
Sustainable Energy, Grids and Networks 36 (2023) 101161

E
a

b

s
o
b
t
t
p
p
t
l
a
w
t

n
(
e

b
m
(

h
2

Contents lists available at ScienceDirect

Sustainable Energy, Grids and Networks

journal homepage: www.elsevier.com/locate/segan

Inclusion of frequency nadir constraint in the unit commitment
problem of small power systems usingmachine learning
Mohammad Rajabdorri a,∗, Behzad Kazemtabrizi b, Matthias Troffaes b, Lukas Sigrist a,
nrique Lobato a

IIT, Comillas Pontifical University ICAI School of Engineering Madrid, Spain
Durham University, Durham, UK

a r t i c l e i n f o

Article history:
Received 15 September 2022
Received in revised form 16 June 2023
Accepted 24 August 2023
Available online 4 September 2023

Keywords:
Data-driven method
Mixed integer linear programming
Frequency constrained unit commitment
Machine learning

a b s t r a c t

As the intention is to reduce the amount of thermal generation and to increase the share of clean
energy, power systems are increasingly becoming susceptible to frequency instability after outages
due to reduced levels of inertia. To address this issue frequency constraints are being included in
the scheduling process, which ensure a tolerable frequency deviation in case of any contingencies.
In this paper, a method is proposed to integrate the non-linear frequency nadir constraint into the
unit commitment problem, using machine learning. First, a synthetic training dataset is generated.
Then two of the available classic machine learning methods, namely logistic regression and support
vector machine, are proposed to predict the frequency nadir. To be able to compare the machine
learning methods to traditional frequency constrained unit commitment approaches, simulations on
the power system of La Palma island are carried out for both proposed methods as well as an analytical
linearized formulation of the frequency nadir. Our results show that the unit commitment problem
with a machine learning based frequency nadir constraint is solved considerably faster than with the
analytical formulation, while still achieving an acceptable frequency response quality after outages.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The share of renewable energy sources (RES) is growing
teadily in power systems. It is essential to facilitate the growth
f RES penetration to reduce carbon emissions from fossil fuel-
ased generators. There are however some obstacles that limit
he applicability of RES. RES are volatile in nature and forecasting
hem is subject to uncertainties. Hence, integrating them into the
ower system is challenging. Moreover, RES are usually decou-
led from the system, and therefore they do not add any inertia to
he system. This is particularly important in small power systems
ike islands, as they typically suffer from inertia scarcity, and
re therefore more prone to frequency volatility. For that reason,
hen integrating RES in such systems, it can be very challenging
o maintain frequency stability in case of contingencies.

To address this issue, researchers have included frequency dy-
amics in short-term scheduling processes like Unit Commitment
UC) to form a frequency constrained UC (FCUC), in [1–3], and
tc. The standard (non-frequency constrained) UC problem can
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nc-nd/4.0/).
be formulated as a mixed integer linear programming (MILP)
problem, which can be solved efficiently using standard solvers.
Unfortunately, the frequency dynamics of a power system are
highly nonlinear and non-convex, complicating how the UC prob-
lem can still be formulated as a MILP problem. There is valuable
research work in the literature, addressing this very issue [4–6],
and [7]. Frequency dynamics after outages are usually described
by the rate of change of frequency (RoCoF), frequency nadir, and
steady-state frequency. RoCoF and steady-state frequency can be
formulated linearly, but frequency nadir cannot. In previously
mentioned studies, the non-linear constraint on the frequency
nadir (derived from the well-known swing equation) has been
simplified or approximated so that it still can be used in the
MILP formulation of the UC problem. These formulations are
based on simplifying assumptions and usually are computation-
ally demanding. More recently, data-driven approaches are being
introduced to more accurately model the frequency dynamics
in the UC problem, instead of relying on analytical methods
[8–11]. These methods try to estimate the dynamics of the system
accurately while keeping the solution time of UC reasonably low.

Among the analytical methods, in [1], a linear formulation of
inertial response and the frequency response of the system is
added to the UC problem, which makes sure that in case of the

largest outage, there is enough ancillary service to prevent under
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Nomenclature

Data-Driven Approach

ℓ(.) Loss function
ŷ Predicted label
X Set of all features
Y Set of all labels
Θ Set of θ parameters
θ Coefficients in the linear model
C Regularization coefficient
fθ (x) Hypothesis function
FC Set of feasible combinations
Ki Number of the steps
M Number of features
m Index of features
N Number of data samples
n Index of data samples
x Features of the dataset
y Labels of the dataset

Frequency Dynamics

α, β Normalizing coefficients
∆f ′crit Critical rate of change of frequency
∆f nadircrit Critical frequency nadir [Hz]
∆f sscrit Critical steady state frequency [Hz]
ℓ Index of the lost generator
γj Binary operator of affine segments

