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Figure 1: Single-view reconstruction of a complex colored smoke scene using our proposed method. Our method involves joint optimization
of the density field, optical coefficient field, and illumination parameters, requiring the computation of over 49 million derivatives. Each
iteration takes an average of 8 seconds to compute. After 500 iterations, the rendered image closely converges to the target image.

Abstract
We present a novel approach to differentiable rendering for participating media, addressing the challenge of computing scene
parameter derivatives. While existing methods focus on derivative computation within volumetric path tracing, they fail to sig-
nificantly improve computational performance due to the expensive computation of multiply-scattered light. To overcome this
limitation, we propose a differential diffusion theory inspired by the classical diffusion equation. Our theory enables real-time
computation of arbitrary derivatives such as optical absorption, scattering coefficients, and anisotropic parameters of phase
functions. By solving derivatives through the differential form of the diffusion equation, our approach achieves remarkable speed
gains compared to Monte Carlo methods. This marks the first differentiable rendering framework to compute scene parameter
derivatives based on diffusion approximation. Additionally, we derive the discrete form of diffusion equation derivatives, fa-
cilitating efficient numerical solutions. Our experimental results using synthetic and realistic images demonstrate the accurate
and efficient estimation of arbitrary scene parameter derivatives. Our work represents a significant advancement in differen-
tiable rendering for participating media, offering a practical and efficient solution to compute derivatives while addressing the
limitations of existing approaches.

CCS Concepts
• Computing methodologies → Volumetric models; • Mathematics of computing → Partial differential equations;

1. Introduction

Differentiable rendering (DR) is a pivotal area of research in com-
puter graphics, playing a crucial role in computing derivatives for
arbitrary scene parameters and finding applications in computer
graphics, computer vision, and machine learning. The integration

† Corresponding author: liang_xiaohui@buaa.edu.cn

of differentiable rendering in neural network pipelines for learning-
based 3D estimation tasks has bridged the gap between 2D and
3D processing, empowering neural networks to optimize 3D enti-
ties using 2D projections. However, the computation of derivatives
for scene parameters remains challenging due to the complex and
nonlinear relationship between pixel intensities and scene parame-
ters. Despite advancements in physics-based differentiable render-
ers that rely on ray tracing and Monte Carlo estimation for realistic
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image optimization, the computation of derivatives remains highly
expensive, particularly for scenes involving participating media.
Resolving these challenges is essential to overcome current lim-
itations and advance differentiable rendering techniques, unlock-
ing new possibilities for realistic image generation and enhancing
learning-based 3D estimation tasks.

Many natural environments contain participating media, such as
fog, smoke, clouds, or dust, presenting challenges for accurately
simulating light propagation due to the complexity of modeling
scattering events. The Radiative Transfer Equation (RTE), widely
utilized in fields like astrophysics, remote sensing, and biomedical
imaging [Cha60,HvdH81], has been introduced to computer graph-
ics [Bli82, KVH84]. In computer graphics, the RTE describes the
forward rendering process and has been extended to handle light
transport effects. Researchers have further expanded the RTE’s ca-
pabilities to incorporate differentiable rendering techniques. Zhang
et al. [ZWZ∗19] proposed a differential theory of radiative transfer,
accompanied by the Monte Carlo algorithm, to compute derivatives
of scene parameters, enabling differentiable rendering for partici-
pating media. However, this method involves computationally ex-
pensive processing, employing Monte Carlo estimation for the ra-
diance of multiply-scattered light and RTE derivatives. Despite the
existence of physically-based differentiable rendering methods re-
ported in [ZJL20], their performance often falls short of meeting
the interactivity requirements of many graphics applications.

Efforts have been made to improve the efficiency of deriva-
tive computation for participating media. Nimier-David et al. [ND-
SRJ20] introduced the Radiative Backpropagation (RB) method,
utilizing an adjoint approach that significantly reduces memory us-
age to a constant footprint and enhances efficiency. Building upon
RB, Vicini et al. [VSJ21] proposed the Path Replay Backprop-
agation (PRB) method, capable of computing unbiased reverse-
mode derivatives of volume transport with linear time complexity.
However, these speed-up methods primarily focus on accelerating
derivative computation within traditional differentiable rendering
frameworks, such as path tracing and backpropagation, without ad-
dressing the fundamental challenges of derivative computation for
participating media. The lack of a new theoretical framework that
enables highly efficient derivative computation of multiple scatter-
ing lights hinders radical improvements in computation efficiency.

In the realm of participating media rendering, efficiently com-
puting the radiance and its derivatives for multiply-scattered light
poses a significant computational challenge, particularly in dense
media where scattering paths proliferate. To address this problem,
we propose a groundbreaking concept called differential diffusion
theory, inspired by the examination of participating media render-
ing grounded in diffusion theory [Sta95, ZRL∗08, KPS∗14]. This
novel framework enables the differentiable rendering of participat-
ing media, facilitating the efficient computation of various deriva-
tives, including volumetric density fields, absorption and scatter-
ing coefficients, and asymmetry parameters of phase functions.
In contrast to prior approaches, we leverage a partial differential
equation solver to estimate the radiance and its derivatives for
multiply-scattered light. This approach offers a substantial com-
putational advantage compared to traditional volumetric path trac-
ing with Monte Carlo sampling techniques. Notably, our frame-

work represents the first differentiable rendering framework capa-
ble of computing arbitrary derivatives of scene parameters based
on the diffusion approximation. Leveraging the power of the Taichi
language [HLY∗21] for implementation, our approach sets itself
apart as the inaugural differentiable renderer capable of achieving
real-time performance on density optimization tasks. We make our
implementation available at https://github.com/cenyc/
differential_diffusion to promote further research into
efficient rendering, especially for complex multiple scattering in
participating media. Our key contributions are:

• Introducing the pioneering differentiable rendering framework
for participating media, leveraging the diffusion approximation.
Notably, our approach surpasses previous methods in terms of
computational efficiency, enabling remarkable speed gains and
even achieving real-time performance.

• Deriving the differential forms of the Radiative Transfer Equa-
tion (RTE) based on the diffusion approximation, thereby en-
abling differentiation with respect to arbitrary derivatives of
scene parameters. This advancement extends the scope of differ-
entiable rendering techniques, facilitating more comprehensive
and accurate derivative computations.

• Deriving the discrete form of the diffusion equation derivatives,
facilitating rapid computation through numerical methods. This
development enhances the overall efficiency of our framework,
enabling efficient and precise estimation of scene parameter
derivatives.

2. Related Work

2.1. Diffusion Theory in Graphics

Diffusion theory serves as a fundamental framework in our research
due to its ability to address the computational challenges associ-
ated with rendering multiply-scattered light in dense participating
media. Stam [Sta95] introduced diffusion theory (DT) to computer
graphics, enabling the efficient simulation of heterogeneous media
by solving a discrete form of the diffusion equation on a grid. How-
ever, classical diffusion approximation faces limitations in transpar-
ent regions, leading to non-physical radiative fluxes and inaccura-
cies in light transport. To overcome this, Koerner et al. [KPS∗14]
introduced flux-limited diffusion, which modulates the diffusion
coefficient to improve accuracy in low-density or high-albedo re-
gions. Inspired by these advancements, our method incorporates
flux-limited diffusion for rendering thin smoke, considering it as a
variant of classical diffusion approximation. In this paper, we es-
tablish classical diffusion approximation as the theoretical foun-
dation of our approach, with the potential for easy extension to
other existing variants. Moreover, diffusion theory has also been
developed for fast simulation of subsurface scattering. Donner and
Jensen [DJ05] extended previous work on light diffusion in translu-
cent materials, presenting a multipole diffusion approximation for
light scattering in thin slabs. D’Eon and Irving [dI11] introduced a
modified diffusion theory that offers enhanced accuracy for highly
absorbing materials and near the point of illumination. By lever-
aging diffusion theory, we establish a robust and versatile frame-
work for efficient rendering, addressing the complexities of multi-
ple scattering lights in participating media.
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2.2. Differentiable Rendering

Prior work in differentiable rendering has made important contribu-
tions, yet limitations remain. Approaches such as OpenDR [LB14]
and its subsequent works [CGL∗19, GCM∗18, HF18, KUH18,
LCLL19, PBDCO19] approximate the backward pass or rasteri-
zation process of the graphics pipeline, focusing on primary vis-
ibility without accounting for complex indirect effects. Conse-
quently, generating photorealistic images that capture the intricate
interactions of light, geometry, and materials becomes challenging.
On the other hand, physically-based differentiable rendering tech-
niques aim to simulate light transport and scattering using Monte
Carlo estimation to compute pixel color and its derivatives. Li et
al. [LADL18] introduce a differentiable ray tracing framework, en-
abling the computation of derivatives with respect to input param-
eters. However, their method lacks support for scenes containing
participating media. Another physically-based renderer, Mitsuba
2 [NDVZJ19], relies on differentiable volumetric path tracing and
automatic differentiation (AD) for derivative evaluation. Nonethe-
less, the AD method requires substantial memory usage to record
gradients, limiting its optimization capabilities for high-resolution
scattering media. These deficiencies motivate the need for our pro-
posed research, which addresses the challenges of differentiable
rendering, particularly in scenes involving participating media, and
provides a more efficient and comprehensive solution.

