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1 Introduction

In recent years there has been a rapid increase in our understanding of the structure of
symmetries in quantum field theory. One of the foundational papers of this subject is
the analysis by Aharony, Seiberg and Tachikawa of the possible global forms of N = 4
quantum field theories [1]. Those with unitary, orthogonal or symplectic gauge groups all
admit a holographically dual description in the large N limit, so it is natural to look for a
holographic description of these global forms as well.

For N = 4 theories with Lie algebra su(N),1 such a holographic description was found
by Witten [2]. The essential observation is that there is a topological field theory (TFT) on
AdS5, and different choices of boundary conditions for this TFT lead to the different choices
of global form in the field theory. To better understand this TFT and its implications for
the global structure of the boundary theory, we replace AdS5 with a more general manifold
M5 which is asymptotically of the formM4×R, withM4 closed, Spin, and, for simplicity,
without torsion.

1Henceforward, we refer to the Lie algebra g instead of the group G when referencing all possible choices
of gauge group and discrete θ angles simultaneously.
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The TFT described in [2] has two types of extended two-surface operators, which arise
from D1 and F1 branes that wrap surfaces in M5. We denote these operators by D1(Σ2)
and F1(Ξ2), respectively. These two operators do not commute due to the presence of N
units of F5 RR flux on the S5 factor, and instead satisfy the relation

D1(Σ2)F1(Ξ2) = e2πiΣ2·Ξ2/NF1(Ξ2)D1(Σ2), (1.1)

see, for instance, section 2.5 for a derivation. Here Σ2 and Ξ2 are surfaces onM4, Σ2 · Ξ2

is their intersection product inM4, and we are viewing the radial direction, R, as time so
that there is a Hilbert space associated toM4 on which the two operators act.

The commutation relations (1.1) are those of a discrete ZN gauge theory. The physical
content of such a theory is encoded in the spectrum of operators and their algebra,2 but it
is also possible in this case to give a description in terms of continuous fields [4, 5]. This is
achieved by the following action,

SZN = N

2πi

∫
M5

BF1 ∧ dBD1 , (1.2)

with BF1 and BD1 2π periodic two-form connections on a higher U(1) bundle, or in more
correct differential cohomology notation (see [6–8] for reviews),

SZN = 2πiN
∫
M5

H̆F1 ? H̆D1, (1.3)

with H̆F1, H̆D1 ∈ H̆3(M5). This is precisely the coupling one obtains onM5 after reducing
IIB supergravity on the S5 factor in the long wavelength limit [2].3

The remaining N = 4 theories with a large N limit can be obtained by taking the
near horizon limit of D3 branes atop an orientifold plane. Depending on the sign of the
orientifold, the gauge algebra on the brane is either so(N) or usp(N). The structure of
the holographic dual is much more subtle in this case. Many important aspects of this
dual were explained in [12], and recently Bergman and Hirano [13] have constructed a
topological action in AdS5 that reproduces all the so(N) and usp(N) global structures
identified in [1] together with their SL(2,Z) duality orbits.

Encouraged by these successes, it is natural to apply the holographic viewpoint to
study the global structures of field theories with fewer supersymmetries. In particular, in
this paper we will do so for the N = 3 S-folds of [14, 15], which are type IIB backgrounds of
the form AdS5 × S5/Zk where the Zk torsion one-cycle (k = 2, 3, 4 or 6) carries a suitable
discrete Wilson line for the Zk subgroup of SL(2,Z). As the dual field theories are all
non-Lagrangian for k > 2, they are much harder to access by purely field theoretic means,
so the holographic results we obtain are largely new predictions that remain to be verified
on the field theory side of the correspondence. However, in two special cases Zafrir has
proposed N = 1 theories whose N = 1 IR fixed point lives on the same conformal manifold

2To be more precise, one should use the language of extended TFT, see [3] for a review. However, we
will not attempt this degree of precision in this paper.

3This is true if one ignores the possibility of singleton modes. A careful analysis of these can be found
in [9] (see also [10, 11]).
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as the N = 3 theories in question [16], and in these special cases our results agree with
those that follow from the proposed N = 1 Lagrangians.

