defined by the following vanishing property

P ip
κ (ν + θδ + u; θ, u) = 0 if λ ⊂ µ (C.29)

where δ = (m−1, .., 1, 0). This idea generalises what happens for the Pochhammer symbol
(−z)λ = (−z)(−z + 1) . . . (−z + λ− 1) which vanishes if 0 ≤ z < λ.50

The interpolation polynomial is defined via the combinatorial formula (C.2) (or the equiv-
alent recursion (C.5)) with ψ exactly the same as for the Jacks (C.10), but with a more
complicated x dependence arising from a modified f

ψλ,κ(θ, u) = ψλ,κ(θ) (C.30)

f(xl, i, j, l; θ, u) = x2l − ((j−1)−θ(i− 1) + θ(l − 1) + u)2 (C.31)

where ψλ,κ(θ) is the defining function for Jack polynomials (C.10). Instead, note that f here
depends explicitly on (i, j) and l. As in (C.7) the index l labels the nesting and is related to
T (i, j) via (C.9).

One can see an example of the vanishing property from the above definition: take the last
variable xm and the last row i = m in (C.31), this contributes with terms which vanish for
all xm = j − 1 + u, where j = 1, . . . κm.

Because of the various shifts in the vanishing property (C.29), it is useful to define the
non-symmetric version of the interpolation polynomial P ∗(x; θ, u) by

P ∗(x; θ, u) ≡ P ip(x+ θδ + u; θ, u) δ = (m−1, .., 1, 0) (C.32)

So the vanishing property (C.29) takes the form

P ∗
µ(λ; θ, u) = 0 if λ ⊂ µ . (C.33)

(Recalling however that P ∗
µ here is no longer symmetric in its variables z.)

This interpolation polynomial is Z2 invariant under xi ↔ −xi. It was introduced by
Okounkov [33], and re-obtained by Rains [32], using a different approach.

50Indeed the Pochhammer symbol (−z)k is precisely a case of interpolating polynomial, giving the standard

one-variable binomial expansion (1 + x)n =
∑

k(
n
k )x

k =
∑

k
(−n)k
(−k)k

xk.
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C.4 Supersymmetric polynomials

The general combinatorial formulation of symmetric polynomials outlined in section C.1 has
a natural supersymmetric generalisation [34]. This allows in particular to define super Jack
polynomials and super interpolation Jack polynomials. The only real modification in the
general story is that the definition of a filling (semistandard tableaux) is modified to become a
supersymmetric filling (or bitableau) since it has to take into account two alphabets, x1, . . . xm
and y1, . . . yn. Written in terms of the letters z, the labelling is zi = xi for i = 1, . . . m, and
zm+j = yj for j = 1, . . . n and the combinatorial formula then looks the same as in (C.2)

Pλ(z1, . . . zm+n;~s) =
∑

{T }
ΨT (~s)

∏

(i,j)∈λ
f(zT (i,j);~s) (C.34)

but with the sum now over all supersymmetric fillings.

The supersymmetric filling assigns to a box of coordinate (i, j) a number {1, . . . n +m}
such that T (i, j) is weakly decreasing51 in j, i.e. from left-to-right, and is weakly decreasing
in i, i.e. from top-to-bottom. But, if T (i, j) ∈ {1, . . . m}, then T (i, j) is strictly decreasing in
i, i.e. from top-to-bottom, and if T (i, j) ∈ {n+1, . . . n+m}, then T (i, j) is strictly decreasing
in j, i.e. from left-to-right.

Note that the above notion of a supersymmetric filling has a direct relation with states of
the supergroup U(m|n) just as the ordinary fillings relate to states of U(m). This can again
be clearly seen by representing the U(m|n) irrep λ as a tensor TA1A2..A|λ|

with superindices
A ∈ {1, ..,m|m + 1, ..,m + n} and symmetrising the indices in the standard fashion via a
Young symmetriser. The only caveat is that when the index A ∈ {m + 1, ..,m + n} the
index is viewed as ‘fermionic’ and so symmetrising two of them becomes anti-symmetrising
and vice versa. The resulting independent states obtained in this way will have a precise
correspondence with the supersymmetric fillings.

A first example, λ = [3, 1] with (z1, z2|z3).

This has two rows, so we can fill it in as in (C.3), namely

2 2 2

1

2 2 1

1

2 1 1

1
(C.35)

Then we introduce the variable z3 = y1, once

3 2 2

2

3 2 2

1

3 2 1

2

3 2 1

1

3 1 1

2

3 1 1

1

and twice
3 2 2

3

3 1 1

3

3 2 1

3
(C.36)

51Conventionally the supersymmetric filling is also reversed, hence decreasing rather than increasing.
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These correspond to the states of the U(2|1) rep [3, 1] as can be seen via Young sym-
metrising as described above.

A second example, λ = [3, 1] with (z1, z2|z3, z4).

Again we can fill λ as in the previous example, with both 3 and 3 → 4. Then we have new
fillings in which both z3 and z4 appear. These are

4 3 2

3

4 3 1

3

4 3 2

4

4 3 1

4
(C.37)

and
4 1 1

3

4 2 2

3

4 2 1

3
(C.38)

4 3 1

1

4 3 2

2

4 3 1

2

4 3 2

1
(C.39)

for a total of 3 + 2× 9 + 4 + 7 fillings. These correspond to the states of the U(2|2) rep [3, 1]
as can be seen via Young symmetrising.

The variables z = (x1, . . . xm|ym+1, . . . ym+n) are defined to have a parity πi = 0 if xi and
πi = 1 if yi.

A Young diagram λ endowed with an (m,n) structure is a Young diagram λ that has
to satisfy the condition λm+1 ≤ n. One can easily check that only then will the diagram
allow any supersymmetric filling, and correspondingly only then can it yield a non vanishing
U(m|n) rep. This condition implies that the Young diagram has at most a hook shape, with
only m arbitrarily long rows and only n arbitrarily long columns. The reps split into two
cases,

• typical Young diagram, i.e. λm+1 ≤ n such that it contains the rectangle nm. These
correspond to long representations of U(m|n).

(m,n) = (3, 5)

λ = [10, 7, 5, 4, 2, 2]

(C.40)

• atypical Young diagram, i.e. λm+1 ≤ n such that it does not contain nm. These
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correspond to short representations of U(m|n).

(m,n) = (3, 5)

λ = [10, 7, 3, 3, 2, 2]

(C.41)

Typical representations are such that the box with coordinates (m,n) lies in the diagram.
The simplest example of an atypical representation is the empty diagram.