Derivative estimation for participating media poses significant
challenges in differentiable rendering. Early works [GZB∗13,
GLZ16] focused on inverse transport simulations to estimate the
material properties of volumes. Zhang et al. [ZWZ∗19] introduced
a differential theory of radiative transfer along with an unbiased
Monte Carlo algorithm for differentiating surfaces and volumes,
addressing the issue of discontinuities. They further proposed a
method to estimate derivatives of the path integral formulation
[Vea97] in [ZMY∗20]. However, physically-based differentiable
rendering suffers from poor performance, particularly in rendering
and differentiating participating media, making it unsuitable for in-
teractive graphics applications. Nimier-David et al. [NDSRJ20] in-
troduced the radiative backpropagation approach, treating differen-
tiable rendering as a reversed light transport problem. Although this
approach avoids intermediate state storage, the computation time
for unbiased gradient estimation becomes quadratic in the num-
ber of scattering events along a light path, resulting in high com-
putational costs. Vicini et al. [VSJ21] proposed the Path Replay
Backpropagation approach to improve performance, achieving lin-
ear computation time in the number of scattering events. Recently,
Jakob et al. [JSRV22] introduced Mitsuba 3, a new version of the
Mitsuba renderer based on Dr.Jit. Although Mitsuba 3 is one of
the prominent differentiable renderers, its volumetric path tracing
framework, which relies on Monte Carlo estimation for derivative
computation, can be time-consuming and become a performance
bottleneck in differentiable volume rendering.

Moreover, to handle complex geometries and light transport ef-
fects more efficiently, Zhang et al. [ZYZ21] proposed a generalized
differential path integral approach that captures both interfacial
and volumetric light transport. To solve the problem of computing
derivative for parameters that affect visibility, Loubet et al. [LHJ19]
proposed a new technique for differentiating path-traced images

with respect to scene parameters that affect visibility, such as light
sources and the camera positions, allowing to product gradients at
low sample counts with low bias. Nimier et al. [NDMKJ22] pro-
posed differential ratio tracing for volumes, to achieve unbiased
sampling of gradient computation. For a comprehensive review of
differentiable rendering, please refer to [KBM∗20, ZJL20].

Our method stands out from previous approaches in both the-
ory and implementation, offering significant novelty. The founda-
tion of our approach lies in the novel concept of differential diffu-
sion theory, which revolutionizes the computation of derivatives for
multiple scattering radiance, enabling efficient rendering. In terms
of implementation, we depart from the conventional Monte Carlo
method for estimating radiance and its derivatives. Instead, we em-
ploy a ray marching technique combined with numerical methods,
resulting in a highly efficient computational process.

Table 1: List of symbols commonly used in this work.

Symbol Meaning
Lin(ω) the radiance of ambient light along direction ω.
Lout outgoing radiance.
Ld media radiance.
Jms, Jss single scattering and multiple scattering terms.
Lri reduced incident radiance.
Lms, Lss single scattering and multiple scattering radiance.
L0

d , L⃗1
d the first two terms of the Taylor expansion of Ld .

Qri the radiance due to the first scatter of Lri.
Q0

ri, Q⃗1
ri the first two terms of Taylor expansion of Qri.

x the position of the viewpoint.
xu the position inside the volume.
xa, xb the farthest and the nearest intersections from

view point along direction −ω.
κa, κs, κt absorption, scattering, and extinction coefficients.
σa, σs, σt absorption, scattering, and extinction cross sections.
Ω, ρ(x) scattering albedo and density of medium.
σtr transport cross section.
τ(xi,x j) transmittance from xi to x j.
Da, Db, Du the distance between x and xa, xb, xu, respectively.
µ̄ the first moment of a phase function.
p(ω,ω′) a phase function with incident direction ω

′ and
outgoing direction ω.

⟨·, ·⟩ indicates the inner product between two vectors.
π an arbitrary scene parameter.

3. Diffusion Approximation of RTE

We provide a brief overview of light transport in participating me-
dia and introduce the diffusion approximation of multiple scatter-
ing radiance, which serves as the foundation for our novel differ-
ential diffusion theory. Notations used in this paper are summa-
rized in Table 1. The schematic diagram in Figure 2 illustrates
the process of radiance transport in a participating medium, where
light travels along direction ω and passes through the volume of
the medium. The radiance Lout(x,ω) represents the attenuated ra-
diance of Lin(ω) (the ambient light radiance), reaching the view-
point x in the direction ω. As light propagates through the par-
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Figure 2: Schematic diagram illustrating the transport of radiance in
a participating medium volume. The ambient light radiation Lin(ω)
propagates along a unit directional vector ω (indicated by the yel-
low arrow), passing through point xu inside the volume and inter-
secting the volume boundary at points xa and xb. Lout(x,ω) repre-
sents the radiance of Lin(ω), attenuated by the medium, reaching
the view point x along direction ω. The distances between view-
point x and the farthest intersection xa, nearest intersection xb, and
position inside the volume xu are denoted as Da, Db, and Du respec-
tively. The relationships between x and xa, xb, xu can be expressed
as x = xa +ω ·Da = xb +ω ·Db = xu +ω ·Du.

ticipating medium, it can undergo scattering or absorption, alter-
ing its path and reducing its contribution in the original direction.
This phenomenon is described by the Radiative Transport Equation
(RTE) [Cha60]. The integral form of RTE is expressed as follows:

Lout(x,ω) = Lms(x,ω)︸ ︷︷ ︸
Section 3

+Lri(x,ω)+Lss(x,ω)︸ ︷︷ ︸
Appendix A

.
(1)

Here, Lout consists of the multiple scattering radiance Lms, reduced
incident radiance Lri, and the single scattering radiance Lss. To
improve the efficiency of forward rendering, we adopt the diffusion
approximation [Sta95] to estimate the multiple scattering radiance
Lms. In implementation, for efficient computation of the final ren-
dering radiance Lout , we employ a precomputation strategy and a
ray marching algorithm. Further details of the forward rendering
algorithms are presented in Section 5. Before introducing our pro-
posed method, we explicitly state the assumptions of our approach:

• For the sake of simplicity, in this work, our method is limited to
volume scenes without surface models.

• To ensure high performance, the data types of participating me-
dia are restricted to regular volume data, which typically have a
cube-like boundary.

Firstly, let’s define the following notations. We denote the volume
density at position x as ρ(x) and the optical coefficient as κi(x),
where κi ∈ {κa,κs,κt}. Here, κa, κs, and κt indicate the absorp-
tion, scattering, and extinction coefficients, respectively. In this sec-
tion, our main aim is to present a method for calculating radiance
that arises from multiple scattering, using diffusion approximation.
This method forms the basis for introducing our new theory called
differential diffusion. For ease of understanding, we have moved

the detailed explanations about reduced incident radiance Lri, sin-
gle scattering radiance Lss, and some of the fundamental formulas
from the Radiative Transfer Equation (RTE) to Appendix A. The
formula for calculating radiance due to multiple scattering, Lms, is:

Lms(x,ω) =
∫ Da

Db

τ(xu,xb)κt(xu)Jms(xu,ω)du. (2)

This term represents the radiance of light that has undergone mul-
tiple scattering interactions before reaching the viewpoint x. The
term Jms corresponds to the multiple scattering term, which is com-
putationally expensive to compute in the presence of dense par-
ticipating media due to the proliferation of scattering paths. In
our differentiable rendering framework, we utilize diffusion the-
ory [Sta95] to approximate Jms for forward rendering. Diffusion
theory provides a good approximation for multiply-scattered light
by modeling it as a simple partial differential equation, which can
be efficiently solved using various analytical and numerical meth-
ods. The formulas and derivation of the diffusion approximation
can be found in Stam’s paper [Sta95], which we include here for
completeness. The expression for Jms is given as:

Jms(xu,ω) = ΩL0
d(xu)+

Ωµ̄
3

· L⃗1
d(xu) ·ω, (3)

where L0
d and L⃗1

d represent the first two Taylor expansions of the
media radiance Ld in the directional component. The derivation of
Jms and µ̄ (the first moment of the phase function) is presented in
Appendix A. Specifically, L0

d(xu) denotes the average radiance over
all angles and is determined by a diffusion equation:

∇· (κ(xu)∇L0
d(xu))−κa(xu)L0

d(xu)+S(xu) = 0. (4)

To enhance readability, the expressions for κ and S are also moved
to Appendix A. The diffusion equation is a partial differential equa-
tion that can be efficiently solved using Jacobi or Gauss-Seidel it-
eration. L⃗1

d can be obtained by substituting L0
d into the following

formula:

L⃗1
d(xu) = κ(xu)(−∇L0

d(xu)+σs(xu)Q⃗1
ri(xu)), (5)

where Q⃗1
ri is defined in Appendix A. Finally, substituting L0

d and L⃗1
d

into Equation 3 yields Jms.

All of the above describes the complete process of light trans-
port in participating media. The most significant difference of our
method compared to previous works is the introduction of diffu-
sion theory into the differentiable rendering framework for forward
rendering. In the next section, we will present the derivation of the
differential form of RTE based on the diffusion approximation.

4. Differentiable Diffusion Approximation of RTE

In section 3, we discussed the integral form of RTE and the use
of the diffusion equation to approximate multiply-scattered radi-
ance. While diffusion theory provides an effective approximation
for multiply-scattered light, there is limited work on extending this
theory to compute derivatives of multiply-scattered radiance.

In this section, we present a differential theory based on diffusion
approximation to compute the derivatives of scene parameters π,
which include camera pose, volume density, optical coefficients,
and lighting parameters.
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The differentiation of Equation 1 can be expanded into three
terms: the differentiation of multiple scattering radiance ∂πLms, the
differentiation of reduced incident radiance ∂πLri, and the differ-
entiation of single scattering radiance ∂πLss. An overview of our
derivations is as follows:

∂πLout(x,ω) = ∂πLms(x,ω)︸ ︷︷ ︸
Section 4.1

+∂πLri(x,ω)+∂πLss(x,ω)︸ ︷︷ ︸
Appendix B

.
(6)

In Section 4.1, our primary aim is to introduce the derivatives of
the multiple scattering radiance ∂πLms. To ensure the main text re-
mains clear and focused, we have included the derivatives of the re-
duced incident radiance ∂πLri and the derivative of the single scat-
tering radiance ∂πLss in Appendix B.

4.1. Differentiation of Diffuse Radiance

In this section, we focus on introducing the derivative of multi-
ple scattering radiance based on our proposed differential diffusion
equation. We will focus on the multiple scattering radiance Lms, for
which the derivative can be formulated as follows:

∂πLms(x,ω) =
∫ Da

Db

τ(xu,xb)κt(xu)∂πJms(xu,ω)du

+
∫ Da

Db

(∂πτ(xu,xb)κt(xu)

+ τ(xu,xb)∂πκt(xu))Jms(xu,ω)du.