Since O3 planes can be viewed as k = 2 S-folds, the N = 4 theories studied by
Bergman and Hirano [13] also fall within our analysis, and we reproduce their results as
an additional consistency check. We also provide a microscopic derivation of their bulk
TFT action, slightly generalizing it by including the zero-form sector and demonstrating
how to derive certain cubic couplings responsible for various mixed ’t Hooft anomalies and
Stückelberg couplings on the field theory side. We further include a detailed dictionary
that maps Wilson and ’t Hooft lines to bulk branes.

This paper is organized as follows. In section 2, we derive the higher form symme-
tries of S-folds. In section 2.1, we show which kinds of branes are present in the k = 2
(N = 4) case, and we generalize to arbitrary k in section 2.3. In section 2.4, we give a
microscopic derivation of the commutation relations between branes for general S-folds,
and we reproduce the N = 4 results in section 2.5. In section 2.6, we produce a micro-
scopic derivation of the generalization of the effective bulk TFT action of [13] in the N = 4
case. In section 2.7 and section 2.8, we discuss Freed-Witten anomalies. In section 2.9
we discuss mixed anomalies and certain non-invertible symmetries that follow from the
existence of the mixed anomalies. In section 3, we explain in detail how to connect our
results for the k = 2 case to known results in the literature. In section 3.1 we provide a
dictionary between bulk worldsheets and field theory lines. Then, in section 3.2 we use the
commutation relations of section 2 to derive the known mutual locality relations of [1]. We
then show in section 3.4 that the SL(2,Z) duality webs of [1] for N = 4 theories match the
duality webs of the bulk theories. We conclude and discuss future directions in section 4.

2 Higher form symmetries of S-folds

Our target is to understand the symmetries of the N = 3 S-folds constructed in [14, 15]
(see also [17] for an earlier construction of the holographic dual we study below). We will
do this by directly computing commutation relations between branes in the holographic
dual, which is of the formM5× (S5/Zk), where we view S5 as the

∑
i |zi|2 = 1 base of C3,

and the Zk action on S5 is then the one induced from the Zk action on C3: (z1, z2, z3) 7→
(ωkz1, ωkz2, ωkz3), with ωk = exp(2πi/k). There is additionally a ρk ∈ SL(2,Z) duality
action, when going around the generator of π1(S5/Zk) = Zk, given by

ρ2 =
(
−1 0
0 −1

)
; ρ3 =

(
−1 −1
1 0

)
; ρ4 =

(
0 −1
1 0

)
; ρ6 =

(
0 −1
1 1

)
. (2.1)

These monodromies can be understood as Zk rotations on the F-theory torus T 2. The
values of k are restricted to 2, 3, 4, and 6, so that the rotation is an automorphism of the
T 2 (for specific values of τ whenever k > 2). The k = 2 case corresponds to the N = 4 so

and usp theories, while the cases with k > 2 preserve only N = 3.
By studying the set of allowed dynamical objects of worldvolume dimension 0, 1, 2

and 3 on M5, and their commutation relations, we learn about the 3, 2, 1, and 0-form
symmetries of the field theory holographically dual to the S-fold. We first review the sources
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of these dynamical objects in the more familiar k = 2 setting, and then compute the linking
pairing for general k. With the linking pairing we compute the commutation relations of
the branes in all of the above S-folds. We then argue for a bulk effective action for the
symmetry TFT, discuss the anomalies of the theories, and explore the non-invertibility of
the symmetries.

2.1 k = 2 allowed brane wrappings, a warm up

We now review how to generalise the analysis of brane non-commutativity leading to (1.1)
in the su(N) case to the so(N) and usp(N) cases. These cases arise from placing a stack
of D3 branes on top of an O3 plane. The holographic dual can be obtained by taking the
near horizon limit, and it is given by M5 × RP5, where in RP5 := S5/Z2 the Z2 identifies
antipodal points, and additionally acts with (−1)FLΩ, due to the orientifold action on the
worldsheet. This can be equivalently described as the k = 2 S-fold, since what we call
(−1)FLΩ in worldsheet language can alternatively be described as −1 ∈ SL(2,Z).

