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Abstract. We present a novel approach for modeling artists’ drawing
processes using an architecture that combines an unconditional genera-
tive adversarial network (GAN) with a multi-view generator and multi-
discriminator. Our method excels in synthesizing various types of picture
drawing, including line drawing, shading, and color drawing, achieving
high quality and robustness. Notably, our approach surpasses the existing
state-of-the-art unconditional GANs. The key novelty of our approach
lies in its architecture design, which closely resembles the typical se-
quence of an artist’s drawing process, leading to significantly enhanced
image quality. Through experimental results on few-shot datasets, we
demonstrate the potential of leveraging a multi-view generative model
to enhance feature knowledge and modulate image generation processes.
Our proposed method holds great promise for advancing AI in the visual
arts field and opens up new avenues for research and creative practices.
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1 Introduction

GANs have revolutionized machine learning by generating novel visual content
through modeling high-dimensional distributions They have excelled in vari-
ous applications such as image translation, frame prediction, 3D modeling, and
sketch-to-image synthesis [20,14,26,15]. However, training GANs is challenging
due to the non-convex game nature and high-dimensional parameter space, lead-
ing to mode collapse and training instability [1,32].

While unconditional GANs perform well on class-specific datasets, they strug-
gle with generating outline, gray, and color views simultaneously [19,31], which
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limits the generality of image generation. State-of-the-art methods like Style-
GAN and StyleGAN2 offer reliable performance but require significant compu-
tational resources [12,13]. FastGAN addressed this by proposing a skip-layer
excitation module and a self-supervised discriminator [18].

However, current GANs have limitations in evaluating a single view of an
image, leading to mode collapse and neglect of important image features. To ad-
dress this, we propose DrawGAN, an unconditional generative model inspired by
the artist’s drawing process. In the artist’s process, coloring is applied on top of
object shapes, indicating that line drawing and shading contain valuable knowl-
edge for coloring. DrawGAN aims to enhance the detection of diverse descriptors
and capture more image features by utilizing a multi-component approach.

Our approach models the image generation process using outline, gray, and
color components, with outline and gray integrated into the color component.
We believe these components are mutually dependent and complementary. The
DrawGAN model incorporates a novel multi-view generator capable of generat-
ing images at three levels: outline, gray, and color. This approach aims to produce
high-quality synthesized images with improved diversity and fidelity. Our main
contributions are as follows:

1. Proposal of the integration of the artist’s painting concepts into the un-
conditional generative adversarial network, resulting in the novel DrawGAN
model structure.

2. Development of DrawGAN, which incorporates a three-view generator and a
multi-discriminator. This architectural design empowers the model to effec-
tively capture diverse image information, including multiple view features,
and mitigate the mode collapse issue.

3. Execution of experiments on few-shot datasets to validate and demonstrate
the robustness of DrawGAN in generating good-quality images.

2 RELATED WORK

2.1 Image Generation and Synthesis

In recent years, the field of image generation and synthesis has witnessed numer-
ous variations of Generative Adversarial Networks (GANs) aiming to improve
the quality of generated samples.

Few-Shot Image Generation: Generating high-quality images with GANs
in a few-shot scenario is challenging due to the need of large datasets during
training (typically 50,000 to 100,000 images). When training data is limited, the
discriminator can easily overfit, leading to inadequate feedback for the generator.

To address this challenge, DiffAug and StyleGAN-Ada rely on data aug-
mentation techniques to prevent discriminator overfitting [34,11]. ContraD in-
troduced a strong data augmentation strategy by learning a contrastive repre-
sentation compatible with GANs [9]. Another recent approach utilizes LeCam
divergence, minimizing an f -divergence through modulation of discriminator
predictions [28]. However, while these methods have shown success in capturing



information from single views, they do not support the generation of multiple
image versions (e.g., outline and gray) within the same GAN architecture.

Image-to-Image Translation: Image-to-image translation involves con-
verting an input image into a different output form. Establishing the corre-
lation between input and output images is a significant challenge. When the
network fails to capture this correlation, the generator may cheat by ignoring
the input, resulting in output images similar to the truth images. StarGAN and
its successor, StarGAN v2, propose a single network model for image-to-image
translations across multiple domains, requiring paired image datasets from these
domains [3,4]. Nazeri et al. divide image inpainting into two steps: predicting
missing region edges and completing the image using the predicted edges [22].
While DrawGAN shares similarities with their idea, we differ by generating three
views (outline, gray, and color) using a single generator, whereas they employ
two separate generators.

Differing from the aforementioned works, our focus lies in unconditional im-
age generation, which removes the constraint of paired images as inputs. Notably,
our work introduces a novel multi-view generative network capable of simultane-
ously generating outline, gray, and color versions of images. This advancement
enables the synthesis of diverse and comprehensive images.