(7)

This equation expresses a summation of two integrals involv-
ing the transmission τ, extinction coefficient κt , multiple scattering
radiance term Jms, and their corresponding derivatives. The term
∂πLms represents the derivative of the multiple scattering radiance,
providing insights into the sensitivity of an arbitrary scene param-
eter to changes for differential rendering.

The Reynolds transport theorem is often used for computing
derivatives of hydrodynamic integral equations. However, in our
case, we are working with regular volume data that has a fixed
boundary and constant normals. Therefore, we do not require the
use of the Reynolds transport theorem to differentiate Da and Db
in Equation 7. While Zhang et al. [ZWZ∗19] applied the Reynolds
transport theorem to differentiate with respect to the shape of the
boundary, our method is specifically developed for real-time differ-
entiable volume rendering, and our goals and constraints are differ-
ent from Zhang’s general-purpose framework.

To evaluate the right-hand side (RHS) of Equation 7, we need
to compute the derivatives of the transmittance ∂πτ(xu,xb), the
derivatives of the optical coefficient ∂πκt(xu), and the derivatives
of the multiple scattering term ∂πJms(xu,ω). The expressions for
∂πτ(xu,xb) and ∂πκt(xu) are provided in Appendix B.

Since differentiating the multiple scattering radiance with dif-
fusion approximation is the primary contribution of our work, we
present the derivation of these derivatives as follows.

Derivation of ∂πJms. Differentiating Equation 3 yields:

∂πJms(xu,ω) = ∂πΩ(L0
d(xu)+

µ̄
3

L⃗1
d(xu) ·ω)

+Ω(∂πL0
d(xu)+

µ̄
3

∂π⃗L1
d(xu) ·ω+

∂πµ̄
3

L⃗1
d(xu) ·ω),

(8)

where the derivate of Ω is expressed as:

∂πΩ =
σt∂πσs −σs∂πσt

(σt)2 . (9)

Equation 8 represents the derivative of Jms with respect to an ar-
bitrary scene parameter π, where it is expressed as a combination
of the derivative of the albedo term Ω and the derivative of the first
two Taylor expansions of the media radiance Ld with respect to π,
accounting for the first moment of the phase function µ̄ (please re-
fer to Equation 34 of Appendix A), while Equation 9 defines the
derivative of Ω, involving the derivatives of the scattering and ex-
tinction coefficients.

Note that one can choose an appropriate phase function and sub-
stitute into Equation 34 for rendering. Differentiating Equation 34
yields:

∂πµ̄ =
3
2

∫ 1

−1
∂πµp(u)+µ∂π p(u)du. (10)

In practical scenarios, a phase function p(u) often has analytical
expressions, making it possible to obtain ∂π p(u) using symbolic
differentiation. To evaluate the RHS of Equation 8, we also need
to compute ∂πL0

d(xu) and ∂π⃗L1
d(xu). L0

d(xu) represents the average
radiance over all angles and is determined by the differential Equa-
tion 4. Differentiating Equation 4 yields:

∇∂πκ(xu) ·∇L0
d(xu)+∇κ(xu) ·∇∂πL0

d(xu)

+∂πκ(xu)∇2L0
d(xu)+κ(xu)∇2

∂πL0
d(xu)

−∂πκa(xu)L0
d(xu)−κa(xu)∂πL0

d(xu)+∂πS(xu) = 0.

(11)

The above partial differential equation is referred to as the differ-
ential diffusion equation. The derivation of this equation and pro-
viding a solution for its solving (refer to Section 5.3) are the main
contributions of this paper. These advancements form the core of
our research and contribute to the field of differentiable rendering
for participating media. Fortunately, the differential diffusion equa-
tion can be efficiently solved using numerical methods. Solving
∂πL0

d is similar to solving the radiance L0
d in the diffusion equa-

tion. To solve Equation 11, we need the expressions for ∂πκ(xu)
and ∂πS(xu), which are given by:

∂πκ(xu) =− ∂πρ(xu)

σtrρ2(xu)
− ∂πσtr

σ2
trρ(xu)

, (12)

where the derivative of the transport cross section is:

∂πσtr = ∂πσs(1−
µ̄
3
)− ∂πµ̄σs

3
+∂πσa. (13)

Additionally, the expression for ∂πS(xu) is given by:

∂πS(xu) = ∂πκs(xu)Q0
ri(xu)+κs(xu)∂πQ0

ri(xu)

− σs

σtr
∇·∂πQ⃗1

ri(xu)−
∂πσsσtr −∂πσtrσs

σ2
tr

∇· Q⃗1
ri(xu).

(14)

Equation 12 and Equation 13 provide the expressions for
∂πκ(xu) and ∂πσtr, respectively, which are needed to solve the dif-
ferential Equation 11 for ∂πL0

d . Also, Equation 14 gives the expres-
sion for ∂πS(xu), which is required to evaluate the source term in
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the differential diffusion equation. These equations enable the effi-
cient numerical solution of differential multiple scattering radiance.

To compute the derivative of S(xu), we need ∂πQ0
ri and ∂πQ⃗1

ri.
Since our method is limited to volume scenes without surface mod-
els, the complexity of derivative computation caused by visibility
is reduced. Therefore, we assume that Lri is continuous on S2. By
differentiating Q0

ri(xu) and Q⃗1
ri(xu), we obtain:

∂πQ0
ri(xu) =

1
4π

∫
S2

∂πLri(xu,ω
′)dω

′, (15)

∂πQ⃗1
ri(xu) =

∂πµ̄
4π

∫
S2

Lri(xu,ω
′) ·ω′dω

′

+
µ̄

4π

∫
S2

∂πLri(xu,ω
′) ·ω′dω

′,
(16)

where the derivative of the interface integral can be neglected. To
compute ∂πQ0

ri and ∂πQ⃗1
ri, we require ∂πLri. The derivative of Lri

can be found in Equation 41 of Appendix B.

Equation 15 and Equation 16 provide the expressions for ∂πQ0
ri

and ∂πQ⃗1
ri, respectively, which are computed based on the deriva-

tive of Lri given in Equation 41. These equations enable the compu-
tation of the derivatives of the radiance transfer integrals necessary
for the differential rendering process, considering the assumption
of continuity and neglecting the interface integral derivative.

Computing equations like Equation 15 and Equation 16 is costly,
particularly with panoramic maps. We address this with a pre-
computation strategy that stores intermediate variables for quick
access during differential rendering. This optimizes efficiency and
eliminates redundancy. Further details are in Section 5, which
delves into the computational aspects and their implications for the
differential diffusion approximation.

To compute the terms ∂πκ, ∂πκa, and ∂πS, direct calculations can
be performed using Equations (12), (13), and (14). By substituting
Equations (12), (42), and (14) into Equation (11), ∂πL0

d(xu) can
be solved using numerical methods such as Jacobi or Gauss-Seidel
iterations [IK12].

Once ∂πL0
d(xu) has been calculated, ∂π⃗L1

d(xu) can be obtained by
substituting ∂πL0

d(xu) into the following formula:

∂π⃗L1
d(xu) =∂πκ(xu)(−∇L0

d(xu)+κs(xu)Q⃗1
ri(xu))

+κ(xu)(−∇∂πL0
d(xu)+κs(xu)∂πQ⃗1

ri(xu)

+∂πκs(xu)Q⃗1
ri(xu)).

(17)

Hence, it computes ∂π⃗L1
d(xu), which is the derivative of the dif-

fuse radiance vector at point xu with respect to the change in the
scene parameters π, based on ∂πL0

d(xu), using the given expressions
for derivatives of κ, κs, and Q⃗1

ri.

Previous works often rely on Monte Carlo path tracing to esti-
mate the derivative of multiple scattering radiance, which can be
computationally demanding in the presence of dense participating
media due to the proliferation of scattering paths. In this subsection,
we derive the differential form of the diffusion equation (Equa-
tion 11), known as the differential diffusion equation. The deriva-
tive of L0

d in the differential diffusion equation can be efficiently

solved using numerical methods. By substituting ∂πL0
d into Equa-

tion 17, we obtain ∂π⃗L1
d . Therefore, we provide a new approach to

efficiently compute the derivative of multiple scattering radiance
by solving the differential diffusion equation instead of relying on
Monte Carlo methods.
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Ray marching

Precomputation

Computing diffusion radiance and derivative

Figure 3: Relations of algorithm components and the dependencies
between radiance-related quantities. An arrow from A to B indi-
cates that A depends on B.

4.2. Completing ∂πLout

Our objective is to compute the derivative of radiance Lout with re-
spect to the scene parameters π. We decompose ∂πLout into three
terms: ∂πLms, ∂πLri, and ∂πLss. Among these terms, the computa-
tion of ∂πLms is the most computationally expensive. To address
this, we introduced the differential diffusion equation in Section
4.1, which can be efficiently solved using numerical methods.

The derivatives of Lri and Lss are given by Equations (41) and
(39), respectively. These derivatives can be computed through the
ray marching process with relatively low computational cost. By
combining Equations (39), (41), and (7), we obtain the expression
for ∂πLout as shown in Equation 6. The dependencies between the
various quantities involved in ∂πLout are illustrated in Figure 3.

Our main contribution lies in providing a novel and highly effi-
cient method for computing the derivatives of scene parameters in
the context of participating media. Since this paper primarily fo-
cuses on the differential rendering of volume models rather than
surface models, our method is specifically designed for scenes that
involve volumes without surface models. We solely consider the
Radiative Transfer Equation (RTE) and omit the Rendering Equa-
tion (RE) in our approach.