The symmetry operators arise from branes wrapping various cycles in the internal
space. Branes which are insensitive to the −1 ∈ SL(2,Z) action wrap cycles classified by
homology classes in

H∗(RP5;Z) = {Z,Z2, 0,Z2, 0,Z} . (2.2)

This classification is in particular relevant for D3 branes, which are indeed singlets under
SL(2,Z). By wrapping a brane on H0(RP5;Z) = Z, we obtain domain walls that change
the rank of the theory by one (for instance interpolating from so(2N) to so(2N + 2)). As
this changes the local dynamics of the boundary theory, we will not consider these walls
any further. More relevant to our analysis are branes wrapped on H1(RP5;Z) = Z2 and
H3(RP5;Z) = Z2, which lead to dynamical three-surfaces and dynamical strings on M5,
respectively. When these objects are pushed to the boundary, depending on the choice of
boundary conditions [15, 18] they either become trivial or give rise to symmetry operators4

for 0-form symmetries or 2-form symmetries, respectively.5

We will see below that these two kinds of D3 branes do not commute, so we cannot
choose both symmetries to be realized simultaneously [19]: we either have 0-form sym-
metries on the boundary, or we have 2-form symmetries. In the simplest cases the choice
comes from the fact that for a given set of local dynamics, we have the choice of whether
to gauge the 0-form symmetry or not. When we do gauge it, we obtain a “magnetic”,
or “quantum”, 2-form symmetry, which when gauged gives back the original 0-form sym-
metry. The general situation is complicated by the presence of mixed ’t Hooft anomalies
between the 0-form and the 1-form symmetries for some choices of global form. Gauging

4To heuristically explain how the insertion of a brane — with its non-trivial local degrees of freedom —
can give rise to a topological defect in the dual CFT, note that as we push the brane towards the boundary
we push the corresponding operator insertion farther into the UV. This suppresses any non-topological
(dimension larger than 0) piece of the insertion, yielding a topological defect. By contrast, a brane ending
on the boundary creates a scale-invariant/-covariant defect that is typically not topological.

5In the 0-form symmetry sector there are additional symmetries of a geometric origin — such as the
R-symmetry group — which we do not consider here.
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the 1-form symmetries leads to the 0-form symmetries becoming non-invertible [20, 21].
A detailed field theory analysis of the non-invertible symmetries for the cases discussed in
this paper has been presented in [22]. The appearance of non-invertible symmetries can
also be understood in terms of brane dynamics, see [23–25]. In particular, the case of k = 2
S-folds was analysed explicitly in [24].

The other set of branes that play a role in this paper are D1/F1 branes, and D5/NS5
branes. The −1 ∈ SL(2,Z) monodromy acts non-trivially on these branes, so their possible
wrappings in the internal space are classified by homology groups with local coefficients [26],
which in this case are [12]

H∗(RP5; Z̃) = {Z2, 0,Z2, 0,Z2, 0} . (2.3)

Below we write p̃t for any point in RP5 when we wish to view it as a representative
of H0(RP5; Z̃) = Z2, and we choose any RP2 ⊂ RP5 and RP4 ⊂ RP5 as generators of
H2(RP5; Z̃) and H4(RP5; Z̃).

We have various possibilities: the D1s and F1s on p̃t give rise to 2-surface excitations on
M5, which when pushed to the boundary can (again depending on the choice of boundary
conditions) give rise to 1-form symmetry generators in the field theory.

We can also wrap 5-branes on RP2. These give rise to codimension one objects inM5,
which lead to domain walls interpolating between so(2N) and so(2N + 1) (for the D5) or
between so(2N) or so(2N + 1) and usp(2N) (for the NS5) [12]. We will not consider these
cases further. Finally, we can wrap 5-branes on RP4. Depending on the choice of boundary
conditions, these can lead to symmetry generators for 1-form symmetries when pushed to
the boundary.

2.2 Commutation relations from topology

Our goal is to compute the commutation relations of the various bulk branes in a way that
readily generalizes to N = 3 S-folds. We will first compute the commutation relations in a
simplified model, and then generalize the result to the settings of interest.

Let us ignore for a moment the Chern-Simons terms in IIB supergravity, and consider
the generalized Maxwell theory in d = 10 for the RR field C2

S = 1
g2

∫
M5×RP5

dC2 ∧ ∗dC2 . (2.4)

In this expression dC2 represents the curvature of an element F̆3 ∈ H̆3
Z̃
(M5 × RP5). The

Z̃ subindex indicates that we are not dealing with ordinary cohomology, but rather coho-
mology with local coefficients, or “twisted” cohomology.6 This is due to the intrinsic effect
of the orientifold action (−1)FLΩ = −1 ∈ SL(2,Z) on F̆3 [12].