[∈{0,1}]
λj Weight associated with breaking point

j
M Base power of the unit [MW]
aj Breaking point
D Load damping factor [%/Hz]
f (t) Frequency [Hz]
f0 Nominal frequency [Hz]
H Inertia [MW s]
J Number of the breaking points
j Breaking point index
Pℓ Lost power [MW]
Pe Electrical power [MW]
Pm Mechanical power [MW]
Tg Delivery time of units [s]
z1, z2 Auxiliaries for changing variables

Unit Commitment

I Set of all generators
D Maximum yearly thermal generation
Pi Maximum power output of generator i

[MW]
Ri Maximum ramp-up of generator i

[MW/h]
Dt Demand at hour t
D Minimum yearly thermal generation
Pi Minimum power output of generator i

[MW]
Ri Maximum ramp-down of generator i

[MW/h]
DT Minimum down-time of generators [h]
2

gc Generation costs [e]
I Number of generators
i Index of generators
ii Alias index for generators
p Power generation variable [MW]
r Online reserve power variable [MW]
s Alias index for time intervals
sg Solar generation variable [MW]
suc(.) Start-up costs [e]
T Set of all time intervals
t Index of time intervals
u Commitment variable [∈{0,1}]
UT Minimum up-time of generators [h]
v Start-up variable [∈{0,1}]
w Shut-down variable [∈{0,1}]
wg Wind generation variable [MW]

frequency load shedding (UFLS). To linearize frequency nadir con-
straint, first-order partial derivatives of its equation with respect
to higher-order non-linear variables are calculated. Then the fre-
quency nadir is presented by a set of piecewise linear constraints.
In [2], different frequency services are optimized simultaneously
with a stochastic unit commitment (SUC) approach, targeting low
inertia systems that have high levels of RES penetration. The
stochastic model uses scenario trees, generated by the quantile-
based scenario generation method. To linearize frequency nadir,
an inner approximation method is used for one side of the con-
straint, and for the other side, a binary expansion is employed to
approximate the constraint as a MILP using the big-M technique.
In [3], a stochastic unit commitment approach is introduced for
low inertia systems, that includes frequency-related constraints.
The problem considers both the probability of failure events and
wind power uncertainty to compute scenario trees for the two-
stage SUC problem. An alternative linearization approach is used
to make sure the nadir threshold is not violated. Instead of piece-
wise linearizing the whole equation, relevant variables including
the nonlinear equation are confined within a plausible range that
guarantees frequency drop after any contingency will be accept-
able. In [4], a reformulation linearization technique is employed
to linearize the frequency nadir limit equation. Results show that
controlling the dynamic frequency during the scheduling process
decreases the operation costs of the system while ensuring its
frequency stability. In [5], first, a frequency response model is
developed that provides enough primary frequency response and
system inertia in case of any outages. All frequency dynamic
metrics, including the RoCoF and frequency nadir are obtained
from this model, as analytic explicit functions of UC state vari-
ables and generation loss. These functions are then linearized
based on a pseudo-Boolean theorem, so they can be implemented
in linear frequency constrained UC problems. To find the op-
timal thermal unit commitment and virtual inertia placement,
a two-stage chance-constrained stochastic optimization method
is introduced in [6]. Frequency nadir is first calculated with a
quadratic equation and then it is constrained with the help of the
big-M approach. In [7], the frequency nadir is approximated as
a piece-wise linear function to good (and in principle, arbitrary)
precision, and the resulting constraint is then reformulated as a
MILP using separable programming. A common assumption in [1–
3,6,7], and many other similar works, is that the provision of
reserve increases linearly in time, and all units will deliver their
available reserve within a given fixed time. This assumption is
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Fig. 1. Summary of the reviewed literature.
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he key to calculating the frequency nadir as a function of other
ariables.
Among the data-driven approaches, in [8] a multivariate op-

imal classification trees (OCT) technique is used to learn linear
requency constraints. A robust formulation is proposed to ad-
ress the uncertainties of load and RES. OCT is defined and solved
s an MILP optimization problem, so if the training dataset is
ig, optimizing the OCT becomes very hard. A dynamic model is
resented in [9] to generate the training dataset. The generated
ataset is trained, using a deep neural network. Trained neural
etworks are formulated so they can be used in an MIL problem
nd the frequency nadir predictor is developed, to be used in the
C problem. Then in [10] deep neural network (DNN) is trained
y high-fidelity power simulation and reformulated as an MIL set
f constraints to be used in the UC. The generated data samples
n [10] are denser where the frequency nadirs are closer to the
FLS threshold. In [11] linear regression is applied on a synthetic
raining dataset to extract the relationship between frequency
esponse and frequency deviation during primary frequency re-
ponse. The obtained regression is then used as a constraint in
distributionally robust economic dispatch model. The results of
hese data-driven methods are heavily reliant on the quality of
he training dataset. Also, defining the DNN as MIL constraints to
he UC problem adds so many variables and sets of constraints to
he formulation.