5. Discrete Calculation

Our differential diffusion theory, as discussed above, is based on
continuous forms of equations. However, for efficient computation,

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



Y. Cen et al. / A Differential Diffusion Theory for Participating Media

it needs to derive discrete forms of these equations that can be ef-
fectively implemented. Now, we introduce the algorithm compo-
nents of our method, which consist of three main components: 1)
Ray marching, 2) Pre-computation, and 3) Computing diffusion ra-
diance and derivative. The relationships and dependencies between
these components and the radiance-related quantities are illustrated
in Figure 3.

The Ray marching component (Section 5.1) serves as the entry
point of our method. It is responsible for computing the final radi-
ance Lout and its corresponding derivative ∂πLout . By utilizing the
ray marching technique, this component traces the paths of light
rays through the participating medium, considering scattering and
absorption effects.

To initiate the ray marching process, the Pre-computation com-
ponent (Section 5.2) is required. It performs pre-computation tasks,
which involve the calculation of intermediate variables necessary
for accelerating the overall computation. These pre-computed vari-
ables are then provided to the ray marching component.

Within the Pre-computation component, we include the Com-
puting diffusion radiance and derivative component (Section 5.3).
This subcomponent specifically focuses on solving the radiance
and derivative of the diffusion terms. By employing suitable algo-
rithms, it efficiently computes the diffusion-related radiance and its
derivative, enhancing the accuracy of our method.

Once all the pre-computed intermediate variables are prepared
by the Pre-computation component, the ray marching process is
performed to obtain the final radiance Lout and its derivative ∂πLout .
Before delving into the details of the algorithm components, let’s
establish the following assumption.

Assumption: We assume a uniform 3D grid comprised of voxels,
where each voxel is characterized by a voxel position vp (with the
subscript of v indicating a point p inside the voxel) and a voxel
edge length h. The voxel position vp can be indexed using integer
coordinates (i, j,k). Additionally, we have a discrete density field ρ

representing the volume of the participating medium, along with its
corresponding optical coefficient field κi. These assumptions form
the basis for our subsequent algorithm components.

5.1. Ray Marching

Ray marching (Algorithm 1) is utilized to compute the final radi-
ance Lout and its derivative ∂πLout at the view point x. To improve
efficiency, we employ pre-computation of necessary intermediate
variables, which are stored as voxels (Line 2 of Algorithm 1). These
pre-computed variables can then be directly utilized within the ray
marching component (Lines 6-21 of Algorithm 1). Finally, the final
radiance Lout and its derivative ∂πLout are obtained by summing up
all the radiance and derivative terms separately, based on Equations
(1, 6) (Lines 25-28 of Algorithm 1). In this subsection, we provide
the discrete forms of Lss, ∂πLss, Lms, and ∂πLms.

Li and ∂πLi represent the generic discrete forms of scattering
radiance and its corresponding derivative, respectively, which are:

Li(x,ω) =
xb

∑
p=xa

τ(vp,vxb)κt(vp)Ji(vp,ω)∆d, (18)

ALGORITHM 1: Ray Marching

1 Function RayMarching(L0
d , L⃗1

d , Lin, S, κ, κa, κt):
/* Pre-computation function is shown in Alg.

2 */

2 Lri, L0
d , L⃗1

d , ∂πLri, ∂πL0
d , ∂π⃗L1

d ← Precomputation(L0
d , L⃗1

d , S, κ, κa,
κt )

3 xu← xa

4 Db = ∥xb− x∥ // Distance from xb to the view
point x

5 repeat
6 Jms(vxu ,ω)← Equation 3
7 ∂πJms(vxu ,ω)← Equation 8
8 Jss(vxu ,ω)← Equation 33
9 ∂πJss(vxu ,ω)← Equation 40

10 Lms(x,ω)← Lms(x,ω)+ τ(vxu ,vxb )κt(vxu )Jms(vxu ,ω)∆d

11
∂πLms(x,ω)← ∂πLms(x,ω)+ τ(vxu ,vxb )κt(vxu )∂πJms(vxu ,ω)∆d+

(∂πτ(vxu ,vxb )κt(vxu )+ τ(vxu ,vxb )∂πκt(vxu ))Jms(vxu ,ω)∆d

12 Lss(x,ω)← Lss(x,ω)+ τ(vxu ,vxb )κt(vxu )Jss(vxu ,ω)∆d

13
∂πLss(x,ω)← ∂πLss(x,ω)+ τ(vxu ,vxb )κt(vxu )∂πJss(vxu ,ω)∆d+

(∂πτ(vxu ,vxb )κt(vxu )+ τ(vxu ,vxb )∂πκt(vxu ))Jss(vxu ,ω)

14 xu← xu +ω ·∆d
15 Du = ∥xu− x∥ // Distance from xu to the view

point x
16 until Du < Db
17 Lri(x,ω)← Equation 31
18 ∂πLri(x,ω)← Equation 41
19 Lout(x,ω)← Lms(x,ω)+Lri(x,ω)+Lss(x,ω)
20 ∂πLout(x,ω)← ∂πLms(x,ω)+∂πLri(x,ω)+∂πLss(x,ω)
21 return Lout ,∂πLout

∂πLi(x,ω) =
xb

∑
p=xa

τ(vp,vxb)κt(vp)∂πJi(vp,ω)∆d+

xb

∑
p=xa

(∂πτ(vp,vxb)κt(vp)+

τ(vp,vxb)∂πκt(vp))Ji(vp,ω)∆d,

(19)

where i ∈ {ms,ss} with ms and ss indicating multiple scattering
and single scattering, respectively. ∆d is the sampling step length.
In Equations (18, 19), the discrete form of transmittance τ and its
derivative ∂πτ are needed, which are expressed as:

τ(vxi ,vx j ) =e−∑
x j
p=xi κt (vp)∆d , (20)

∂πτ(vxi ,vx j ) =− τ(vxi ,vx j )
x j

∑
p=xi

∂πκt(vxu)∆d. (21)

To sum up, the equations provide the discrete forms of scattering
radiance and its derivative for single scattering (Lss) and multiple
scattering (Lms). The radiance values are obtained by summing up
the contributions of transmittance, extinction coefficient, and scat-
tering phase function along the ray path, while the derivatives incor-
porate additional terms involving the derivatives of transmittance
and extinction coefficient. Furthermore, a pre-computation strategy
is employed, which enables efficient computation of the final ra-
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Figure 4: Illustration of ray marching in the volume of a participat-
ing medium. It demonstrates the sampling along the ray path with
direction ω, starting from voxel position vxi and advancing towards
vx j . The sampling step length is ∆d, and the voxel edge length is h.

diance and its derivative in participating media by directly reading
the intermediate variables.

The process of transmittance calculation is illustrated in Fig-
ure 4. A ray traverses the volume of a participating medium along
direction ω, intersecting the volume from voxel position vxi to vx j .
This ray marching process involves sampling the ray path with a
step size of ∆d. The sampled values are accumulated to obtain the
optical depth.

For the computation of single scattering terms, namely Jss and
∂πJss, we rely on Lri and ∂πLri. To avoid redundant calculations of
Lri and ∂πLri, we propose a pre-computation component (discussed
in Section 5.2) to compute these intermediate variables and store
them as voxels. This allows for efficient reuse of the pre-computed
values during the ray marching process.

Regarding the multiple scattering terms, the diffusion radiance
L0

d , L⃗1
d , and their derivatives ∂πL0

d , ∂π⃗L1
d are obtained by solving

the diffusion equation and the differential diffusion equation, which
will be introduced in Section 5.3. Subsequently, Jms and ∂πJms can
be computed using Equations (3) and (8). The ray marching tech-
nique is then employed to compute the scattering radiance and their
derivatives (Lines 10-21 of Algorithm 1).

Finally, all of the radiance and derivative terms are accumulated
separately to obtain the final radiance Lout and its derivative ∂πLout .
An example of the computed results for Lout and ∂πLout is shown
in Figure 5.

𝐿&'𝐿!"#

= +

𝐿$%

+

𝐿%%

𝐿&'𝐿!"#

= +

𝐿%%𝐿$%

+

= ++

𝜕,𝐿!"# 𝜕,𝐿$% 𝜕,𝐿&' 𝜕,𝐿%%

Figure 5: Visualization of the individual radiance components in
the computation result of Lout and ∂πLout (with respect to density).

5.2. Pre-computation

In order to address the challenges involved in rendering a partic-
ipating medium volume and computing radiance derivatives, our
method incorporates a pre-computation step where certain inter-
mediate variables are calculated and stored as voxels. These pre-
computed values can then be efficiently reused during the ray
marching process, eliminating the need for redundant calculations.

At the beginning of Algorithm 1, it is necessary to pre-compute
the radiance fields Lri, L0

d , L⃗1
d , and their corresponding derivative

fields (Algorithm 2), which are then stored as voxels. The compu-
tation of Lri and ∂πLri involves estimating the integral of solid angle
over the unit sphere S2 using the Monte Carlo Method (Line 3 of
Algorithm 2). The intermediate variables Q0

ri, Q⃗1
ri, κ, S, and their

derivatives are pre-computed as well (Lines 4-7 of Algorithm 2).

By obtaining these pre-computed intermediate variables, we are
able to solve for the diffusion radiance and its derivatives (Line 9 of
Algorithm 2). The details of the computation of diffusion radiance
and its derivatives can be found in Section 5.3 (Algorithm 3).

ALGORITHM 2: Precomputation

1 Function Precomputation(L0
d , L⃗1

d , S, κ, κa, κt):
2 parfor each position vxu ∈ voxels do
3 Lri(vxu ,ω

′),∂πLri(vxu ,ω
′)← Equation 31, 41

4 Q0
ri(vxu ),∂πQ0

ri(vxu )← Equation 37, 15
5 Q⃗1

ri(vxu ),∂πQ⃗1
ri(vxu )← Equation 38, 16

6 κ(vxu ),∂πκ(vxu )← Equation 35, 12
7 S(vxu ),∂πS(vxu )← Equation 36, 14
8 end

/* DiffusionSolver function is shown in Alg.
3 */

9 L0
d , L⃗

1
d ,∂πL0

d ,∂π⃗L1
d ← DiffusionSolver(L0

d , ∂πL0
d , L⃗1

d , ∂π⃗L1
d , S, κ,

κa)
10 return Lri, L0

d , L⃗1
d , ∂πLri, ∂πL0

d , ∂π⃗L1
d

5.3. Computing Diffusion Radiance and Derivative

In this section, we describe the computation of diffusion radiance
and their corresponding derivatives. We first present the discrete
forms of diffusion radiance, followed by an introduction to the solv-
ing process of the differential diffusion equation using Jacobi iter-
ative method.