6See section 3.H in [26] for the relevant mathematical background on cohomology with local coefficients,
and [6] for how to construct differential cohomology for generalized cohomology theories. The cohomology
with local coefficients that we are using here is a particularly simple generalization, since via the F-theory/M-
theory duality map (or mathematically, via the Leray-Serre spectral sequence) it can be understood as the
ordinary differential cohomology of a simple elliptic fibration over RP5 ×M5.
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D5/D1 commutation relations before orientifolding. We proceed as in [7, 27, 28]
(the following is mostly a review of the results in those papers, we refer the reader to them
for more in-depth explanations). We will consider the untwisted classical theory first. This
is because the classical twisted Maxwell theory in our case is rather vacuous: due to the
orientifold projection the C2 field is projected out to torsional data, so the classical field
theory — which is formulated in terms of continuous differential forms — is trivial. On
the other hand, the classical untwisted theory is interesting, and it helps understand the
expressions that arise in the twisted quantum theory. In the classical untwisted generalized
Maxwell theory we can measure the electric charge by integrating the electric field strength
∗F3 over 7-cycles Σ7 onM4 × RP5:7

qclassical(Σ7) =
∫

Σ7
∗F3 . (2.5)

Since d ∗ F3 = 0, we can equivalently formulate this as

qclassical(ς2) =
∫
M4×RP5

∗F3 ∧ ς2 , (2.6)

where ς2 is a representative of the Poincaré dual (onM4 × RP5) to Σ7.
The (still untwisted) quantum theory involves a number of modifications. First, already

semi-classically we need to make a precise choice of gauge group, since the basic object is
the connection. We will make the standard choice that we are in a U(1) theory, so that C2 is
a connection on an integrally quantized U(1) 2-bundle. This quantization is automatically
encoded in the formalism if we think in terms of a differential cohomology class F̆3.

We also wish to promote the classical observables to operators acting on states. We
can parametrize our state in terms of F̆3, and we write Ψ(F̆3). Because the charges are
integrally quantized in the quantum theory, it is more natural to consider the exponentiated
charge operator:

Uα(ς2) = exp
(

2πi
∫
M4×RP5

∗F3 ∧ (ας2)
)

(2.7)

where α ∈ T := R/Z. Another standard modification introduced by the quantum theory is
that, since ∗F3 is canonically conjugate to C2, canonical quantization implies that Uα(ς2)
acts by a shift of the wavefunction by ας2:

Uα(ς2)Ψ(F̆3) = Ψ(F̆3 + i(ας2)) , (2.8)

where we have used the inclusion map i : Hd−1(M4 × RP5;T) → H̆d(M4 × RP5) of flat
connections into differential cohomology.

In fact, as observed in [7, 28], in the quantum theory one needs to generalize this class
of operators slightly to account for torsional effects. The generalization is very natural:

7We note that to compute the commutation relations we are using canonical quantization, which relies
on foliating spacetime with Cauchy surfaces. In our Euclidean setting we may take our foliation to be along
the radial direction ofM5 near the asymptotic boundary. Labeling the field theory spacetime asM4, this
means we are performing our foliation in the asymptotic neighborhood M4 × [0, 1] × RP5. The operators
whose commutations we are computing are then taken to live in a single leaf M4 × RP5.

– 6 –
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ς2 ∈ H2(M4×RP5;Z), and α ∈ T, so ας2 is an element of H2(M4×RP5;T). But crucially,
not every element of H2(M4 × RP5;T) is of this form. Rather, we have a short exact
sequence (see for instance [7])

0→ H2(M4 × RP5;R)⊗ T θ−→ H2(M4 × RP5;T) β−→ TorH3(M4 × RP5;Z)→ 0 (2.9)

where β is the Bockstein map. In the presence of torsion we can therefore extend the
set of charge operators to U(σ2), with σ2 any flat connection, or equivalently an arbitrary
element of H2(M4 × RP5;T). These operators act, by definition, as

U(σ2)Ψ(F̆3) = Ψ(F̆3 + i(σ2)) , (2.10)

and are interpreted as the operators measuring both integral and torsional electric charges.
We are now ready to compute the desired commutation relations. Consider an operator