There are also some studies in the literature that only focus on
stimating the frequency nadir based on ML methods instead of
sing dynamic simulations, without implementing them in the
C. In [12] different ML methods are applied to a dataset of
ourly generation dispatches, labeled by a dynamic simulator, to
stimate the frequency nadir. In [13] a nonlinear auto-regressive
NAR) model based on an artificial neural network (ANN) has
een proposed. Note that the current study implements the es-
imation of frequency nadir in the MILP formulation of the UC
roblem. A summary of the reviewed papers is presented in
ig. 1.
Following the same line of research, this paper generates a

ynthetic training dataset and then applies machine learning
ML) methods on the dataset to derive a linear constraint that
pproximates the original non-linear frequency nadir constraint
or all scenarios in the dataset. As the ML model is implemented
n the UC problem, the following criteria were considered to
hoose the model: (1) it should be representable with an MILP
ormulation. (2) it should be able to perform the required dichoto-
ous classification. (3) it should not impose much computational
urden on the UC problem. (4) the training of the model should
e fast enough for a big dataset. Considering these criteria logistic
3

regression (LR) and support vector machines (SVM) were chosen
for the purpose of this paper. To evaluate the effectiveness of the
ML methods, the weekly FCUC of La Palma island power system
is solved for seasonal sample weeks. The results are compared
to one of the recent FCUC formulations that employ a MILP
formulation based on an analytical expression of the frequency
nadir [7]. The contributions and highlights of this paper are as
follows,

• A novel synthetic data generation algorithm is presented
that includes feasible operating points. These operating
points are sorted by their quadratic generation cost func-
tion. Operating points that are cost-efficient are added to
the training dataset. Such a dataset is only composed of
operating points that are close to the optimal solution of the
UC problem, as they are feasible and cheaper. Compared to
the proposed datasets in the literature, the data generation
algorithm here covers all the feasible generator operating
points that are likely to be picked by the solver. An advan-
tage of this dataset is that it is not sensitive to the daily
demand and RES forecast. So once it is generated, the models
that are obtained from it can be used throughout the year.
• The training dataset is passed through different ML methods

to train a linear constraint that can classify tolerable and
intolerable frequency nadirs after any outage. This linear
constraint can be directly employed in the UC problem as
the frequency nadir constraint.
• The performance of the ML methods is compared to the

analytical method of predicting frequency nadir, showing
that the UC is solved considerably faster, whilst still achiev-
ing an acceptable frequency response quality after outages
(N − 1 security criteria). It should be noted that reducing
computation times is critical when modeling uncertainties
in stochastic or robust UC problems.

he rest of this paper is organized as follows: the underlying
ethodologies used in this paper are presented in Section 2.
eanwhile, the simulation results and corresponding compar-

sons are discussed in Section 3. Finally, the conclusions are
rawn in Section 4.

. Methodology

In this section, a general UC formulation is presented. To
ncorporate the frequency dynamics in the UC problem, rate of
hange of frequency (in Section 2.3), steady-state frequency (in
ection 2.4), and frequency nadir (in Section 2.5) constraints are
ormulated. Frequency nadir is incorporated with both analytical
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(in Section 2.5.1) and ML based (in Section 2.5.2) methods. Finally,
in Section 2.6, the two options (analytic and ML modeling of
frequency nadir) are compared in practice using the FCUC results.

2.1. UC formulation

The UC problem is a mixed-integer problem and is usually
olved with MILP solvers after linearization of non-linear terms,
ntroducing additional integer or binary auxiliary variables where
eed be to handle non-linearities. A general representation of the
C problem is provided here,

min
x,p

suc(ut,i)+ gc(pt,i) (1a)

ut,i − ut−1,i = vt,i − wt,i t ∈ T , i ∈ I (1b)

vt,i + wt,i ≤ 1 t ∈ T , i ∈ I (1c)
t∑

s=t−UTg+1

vs,i ≤ ut,i t ∈ {UTg , . . . , T } (1d)

t∑
s=t−DTg+1

ws,i ≤ 1− ut,i t ∈ {UTg , . . . , T } (1e)

pt,i ≥ P iut,i t ∈ T , i ∈ I (1f)

pt,i + rt,i ≤ P iut,i t ∈ T , i ∈ I (1g)

pt−1,i − pt,i ≤ Ri t ∈ T , i ∈ I (1h)

pt,i − pt−1,i ≤ Ri t ∈ T , i ∈ I (1i)

i∈I

(
pt,i

)
+ wgt + sgt = Dt t ∈ T (1j)

he aim is to solve Eq. (1a) subject to Eqs. (1b)–(1j). gc(·) is
sually a convex cost function, which can be easily piece-wise
inearized to turn it into a MILP problem. Eqs. (1b) and (1c)
epresent the binary logic of the UC problem. Eqs. (1d) and (1e)
re the minimum up-time and minimum downtime constraints of
he units. Eq. (1f) is the minimum power generation constraint.
q. (1g) is the maximum power generation constraint and states
hat the summation of power generation and power reserve of
very online unit, should be less than the maximum output of the
nit. Eqs. (1h) and (1i) are ramp-down and ramp-up constraints.
q. (1j) is the power balance equation.