Computing diffusion radiance. To enhance the efficiency of ren-
dering, we employ the diffusion theory to compute the multiply-
scattering radiance. The diffusion equation (Equation 4) can be fur-
ther expressed as:

∇κ ·∇L0
d +κ ·∇2L0

d −κaL0
d +S = 0. (22)

In our implementation, we approximate the first and second order
derivatives using the first-order central difference and the second-
order central difference, respectively. The discrete approximations
are given by:

∇F ≈
Fi+1, j,k −Fi−1, j,k

2h
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and

∇2F ≈
Fi+1, j,k +Fi−1, j,k −2Fi, j,k

h2 .

Using the discrete approximations, we express the discrete forms
of ∇κ ·∇L0

d and ∇2L0
d as:

∇κ ·∇L0
d =

1
4h2 Σ

4
i jk, (23)

∇2L0
d =

1
h2 Σ

3
i jk, (24)

where the expressions of Σ
3
i jk, Σ

4
i jk, and Σ

5
i jk (used in Equation 25)

are provided in Appendix B. With these discrete expressions, we
can derive the discrete form of L0

d as follows:

L0
d =

1
h2(κa)i, j,k +6κi, j,k

· (h2Si, j,k +
1
4

Σ
4
i jk +κi, j,kΣ

5
i jk). (25)

In our implementation, we utilize the Jacobi iterative method to
solve for L0

d . Once L0
d is obtained, it can be easily substituted into

Equation 5 for computing L⃗1
d .

The above equations describe the computation of diffusion ra-
diance using the diffusion theory. The diffusion equation (Equa-
tion 22) represents the balance between the gradients and Lapla-
cian of the radiance, absorption, and a source term. By discretizing
the derivatives using central difference approximations, the expres-
sions for the discrete forms of the gradients and Laplacian (Equa-
tion 23, Equation 24) are derived. The discrete form of L0

d (Equa-
tion 25) is then obtained using these expressions, and it can be
solved iteratively using the Jacobi method to compute the diffusion
radiance.

Algorithm 3 iteratively computes the diffusion radiance L0
d and

its derivative ∂πL0
d , as well as the diffusion radiance derivative L⃗1

d
and its derivative ∂π⃗L1

d , by solving the diffusion equation. It initial-
izes the radiance values and then iteratively updates them until the
error between the updated values and the previous values falls be-
low a specified threshold. The final computed radiance and deriva-
tive values are returned as the output.

ALGORITHM 3: Computing Diffusion Radiance and Derivative

1 Function DiffusionSolver(L0
d , ∂πL0

d , L⃗1
d , ∂π⃗L1

d , S, κ, κa):
2 if L0

d , L⃗1
d and ∂πL0

d , ∂π⃗L1
d are uninitialized then

3 random assignment of L0
d , L⃗1

d and ∂πL0
d , ∂π⃗L1

d
4 end
5 repeat
6 Lnew← Equation 25
7 error←MSE(Lnew,L0

d) /* mean-square error */
8 L0

d ← Lnew

9 until error < error_threshold
10 L⃗1

d ← via Equation 5
11 repeat
12 ∂πLnew← Equation 29
13 error←MSE(∂πLnew,∂πL0

d)

14 ∂πL0
d ← ∂πLnew

15 until error < error_threshold
16 ∂π⃗L1

d ← via Equation 30
17 return L0

d , L⃗
1
d ,∂πL0

d ,∂π⃗L1
d

Computing derivative of diffusion radiance. The calculation of
the derivative of diffusion radiance follows a similar process to
solving the diffusion equation. The differential diffusion equation
(Equation 11) needs to be solved using Jacobi iterative method. The
discrete forms of the terms ∇∂πκ ·∇L0

d , ∇κ ·∇∂πL0
d , and ∂πS are

presented as follows:

∇∂πκ ·∇L0
d =

1
4h2 Σ

1
i jk, (26)

∇κ ·∇∂πL0
d =

1
4h2 Σ

2
i jk, (27)

∂πS = Σ
6
i jk. (28)

The expressions of Σ
1
i jk, Σ

2
i jk, Σ

6
i jk, and Σ

9
i jk (used in Equation 29

and Equation 30) are provided in Appendix B. Substituting these
discrete forms into Equation 11, we obtain:

∂πL0
d =

1
h2(κa)i, j,k +6κi jk(

1
4
(Σ1

i jk +Σ
2
i jk)+κi jkΣ

3
i jk −h2(κa)i jk(L

0
d)i jk +h2

Σ
6
i jk

)
.

(29)

The above equations describe the computation of the derivative
of media radiance’s Tylor series expansion term of zero order. It is
an important component of calculating the derivative of media radi-
ance Ld . By discretizing the derivatives using central difference ap-
proximations, the expressions for the discrete forms of the gradients
and the derivative of diffusion radiance (Equation 26, Equation 27,
Equation 28) are derived. These expressions are then used to solve
the differential diffusion equation (Equation 11) iteratively using
the Jacobi method, resulting in the discrete form of the derivative
of diffusion radiance (Equation 29).

Next, we compute ∂π⃗L1
d using the following discrete equation:

∂π⃗L1
d = Σ

9
i jk, (30)

which calculates the derivative of the media radiance’s Tylor series
expansion term of first order using the discrete form Σ

9
i jk. The over-

all process of solving for L0
d , L⃗1

d , and their derivatives is outlined in
algorithm 3, and the computed data is stored as voxels.

6. Results

Our experimental evaluations were conducted on a high-
performance workstation consisting of two Intel Xeon E5-2620 V4
processors with 128 GB of memory, and an NVIDIA GeForce RTX
2080 Ti graphics card. All square images generated for our experi-
ments had a resolution of 512×512 pixels, unless stated otherwise.
We implemented our approach on both CPU and GPU backends.

For the CPU backend, we wrote the implementation code in C++
and utilized the Enoki library [Jak19] for numerical computation.
We also employed OpenMP for parallel programming to leverage
the multicore architecture of the CPU. For the GPU backend, we
utilized the Taichi framework [HLY∗21] specifically designed for
high-performance parallel numerical computation on GPUs.

To ensure an objective evaluation of our performance, we con-
ducted comprehensive validations on both CPU and GPU back-
ends. Through these evaluations, we assessed the effectiveness of
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Figure 6: Efficiency Evaluation of Different Scene Parameters. To evaluate the effectiveness and efficiency of our method, we conducted
separate optimizations on the lighting color and density field for two different scenes. These validations were performed on CPU backends,
and the volume size for both scenes was 64×96×64. The first row shows the results of iterative optimization for the lighting color, involving
3 optimized parameters. The second row demonstrates the results of iterative optimization for the volume density, which requires optimizing
39,216 parameters. In each iteration, the initial values for the current iteration were set as L0

d and ∂πL0
d obtained from the previous calculation.

This initialization strategy significantly reduces the number of iterations required to solve the differential diffusion equations.

our approach and compared its performance across different sce-
narios. Additionally, we provide a supplementary video that in-
cludes live demonstrations showcasing the results of iterative op-
timization with respect to density, illumination, and optical coef-
ficients. We encourage you to watch the video for a more visual
understanding of our approach.

6.1. Performance and Validation

We conducted comprehensive and rigorous experiments to evaluate
the performance and effectiveness of our proposed method. Key
indicators for evaluating a differentiable rendering framework in-
clude runtime efficiency and the accuracy of computed gradients.
Additionally, we assessed the effectiveness of the diffusion approx-
imation. It is worth mentioning that the target images used in this
paper were generated using standard volumetric path tracing.

Efficiency evaluation. We further evaluated the efficiency of our
method through validation experiments on CPU backends. We con-
ducted experiments on two different scenes: the optimization of
lighting color in a bunny scene (with 3 optimized parameters) and
the optimization of a smoke density field (with 39,216 optimized
parameters for a volume size of 64×96×64). As shown in Fig-
ure 6, the time spent per iteration ranged between 1 and 3 seconds
before the loss converged to the globally optimal solution. With
more iterations, the time per iteration decreased significantly as the
rendered image approached similarity to the target image. This re-
duction in time can be attributed to the utilization of the last pre-
computation results as the initial condition for solving the partial
differential equations during pre-computation, leading to a sharp
decrease in the number of iterations as image similarity increased.
Eventually, the time per iteration reached approximately 0.37 sec-
onds and 1.35 seconds for the two optimized tasks, respectively.
As expected, tasks involving a larger number of optimized parame-
ters required longer runtimes compared to tasks with fewer param-
eters. However, the runtime did not exhibit an exponential increase

with the number of parameters. These results demonstrate that our
method maintains high performance even when faced with the de-
manding task of computing numerous optimized parameters. The
density optimization effects of our method are particularly impres-
sive, as shown in the second row of Figure 6. When considering the
target image as the Lucy model with intricate details rendered from
a specific camera angle, our rendered image of the reconstructed
participating medium volume closely converged to the target image
after 100 iterations of optimization. The above comprehensive eval-
uations and validations provide strong evidence for the efficiency
and effectiveness of our method in differentiable rendering.

Comparing with backpropagation methods. Recently, backprop-
agation methods [NDSRJ20,VSJ21] have been proposed for partic-
ipating media, offering improved performance compared to tradi-
tional automatic differentiation (AD) methods. Among these meth-
ods, the radiative backpropagation (RB) method by Nimier-David
et al. [NDSRJ20] has gained attention and provides an open-source
implementation. In order to establish a fair comparison, we selected
the RB method as a representative backpropagation method and
evaluated it alongside our method on GPU backends.