V (Ξ2) = exp
(

2πi
∫

Ξ2×pt
F̆3

)
(2.11)

measuring the holonomy of the RR 2-form C2 on Ξ2 × pt ⊂M4 × RP5. We have

U(σ2)−1V (Ξ2)U(σ2) = exp
(

2πi
∫

Ξ2×pt
i(σ2)

)
V (Ξ2) . (2.12)

The phase
∫

Ξ2×pt i(σ2) is purely topological information descending from the cycles the
branes are wrapped on called the linking pairing. In the next section we explicitly compute
the linking pairing for the S-folds, allowing us to immediately determine the commutation
relations between branes from generalized Maxwell theory. We will see in section 2.5 how
to treat the commutation relations of branes linked via Chern-Simons terms (such as D1
and F1).

Before we do that, let us show how to compute string/5-brane commutation relations
in the k = 2 S-fold.

D5/D1 commutation relations after orientifolding. We want to detect any non-
commutativity of the D1 wrapping a two-surface Ξ2× p̃t ⊂M4×RP5, and a D5 wrapping
Σ2 × RP4 ⊂ M4 × RP5. More accurately, what we are computing are the commutation
relations of operators acting on the boundary conditions in the holographic setup. The non-
commutativity comes from couplings of the branes to the RR fields in the Wess-Zumino
terms in the action. We note that we are interpreting the asymptotic D1 and D5 as the
symmetry operators themselves (associated to the integrals of F̆3 ∼ dC2 and ∗F̆3 ∼ ∗dC2
respectively) [23–25]. Choosing C2 as our basic variable, as above, and still modeling IIB by
generalized Maxwell (we will refine this momentarily), our previous discussion implies that

D5(Σ2)−1D1(Ξ2)D5(Σ2) = exp
(

2πi
∫

Ξ2×p̃t
i(σ2)

)
D1(Ξ2) (2.13)

with σ2 = β−1(PD[Σ2×RP4]) = PDM4 [Σ2] ^ β−1(t1), using that this element is torsional,
and the surjective Bockstein β in (2.9). (We abuse notation slightly and also denote by β

– 7 –
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the Bockstein β : H0(RP5; T̃) → TorH1(RP5; Z̃).) Using PDRP5 [p̃t] = t5 (the generator of
H5(RP5; Z̃) = Z2), we have∫

p̃t
i(β−1(t1)) = i

∫
RP5

β−1(t1) ^ t5 = 1
2 ∈ T , (2.14)

so

D5(Σ2)−1D1(Ξ2)D5(Σ2) = (−1)Ξ2·Σ2D1(Ξ2) . (2.15)

The same arguments apply to the F1/NS5 commutations relations: a F1 wrapping Ξ2× p̃t
and a NS5 wrapping Σ2 × RP4 do not commute:

NS5(Σ2)−1F1(Ξ2)NS5(Σ2) = (−1)Ξ2·Σ2F1(Ξ2) . (2.16)

2.3 The branes of general k and the linking pairing

The classification of the symmetry operators for general k goes along the same lines as
above, but now the relevant twisted (co)homology groups are slightly more involved. For a
given k, the cohomology groups classifying fields which transform as a doublet8 of SL(2,Z)
are H∗(S5/Zk; (Z ⊕ Z)ρk). For instance, the different possibilities for introducing 3-form
flux are classified by H3(S5/Zk; (Z⊕Z)ρk). This group was computed [15], using methods
that we now review, and which also allow us to compute all the other (co)homology groups
we need for our analysis (as also done recently in [25]). In general, H∗(S5/Zk;A) with A
a Zk-module can be computed as the homology of the chain complex [15]

C0 1−t−−→ C1 1+t+t2+...+tk−1
−−−−−−−−−−−→ C2 1−t−−→ C3 1+t+t2+...+tk−1

−−−−−−−−−−−→ C4 1−t−−→ C5 (2.17)

where Ci = A for all i ∈ {0, . . . , 5}, and t the action of Zk on A. In the twisted case we
have A = (Z ⊕ Z)ρk (this is simply Z ⊕ Z seen as a Zk module, with ρk the Zk action)
and t = ρk. In the untwisted case A = Z and t = 1. The differentials alternate between
1 + t + t2 + . . . + tk−1 and 1 − t, so the composition of two consecutive differentials is
1 − tk = 0. Using that 1 + ρk + . . . + ρk−1

k = 0, and that ker(1 − ρk) = 0, it is immediate
to compute

H∗(S5/Zk; (Z⊕ Z)ρk) = {0,Ck, 0,Ck, 0,Ck} , (2.18)

where

Ck := coker(1− ρk) =



Z2 ⊕ Z2 for k = 2 ,
Z3 for k = 3 ,
Z2 for k = 4 ,
Z1 for k = 6 .