In both cases it can be useful to define two sub Young diagrams, by essentially cutting
open the diagram vertically after the nth column. We then define the Young diagram obtained
from the first n columns and transposing as λs and the remaining diagram as λe. So in the
above atypical example:

(m,n) = (3, 5)

λ = [10, 7, 3, 3, 2, 2]

λs = [6, 6, 4, 2, 2]

λe = [5, 2]

λ′s

λe

(C.42)

These sub Young tableaux have a direct interpretation in terms of the corresponding U(m|n)
rep. They are simply the corresponding representations of the U(n) and U(m) subgroups of
the highest weight state. Or put another way, the highest term in the supersymmetric filling
will have only y entries in λs and only x entries in λe.

C.5 Super Jack polynomials

Having outlined the general structure of supersymmetric polynomials let us now specify to
the main interest, the super Jack polynomials. We just need to define Ψ and f in (C.34). To
define Ψ we split the superfilling T of λ into T1, the part containing m+1, ..,m+ n, and the
rest T0 = T /T1. Say that µ is the shape of T1. Then Ψ(T ; θ) is defined in terms of the Jack
Ψ as [34]

ΨT (θ) = (−)|µ|Πµ′(1θ )ΨT ′
1
(1θ )ΨT0(θ) (C.43)

f(z; θ) = z . (C.44)

According to this definition the superJack is given as a sum over all decompositions of the
form

Pλ(z; θ) =
∑

µ⊆λ

(−)|µ|Qµ′(y1, . . . yn,
1
θ )Pλ/µ(x1, . . . xm; θ) . (C.45)
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where the sum can also be restricted to µ such that max(λ′j−m, 0) ≤ µ′j ≤ λ′j with j = 1, . . . n.

Note also that we could construct the superJacks directly from Jack polynomials via their
decomposition into U(m) and U(n) reps following [34] (see also [95] for a nice review). Quite
nicely [34] showed that this decomposition can be brought to (C.45). From this point of view
it might be useful to compare this with the bosonic decomposition (C.22).

Remark. A super Jack polynomial is denoted by P (m,n)
λ (z; θ). However, the (m,n) depen-

dence can be read off the variables z, when there are no ambiguities in the notation. When
this is the case, we will simply use Pλ(z; θ).

Some simple observations which can be seen directly from this formula:

1) If λ fails to have an (m,n) structure, so (i, j) = (m+1, n+1) is in the Young
diagram λ, then the superJack vanishes. For any µ in the summation, either the box
(m+1, n+1) is in µ, in which case Qµ′ = 0 as µ′ will have n+1 rows, or (m+1, n+1)
is in λ/µ in which case Pλ/µ = 0 as λ/µ will have a full column with m+ 1 elements.

2) When m = 0 the sum localises on µ = λ, and since Pλ/λ = P∅ = 1, the superJack

polynomial reduces to a (normalised) dual Jack polynomial (−)|λ
′|Qλ′(y; 1θ ). When

n = 0 the sum localises on µ = ∅ and the superJack polynomials reduces to Pλ(x; θ).

C.6 Properties of Super Jack polynomials

Stability

The combinatorial formula makes stability of superJacks manifest. Alternatively, from the
fact that the eigenvalue of the A-type CMS differential depends only on the Young diagram,
and the uniqueness of the polynomial solution for given Young diagram, we also infer that
the super Jack polynomials are stable.

The m and n switch

From the bosonisation of the eigenvalue and a property of the differential operator H, namely

h(θ)λ = −θ
∑

j=1

λ′j(λ
′
j − 1− 2

θ (j − 1)) = −θh(
1
θ
)

λ′ ; H( 1
θ
)(y|x) = −1

θH
(θ)(x|y) (C.46)

we deduce that Pλ′(y|x; 1θ ) has to be proportional to Pλ(x|y; θ). Looking at the precise
normalisations we arrive at

P
(m,n)
λ (x|y; θ) = (−1)|λ

′|Πλ′(1θ )P
(n,m)
λ′ (y|x; 1θ ) (C.47)

We can also show this more directly from either the combinatorial formula or the de-
composition formula (where we further decompose the skew Jacks into Jacks via structure
constants, and use some known properties of the structure constants).
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Shift transformation of superJacks

We have emphasised that blocks should be invariant under the shift symmetry (2.20). In
appendix D we will show that the coefficients Tγ in the expansion of blocks over Jacks possesses
this symmetry, but we thus also require the symmetry for the Jacks themselves in order that
the blocks have this symmetry. We consider this here.

Let λ be a typical (m,n) representation, i.e. λm ≥ n, λm+1 ≤ n. Then we consider: 1) the
Young diagram obtained by a horizontal shift of θτ ′ to the first m rows of λ (on the east),
and 2) the Young diagram obtained by a vertical shift of τ ′ to the first n columns of λ′ (on
the south). We will show that

P
(m,n)
λ+(θτ ′)m(x|y; θ) ;

(∏
i x

θ
i∏

j yj

)τ ′
P

(m,n)
(λ′+τ ′n)′(x|y; 1θ ) (C.48)

are proportional to each other, then we will find the proportionality factor.

For the bosonic n = 0 Jack polynomials, the above claim follows from (C.16) with τ = θτ ′.
We will thus use the same argument, and show that both the LHS and r.h.s in (C.48) are
eigenfunctions of H with both m and n turned on.

So let us see what happens when we apply H on (C.48). On the LHS we simply find the

eigenvalue h
(θ)
λ+(τ)m . On the RHS we use

(∏
i x

θ
i∏

j yj

)−τ ′

·H ·
(∏

i x
θ
i∏

j yj

)τ ′
= H+2θτ ′

∑

I

zI∂I + τ ′(mθ−n)(n− 1− θ(m− 1) + τ ′θ) (C.49)

Note also that the constant term can be written in terms of the same eigenvalue of H,

τ ′(mθ − n)(n− 1− θ(m− 1) + τ ′θ) = +2θτ ′|mn|+ h
(θ)
(θτ ′)m − θh

( 1
θ
)

(−τ ′)n (C.50)

(In the bosonic case, n = 0, this was h
(θ)
τm). Then, the action of H on (C.48) matches because

of the identity

h
(θ)
λ+(θτ ′)m = +h

(θ)
(θτ ′)m − θh

( 1
θ
)

λ′+τ ′n − θh
( 1
θ
)

(−τ ′)n + 2θτ ′
(
|mn|+ |λ′|+ |(τ ′)n|

)
. (C.51)

Note that this is true only if λm ≥ n, λm+1 ≤ n ie only for typical, long representations. For
example it is clearly false for λ = [∅], which would read“0 = 2θτ ′|mn|”.52

Having established that the polynomials in (C.48) are proportional to each other, we
only need to fix the proportionality. By considering the first term in the decomposition
formula (C.45) the only change to take into account is the Π function inside Q for the lowest