To evaluate the performance of the two methods, we conducted
experiments using the same smoke scene rendered at three different
resolutions: 256 × 256, 512 × 512, and 1024 × 1024 pixels. In the
RB method, we employed 64 samples per pixel (SPP) for both for-
ward and backward rendering. Figure 7 presents a comparison of
the efficiency between the two methods when optimizing the den-
sity of a heterogeneous volume. The charts depict the loss and opti-
mization time for each iteration. Although both methods eventually
converge, our method exhibited a significant advantage in terms of
efficiency, being approximately a hundred times faster than the RB
method. Specifically, our method completes 300 iterations within
total elapsed times of 10.2 seconds, 13.3 seconds, and 18.2 sec-
onds for resolutions of 256×256, 512×512, and 1024×1024 pix-
els, respectively. This corresponds to average frame rates of 29.4
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Figure 7: Efficiency Comparison Against Radiative Backpropagation (RB) Method [NDSRJ20]. This comparison is conducted on GPU
backends. We optimize the density of a heterogeneous volume using both our method and the RB method while employing the same smoke
scene at three distinct rendering resolutions: 256× 256, 512× 512, and 1024× 1024 pixels. The RB method uses 64 samples per pixel
(SPP) for both forward and backward rendering. The experiments run for 300 iterations. The bottom row of this figure displays the reference
image, the initial scene configuration, and the reconstructed results of our method and the RB method, respectively. Furthermore, the loss and
runtime for each iteration are depicted in the accompanying charts. Both methods achieve convergence within a low loss interval, typically
ranging between 10−2 and 10−4, after just a few dozen iterations. Notably, our method showcases a remarkable hundredfold increase in
efficiency compared to the RB method, underlining its computational advantage.

FPS, 22.5 FPS, and 16.4 FPS. In contrast, the RB method requires
significantly more time to achieve convergence.

Furthermore, we conducted a comprehensive performance com-
parison between the CPU and GPU backends for the same op-
timization task. Notably, the GPU implementation showcases re-
markable speed, running approximately 140 times faster than its
CPU counterpart. This achievement is particularly significant as
our framework is the pioneering physically-based differentiable
rendering framework for participating media, capable of achieving
real-time performance.

Derivative validation. To ensure the accuracy of the gradients
computed by our method, we conducted a comprehensive compar-
ison with finite differences (FD). For the FD computation, we em-
ployed standard volumetric path tracing with 120 samples per pixel
(SPP). Figure 8 illustrates the computed gradients for density and
absorption coefficient across various scenes. The volumetric data in
these scenes has a size of 64×94×64. The gradient images shown
in this comparison are the cumulative gradients projected from a
specific viewpoint. We used the FD results as the ground truth for

comparison. The absolute error of the gradients obtained from our
method is displayed in d1 and d2, representing the discrepancy be-
tween our method and the FD results.

Analyzing these absolute error images, we can observe that our
method exhibits cumulative errors in the gradient computation at
the surface of the volume data or in regions with a vacuum. These
errors can be attributed to two factors. Firstly, our method utilizes
ray marching to estimate the radiance and its derivatives for partici-
pating media. However, ray marching is a biased sampling method,
which introduces errors in the computed results. Secondly, diffu-
sion theory, being an approximation method, may have limitations,
especially in regions of vacuum, thin regions, and surfaces with
complex lighting conditions. Consequently, the computed results
from differential diffusion theory only provide approximate values
of the ground truth, leading to errors in the computed gradients.
Nevertheless, despite the introduced bias by our approximation,
it significantly enhances the efficiency of differentiable rendering.
Furthermore, our method produces satisfactory reconstruction re-
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Figure 8: Comparison of Gradients: Differential Diffusion vs. Finite Differences (FD). We compare the derivatives of pixel intensity with
respect to density and absorption coefficient obtained from our method with those computed using finite differences (FD). The FD results are
generated through computational brute force, providing reference gradient values. However, due to the prohibitive runtime, the FD method
cannot be used for optimization tasks. For the FD computation, we employ a standard volumetric path tracing approach with a free flight
sampling based estimator. The gradient images presented in this comparison are the accumulated gradients obtained by projecting them
from a specific viewpoint. These images provide measurements of the accumulated gradients along the light path, enabling an assessment
of the accuracy of the computed gradients within thin and thick regions of the volume data. Finally, we use the absolute error to assess the
discrepancy between out method and the FD results. The absolute error images (d1 and d2) indicate that our method exhibits minimal biases
in the thin and vacuum regions compared to the FD results.

sults, indicating that the biases incurred by these approximations
remain within an acceptable range.

Validation of the ability of diffusion approximation derivative. To
assess the effectiveness of the diffusion approximation derivative in
the optimization task, we compared the reconstructed effectiveness
of using diffusion radiance derivatives, single scattering radiance
derivatives, and both derivatives combined to optimize the density
field. The same target image was used for all scenarios.

In this comparison, we focus on optimized tasks starting with
a bunny-shaped volume. The target images for optimization are
single-view images of a dragon, generated using standard vol-
umetric path tracing with free flight sampling. The scene is il-
luminated by a directional light source, and the volume size is
64×96×64. The objective is to evaluate the impact of different
derivative components on the optimization results. To accomplish
this, we performed 100 iterations of optimization using diffusion
radiance derivatives, single scattering radiance derivatives, and a
combination of both. Throughout these iterations, we recorded the
loss value and runtime for each iteration, enabling a comprehensive
analysis of the effectiveness of each derivative component.

As shown in Figure 9, we observed challenges when using sin-
gle scattering radiance derivatives to accurately model light trans-
port within participating media, particularly in areas with complex
structures. This led to improper computation of derivatives. In con-
trast, our diffusion approximation method provided valuable and
precise derivatives, enabling accurate reconstruction of model de-
tails, especially for complex structures. The third row of Figure
9 displays the results obtained by combining diffusion and single
scattering derivatives. After 70 iterations, the reconstruction con-
verged to the target image, indicating that the joint use of diffusion

derivatives and single scattering derivatives enhances the efficiency
of reconstruction compared to using either derivative alone.

Moreover, it is worth noting that the runtime of solving the
differential diffusion equation and diffusion equation decreases
as (performing in the pre-computation process) the rendered im-
age approaches similarity with the target image. This property is
highly beneficial for the fine-tuning process in reconstruction tasks.
Achieving high-quality results during reconstruction often requires
an extensive fine-tuning process as the reconstructed results ap-
proach the target. However, existing methods start the differential
computation from scratch at each iteration and cannot effectively
leverage the results of the previous iteration to expedite the solving
process. In contrast, our proposed method effectively utilizes the
previous computation results during the fine-tuning process, sig-
nificantly reducing redundant computations at each iteration. This
capability improves the efficiency of the reconstruction process, re-
sulting in faster convergence to high-quality results.

6.2. Optical Coefficient Optimization

The optical coefficients, including the absorption coefficient, scat-
tering coefficient, and parameters of the phase function, play a cru-
cial role in determining the color and intensity of participating me-
dia. These parameters significantly affect the rendered appearance.
To validate the effectiveness of optimizing the optical coefficients
using our method, we conducted an optimization experiment on
the optical coefficient field, which involves jointly optimizing the
absorption coefficient field, scattering coefficient field, and asym-
metry parameter of the Henyey-Greenstein (HG) phase function.

We present the optimization processing in Figure 10, the scene is
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Figure 9: Comparison of Diffusion Approximation and Single Scattering Derivatives in Density Reconstruction. Experiment performed
on CPU backends. A bunny model scene with directional lighting is used, and the same target image and scene parameters are applied in
three experiments. The derivative images (pixel intensity derivative with respect to density) and corresponding rendered (reconstruction)
images are shown for each selected iterative optimization step. The first row presents results from our diffusion approximation method,
which consistently generates reliable derivatives throughout iterations, effectively assisting in reconstructing model details. In contrast, the
second row displays single scattering results, which primarily capture derivatives along the model shape boundary but struggle to properly
generate many model details, particularly in regions farther from the light source (e.g., dragon tail). Finally, the third row demonstrates the
improved efficiency and result quality achieved by combining both derivatives.
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Figure 10: Optical Coefficient Optimization. The initial scene
features a white cloud, while a rendered black cloud scene serves
as the target image. This optimization task involves jointly opti-
mizing the absorption coefficient field, scattering coefficient field,
and asymmetry parameters of the Henyey-Greenstein (HG) phase
function. Our results showcase the effectiveness of our proposed
method in providing reliable derivatives of the optical coefficient,
enabling complex optical optimization tasks.

initialized with a white cloud and kept the illumination parameters
and density field fixed while jointly optimizing the optical coeffi-
cients. After 1000 iterations, the rendered image closely converged
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Figure 11: Validation of Estimated Optical Coefficient Fields.
Generating the slices involves using the red channel of the absorp-
tion coefficient field (the first row) and the green channel of the
scattering coefficient field (the second row). These slices are pro-
duced by summing up values along the z-axis between z = 94 and
z = 98. The small absolute errors indicate that our method accu-
rately estimates optical coefficient fields with a high level of preci-
sion, highlighting its advantageous performance.
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Figure 12: Complex Colored Smoke Reconstruction. The first and second rows depict the reconstructed colored smoke scene from a
single-view image. In contrast, the third row presents the reconstruction using ortho-symmetric four-view images. This means that the front
and back views use the same image, while the left and right views are obtained by vertically flipping this image. This method ensures
symmetry and consistency in the reconstruction process, yielding reliable results. In both scenarios, we jointly optimize the density field and
optical coefficients. The optimization involves over 49 million parameters, posing considerable challenges. Despite slightly blurred results
in the novel view images, the reference view images demonstrate our method’s ability to accurately reconstruct the intricate visual effects of
complex colored smoke. For live demonstrations of our reconstructions, please refer to the supplementary video.

to the target image, then the optimization transitioned into a fine-
tuning phase, where further refinements were made to enhance the
similarity between the rendered and target images. We continued
the optimization for an additional 2000 iterations, during which the
loss decreased slightly, but the reconstructed details were signifi-
cantly enhanced.