2.2 AI Art

AI technology advancement for digital art was marked by the milestone of image
style transfer [6]. This technique utilized CNNs to generate stylized images by
separating and recombining the "content" and "style" of an image.

Building upon GAN for generating creative images, Elgammal et al. intro-
duced Creative Adversarial Networks (CAN) [5]. CAN incorporates two feedback
signals from the discriminator to the generator: classification of "art or not art"
and the ability to classify the generated art into established styles. By optimizing
these signals, CAN enables the generation of creative images that deviate from
established styles while conforming to the distribution of art.

Yi et al. proposed APDrawingGAN, a GAN-based approach for generating
artistic portrait drawings from face images [30]. This method employs hierarchi-
cal generators and discriminators, leveraging both global and local convolutional
networks to extract facial features. These features are then fused to produce the
final output. In contrast, Li et al. presented a two-stage method for colorizing
line drawings using GANs [16]. The initial stage generates a color draft that ag-
gressively applies colors to enrich variety, despite potential errors such as color
mistakes, bleeding, and blurring/distortion. The second refinement stage utilizes
a synthetic paired image dataset to address these errors.

The novelty of our DrawGAN lies in its ability to generate three distinct rep-
resentations of an image (outline, grayscale, and color) using a single multi-view
generative network. Unlike existing methods that produce only one represen-
tation, DrawGAN expands the possibilities of image synthesis and offers the
exploration of diverse visual representations. This advancement in AI art facili-
tates new creative possibilities and opens avenues for artistic expression.



3 Method

Inspired by the art drawing process, we propose DrawGAN, an architecture
capable of generating outline, gray, and color images (Figure 1). Training our
network requires datasets with all three views, but existing datasets typically
provide only the color view. To overcome this limitation, we apply traditional
algorithms to extract the outline and gray views from color images, creating
our own dataset. We use the canny algorithm for edge extraction to generate
the outline view and the Floyd-Steinberg dithering algorithm to approximate
brightness and obtain the gray view.

Fig. 1. DrawGAN utilizes a multi-view generator with three outputs, feeding to three
corresponding discriminators, which are trained with distinct loss functions for discrim-
inating real and fake outputs of the outline, gray, and color views of images, respectively.

3.1 Loss Formation

In a vanilla GAN, the discriminator D and the generator G engage in a minimax
game to guide the generator in synthesizing noise vectors into realistic images.
For the sake of simplicity, the equation can be expressed as:

LD = E
x∼ Pd

[logD(x)] +Ez∼pz [log(1 −D(G(z)))] (1)

LG = E
z∼ N
[logD(G(z))] (2)

There have been numerous studies on GAN loss functions since the introduction
of GAN, including wgan [2], wgan-gp [7], and hinge loss [17]. According to vari-
ous experiments, hinge loss is generally considered the most stable and efficient
approach for unconditional image generation [17], [27]. Therefore, we use the
hinge version of the adversarial loss to train our D and G iteratively.

LD = −Ex ∼ Pd[min(0,−1 +D(x))] −Ez∼N [min(0,−1 −D(G(z)))] (3)



LG = −Ez ∼ N[D(G(z))] (4)

Our proposed architecture, in contrast to existing GAN architectures, in-
cludes a multi-view generator that produces three distinct outputs. This model
architecture not only follows the artist drawing process but also adheres to the
GAN training mechanism. As shown in Fig. 1, our model comprises a generator
with three outputs that are linked to three distinct discriminators.

The generator in our proposed DrawGAN architecture is different from tra-
ditional GAN generators, which usually generate a single-view image y. Instead,
our generator produces an image set y1, y2, y3 for the outline, gray, and color
views, respectively, from a noise vector z ∼ N , where y1, y2, y3 = G(z). Similarly,
for training our network, we use image sets of outline, gray, and color views
x1, x2, x3 from real images. Corresponding discriminators D1,D2, and D3 are
constructed to distinguish real and fake views, respectively. Hence, Equation 3
can be rewritten as:

LDi = −E[min(0,−1 +Di(xi))] −E[min(0,−1 −Di(yi))] (5)

FastGAN [18] proposed reconstructive training to ensure that D can extract
more comprehensive representations from inputs, covering both overall compo-
sition and detailed textures, with minimal additional computational cost. Our
discriminator has adopted this reconstructive training technique, such that:

Lrecon = E[∣∣g(f) − T (x)∣∣] (6)

Therefore, equation 5 is further rewritten as:

LDi = −E[min(0,−1 +Di(xi))]

−E[min(0,−1 −Di(yi))] + Lrecon

(7)

The final losses for generators and discriminators are formulated as follows:

LD = LD1 + LD2 + LD3 (8)
LG = −E[D(y1)] −E[D(y2)] −E[D(y3)] (9)

3.2 Model Architecture

Based on the equations provided, we propose a multi-view generator architecture
with three outputs, as illustrated in Fig. 2. The input noise vector z is first
transformed into a 4x4 feature space through a Transpose Convolution (4x4)
and a Convolution (3x3). We then employ a process of upsampling followed by
two 3x3 convolutions to improve the feature space resolution, which is commonly
used in most GAN architectures [23,18,10]. Finally, we define a mapping function
r to generate the output images corresponding to the outline, gray, and color
views. The mapping function r is implemented using a convolution (1x1) layer
to project the feature space onto the image space. To enhance the stability of the
training, we apply spectral normalization [21] to all of the convolutional layers.



Fig. 2. The generator architecture uses nearest-neighbor interpolation and a 3x3 con-
volution for upsampling. The feature space of 128 is processed by function r to generate
outline and grayscale views, while the final feature space is for color view generation.

Our generator is designed to mimic the artist’s drawing process by first gen-
erating the line drawing (outline) view and shading (gray) view, and then gen-
erating the color view, as shown in Fig. 2. We use a 128x128 resolution feature
space to output the outline and gray views and the final feature space to out-
put the color view of the image. The design of our model follows the forward
propagation mechanism of neural networks.

As shown in Fig. 1, our DrawGAN multi-discriminator comprises three mod-
ules, namely outline discriminator, gray discriminator, and color discriminator.
They provide useful feedback to the generator by comparing the generated im-
age set yi with the real image set xi. We adopt the FastGAN model [18] to
construct the architecture of our multi-discriminator, where the color discrim-
inator remains unchanged, and the number of channels for outline and gray
discriminator is reduced to half that for the color discriminator.

In terms of the discriminator’s auto-encoding reconstruction, we adopt dif-
ferent reconstruction loss functions for different views. The color image recon-
struction loss uses the perceptual similarity metric [33], while the outline and
gray image reconstruction loss use the structural similarity index (SSIM) [29].
The DrawGAN generator G produces three fake samples Yi from a noise vector
z, where the number of output channels for outline and gray is 1. Xi and Yi

are then fed into the multi-discriminator for training DrawGAN using the loss
functions defined in Equation 8 and Equation 9.

4 Experiment

4.1 Datasets and Evaluation Metrics

To align with the artist drawing process, our model focuses on extracting clear
line drawings (outlines) from the datasets. While line drawings from natural
images tend to be chaotic, those from artificial images are typically clearer.



(a) StyleGAN2 (b) FastGAN (c) DrawGAN

Fig. 3. The qualitative results of the cartoon face dataset clearly demonstrate that both
StyleGAN2 [13] and FastGAN [18] are plagued by mode collapse, while our DrawGAN
produces more realistic results. These findings indicate that DrawGAN achieves state-
of-the-art performance on this dataset.

(a) Outline

(b) Gray

(c) Color

Fig. 4. The comparison between real images (top rows) and the generated images
(bottom rows) highlights DrawGAN’s ability to generate random and uncurated images
with three different views (outline, gray, and color) on high-resolution datasets.



Consequently, our image generation task primarily concentrates on artificial im-
ages. However, we also conduct experiments with natural images to showcase
the generality of DrawGAN. Overall, our experiments cover multiple datasets
spanning diverse content categories.

Artificial images: We evaluate our method on public datasets utilized in
FastGAN [18]. This includes 1000 paintings from WikiArt (wikiart.org) with a
resolution of 1024x1024, 833 Pokemon images with a resolution of 1024x1024
(pokemon.com), 500 cartoon face images from the cartoon face dataset [24] with
a resolution of 512x512, and 125 flower images from pngimg (pngimg.com) with
a resolution of 512x512.

Natural images: DrawGAN is evaluated on datasets, including the widely-
used AFHQ Cat dataset [25], consisting of 160 cat face images at 256x256 resolu-
tion, the 100-Shot-Panda dataset, containing 100 panda face images at 256x256
resolution, the 100-Shot-Grumpy-cat dataset, comprising 100 grumpy cat faces
at 256x256 resolution [34], and a set of 60 shell images at 1024x1024 resolution.

Evaluation metrics: We adopt the Fréchet Inception Distance (FID) [8] as
our evaluation metric to assess the quality of the generated images. FID measures
the Wasserstein distance between the feature space representations of real and
generated images, providing an evaluation of both quality and diversity.

Comparative model: DrawGAN is compared with StyleGAN2 [13], a pow-
erful but resource-intensive unconditional model, and FastGAN [18], an archi-
tecture designed for low-data image synthesis. Official PyTorch implementations
of these models were used, and they were trained with the reported best con-
figurations. All experiments were conducted on a single RTX-3060 GPU. While
some evaluation results may vary due to equipment differences, we present the
best results obtained in our experiments.