52We can also rewrite the above equality as

h
(θ)
λ+(θτ ′)m − h

(θ)
(θτ ′)m

2θτ ′
+

h
( 1

θ
)

λ′+τ ′n + h
( 1

θ
)

(−τ ′)n

2τ ′
= |mn|+ |λ′|+ |(τ ′)n| (C.52)

In the limit τ ′ → 0 the RHS is simply
∑m

i=1 λi +
∑n

j=1 λ
′
j .
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representation. Following this through we arrive at the shift formula (D.8)

Π(λs−mn)′(θ)P
(m,n)
λ+(θτ ′)m(x|y; θ) = Π(λs−mn+τ ′n)′(θ)

(∏
i x

θ
i∏

j yj

)τ ′
P

(m,n)
(λ′+τ ′n)′(x|y; θ) (C.53)

where we are using Π−1
ν (1θ ) = Πν′(θ), and we introduced

λs = [λ′1, . . . λ
′
n] (C.54)

as in (C.42).

Super Jacks and the superconformal Ward identity

The uplift of Jack to superJack polynomials follows from a characterisation theorem, cf.
Theorem 2 of [34]. In particular, a superJack polynomial Pλ(x|y; θ) is generated by the map
ϕ(m,n) which acts on the power sum decomposition of Pλ(z; θ) as

ϕ(m,n)


pr ≡

∑

j

zr


 =

m∑

j=1

xrj − 1
θ

n∑

j=1

yrj → Pλ,(m,n)(; θ) = ϕ(m,n)(Pλ(z; θ)) (C.55)

Note that this map is very easy to understand in the cases θ = 1, 2, 12 where there is a group
theoretic interpretation. For example, when θ = 1 we consider the symmetric polynomials as
functions of the n× n matrix Z, invariant under conjugation f(Z) = f(G−1ZG), with zi the
eigenvalues of Z. Then the supersymmetric case just corresponds to the case where Z is a
(m|n) × (m|n) supermatrix and the map ϕ is just taking the supertrace (see (A.1) and the
following discussion). So for example the power sums

pr = tr(Zr) =
∑

j

zr → str(Zr) =

m∑

i=1

xri −
n∑

j=1

yrj . (C.56)

A similar discussion also follows in the cases θ = 2 and θ = 1
2 (which is dual under the

m,n swap) with the only real difference as far as power sums is concerned being that there
are repeated eigenvalues of Z in these cases, which accounts for the factors of θ appearing.
(See (A.6) and the following for the θ = 2 case and (A.11) for the θ = 1

2 case.)

The characterisation (C.55) implies that superJack polynomials satisfy the condition

[(
∂

∂xi
+ θ

∂

∂yi

)
P (z; θ)

]

xi=yi

= 0 (C.57)

From the point of view of the four point functions invariant under the superconformal group,
this condition is a consequence of the super-conformal Ward identity. We understand in this
way that our construction of the superconformal blocks, as given by the series over super Jack
polynomials, automatically satisfy the super-conformal Ward identity. Our approach here is
alternative to various other approaches which instead use the superconformal Ward identity
to fix the superblock, given an ansatz of m⊗n bosonic blocks. We will consider this approach
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in appendix 9.

Structure constants and decomposition formulae for super Jacks

The super Jacks (from stability) have exactly the same structure constants as the Jacks.
So (C.23) is true for superJacks

PλPµ = Cν
λµ(θ)Pν . (C.58)

and furthermore so is the decomposition formula for decomposing higher dimensional super
Jacks into sums of products of lower dimensional super Jacks

P (m+m′|n+n′)
λ =

∑

µ,ν

P (m|n)
µ Sµν

λ (θ)P (m′|n′)
ν . (C.59)

Here the arguments of the superJack on the LHS are split between the two superJacks on
the RHS e.g. P (m|n)

µ (x1, .., xm|y1, .., yn) and P (m′|n′)
ν (xm+1, .., xm+m′ |yn+1, .., yn+n′). The co-

efficients Sµν
λ (θ) are completely independent of m,m′, n, n′ and are related to the structure

constants just as before (C.26)

Sµν
λ (θ) =

Πµ(θ)Πν(θ)

Πλ(θ)
Cλ
µν(θ) . (C.60)

Indeed the definition of superJacks itself in terms of Jacks (C.45) is just an example of
this decomposition with n = m′ = 0 (after using (C.47) with n = 0).

Note that in the θ = 1 case this corresponds to the decomposition of U(m+m′|n+n′) →
U(m|n)⊗ U(m′|n′) for which the coefficients are the Littlewood Richardson coefficients.

C.7 Super interpolation polynomials

The last polynomials we review are the super interpolation polynomials which we first discuss
below (7.29). These were first introduced in [38], and we will repeat below the definition
given in [38] following our conventions.

Introduce the bosonic polynomial,

Î(m)
λ (x1, . . . xm; θ, h) = P ip

λ (. . . , xi − θi+ h, . . . ; θ, h− θm) (C.61)

= P ∗
λ (x; θ, h− θm) (C.62)

where the corresponding function f follows from (C.31), i.e.

f(xl, i, j, l; θ, h) = (xl − θl + h)2 − ((j − 1)− θ(i− 1) + h− θT (i, j))2 (C.63)

where T (i, j) = 1 +m− l. In the main text, see (7.29), we wrote

P̃ ∗(m)
λ (x; θ, h) ≡ Î(m)

λ (x; θ, h) = P ∗(m)
λ (x; θ, h− θm) . (C.64)
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The supersymmetrised version of Î has the same structure as (C.45), simply reflecting the
underlying sum over superfillings, and it is simply

Î(m,n)
λ (x|y; θ, h) =

∑

µ⊆λ

(−)|µ|
[
(θ2)|µ

′|Πµ′(1θ )Îµ′(y1, . . . yn;
1
θ ,

1
2 +

1
2θ − h

θ +m)
]
Îλ/µ(x1, . . . xm; θ, h)

(C.65)

In particular, we find Î(0,n)λ (|y; θ, h) = (−θ2)|λ|Πλ′(1θ )P̃
∗(n)
λ′ (. . . yn;

1
θ ,

1
2 +

1
2θ − h

θ ), and for n = 0

we obvious recover Î(m)
λ . Note that if we take the scaling limit z → ǫz and we look at the

leading contribution as ǫ→ ∞, that polynomial is a superJack, i.e.

lead . contr .
[
Î(m,n)
λ (x|y; θ, h)

]
= P (m,n)

λ (. . . , x2m| . . . , θ2y2n; θ) (C.66)

Following Veselov and Sergeev, we now define

I(m,n)
λ (x|y; θ, h) = (−θ2)|λ|Πλ′(1θ )Î

(n,m)
λ′ (y|x; 1θ , 12 + 1

2θ − h
θ ) (C.67)

This object is such that

I(m,0)
λ = P̃ ∗(m)

λ (. . . xm; θ, h) ; I(m,n)
λ (µe|µs; θ, h) = 0 if µ ⊂ λ (C.68)

where µs = [µ′1, .., µ
′
N ] and µe ≡ µ/µ′s = [(µ1−N)+, .., (µM−N)+] where (x)+ ≡ max(x, 0).