.2. Frequency dynamics

The dynamics of the generator rotor are usually described by
he swing equation,
2H
f0

d∆f (t)
dt
+ DDt∆f (t) = Pm − Pe (2)

This is a first-order differential equation. When an outage hap-
pens, there will be a power mismatch between the mechanical
output of the units and the electrical demand, which is equal to
the amount of lost power.

Pℓ := Pm − Pe (3)

The available inertia after the outage of unit ℓ can be defined as,

Hℓ :=

∑
i∈I,i̸=ℓ

(HiMiut,i) (4)

Considering the swing equation and the operating point of the
system before the outage, the frequency response of the system
after the outage can be calculated. The frequency response is
reflected in metrics like Rate of Change of Frequency (RoCoF),
steady state frequency, and frequency nadir.
4

2.3. Rate of change of frequency modeling

The RoCoF after the outage can be derived from Eq. (2). The
amount of inertia after the outage should be able to prevent
exceeding critical RoCoF,

Hℓ ≥
Pℓf0

2∆f ′crit
t ∈ T , ∀ℓ (5)

This equation is linear and can be directly added to the MILP for
the UC problem.

2.4. Steady state frequency modeling

For the steady state frequency after an outage, it is assumed
that frequency is converged and there has been enough time for
units to deliver their reserve power. To make sure that the steady
state frequency is not violated, this constraint can be derived from
the swing equation,∑
i∈I,i̸=ℓ

rt,i ≥ Pℓ − DDt∆f sscrit t ∈ T , ∀ℓ (6)

This is also linear and can be directly added to the MILP.

2.5. Frequency nadir modeling

The inclusion of frequency nadir into the MILP is more com-
plicated, as it is non-convex. Traditionally researchers have pro-
posed analytical methods to calculate frequency nadir from the
swing equation, and then implement a MILP approximation of
it to the UC problem, which is discussed in Section 2.5.1. More
recently the use of ML is gaining popularity to model these more
complicated situations. The proposed method of this study to
estimate frequency nadir is presented in Section 2.5.2.

2.5.1. Frequency nadir: analytical modeling
After the outage happens the frequency starts to decrease. As

a response the remaining units start ramping up, if they have
any available reserve. Here, and in [1–3,6,7] it is assumed that
the reserve power of each unit is delivered linearly and will
reach to its maximum output power in Tg seconds. This is a key
assumption to finding an analytical expression for the frequency
nadir.

rt,i(τ ) =

{
rt,iτ
Tg

if t ≤ Tg
rt,i if t > Tg

(7)

It is also assumed that frequency nadir happens before Tg . Let us
also define the amount of remaining reserve after the outage of
unit ℓ as,

Rℓ =

∑
i∈I,i̸=ℓ

rt,i (8)

With these assumptions the frequency nadir constraint is as
follows,

HℓRℓ −
f0TgP2

ℓ

4∆f nadircrit
+

DDtTgPℓf0
4

≥ 0 t ∈ T , ∀ℓ (9)

This constraint cannot be added to the MILP formulation of UC,
because it is non-convex, due to the product of inertia and re-
serve. In [7], auxiliary variables and separable programming are
introduced to linearize these terms. The following constraints are
used to linearize the square of lost power,

Pℓ =

J∑
ajλj (10a)
j=0
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ℓ ≈

J∑
j=0

(aj)2λj (10b)

J∑
j=0

λj = 1 (10c)

J∑
j=1

γj = 1 (10d)

λ0 ≤ γ1 (10e)

λj ≤ γj + γj+1 j ∈ {1, . . . , J − 1} (10f)

λJ ≤ γJ (10g)

Here, the aj are fixed constants that control the approximation.
To linearize the production of inertia and reserve with the same
manner, first a change in variables should be applied,

HiαRℓβ = z21 − z22 (11a)

z1 + z2
α
= Hi (11b)

z1 − z2
β
= Rℓ (11c)

ow the new variables z1 and z2 can be used instead of inertia
nd reserve and their square form can be linearized similar to P2

ℓ .

.5.2. Frequency nadir: ML based modeling
ML methods entail different components: (I) Data, which is a

ollection of data points that are characterized by features, (II)
odel, which consists of feasible hypothesis maps from feature
pace to label space, (III) Loss function to measure the quality
f the model, (IV) and a process of model validation to asses its
erformance. Each of these topics are discussed in the following.