(2.19)

8We are interested in doublets of SL(2,Z) because, for k > 2, the action of ρk acts nontrivially within a
given doublet. Note that ρk>3 ⊃ S and so mixes e.g. the NS5 and D5 branes.

– 8 –
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The twisted homology groups follow from here by Poincaré duality:

H∗(S5/Zk; (Z⊕ Z)ρk) = {Ck, 0,Ck, 0,Ck, 0} . (2.20)

These groups determine where we can wrap 1-branes and 5-branes. (Due to the non-trivial
monodromy it is not well defined to talk about specific (p, q) charges any more, such as
F1s and D1s separately.)

For completeness, we also list here the cohomology groups in the untwisted case. They
can be computed from the formula above taking A = Z and t = 1, so that 1+t+. . .+tk−1 =
k and 1− t = 0. We find

H∗(S5/Zk;Z) = {Z, 0,Zk, 0,Zk,Z} (2.21)

and

H∗(S5/Zk;Z) = {Z,Zk, 0,Zk, 0,Z} . (2.22)

This case is relevant for the classification of wrapped D3 branes.
The case with no internal fluxes extends the case of so(2n) N = 4 theories, where the

mixed anomaly (see section 2.8) plays an important role. A similar type of anomaly exists
in the k > 2 (N = 3) cases. To see this, we need to discuss the pairing between elements in
H∗(S5/Zk; (Z⊕Z)ρk). One convenient way of computing these is by going to the M-theory
dual, as in [25, 29], where we have ordinary homology groups with global coefficients, at
the cost of introducing an additional torus fiber.

Consider first the simpler case of the linking pairing on H0(S1/Zk; (Z ⊕ Z)ρk), where
the Zk action on S1 = R/Z is by shifts by 1/k. Topologically S1/Zk = S1, but we use
this notation to remind ourselves of the non-trivial SL(2,Z) holonomy acting on the Z⊕Z
coefficients. Physically, due to F/M-theory duality, we expect this group to be related to
the homology groups of the mapping torus Mk := ([0, 1]× T 2)/ ∼ where the identification
is (0, z) ∼ (1, ωkz). Here z is a complex coordinate for the T 2, and ωk = exp(2πi/k). This
gluing is only possible for k = {1, 2, 3, 4, 6}. For k > 2 the complex structure is restricted:
the gluing can only be done consistently for τ = exp(2πi/k).

Mathematically, the connection goes via the Leray-Serre spectral sequence:9 for any
fibration F → X → B this is a spectral sequence with second page

E2
p,q = Hp(B;Hq(F ;Z)) (2.23)

abutting to Hp+q(X). Note that the coefficient system in (2.23) is a local one. In our case
B = S1/Zk and F = T 2, and the only non-vanishing entries in the second page are

E2
0,0 = E2

0,2 = E2
1,0 = E2

1,2 = Z ; E2
0,1 = Ck . (2.24)

Here we use that the holonomy acts trivially on H0(T 2;Z) = Z and H2(T 2;Z) = Z, and
acts via ρk on H1(T 2;Z) = Z ⊕ Z, so that a discussion similar to the one around (2.17)
applies. All differentials vanish for degree reasons, so the spectral sequence converges to

E∞0,0 = E∞0,2 = E∞1,0 = E∞1,2 = Z ; E∞0,1 = Ck . (2.25)
9See [30] for a nice introduction to spectral sequences.
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The only possibly non-trivial extension comes from the filtration of H1(Mk;Z), where we
have

0 ⊂ F0H1(Mk;Z) ⊂ H1(Mk;Z) (2.26)

with

Ck = E∞0,1 = F0H1(Mk;Z)
F−1H1(Mk;Z) = 0 ; Z = E∞1,0 = H1(Mk;Z)

F0H1(Mk;Z) . (2.27)