4.2 Experiments on Artificial Image Datasets

Here, we present the results of our experiments on four artificial image datasets.
Table 1 presents a comparison of our model with StyleGAN2 and FastGAN
at various resolutions on these datasets. Fig. 3 shows the qualitative results
of cartoon faces, where we observe that both StyleGAN2 and FastGAN suffer
from mode collapse, while DrawGAN generates more realistic results. In other
words, with artificial datasets that have clear outlines, DrawGAN significantly
outperforms state-of-the-art methods in terms of image synthesis quality. How-
ever, DrawGAN still outperforms state-of-the-art methods, albeit with smaller
improvements, when dealing with datasets that lack clear outlines.

4.3 Experiments on Natural Image Datasets

We present our experiment results conducted on four natural image datasets.
The results between our model and StyleGAN2 and FastGAN at various resolu-
tions on multiple datasets are summarized in Table 2. Our model demonstrates
impressive performance in generating images of natural scenes, showcasing its



Table 1. Comparing with state-of-the-art models over artificial image datasets trained
with 500 (cartoon face), 1000 (painting), 125 (flower), and 833 (pokemon) samples,
DrawGAN consistently outperforms them and mitigates mode-collapse on generator.

Datasets Cartoon face Painting Flower Pokemon
Image Number 500 1000 125 833

Resolution 512 1024 512 1024
StyleGAN2 65.4 74.56 112.10 60.12
FastGAN 145.08 45.08 81.66 57.19

Our Method 27.4 42.35 75.32 46.90

versatility. However, as shown in the middle section of Fig. 4, the outline extrac-
tion for natural images is not as clear, indicating that the lack of clarity in line
drawing might be a contributing factor to the relatively modest improvement
achieved by our method. It is important to note that the artist drawing process,
which is the focal point of our paper, may not entirely align with the process
of creating natural scene images. In reality, natural objects may lack explicit
outlines, and the outlines we perceive are often formed by variations in environ-
mental illumination or disparities in colors among foreground and background
objects, as well as different parts of an object. Such outlines are implicitly created
by gray and color features, which can be ambiguous or untidy in nature.

Table 2. Comparing with state-of-the-art models over natural image datasets trained
with 100 (Grumpy Cat and Panda), 160 (AFHQ Cat), and 60 (shell) samples, Draw-
GAN’s performance slightly outperforms the state-of-the-art.

Datasets AFHQ Cat Shell Panda Grumpy cat
Image Number 160 60 100 100

Resolution 256 1024 256 256
StyleGAN2 42.44 220.45 12.06 27.08
FastGAN 35.11 155.47 10.03 26.65

Our Method 34.32 114.62 9.56 24.48

4.4 Discussion

Unconditional GAN models typically generate images from a single view, which
may result in limited contour and shading information. In contrast, our multi-
view approach captures diverse information, enhancing the image representation.
The outline and gray components play crucial roles, with the outline capturing
strong gradient changes and the gray conveying color intensity and shading. Our
model effectively incorporates both features, enabling a wider range of image in-
formation to be considered. Fig. 4 provides a visual comparison of the generated
data types with real data.



We conducted an experiment to explore an alternative approach of extract-
ing outline and gray features directly from the final generated image, after the
color view. However, the results in Fig. 5 demonstrate that the original setting
of DrawGAN outperforms this alternative approach in generating high-quality
results. This finding confirms the rationality of following the artist’s drawing pro-
cess. However, generating the outline and gray views after the color view requires
adjusting the color feature space, resulting in a decrease in color richness.

(a) (b)

Fig. 5. Right group of 9 color images: Best results obtained by generating outline and
gray views after the color view (FID 65.5). Left group of 9 color images: Best results
obtained based on original setting of DrawGAN (FID 27.4).

5 Conclusion

DrawGAN, a novel multi-view generative model, addresses the challenge of
over-fitting in limited data image generation tasks by introducing a multi-view
generator and three discriminators. The multi-view design enriches the feature
space, allowing the generator to capture complex structures and patterns. The
discriminators focus on different views, providing diverse information to miti-
gate over-fitting. The sequential generation of outline, gray, and color views en-
hances model stability and gradient flow. Experimental results on multiple few-
shot datasets demonstrate that DrawGAN outperforms state-of-the-art meth-
ods, showcasing its effectiveness in image generation. However, limitations are
observed in generating backgrounds with diverse colors, due to limitations in
outline and gray views. The equal weighting of views in the loss function dilutes
background color information. DrawGAN introduces a novel approach to GANs,
with potential for driving advancements in the field of digital art.
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