ata generation: A proper set of data is needed from which
o learn the frequency nadir. The training dataset comprises of
eatures x ∈ X and labels y ∈ Y . In case of implementing
requency nadir in the UC problem, features are extracted from
perating points and labels are obtained from the frequency
adir measurements after outages. These measurements can be
btained by solving high order differential swing equation, or by
sing dynamic system frequency (SFR) models. Assigned labels
an be numeric (for example the frequency nadir measurement
n Hz) or categorical (for example a binary label of whether
he obtained frequency nadir is tolerable or not). The features
hould be chosen wisely so they represent a reasonable amount
f information about their labels. On the other hand, unnec-
ssarily large number of features can be detrimental in both
omputational and statistical aspects. Computationally, choosing
large feature vector increases the dimensions of the problem, so
ore resources are needed for the calculations. Statistically, using
igher number of features makes the model more susceptible
o overfitting. It is beneficial to only use features with the most
elevant information to predict the label y [14]. In this paper y is
binary, so the proposed ML methods are binary classifications. In
the literature different methods are introduced to reduce the size
of feature vector. For the purpose of this paper, features must be
accessible throughout the UC optimization process. Therefore, the
variables that are correlated most with the label will be picked as
the features. As will be shown later in Section 3, the selected fea-
tures for predicting frequency nadir adequacy are available inertia
after outage (Hℓ), weighted gain of turbine-governor model (Kℓ),
the amount of lost generation (Pℓ), and the amount of available
reserve (R ).
ℓ

5

To have a complete dataset, one approach is to consider every
combination of possible generation outputs of the units. But many
of these combinations are infeasible as they do not satisfy all
UC constraints (power balance, reserve constraint, or maximum
RoCoF), or unappealing as the optimization problem will favor
cheaper combinations. In this paper a data generation method is
used, to only generate feasible control points that are cost effec-
tive, hence more probable to be close to the solution of the UC
optimization problem. The process is listed in algorithm 1. First
vectors of the power output of each generation are defined. The
number of power steps depends on the level of accuracy that is
required. Then a vector of all possible combinations of generator
productions is produced. Among the combinations, those that are
violating the UC constraints or are not within the hourly net
demand range will be removed. The remaining combinations will
be sorted based on the total values of the quadratic cost function
of their respective generator outputs. Expensive combinations,
that can safely be assumed that UC optimization problem will not
elect, will also be removed. The obtained dataset only includes
feasible and cheaper solutions. These solutions are expected to be
around the optimal solution of the UC problem. In addition, con-
sidering solutions around the optimal one accounts for deviations
from the planned generation schedule during real time operation.
This dataset can be used as the training dataset for the intended
ML methods.

Algorithm 1 Synthetic Data Generation
Input: for each generator i ∈ {1, . . . , I}, a vector of power levels
(p1i , p

2
i , . . . , p

Ki
i ) where p1i = P i and pKii = P i,

lower and upper bounds for total generation: D, D
Output: All feasible and cheap combinations

1: for (k1, . . . , kI ) ∈×
I

i=1
{0, . . . , Ki} do ▷ Combinations of

power levels
2: for i ∈ {1, . . . , I} do
3: ui := 0 if ki = 0 else 1 ▷ Unit i status
4: end for
5: R :=

∑I
i=1(p

Ki
i ui − pkii ) ▷ Total reserve

6: G :=
∑I

i=1 p
ki
i ▷ Total generation

7: H :=
∑I

i=1(HiMiui) ▷ Total inertia

8: if G ∈ [D,D] and R ≥ maxIi=1 p
Ki
i and H ≥ p

ki
i f0

2∆f
′

crit
then

9: FC ← FC ∪ (pk11 , . . . , pkII ) ▷ Combination is feasible
10: end if
11: end for
12: Sort FC by the quadratic generation cost function
13: Keep a reasonable number of cheaper combinations and

remove the rest

Labeling the data: This section briefly presents the SFR model
used to analyze the frequency stability of small isolated power
systems, which is used as a tool to label the features of the
training dataset. The model is able to reflect the underlying
short-term frequency response of small isolated power systems
(like the La Plama Island system, under study). Note that any
other dynamic power system simulation software could be used
here and the methodology is not dependent on the software
selected. Fig. 2 details the power-system model typically used
to design UFLS schemes for an island power system, consisting
of I generating units. Each generating unit i is represented by a
second-order model approximation of its turbine-governor sys-
tem. In fact, dynamic frequency responses are dominated by the
rotor and turbine-governor system dynamics. Excitation and gen-
erator transients can be neglected as they are much faster than
the turbine-governor dynamics. The overall response of loads can
be considered by means of a load-damping factor D if its value is
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Fig. 2. SFR model.

nown. The gain ki, which is inverse of the droop, and parameters
i,1, ai,2, bi,1 and bi,2, of each generating unit i can be deduced
rom more accurate models or field tests. Gain ki is an important
arameter in indicating the frequency response of unit i. Since
t is important in the learning process of the ML model to have
eatures that are able to represent the frequency dynamics after
he outage, a weighted gain after the outage is defined here,
hich will later be used as a feature for the training dataset.