Note also that the leading contribution of I now gives a superJack polynomial through the
relation in (C.47). In the main text, see (7.30), we wrote

P̃ (m,n)
λ (z; θ, h) ≡ I(m,n)

λ (z; θh) (C.69)

with I being the supersymmetrisation we were looking for. Finally

I(m,n)
λ (λe|λs; θ, h) =

∏

(i,j)∈λ
(1 + λi − j + θ(λ′j − i))(2h − 1 + λi + j − θ(λ′j + i)) (C.70)

The r.h.s. of course does not depend on (m,n) and it becomes (7.7) upon matching the
parameters.

D More properties of analytically continued superconformal blocks

D.1 Shift symmetry of the supersymmetric form of the recursion

We would like the supersymmetric recursion (6.8) to be invariant under the supersymmetric
shift:

λi → λi − θτ ′

µi → µi − θτ ′

i = 1, . . . m

;

λ′j → λ′j + τ ′

µ′j → µ′j + τ ′

j = 1, . . . n

; γ → γ + 2τ ′ . (D.1)

This is almost the case for (6.8). The issue is to do with normalisation and we will fix it
below. Let us emphasise first that this shift symmetry arises directly from the group theory
in all cases with a group theory interpretation, θ = 1

2 , 1, 2 (see (3.18)) but we expect it for any
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θ. Note that in writing (D.1), we are implicitly assuming that the Young diagram, prior to
analytic continuation, contains the box with coordinates (m,n). Thus in a supersymmetric
theory we are looking at typical or long representations.

We claim that the following normalisation of Tγ gives a shift invariant result:

(T long
γ )

[µs;µe]
[λs;λe]

=
Πµs−mn(1θ )

Πλs−mn(1θ )
(Tγ)

µ
λ ;

λs = [λ′1, . . . λ
′
n] ; λe = [λ1, . . . λm]

µs = [µ′1, . . . µ
′
n] ; µe = [µ1, . . . µm]

(D.2)

where we split the diagrams into east and south components by taking the corresponding first
m rows and first n columns. We might consider λe → λe−nm, however this is not important
here.

So the claim is that T
long
γ is invariant under the shift (D.1). In particular, it solves the

following recursion

(
hµ−hλ+θγ (|µ|−|λ|)

)
(T long

γ )
[µs;µe]

[λs;λe]
=

m∑

i=1

(µi−1−θ(i−1−α)) (µi−1−θ(i−1−β)) f (i)µe−�i
(θ)(T long

γ )
[µs;µe−�i]
[λs;λe]

+

+θ

n∑

j=1

(
µ′j−1−α− j−1

θ

)(
µ′j−1−β− j−1

θ

)
f
(j)
µs−�j

(1θ )c
(j)
µ−�j

(1θ )(T
long
γ )

[µs−�j ;µe]

[λs;λe]
(D.3)

where

c(j)µ (1θ ) =

m∏

i=1

(
µi − j + 1 + θ(µ′j − i)

)(
µi − j + θ(µ′j − i+ 2)

)

(
µi − j + 1 + θ(µ′j − i+ 1)

)(
µi − j + θ(µ′j − i+ 1)

) (D.4)

Note that c(j)µ (θ) is built out of arm and leg length symbols, cν(i, j) = νi − j + (ν ′j − i+ 1)/θ

and c′ν(i, j) = νi − j +1+ (ν ′j − i)/θ for ν = µ, (µ′ +�j)
′. This c(j)µ (θ) is now invariant under

(D.1) since it mixes rows and columns coherently, i.e.

µi + θµ′j is invariant under (D.1) if 1 ≤ i ≤ m ; 1 ≤ j ≤ n. (D.5)

The origin of the normalisation in (D.2) can be understood starting from the Casimir
differential equations and the super Jack polynomials. Indeed, a quick way to see the invari-
ance of the superblocks under (D.1) is to consider that the eigenvalue of the original Casimir
operator on Bγ,λ (2.11)

E(m,n;θ)
γ,λ = h(θ)λ + θγ|λ|+

[
γθ|mn|+ h

(θ)
[em] − θh

( 1
θ
)

[sn]

]
(D.6)

with e = + θγ
2 and s = −γ

2 , is indeed invariant under (D.1). To see this, the hybrid form
of the RHS is useful, therefore |γ| = ∑m

i=1 λi +
∑n

j=1 λ
′
j − nm, and for hλ(θ) the expression

given in (5.26).
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The precise statement about shift invariance of the long superconformal blocks is

Π(λs−mn)′(θ)Bγ,λ+(θτ ′)m = Π(λs−mn+(τ ′)n)′(θ)Bγ+2τ ′,(λ′+(τ ′)n)′ (D.7)

The Π factors follow from the fact that we normalise our blocks so that the coefficient of the
leading superJack Pλ is unity, i.e. Bγ,λ = (

∏
xθi
/∏

j yj)
γ
2

(
Pλ + . . .

)
, and from the analogous

relation proved in appendix C.6 for super Jack polynomials, namely

Π(λs−mn)′(θ)P
(m,n)
λ+(θτ ′)m = Π(λs+(τ ′)n−mn)′(θ)

(∏
i x

θ
i∏

j yj

)τ ′
P

(m,n)
(λ′+(τ ′)n)′ . (D.8)

From (D.7) and (D.8) we find the corresponding transformation on the coefficients

(Tγ)
µ+(θτ ′)m

λ+(θτ ′)m = (Tγ+2τ ′)
(µ′+(τ ′)n)′

(λ′+(τ ′)n)′ ×
Πλs−mn(1θ )

Πλs−mn+(τ ′)n(
1
θ )

Πµs−mn+(τ ′)n(
1
θ )

Πµs−mn(1θ )
. (D.9)

This gives the normalisation of T
long
γ in (D.2), so that it is invariant under the shift

(T long
γ )

[µs;µe+(θτ ′)m]

[λs;λe+(θτ ′)m] = (T long
γ )

[µs+(τ ′)n;µe]

[λs+(τ ′)n; λe]
. (D.10)

We could then define normalised long super Jack polynomial P long
λ so that (T

long
γ ) gives the

expansion coefficients and all formulae are manifestly shift symmetric.