To validate the precision of our estimated optical coefficient
fields compared to the ground truth, we conduct a comprehensive
analysis by comparing slices from both the estimated fields and the
ground truth, along with their corresponding absolute errors. These
results are illustrated in Figure 11. In particular, the optical fields
have a volumetric size of 192× 192 × 192 × 3 (with the last di-
mension representing RGB channels). The slices are generated by
summing values along the z-axis within a range from z = 94 to
z = 98, situated in the middle of the volumetric data. The red chan-
nel of absorption coefficient fields and the green channel of scat-
tering coefficient fields are presented in the first and second rows,
respectively. The final column displays the absolute errors between
our estimations and the ground truth. Notably, our estimated results
closely resemble the ground truth, with the minimal absolute error
underlining the high accuracy of our estimates.

The asymmetry parameter of the Henyey-Greenstein (HG) phase
function is a scalar ranging from -1 to 1, which governs the direc-
tion of scattering: positive for forward, negative for backward, and
zero for isotropic scattering. In our experiment, we utilize a con-
sistent asymmetry parameter for the HG phase function throughout
the optimization process. We initialize the asymmetry parameter at
0.67, while the actual value for the black cloud is −0.802. Over the
course of 3,000 iterations, the asymmetry parameter converges to
−0.813, remarkably close to the actual value. This outcome high-
lights our method’s exceptional ability to accurately estimate phase
function parameters, reinforcing its advantage.

6.3. Density Reconstruction

In order to assess the reconstructed ability of our proposed method,
we conducted two sets of three-dimensional reconstruction exper-
iments: 1) single-view density field reconstruction and 2) multi-
view density field reconstruction.

In the following experiments, we tackled highly complex tasks
with volume resolutions of 192× 192× 192 (Figure 12) and 64×
96×64 (Figure 13). These tasks involved a large number of param-
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Figure 13: Validation of Reconstructed Density Field. The reference images were generated using volumetric path tracing from ten view-
points. The cumulative density images, presented in columns (a), (b), and (d), (e), depict the density fields projected onto the image plane
from frontal and novel viewpoints. These images provide insights into the volume’s optical depth, revealing regions of varying thickness.
Columns (c) and (f) show the absolute difference between the reconstructed and ground truth volumes. Minor deviations may occur, par-
ticularly in the leg region of the bunny, due to our method’s use of a diffusion approximation for differentiable rendering, which does not
fully simulate light scattering in regions with significant changes in optical thickness. However, overall, our method achieves a high level of
accuracy in reconstructing the density field.

eters, ranging from 106 to 107. Traditional methods heavily rely on
Monte Carlo estimation to compute the required derivatives, which
becomes challenging when dealing with a large number of param-
eters. However, our theory and method enable rapid and accurate
density field reconstruction. We utilized three high-definition wall-
papers featuring color smoke as target images for the reconstruction
process. As demonstrated in Figure 12, reconstruction results con-
sistently capture the visual effects of complex participating media
from the same perspective.

Density optimization based on single-view images. The target
images in the first and second rows of Figure 12 depict complex
colored smoke, necessitating joint optimization of the density field
(with 7 million optimized parameters), absorption coefficient field
(with 21 million optimized parameters), and scattering coefficient
field (with 21 million optimized parameters). Consequently, more
than 49 million relevant optimized parameters are involved, pre-
senting highly challenging optimization tasks. Previous methods
relying on the Monte Carlo approach struggle to directly address
such tasks. In contrast, our method leverages the differential dif-
fusion theory to approximate the derivative of multiple scattering
radiance, circumventing the complexities and time-consuming na-
ture of Monte Carlo path tracing computations.

Density optimization based on multi-view images. Reconstruct-
ing the density field based on a single view is often an ill-posed
problem due to the multiple parameter combinations that can cor-
respond to a single image. Although the experiments in Figure 12
showcase our method’s ability to consistently capture and recon-
struct the visual effects of complex participating media from a sin-
gle view, they do not fully demonstrate the multi-view reconstruc-

tion capability. To evaluate this aspect, we conducted experiments
to reconstruct scenes from both sparse views and dense views.

In our approach to sparse view reconstruction, we employ an
orthogonal perspective as a guiding framework, incorporating con-
straints into the reconstruction process. We rely on a high-definition
wallpaper showcasing colored smoke, chosen as the reference im-
age for reconstructing both front and back viewpoints. To ensure
coherence and alignment, this image is vertically flipped to serve
as the basis for both left and right perspectives, thus maintaining
consistency throughout the reconstruction process. The outcomes
are presented in the third row of Figure 12. These results high-
light the capability of our method to approximate the primary shape
even when data is scarce. However, it is important to note that our
outcomes exhibit some blurriness. This blurring arises due to the
inherent absence of robust visual cues in these new viewpoints.
Despite this limitation, our method excels at generating valuable
reconstructions from sparse data.

To prove that our method can create accurate reconstructions in
dense views, we carry out volume reconstruction using 10 differ-
ent views. To generate these target images, we position cameras
all around the volume object, equally spaced at 36-degree intervals
around its y-axis. The volume size we work with is 64× 96× 64,
starting off with an empty density setup. To bring our scene to life,
we use directional lighting and rely on volumetric path tracing to
create images from these 10 different camera viewpoints. This pro-
cess gives us a series of target images from multiple views. The
entire reconstruction process spans 1000 iterations and the recon-
structed results are shown in Figure 13.

We evaluated the accuracy of our proposed method in recon-
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Figure 14: Reconstruction Based on Captured Natural Images. Since our method focuses on reconstructing participating media volumes
rather than surface models, we specifically reconstruct the sky regions in this experiment. The initial scene is empty, and we perform joint
optimization of the density field, optical coefficient field, and illumination parameters. The rendered image has a size of 592×333, and the
volume resolution is set to 192×192×192.

structing the density field by comparing the reconstructed densi-
ties with the ground truth volumes from both frontal and novel
viewpoints. The absolute difference between the reconstructed and
ground truth volumes was used as a measurement. The density im-
ages were generated by projecting the volume data onto the image
plane from a special viewpoint. In (c) and (f), some minor devi-
ations are observed in certain regions, such as the leg region of
the bunny. However, overall, our method achieved high accuracy.
These deviations are a result of our method’s approximation ap-
proach, which may not fully capture the intricate details of light
scattering in regions with significant changes in optical thickness.
Thus, deviations can occur in both the forward and backward com-
putation. Nevertheless, our method demonstrates superior perfor-
mance in efficiently reconstructing the density field compared to
Monte Carlo methods, with high overall reconstruction accuracy.

6.4. Reconstruction based on Captured Images

While the previous optimization experiments focused on synthetic
images, it is essential to evaluate the practical applicability of our
method using natural images as targets. In real-world scenarios, op-
timizing different scene parameters based on these targets requires
joint optimization. To validate the effectiveness of our method in
practical applications, we designed an experiment using natural
cloud images as input to jointly optimize the density field, optical
coefficients, and lighting parameters. The results of this experiment
are presented in Figure 14.

In summary, our proposed differential diffusion theory offers the
advantages of accuracy and speed in optimizing and reconstruct-
ing the density field, overcoming the time-consuming and challeng-

ing nature of traditional Monte Carlo methods. This characteristic
enables the integration of our theory into other complex gradient-
based optimization algorithms, such as incorporating it as a layer
within a neural network.

7. Conclusion and Limitations

In this work, we have presented a novel differential diffusion the-
ory for participating media, enabling the computation of arbitrary
derivatives of scene parameters. Our theory leverages the differen-
tial form of the diffusion equation in the forward rendering pro-
cess, resulting in significantly improved computational efficiency
compared to Monte Carlo methods.

However, our method does have certain limitations. Firstly, it
does not support surface model rendering, which restricts its ap-
plicability in certain scenarios. Nonetheless, our method can be
integrated as a component within state-of-the-art general-purpose
differentiable rendering frameworks, thereby expanding its range
of applications. Also, our method is limited to regular volume data
structures. While this limitation still allows for the representation
of various types of participating media such as fluids, smoke, and
clouds, it may not cover all possible irregular volume data.

For future research, it would be interesting to explore tech-
niques for integrating surface model rendering into our diffusion
approximation framework without compromising computational
efficiency. This would enhance the versatility of our method and
enable a broader range of applications.
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Appendix A: Basic Formulas for Forward Rendering

We give some basic formulas of forward rendering here, which are
mostly corresponding to section 3.

1) Reduced Incident Radiance Lri

The term "reduced incident radiance" refers to the source illumi-
nation, denoted by Lin, that reaches a viewpoint x along a specific
direction ω with some attenuation by the media:

Lri(x,ω) = Lin(ω)τ(xa,x), (31)
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where τ(xa,x) denote the transmittance from point xa to x, repre-
senting the fraction of radiant energy that passes through a partici-
pating medium without being absorbed or scattered. In this context,
consider two points within the medium, xi and x j. The extinction
coefficient, κt , is defined as the sum of the absorption coefficient κa
and the scattering coefficient κs: κt(x) = κa(x)+ κs(x). Thus, the
transmittance τ between the points xi and x j can be expressed as:

τ(xi,x j) = e−
∫ x j

xi κt (xu)du.