ℓ =

∑
i∈I,i̸=l

(kiMiut,i) (12)

ince primary spinning reserve is finite, power output limitations
pi,min and ∆pi,max are forced, so the units can only participate as
uch as their available reserve. Moreover, the ramp-up speed of

he units should be limited to the maximum ramping capacity
f each respective unit. The complete model is explained in [15].
ote that this SFR model can be replaced by other dynamic
odels to label the training dataset. For the purpose of this paper,

his simplified model is used. The model is fast enough to handle
ig training datasets, and has an acceptable accuracy compared
o detailed models [16].

earning the model: Considering the features x ∈ X and labels
∈ {−1,+1}, with +1 for acceptable data points and −1 for

nacceptable data points. The purpose of the ML model is to learn
decision function fθ (x) which is positive when the label is +1
nd negative when the label is −1, whilst minimizing misclas-
ifications. Here, θ parametrizes the class of decision functions
onsidered. For the purpose of this paper, the label indicates
hether the resulting frequency nadir after an outage is tolerable
r not. As the classifier is going to be implemented in the UC
roblem to be solved with MILP solvers, only decision functions
f the following form are considered (with Θ := (θ1, . . . , θM )):

θ (x) := Θ⊺x+ θ0 (13)

nce θ0 and Θ have been trained from the data, Eq. (13) can
e directly added to the MILP formulation, simply by adding the
ollow constraint:
⊺x+ θ ≥ 0 (14)
0 w

6

Loss function: The loss value ℓ(fθ (x), y) is the discrepancy be-
ween the true label y and the sign of the decision function
θ (x). The loss function measures how well the model predicts
he actual outcome. We will find a classifier that minimizes
he empirical risk (defined as the average loss value across the
raining data) plus a regularization term (if need be),

θ :=
1
N

N∑
n=1

ℓ(fθ (xn), yn)+
1
C

M∑
m=1

θ2
m (15)

here we assume the training data has N samples. C represents
a regularization parameter. With smaller C regularization is more
effective, hence the model will be less prone to overfitting. With
a larger C the number of misclassifications on the training data
might reduce, but at the cost of overfitting.

Different ML methods use different loss functions. For the
purpose of this paper two ML methods suitable for binary clas-
sification are applied to the training dataset, namely logistic
regression (LR) and support vector machines (SVM). LR uses the
log loss, without regularization (C = ∞):

ℓ(fθ (x), y) := −(1+y) log
(

1
1+ e−fθ (x)

)
−(1−y) log

(
e−fθ (x)

1+ e−fθ (x)

)
(16)

he SVM model in this paper uses the regularized hinge loss
unction:

(fθ (x), y) := max
(
0, 1− yfθ (x)

)
(17)

alidation: A standard way of validating the ML models is by
ross validation. Cross validation is a statistical method of eval-
ating and comparing learning models by dividing the training
ataset into two segments; one is used to learn the model and
he other is used to validate the model. Cross validation is used
o check the quality of ML models in Section 3.

.6. Evaluating the methods

A good method is able to ensure the frequency dynamics
fter outages while keeping the operation cost low, and with
formulation that is computationally affordable. In the results,

he proposed ML method of including frequency nadir in UC
s compared with the analytical method and a base case (no
requency nadir constraint). To evaluate each of the methods, UC
peration cost (as a representative of the costs), the amount of
FLS (as a representative of frequency dynamic quality), average
requency nadir after outage (as a representative of frequency
ynamic quality), and the solution time of each method (as a rep-
esentative of computational burden) are compared. A flowchart
f the methodology is presented in Fig. 3.

. Results

.1. Case study

Simulations and comparisons of the methods are carried out
n the real power system of La Palma island, one of Spain’s Canary
slands. The yearly demand in 2018 is reported at about 277.8
Wh (average hourly demand of 31.7 MWh), supplied by eleven
iesel generators pre-dominantly. According to [17], the installed
apacity of the La Palma island power system mounts to 117.7
W, where about 6% of the installed capacity belongs to wind
ower generation. RES covers about 10% of the yearly demand.
he input data of the demand and availability of the RES to solve
he UC problem is obtained from the most recent real data. The

eekly demand of each sampling week is shown in Fig. 4, and
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Fig. 3. Flowchart of the ML based methods.

eekly available RES is shown in Fig. 5. To compare the methods,
eekly UC is solved for sample weeks of different seasons. Doing
o reveals any temporal dependency of the ML approaches to the
raining dataset. All the codes, input data, and results of this paper
an be found at https://doi.org/10.5281/zenodo.7082627.

.2. Training dataset

Algorithm 1 is used to build a training dataset for La Palma
sland. Steps of 0.5 MW are used to define the vector of power
evels. Then all possible combinations of operation points are
enerated. Among all the combinations, those that are either
igger than the annual thermal generation peak or smaller than
he annual thermal generation minimum are excluded. Consider-
ng the historical data, thermal generation in La Palma island is
etween D = 36 MW and D = 16 MW, throughout the year.

The training dataset should only include those operation points
that are between maximum and minimum thermal generation.
This training dataset is built to train the frequency nadir con-
straint. There is therefore no point to include any operation points
that are violating other UC constraints, as they are not feasible.
Notwithstanding this point, the operating points that are unable
to provide enough reserve or cannot maintain minimum RoCoF
constraint should be excluded as well. Amongst the remaining
data points, those that are far from the optimal solution of the
UC because of their incurred costs will never be selected as an
optimal solution and therefore there is no point in keeping them
either.
7

Table 1
Summary of building and labeling the training dataset.