Finally, let us point out that the ratio of Π functions in (D.9) should simplify because it
does not depend on γ. Indeed, by using a property of C− under shifts53 and rearranging the
expression we obtain

(Tγ)
µ+(θτ ′)m

λ+(θτ ′)m = (Tγ+2τ ′)
(µ′+(τ ′)n)′

(λ′+(τ ′)n)′ ×
C0
µs/λs

(τ ′ + n
θ −m)C0

µs/λs
(1 + n−1

θ −m)

C0
µs/λs

(nθ −m)C0
µs/λs

(τ ′ + 1 + n−1
θ −m)

(D.11)

As expected the ratio of Π functions above is more explicitly just a function of the skew
diagrams.

D.2 Truncations of the superconformal block

An (m,n) superconformal block Bγ,λ has been so far defined as the multivariate series

Bγ,λ =

(∏
i x

θ
i∏

j yj

)γ
2 ∑

µ⊇λ

(Tγ)
µ
λ Pµ(z; θ) . (D.12)

In this section we discuss how the infinite sum over µ depends effectively on the external
parameters α, β and λ. Let us recall indeed that the α and β dependence of Tγ is solved by

53This is

C−
κ+(τ ′)n(w; θ)

/

C−
κ (w; θ) = C−

(τ ′)n(w; θ)× C0
κ(w + τ ′ + θ(n− 1); θ)

/

C0
κ(w + θ(n− 1); θ)
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the C0 factors, as we pointed out already in section 5.4. Thus

(Tγ)
µ
λ = C0

µ/λ(θα; θ)C
0
µ/λ(θβ; θ)× (T rescaled

γ )µλ (D.13)

where T rescaled
γ is α, β independent. The observation we will elaborate on is that the C0

factors have certain vanishing properties which in practise truncate the sum.

Given the various forms of the recursions, spelled out in previous sections, it is useful to
put the C0 factors accordingly. To do so consider the equivalent rewritings54

C0
µ/λ(w; θ) = (−θ)|µ|−|λ|C0

µ′/λ′(−w
θ ;

1
θ ) (D.14)

= (−θ)|µs|−|λs|C0
µe/λe

(w; θ)C0
µ′
s/λ

′
s
(−w

θ ;
1
θ ) (D.15)

which follow from the definition in (5.38). Then, let us note that C0 has the following analytic
continuation,

C0
[κ1,...,κℓ]

(w; θ) =

ℓ∏

i=1

(w − θ(i− 1))κi (D.16)

therefore, if we consider the (m, 0) analytic continuation of section 6, we are keeping fixed the
number of rows of λ, µ, as for the Young diagrams, and we find that C0

µ/λ(w; θ) has the correct

(m, 0) analytic continuation. If instead we consider the (0, n) analytic continuation, we are
keeping fixed the number of columns of λ, µ, and thus it is C0

µ′/λ′(−w
θ ;

1
θ ) on the RHS of (D.14)

the one with the correct (0, n) analytic continuation. Finally, the rewriting on the RHS of
(D.15) is the one with the correct (m,n) analytic continuation.

To appreciate the vanishing properties of the C0 factors in (D.13), consider for example
C0
µ/λ(θα; θ). It will vanish when

(λi + θα− θ(i− 1)) . . . (µi − 1 + θα− θ(i− 1)) = 0 (D.17)

and similarly for C0
µ/λ(θβ; θ). In particular, it is enough that only one factor becomes zero.

This of course depends on the values of α, β, θ, as well as λ. The general situation is
summarised by the following tables. On the east

truncation

if ∃ i ≤ m such that (i− 1)− w ≥ λi
θ ∈ Z µi = θ(i− 1− w)

(D.18)

with w here being either β or α. This means that when the condition is satisfied on a row
index i, by progressively increasing µi = λi + ni by integers ni we will hit a vanishing point.
Similarly on the south

truncation

if ∃ j ≤ n such that (j − 1) + θw ≥ θλ′j ∈ Z µ′j =
(j−1)

θ + w

(D.19)

where again w is either β or α.

54For the last rewriting consider that ((µs −mn)′)i = µm+i ∀i ≥ 1.
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Consider now a situation with a group theory interpretation, thus relevant for supercon-
formal blocks. Assume first that λ is a Young diagram, then λ has at most β ∈ N rows (since
in our conventions β ≤ α). In particular, λ′j − β ≤ 0. From (D.19) with j = 1 we thus find
µ′1 ≤ β, and we conclude that there is a vertical cut off on the Young diagrams µ over which
we sum. On the contrary, note that by construction λi + θβ ≥ θ(i− 1), ∀ i ≤ m ≤ β, i.e. the
opposite of the condition in (D.18), precisely because β sets the value for the maximal number
of rows. Therefore there is no truncation on the horizontal east directions. The picture to
have in mind for the superconformal blocks is thus

m
β

n

λFγ,λ(x|y) =
∑

µ:λ⊆µ

(Tγ)
µ
λ Pµ(x|y)

(D.20)
A posteriori, the cut-off on the south is expected, because the internal subgroup of the su-
perconformal algebra is compact. Note also that for Young diagrams, since T only depends
on diagrams, we can see that a solution (Tγ)

µ
λ where µ has more than β rows does not exist,

by considering an equivalent reasoning on the east. In fact, when i = β + 1 and λi=β+1 = 0,
we find from (D.18) that µi = 0.

Consider now a long block with analytically continued λ, according to an (m,n) structure,
in such a way to describe an anomalous dimension. In this case we still require finiteness of
the sum (D.12) on the south, as expected for a compact group. From (D.19) we see then
that even when β and λ′j are generic, if however 0 ≤ β − λ′j=1,...n ∈ Z+, the condition on
the truncation can be satisfied. Note instead that our Young diagram argument on the east
(D.18) now will not work, precisely because β is not integer for cases of physical interest where
λi > 0. We notice however that taking the λi < 0 it woud be possible to have truncation on
the east and the south simultaneously and perhaps this reproduces the Sergeev-Veselov super
Jacobi polynomials.

The generic ‘shape’ of a physical superconformal block is thus the one illustrated in (D.20).

E Revisiting known blocks with the binomial coefficient

Our formula for the coefficients (Tγ)
µ
λ in (7.12), written in terms of interpolation polynomials,

is valid for any Young diagram. We find instructive to test (7.12) against known analytic
solutions of the recursion, such as the rank-one and rank-two bosonic blocks. Then, we will
repeat a similar check for the determinantal solution found in [9] for θ = 1.