2) Single Scattering Radiance Lss

The term "single scattering radiance" refers to the integrated radi-
ance that has been scattered only once before reaching the view-
point x along the direction ω, it is computed by integrating the ra-
diance contributions along the corresponding view ray:

Lss(x,ω) =
∫ Da

Db

τ(xu,xb)κt(xu)Jss(xu,ω)du. (32)

Here, Da and Db represent the distances from the volume bound-
ary points xa and xb to the viewpoint x, as depicted in Fig. 2. The
variable xu denotes a point inside the volume of the participating
medium. The single scattering term Jss represents reduced inci-
dent radiance, whose first scattering interaction in the participating
medium occurs at xu:

Jss(xu,ω) =
Ω

4π

∫
S2

Lri(xu,ω
′)p(ω,ω′)dω

′. (33)

This equation is an integral of solid angle over a unit sphere S2. Ω is
termed albedo, representing the fraction of light that is scattered by
the medium as opposed to being absorbed: Ω = κs/κt . The phase
function p(ω,ω′) describes the directional scattering distribution of
the participating media, which is usually normalized such that its
integral over all directions is 4π and can be parameterized by the
angle between the incident and outgoing directions as p(ω ·ω′).

3) The First Moment of the Phase Function µ̄

A straightforward measure of the anisotropy within the participat-
ing media can be obtained through the first moment of the phase
function, defined by:

µ̄ =
3
2

∫ 1

−1
µp(µ)dµ. (34)

A negative value of µ̄ indicates that the phase function favors back
scattering over forward scattering. Conversely, a positive value of
µ̄ signifies a preference for forward scattering over back scattering.

4) Derivation of Jms

Jms represents the multiple scattering term, signifying the radiance
integral over all directions with the multiple scattering radiance
Ld at position xµ. Although Jms can be computed using the Monte
Carlo estimation, this approach typically involves time-consuming
calculation processes. Therefore, we employ the diffusion approxi-
mation for these calculations.

The core idea of the diffusion approximation is premised on the
observation that as the number of scattering events increases, the

angular dependence tends to be smoothed out. Consequently, the
multiple scattering term can be approximated by expanding it into
the first two terms of its Taylor expansion, considering only the
directional component. The derivation process is as follows:

Jms(xu,ω) =
Ω

4π

∫
S2

Ld(xu,ω)p(ω,ω′)dω
′

=
Ω

4π

∫
S2
(L0

d(xu)+ L⃗1
d(xu) ·ω)p(ω,ω′)dω

′

= ΩL0
d(xu)+

Ωµ̄
3

· L⃗1
d(xu) ·ω.

5) The Expression of κ,S

κ(xu) = (σtrρ(xu))
−1, (35)

S(xu) = κs(xu)Q0
ri(xu)−

σs

σtr
∇· Q⃗1

ri(xu). (36)

Assume that Qri is the radiance due to the first scatter of Lri, while
Q0

ri and Q⃗1
ri are the first two terms of the Taylor expansion of Qri,

the expressions of Q0
ri and Q⃗1

ri are:

Q0
ri(xu) = L0

ri(xu), (37)

Q⃗1
ri(xu) =

µ̄
3

L⃗1
ri(xu). (38)

We provide the derivation of Q0
ri and Q⃗1

ri as follows:

Qri(xu,ω) =
1

4π

∫
4π

p(ω ·ω′)Lri(xu,ω
′)dω

′

=
1

4π

∫
4π

(1+ µ̄(ω ·ω′)+ · · ·)(L0
ri(xu)+ L⃗1

ri ·ω′)dω
′

= L0
ri(xu)+

µ̄
3

L⃗1
ri(xu) ·ω

= Q0
ri(xu)+ Q⃗1

ri(xu) ·ω.

Please refer to [Sta95] for more details about the derivation of the
classical diffusion equation.

Appendix B: Basic Formulas for Backward Rendering

We provide the derivative formulas of backward rendering here,
which are mostly corresponding to section 4.

1) Differentiation of Single Scattering Radiance

Single scattering radiance Lss represents the light that scatters only
once before reaching the viewpoint at x. The derivative of single
scattering radiance can be computed through the ray marching pro-
cess with minimal calculations. The derivative of Lss is:

∂πLss(x,ω) =
∫ Da

Db

(∂πτ(xu,xb)κt(xu)+ τ(xu,xb)∂πκt(xu))Jss(xu,ω)du

+
∫ Da

Db

τ(xu,xb)κt(xu)∂πJss(xu,ω)du.

(39)

The derivative of the single scattering radiance ∂πLss is obtained
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by performing ray marching and evaluating the integral in Equa-
tion 39 through the accumulation of partial derivatives of trans-
mittance, extinction coefficient, and single scattering source term
along the ray path.

To compute ∂πLss(x,ω), we require ∂πJss(xu,ω). As mentioned
in Section 4.1, Lri is assumed to be continuous on S2, allowing us
to neglect the derivative of the interface term. The expression for
∂πJss(xu,ω) is then given by:

∂πJss(xu,ω) =
∂πΩ

4π

∫
S2

Lri(xu,ω
′)p(ω,ω′)dω

′

+
Ω

4π

∫
S2
(∂πLri(xu,ω

′)p(ω,ω′)

+Lri(xu,ω
′)∂π p(ω,ω′))dω

′.

(40)

The derivative of the single scattering radiance contribution ∂πJss
can be computed by integrating the partial derivatives of the inci-
dent radiance Lri and the phase function p(ω,ω′) over the sphere
S2 in Equation 40. The continuity assumption of Lri on S2 allows
us to neglect the interface term.

2) The Derivative of Reduced Incident Radiance Lri

The derivative of Lri can be expressed as:

∂πLri(xi,ω
′) = τ(xa,xi)∂πLin(ω

′)+∂πτ(xa,xi)Lin(ω
′). (41)

3) The Derivative of Optical Coefficient κi

Define κi(xu) as the optical coefficient. Then, the expression of
∂πκi(xu) is:

∂πκi(xu) = ∂πσiρ(xu)+σi∂πρ(xu), (42)

where σi is the corresponding optical cross section of κi. σi ∈
{σa,σs,σt} indicate the absorption, scattering and extinction cross
section, respectively.

4) The Derivative of Transmittance τ

τ(xi,x j) is the transmittance from position xi to x j , the derivative
∂πτ(xi,x j) can be expressed as:

∂πτ(xi,x j) =−τ(xi,x j)
∫ Di

D j

∂πκt(xu)du. (43)

5) The Expression of Σi jk.

The expression of Σ
1
i jk:

Σ
1
i jk = (∂πκi+1, j,k −∂πκi−1, j,k)((L

0
d)i+1, j,k − (L0

d)i−1, j,k)

+(∂πκi, j+1,k −∂πκi, j−1,k)((L
0
d)i, j+1,k − (L0

d)i, j−1,k)

+(∂πκi, j,k+1 −∂πκi, j,k−1)((L
0
d)i, j,k+1 − (L0

d)i, j,k−1).

The expression of Σ
2
i jk:

Σ
2
i jk = (κi+1, j,k −κi−1, j,k)((∂πL0

d)i+1, j,k − (∂πL0
d)i−1, j,k)

+(κi j+1k −κi, j−1,k)((∂πL0
d)i, j+1,k − (∂πL0

d)i, j−1,k)

+(κi jk+1 −κi, j,k−1)((∂πL0
d)i, j,k+1 − (∂πL0

d)i, j,k−1).

The expression of Σ
3
i jk:

Σ
3
i jk = (L0

d)i+1, j,k +(L0
d)i−1, j,k +(L0

d)i, j+1,k

+(L0
d)i, j−1,k +(L0

d)i, j,k+1 +(L0
d)i, j,k−1 −6(L0

d)i, j,k.

The expression of Σ
4
i jk:

Σ
4
i jk = (κi+1, j,k −κi−1, j,k)((L

0
d)i+1, j,k − (L0

d)i−1, j,k)

+(κi, j+1,k −κi, j−1,k)((L
0
d)i, j+1,k − (L0

d)i, j−1,k)

+(κi, j,k+1 −κi, j,k−1)((L
0
d)i, j,k+1 − (L0

d)i, j,k−1).

The expression of Σ
5
i jk:

Σ
5
i jk = Σ

3
i jk +6(L0

d)i, j,k.

The expression of Σ
6
i jk. Let Q be a vector function of Q⃗1

ri, the vector
of a variable point. As usual, Q can be expressed as

Q = Qii+Q j j+Qkk.

i, j, k are the components of Q in the directions of the axes. The
discrete form of ∇· Q⃗1

ri is

Σ
7
i jk =∇· Q⃗1

ri

=
(Qi)i+1, j,k − (Qi)i−1, j,k

2h
+

(Q j)i, j+1,k − (Q j)i, j−1,k

2h

+
(Qk)i, j,k+1 − (Qk)i, j,k−1

2h
.

(44)

Similarly, let ∂πQ be a vector function of ∂πQ⃗1
ri, the discrete form

of ∂πQ⃗1
ri is

Σ
8
i jk =∇·∂πQ⃗1

ri

=
(∂πQi)i+1, j,k − (∂πQi)i−1, j,k

2h
+

(∂πQ j)i, j+1,k − (∂πQ j)i, j−1,k

2h

+
(∂πQk)i, j,k+1 − (∂πQk)i, j,k−1

2h
.

(45)
The discrete form of ∂πS is

Σ
6
i jk =∂πS

=(∂πκs)i jk(Q
0
ri)i jk +(κs)i jk(∂πQ0

ri)i jk

− σs

σtr
Σ

8
i jk −

∂πσsσtr −σs∂πσtr

σ2
tr

Σ
7
i jk.

The expression of Σ
9
i jk:

Σ
9
i jk = ∂πκi jk ·

(
σsρi jk

(
Q⃗1

ri

)
i jk

−
(
∇L0

d

)
i jk

)
+κi jk ·

(
−
(
∇∂πL0

d

)
i jk

+∂πσsρi jk

(
Q⃗1

ri

)
i jk

+σsρi jk

(
∂πQ⃗1

ri

)
i jk

+σs

(
Q⃗1

ri

)
i jk

(
∂πi ρi+1 jk−ρi−1 jk

2h +∂π j ρi j+1k−ρi j−1k
2h +∂πk ρi jk+1−ρi jk−1

2h

)
.
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