Run time

Generating data 19,500 operation points 2811′′
Labeling data 90,001 single outages 38,400′′

Table 2
Pearson correlation of chosen features and frequency nadir.
Feature x1 x2 x3 x4
Value Hℓ Kℓ Pℓ Rℓ

Correlation 0.45 0.47 −0.81 0.41

The remaining operating points are then sorted by the total
value of their respective quadratic generation cost functions, and
for every thermal generation level, those that are cheaper are
kept. For the purpose of this paper, 500 operating points are kept
for every thermal generation level. This final set of data points are
considered as feasible data points and will be used as the training
dataset for the frequency nadir constraint. All points should be
labeled with the SFR model, as explained in . To this end, all the
data points are fed into the SFR model, and the frequency dynam-
ics of every single generator outage will be obtained. The number
of possible outages for the training dataset exceeds 90,000. The
criterion here is to label any outage frequency nadir deviation
more than 3.5 Hz as unacceptable (labeled with −1), and other
utages as acceptable (labeled with 1). A summary of building and
abeling the training dataset is presented in Table 1. The process
f building the training dataset can be updated annually.
It is important to define relevant features for the data points,

hat can represent the frequency nadir. Pearson correlation be-
ween frequency nadir and the chosen features for this study
re shown in Table 2. It is also stated how each of the features
epresents different operating points. It is interesting to men-
ion that weighted inertia after outage (Hℓ) and weighted gain
after outage (Kℓ) are more correlated with frequency nadir, in
comparison with available reserve (Rℓ). Traditionally available
reserve constraint has been the only criteria in the UC problem
to ensure the frequency stability after outages. Observations like
what Table 2 shows, confirm that other than available reserve,
more frequency dynamic related terms like available inertia and
gain (which is inverse of the droop of the unit) should be taken
into account too.

3.3. Learning and validating the model

Using different ML methods on the training dataset which
consists of features in Table 2 and the labels from the SFR model,
results in the learned decision function to be used in the UC
problem. Different ML methods that are applied to the training
dataset, their obtained decision function, and their corresponding
training times and cross validations are summarized in Table 3.
For cross validation purposes, the training dataset is randomly
divided into a temporary test set, including 30% of the whole data,
and the model is trained with the rest of the data. The percentage
in the table is the accuracy of the model in predicting the labels
of the test set. As it can be seen in Table 3, training for the LR
method is very fast. The SVMmethod can train the model in order
of minutes. For LR and SVM, scikit-learn package in Python is
used [18]. The learning process is presented in Fig. 6.

3.4. Evaluating the methods

In the analytical method, the frequency nadir for each outage

is estimated by a close approximation of Eq. (9). In Fig. 7 the

https://doi.org/10.5281/zenodo.7082627
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Fig. 4. Weekly demand for each season.
Fig. 5. Weekly available RES for each season.
Fig. 6. The machine learning process.
Table 3
Learning process and results of ML methods.

θ0 θ1 θ2 θ3 θ4 Training time Cross validation

LR 1 0.084 −0.013 0.626 −0.115 0.4′′ 96.7%
SVM, C = 1 1 0.059 −0.012 0.806 −0.154 58.7′′ 96.5%
SVM, C = 0.1 1 0.062 −0.012 0.718 −0.129 92.6′′ 96.6%
SVM, C = 10 1 0.058 −0.012 0.795 −0.152 61.5′′ 96.5%
frequency nadir calculated by Eq. (9), its approximation by sep-
arable programming approach are compared, for all the outages
in a sample day. Both the histogram and kernel density estimate
(KDE) of the error is shown in the figure. This figure confirms that
the linearized approximation of frequency nadir is very accurate.
The maximum error of approximation is only 0.15 Hz. In Fig. 8 the
difference between the frequency nadir from the SFR model and
the frequency nadir approximation by separable programming is
shown on a histogram for a sample week. As shown in Fig. 8,
the analytical method is underestimating the frequency drop,
compared to what is obtained from the SFR model. The main
reason for this is the underlying assumption in Eq. (7). Eq. (7)
assumes that all the units will deliver their available reserve
linearly in T seconds, regardless of their actual response speed.
g

8

Fig. 7. Histogram and KDE of the difference between frequency nadir by Eq. (9)
and its approximation by separable programming for a sample week.
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Fig. 8. Histogram and KDE of the difference between the frequency nadir
from the SFR model and the frequency nadir approximation by separable
programming for a sample week.

Table 4
Average weekly UC results for different methods.