We will use the rescaled version of it, where we omit the dependence on α and β.
Therefore,

(T rescaled
γ )µλ = (N rescaled )µλ ×

P ∗
NM \µ(N

M \λ; θ, u)
P ∗
NM \λ(N

M \λ; θ, u)

∣∣∣∣∣
u=

1
2−θ

γ
2−N

(E.1)
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where

(N rescaled )µλ =
(−)|µ|Πµ(θ)

(−)|λ|Πλ(θ)

C0
µ/λ(1−θ+Mθ; θ)

C0
µ/λ

(Mθ; θ)
(E.2)

As pointed out already, the interpolation polynomials encode the non-factorisable γ depen-
dence of (Tγ)

µ
λ, which we saw emerging experimentally from the recursion. However, the way

the interpolation polynomials are evaluated is quite different compared with the recursion.
In fact, in order to match (Tγ)

µ
λ we will need to compute P ∗ of NM\µ, rather than looking

recursing over µ/λ, as we do in the recursion. Our exercise here will show in simple cases
how these two combinatorics actually produce the same result.

Through this section, we shall take the minimal choice for N andM in the above formulae,
i.e.

N = µ1 ; M = β (E.3)

where β as usual fixes the maximal height of both λ and µ.

E.1 The half-BPS solution

The simplest case to start with is the derivation from (E.1) of the half-BPS solution in (5.37),

(T rescaled
γ )

µ
[∅] =

1

C0
µ(θγ; θ)

1

C−
µ (1; θ)

. (E.4)

To obtain the γ dependence we need consider the ratio of interpolation polynomials in (E.1)

and since λ = [∅], the numerator P ∗ is evaluated on µβ1 , which is a “constant” Young diagram.
This evaluation is known. From [32] we find

P ip
κ (c+ θδℓ + u; θ, u) = (−)|λ|C0

κ(c+ 2u+ θ(ℓ− 1),−c; θ)
C0
κ(ℓθ; θ)

C−
κ (θ; θ)

(E.5)

which we need here for c = µ1 and ℓ = β. For what concerns the denominator instead, this
is always factorised for any λ and it is given by (7.7). Putting together we find,

P ∗

µ
β
1 \µ

(µ1+θδβ+u;θ,u)

C+

µ
β
1

(−2µ1−θγ+2θβ)C−

µ
β
1

(1;θ)
=

C0

µ
β
1 \µ

(−θγ−(µ1−1)+θ(β−1);θ)

C0

µ
β
1

(−θγ−(µ1−1)+θ(β−1);θ)
×

C0

µ
β
1 \µ

(−µ1;θ)C0

µ
β
1 \µ

(βθ;θ)

(−)|µ|−βµ1C−

µ
β
1

(1;θ)C−

µ
β
1
\µ

(θ;θ)

(E.6)
where we rewrote C+ in terms of C0 using the explicit definition (7.9), and the fact that the

Young diagram involved is a rectangle µβ1 . At this point, the 1/C0(θγ; θ) comes out thanks
to the identity,

C0
µ(w − (µ1 − 1) + θ(β − 1); θ)C0

µβ
1−µ

(−w; θ)
C0
µβ
1

(−w; θ) = (−1)|µ| ; ∀w (E.7)

taken with w = −θγ, and the (−1)|µ| cancels against the one in (E.2). Finally, the contribution
1/C−

µ (1; θ) comes from Πµ(θ) in (E.2). The remaining terms in the binomial coefficient
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necessarily have to simplify to unity. When we collect them all,55 upon using another identity

C−
µ (w; θ)

C0
µβ
1

(θ(β − 1) + w; θ)C−
µβ
1 \µ

(w; θ)
=
C0
µ(−w − (µ1 − 1); θ)

(−)|µ|C−
µβ
1

(w; θ)
; ∀w (E.8)

we finally obtain our desired result.

Already in this simple example we needed several identities between C±,0 coefficients.
This shows that the rewriting of T in terms of interpolation polynomials is quite non trivial.

E.2 Rank-one and rank-two

After the half-BPS solution, we will consider the rank-one cases, since these are fully fac-
torised. Next, the rank-two case, which involves a 4F3 and has non trivial dependence on γ.
Thus it is the most interesting case for our purpose. Our task will be to revisit the solution
found by Dolan and Osborn in [11].

Rank-one (1, 0)

For the single row case β = 1, with µ = [µ] and λ = [λ], we find

(N reduced )µλ =
(−)|µ|Πµ(θ)

(−)|λ|Πλ(θ)
× C0

µ/λ
(1;θ)

C0
µ/λ

(θ;θ)

=
(−)µ(θ)µ(1)λ
(−)λ(1)µ(θ)λ

× (λ+1)µ−λ

(λ+θ)µ−λ

(E.9)

which simplifies to a sign. Then, for the interpolation polynomials we find

P ∗
[∅](µ − λ; θ, u)

P ∗
[µ−λ](µ− λ; θ, u)

=
1

(−)µ−λ(2λ+ θγ)µ−λ(1)µ−λ
(E.10)

in particular, the numerator is trivial, and the denominator follows straightforwardly from
(7.7) and (7.9). Putting together the two results above we obtain the formula

(T rescaled
γ )

[µ]
[λ] =

1

(µ−λ)!(2λ + θγ)µ−λ
(E.11)

which coincides with the one derived in section 4.1.

This case was quite immediate and the reason is that the formula for the P ∗ is oriented
on the east, as the (1, 0) theory. We will see now what happens in the (0, 1) theory.

55These terms are

(−)|µ|+βµ1C−
µ (θ; θ)

C0
µ(βθ; θ)C

−

µ
β
1
\µ
(θ; θ)

×
C0

µ
β
1
\µ
(βθ; θ)

C−

µ
β
1

(1; θ)
×C0

µ
β
1
\µ
(−µ1; θ)C

0
µ(1 + θ(β − 1); θ) = 1

using w = θ in (E.8) and w = µ1 in (E.7), then again w = −βθ in (E.7). Finally (−)βµ1C0

µ
β
1

(−µ1; θ)/C
−

µ
β
1

(1; θ) =

1 and C0

µ
β
1

(βθ; θ)/C−

µ
β
1

(θ; θ) = 1, directly from their definitions.
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Rank-one (0, 1)

For the single column case, the diagrams are λ = [1λ
′
] and µ = [1µ

′
]. This is a case in

which λ′, µ′ ≤ β. Let us proceed with a direct computation starting with (E.1). The
normalisation (E.2) becomes

(N rescaled )µλ =
(−)|µ|Πµ(θ)

(−)|λ|Πλ(θ)
× C0

µ/λ
(1+(β−1)θ;θ)