Operation
cost (ke)

UFLS/outage
(MW)

f nadir/outage
(Hz)

Run-time

Base case 824.08 1.682 −1.298 317′′
LR 829.38 1.182 −1.146 302′′
SVM, C = 1 829.41 1.130 −1.127 295′′
SVM, C = 0.1 829.72 1.182 −1.140 261′′
SVM, C = 10 829.52 1.230 −1.151 277′′
Analytical 829.60 1.355 −1.167 25,506′′

All ML methods of learning frequency nadir that are presented
n Table 3 and the analytical method, which is explained in
ection 2.5, are applied to the UC problem. For the ML methods
he set of constraints that are defined in Eq. (14) are added as
he frequency constraint. However, for the analytical method, all
he equations that are defined in Section 2.5 to approximate the
requency nadir equation, should be added to the UC problem.
eekly UC is solved for sample weeks of winter, spring, summer,

nd autumn. Input demand and available RES are obtained from
istorical data and are shown in Figs. 4 and 5. In Table 4 all
he methods are compared. Some indicators are presented in
able 4 to compare the performance of each method. The ultimate
urpose is to minimize the operation cost and the UFLS, with
formulation that is computationally affordable. The operation
ost in Table 4, indicates the weekly expenditure on electricity
eneration. UFLS/outage indicates the average amount of load
hedding after single outages. This is a good indicator of the
uality of frequency response after the outage. Methods that
ave smaller load shedding per outage, are better able to prevent
evere outages.
A histogram of the UFLS activation for different methods is

resented in Fig. 9. Fig. 9 shows that the LR and SVM methods
ave been able to prevent the activation of UFLS more than the
thers. Also, they have considerably decreased the number of
ncidents with a big amount of UFLS activation. The average run-
ime of weekly UC is presented in Table 4 as an indicator of the
omputational efficiency of the methods. Furthermore, the aver-
ge frequency nadir after outages is presented in the table. This
hows how each method manages to restrict the severity of fre-
uency nadir. There is a considerable difference in the run-time
f ML based methods with the analytical method. The studied
L base methods in this paper, only introduce one constraint for

he outage of each generator and each time interval to represent
requency nadir constraint in UC. But to represent frequency
adir analytically, an approximation of Eq. (9) suitable for MILP
ust be formulated. To handle the non-convexity of Eq. (9), a

ull set of constraints and very many additional auxiliary binary
ariables (see Eq. (10)) must be introduced, adding substantial
omputational complexity. As the UC problem is usually solved
eekly and daily for short-term scheduling, it is important to
9

Fig. 9. Histogram and KDE of UFLS for different methods.

keep the solution time as low as possible. The results in Table 4
confirm that the ML based methods are much faster than the
analytical method.

Among the ML based methods, LR has led to the lowest opera-
tion cost, while keeping the load shedding low. The SVM method
with C = 10 has the highest amount of load shedding per
outage, among the ML based methods. As expected, the SVM with
big C tends to overfit. Another interesting point to mention is
that although the ML based methods are prone to misclassifying
some of the incidents, the amount of average load shedding
is lower than the analytical approach. The reason is that the
analytical method’s prediction of frequency nadir is based on the
assumption in Eq. (7) and then it is approximated by a piecewise
linear function. It is therefore seen that both analytical and ML
based methods have their own sources of error. On the other
hand, analytical methods are independent of any training dataset.
This is a big advantage because the training dataset depends on
the inputs of the UC problem and the topology of the system.
Once the topology of the system changes (e.g. a new generator is
installed) or the inputs change radically (e.g. the annual demand
or availability of RES changes), the training dataset and the ML
model should be updated. Another downside of ML methods is
the lack of trust in the ML methods, due to their black-box nature.
A summary is presented in Table 5 that compares ML based
methods with analytical ones.

4. Conclusion

This paper uses LR and SVM to classify outages with tolerable
and intolerable frequency nadir. We compared this against a
piecewise linear approximation of the frequency nadir that uses
separable programming. Both approaches were then tested on the
same test system (La Palma Island in Spain) for the purposes of
solving frequency-constrained UC problems as mixed-integer lin-
ear programming problems. The piecewise linearized formulation
of frequency nadir is computationally much more demanding.
The results of the comparison study show that our ML based
methods are as accurate as the piecewise linear formulation,
without the added computational burden, in preventing the out-
ages that exceed the critical frequency nadir. This is important
in building confidence further in using ML based methods in
safety critical applications in power systems such as solving FCUC
problems. Meanwhile solving UC with ML based frequency nadir
constraint is considerably faster, results in much less computa-
tional expenditure, and allows for more flexible assumptions on
system response.
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Table 5
Comparison of ML based and analytical methods.

ML based Analytical

Advantages -it can be solved in a timely manner
-it does not increase the size of the problem too much
-it can be used in more complicated formulations of UC, like
robust and stochastic models

-it’s independent of training data
-it’s directly obtained from the physics of frequency dynamics in
power systems

Disadvantages -it depends on training dataset which should be updated once
in a while
-labeling the dataset can be hard
-operators might be skeptical about ML based methods

-it imposes a lot of new constraint and variables to UC problem
-UC solution time is high
-implementing it in robust and stochastic models of UC is
challenging

Source of error -misclassification of the model when it is applied to real
inputs
-inaccuracies in labeling
-ill-defined dataset

-fixed time reserve response assumption
-approximate due to piecewise linearization
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