C0
µ/λ

(βθ;θ)

=
(−)µ

′
(1)µ′ (

1
θ
)λ′

(−)λ′ ( 1
θ
)µ′ (1)λ′

× ( 1
θ
+β−µ′)µ′−λ′

(1+β−µ′)µ′−λ′

(E.12)

For the ratio of interpolation polynomials the diagrams are µβ1\µ = [1β−µ′
] and µβ1\λ = [1β−λ′

]
and the polynomials have β variables. This time the numerator involves a non trivial Young
diagram, which however has less than β rows. To simplify the result we use the non-trivial
reducibility property for the interpolation polynomials, which reads

P ip
[κ1,...κs]

(. . . , ws, u, u+ θ, . . . u+ (r − 1)θ︸ ︷︷ ︸
variables

; θ, u) = P ip
[κ1,...κs]

(. . . , ws; θ, u+ rθ) (E.13)

where r is counting the excess between the number of variables β and the non zero parts of
κ.56 In our case, the above result gives back an evaluation formula to

P ip

[1β−µ′ ]
(1β−λ′

+ δβ−λ′ + u′; θ, u′)

∣∣∣∣∣
u′=u+λ′θ

=
(µ′−λ′+1)β−µ′

(1)β−µ′
(θ)2(β−µ′)(1θ )β−µ′(λ′ + µ′ − γ)β−µ′

(E.14)
and in fact the RHS follows from (E.5). Thus, the ratio of interpolation polynomials con-
tributes as,

P ∗
[1β−µ′ ]

(1β−λ′
; θ, u)

P ∗
[1β−λ′ ]

(1β−λ′ ; θ, u)
=

(θ)2(β−µ′)(λ′ + µ′ − γ)β−µ′(1θ )β−µ′

(θ)2(β−λ′)(2λ′ − γ)β−λ′(1θ )β−λ′

. (E.15)

Putting it all together, the final result for T rescaled
γ (defined in (5.45)) is

(T rescaled
γ )

[1µ
′
]

[1λ′ ]
=

(θ)2(λ
′−µ′)

(µ′ − λ′)!(2λ′−γ)µ′−λ′

µ′!(1θ )λ′

λ′!(1θ )µ′

(−1)µ
′−λ′

. (E.16)

This coincides precisely with the one derived in section 4.1 for (Tγ)
[1µ

′
]

[1λ′ ]
when we re-insert

C0
µ/λ

(
θ(γ−p12)

2 , θ(γ−p43)
2 ; θ

)
= (−θ)2(µ′−λ′)

(
λ′ − (γ−p12)

2 , λ′ − (γ−p43)
2

)
µ′−λ′ (E.17)

properly oriented towards the south.

56Of course the same is true for a symmetric permutation of all variables on the LHS
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Rank-two (2, 0)

In the rank-one cases there is no room for any non trivial polynomial in γ. The first non trivial
case in this sense is then rank-two, corresponding to Tγ for two row Young diagrams. The
recursion (5.35) for this case was solved explicitly by Dolan and Osborn [11]. They did this
first on a case by case basis in dimensions d = 2, 4, 6, then for general θ by using properties
of the 4F3 function, and manipulations inspired by those in [99].57 We will show here how
this relates to the interpolation polynomial of (7.12).

In our conventions the solution of [11] reads

(T rescaled
γ )µλ =

(θ)θ
(µ− + θ)θ

× (Drescaled)
µ+ θ

2
γ

λ+ θ
2
γ

(E.18)

with

(Drescaled)µλ =
(2θ)λ−(2θ)µ−

(θ)λ−(θ)µ−

(µ−+1)θ
(µ1−λ2+1)θ

(µ1 − λ1)!(µ2 − λ2)!
× (E.19)

(λ+−2θ)θ
(λ2+µ2−2θ)θ

(2λ1)µ1−λ1(2λ2 − 2θ)µ2−λ2

4F3

[
−µ− , θ , −λ− , λ+ − 1

−(µ1 − λ2) , λ2 + µ2 − θ , 2θ
; 1

]

where λ = [λ1, λ2], µ = [µ1, µ2], and κ± = κ1 ± κ2, for κ = λ, µ.

The contribution denoted by D is the translation to our conventions of the result of [11],
where we implemented the shift symmetry and slightly rewrote some Pochhammers. Note
that the 4F3 has a series expansion which truncates at min(λ−, µ−) and can thus be written
as the explicit finite sum

(Drescaled)µλ =

min(λ−,µ−)∑

n=0

(−λ−)n
n!

(2θ)λ−(θ)n(2θ)µ−

(θ)λ−(2θ)n(θ)µ−

(µ− − n+ 1)n+θ

(µ1 − λ2 − n+ 1)n+θ
(E.20)

(λ+ − 1)n(λ+ − 2θ)θ
(µ1 − λ1)!(µ2 − λ2)!(2λ1)µ1−λ1(2λ2 − 2θ)µ2−λ2+n+θ

.

Now compare this expression with our expression for Tγ written in terms of interpolation
polynomials (7.12) (with N = µ1, M = 2):

(Tγ)
µ
λ = (N )µλ ×

P ip
[µ1−µ2]

(w1, w2; θ,
1
2 − θ γ2 − µ1)

P ip
[µ1−λ2,µ1−λ1]

(w1, w2; θ,
1
2 − θ γ2 − µ1)

∣∣∣∣∣
wi=

1
2
−θ(γ

2
−i+1)−λi

(E.21)

(Note that the shift symmetry shows up nicely in this formula since we can always put to-
gether combinations of the form κi+

θ
2γ, and N is automatically invariant.) All contributions

in (E.21) coming from the denominator and the normalisation, can be straightforwardly com-
puted, and written as product of Pochhammers or Gamma functions. The BC2 interpolation

57In [11], see formulae (3.11), (3.18) and (3.19).
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polynomial in the numerator is also known explicitly, and described by a 4F3 [41],

P ip
κ (w1, w2; θ, u) =(−)|κ|(u± w1, u± w2)κ2(κ2 + θ + u± w1)κ−×

× 4F3

[
−κ− , θ , κ2 + u± w2

1− θ − κ− , κ2 + θ + u± w1
; 1

]
(E.22)

Although similar, this 4F3 is not identical to that of (E.19). Also note that it is not manifestly
w1 ↔ w2 invariant even though the polynomial is symmetric under this interchange. We thus
have two possibilities leading to the same result. Using P ip

[µ1−µ2]
(w2, w1) we find

numerator of (Tγ=0)
µ
λ → 4F3

[
−µ− , θ , 1− λ1 − µ1 , λ1 − µ1

λ2 − µ1 , 1− θ − µ1 + µ2, 1 + 2θ − λ2 − µ1
; 1

]
(E.23)

which becomes the same hypergeometric as in (E.19) upon using the Whipple identity

4F3

[
−n , a , b , c
d , e , f

; 1

]
=

(e− a)n(f − a)n
(e)n(f)n

4F3

[
−n , a , d− b , d− c

d , a− e+ 1− n , a− f + 1− n
; 1

]

(E.24)
Similarly had we chosen P ∗

[µ1−µ2]
(w1, w2) a different 4F3 identity will give the same final result.

Thus we see how the 4F3 of [11] arises directly from the interpolation polynomial.

It is quite spectacular to implement on a computer the above representation of Tγ and
the one arising directly from the recursion and check that they agree over many examples.

E.3 Revisiting the θ = 1 case and determinantals

The superconformal blocks for the case θ = 1 and any (m,n) were obtained in [9]. One of the
main outcomes of that derivation is an explicit expression for the coefficients in an expansion
over super Schur polynomials, that we quote here below,

(Rγ)
µ
λ =

∑

σ

(−)|σ|
m∏

i=1

(
λi − i+ 1 + γ−p12

2

)
µσ(i)+i−σ(i)−λi

(
λi − i+ 1 + γ−p43

2

)
µσ(i)+i−σ(i)−λi

(µσ(i) + i− σ(i) − λi)!(2λi − 2i+ 2 + γ)µσ(i)+i−σ(i)−λi

We can also conveniently rewrite the above formula for the coefficients as a determinant

(Rγ)
µ
λ = det

(
(λi − i+ γ−p12

2 + 1)µj−j−λi+i(λi − i+ γ−p43
2 + 1)µj−j−λi+i

(µj − j − λi + i)!(2λi − 2i+ 2 + γ)µj−j−λi+i

)

1≤i,j≤β

(E.25)
In this section we want to directly show how (Rγ)

µ
λ also arises from the interpolation polyno-

mials via (7.12), namely we want to show

(Rγ)
µ
λ = (Tγ)

µ
λ

∣∣∣∣∣
θ=1

= (N )µλ ×
P ∗
NM \µ(N

M \λ; θ, u)
P ∗
NM \λ(N

M \λ; θ, u)

∣∣∣∣∣
u=

1
2−θ

γ
2−N

∣∣∣∣∣
θ=1

(E.26)
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Notice that for θ = 1 the normalisation simplifies massively,

(N )µλ

∣∣∣∣∣
θ=1

= C0
µ/λ

(
(γ−p12)

2 , (γ−p43)
2 ; 1

)
(E.27)

and only the ratio of interpolation polynomials is important.

Let us begin by improving the expression of the determinant in such a way as to extract
the same normalisation. Using (a)x = Γ[a + x]/Γ[a], it is simple to realise that various
contributions depend solely on either row or column index, therefore can be factored out, and
rearranged. We arrive at the expression

(Rγ)
µ
λ = (N )µλ × (Rrescaled

γ )µλ (E.28)

(Rrescaled
γ )µλ =

(
β∏

i=1

Γ[2− 2i+ γ + 2λi]

)
det

(
Γ[1 + i− j − λi + µj ]

−1

Γ[2− i− j + γ + λi + µj]

)

1≤i,j≤β

(E.29)

Our formula for Tγ in terms of interpolation polynomials can be manipulated quite ex-
plicitly when θ = 1, since the BC interpolation polynomials for θ = 1 themselves also have a
determinantal representation [40],

P ip
[κ1,...κℓ]

(w; θ = 1, u) =
det
(
P ip
[κj+ℓ−j](wi;u)

)
1≤i,j≤ℓ∏

i<j(w
2
i − w2

j )
(E.30)

The entries of the matrix are single-variable interpolation polynomials P ip
κ (wi, u). These do

not depend on θ and are given by a pair of Pochhammers,

P ip
κ (w;u) = (−)k(u+ w)k(u− w)k = (−w − u− k + 1)k(u− w)k

= (−)k(−w − u− k + 1)k(w − u− k + 1)k (E.31)

The denominator of (E.30) is the Z2 invariant Vandermonde determinant.

We can now proceed and compute (Tγ)
µ
λ for θ = 1. Since we already identified the

normalisation, we will focus on (Rrescaled
γ )µλ. This has to agree with

(T rescaled
γ )µλ ≡ (−)|µ|

(−)|λ|

P ip

µβ
1−µ

(12 − γ
2 + i− 1− λi; 1,

1
2 − γ

2 − µ1)

P ip

µβ
1−λ

(12 − γ
2 + i− 1− λi; 1,

1
2 −

γ
2 − µ1)

(E.32)

The idea is simple: we need to recognise the matrix in (E.29). To do so, we first use the
expression of the BC1 interpolation polynomials given in (E.31), and pass from Pochhammers
to Γ functions. The result is

(T rescaled
γ )µλ =

(−)|µ|

(−)|λ|

(−)βµ1−|µ|+ 1
2
β(β−1) det

(
Γ[i−λi+µ1]Γ[1−i+γ+λi−µ1]

Γ[1+i−J−λi+µJ ]Γ[2−i−J+γ+λi+µJ ]

)
1≤i,j≤β

(−)βµ1−|λ|+ 1
2
β(β−1) det

(
Γ[i−λi+µ1]Γ[1−i+γ+λi−µ1]

Γ[1+i−J−λi+λJ ]Γ[2−i−J+γ+λi+λJ ]

)
1≤i,j≤β

(E.33)

111



where J = β+1− j and the signs have been factored out since only depended on the column
index. For the same reason we can factor out Γ[i− λi + µ1]Γ[1− i+ γ + λi − µ1] and cancel
it between numerator and denominator. Moreover we can reverse the columns and switch
j ↔ J . We arrive at the simple formula

(T rescaled
γ )µλ =

det
(

Γ[1+i−j−λi+µj ]−1

Γ[2−i−j+γ+λi+µj ]

)
1≤i,j≤β

det
(

Γ[1+i−j−λi+λj ]−1

Γ[2−i−j+γ+λi+λj ]

)
1≤i,j≤β

(E.34)

Comparing this result with (E.29) we are left with the statement

β∏

i=1

Γ[2− 2i+ γ + 2λi] =
1

det
(

Γ[1+i−j−λi+λj ]−1

Γ[2−i−j+γ+λi+λj ]

)
1≤i,j≤β

(E.35)

But notice that Γ[1 + i− j − λi + λj]
−1, because λi ≥ λi+1, makes the matrix on the r.h.s a

triangular matrix, and the identity follows. Thus (T rescaled
γ )µλ = (Rrescaled)µλ and our proof

is concluded.
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