From here we conclude that H1(Mk;Z) = Z⊕Ck, since Ext(Z,−) = 0, so gathering results
we have (as in [25, 29])

H∗(Mk;Z) = {Z,Z⊕ Ck,Z,Z} . (2.28)

One can interpret this result directly from the geometry. Recall that Mk is a T 2 fibration
over a circle, so H0(Mk;Z) = H3(Mk;Z) = Z follows from connectedness and Poincaré
duality. H2(Mk;Z) = Z is generated by the class of the T 2 fiber, and the Z factor in
H1(Mk;Z) is its Poincaré dual, given by the z = 0 section of the fibration. Our interest is
in the remaining Ck factor, which comes from fibering a one-cycle in T 2 over the base. Due
to the non-trivial monodromy for k > 1 this cycle becomes torsional. Consider for instance
the k = 4 case (which requires τ = i). As our generator, we choose a point ∗ on the base
and the A cycle on the T 2 over it (we take the standard choice of A and B generators on
the T 2, given by the horizontal and vertical cycles). Consider the chain C1 obtained by
dragging this 1-cycle on the fiber once around the base. Due to the monodromy ρ4, after
going around the base A transforms to B, so ∂C1 = ∗ × A − (∗ × B). So in homology
[∗ × A] = [∗ × B]. Dragging the cycle twice around the base, the action of ρ2

4 sends A
to −A, so by the same reasoning 2[∗ × A] = 0. This shows that the homology generated
by the A and B cycles on the fiber times a point in the base projects down to Z2. More
generally the boundary of a chain that goes once around the base identifies any cycle γ on
T 2 with ρkγ, so the part of H1(T 2;Z) that gives non-trivial contributions to H1(Mk;Z) is
indeed Ck := coker(1− ρk).

We are interested in the linking pairing

L : TorH1(Mk;Z)× TorH1(Mk;Z)→ T , (2.29)

where again T := R/Z (thought of as an abelian group with addition). Recall that this
torsional pairing is defined as follows. Given two torsional cycles a, b ∈ TorH1(Mk;Z)
there is some n ∈ Z such that na = 0 in homology. This implies that there is a 2-chain C
such that ∂C = na. We define L(a, b) = C · b/n mod 1. (The result of this computation
does not depend on the possible choices one can make.) In the case at hand, choose a to
be a generator of TorH1(Mk;Z) = Ck given a 1-cycle on T 2 times a point ∗ in the base
S1. Consider for instance the case k = 4. Then we know that we can choose a = ∗ × A,
n = 2, and C is the total space that arises by dragging the A cycle over the base twice.
The relevant intersections of a and C are at the point ∗ on the base, once with the cycle
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A itself and once (after going around the base S1) with B. Using A ·A = 0, ρ4A = B and
A ·B = 1, we find

L(a, a) = 1
2(A+ ρ4A) ·A = 1

2 mod 1 . (2.30)

The k = 2 case works similarly, to give

L =
(

0 1
2

1
2 0

)
mod 1 (2.31)

written on the natural [∗×A] and [∗×B] basis. The k = 3 case is slightly more subtle. We
choose a = [∗ ×A]. Note that ρ3A = −A+B and ρ2

3A = −B. So 3(∗ ×A) = ∂(C1 + C2),
where C1 is the total space of taking the A cycle once around the base, with boundary
A−ρ3A = 2A−B and C2 the total space of taking A twice around the base, with boundary
A− ρ2

3A = A+B. From here

L(a, a) = 1
3(−A+B) ·A = −1

3 mod 1 , (2.32)

in agreement with the result in [29]. Finally, when k = 6 the linking pairing is trivial, since
C6 = Z1.

We now extend this discussion to S5/Zk. This is in fact fairly straightforward: if we
represent S5 as a circle fibration over CP2, the Zk action acts purely on the fiber as a 1/k
shift, precisely as above.10 The uplift of the non-trivial SL(2,Z) bundle to M-theory is
therefore a fibration of Mk over CP2.

The origin of the twisted homology groups (2.20) in this picture is then clear: the
generators of Heven(S5/Zk; (Z ⊕ Z)ρk) = Ck arise from the generators of H1(Mk;Z) = Ck
fibered over the generators of H∗(CP2;Z) = {Z, 0,Z, 0,Z}, and the linking pairing is the
linking pairing on Mk times the intersection product on the CP2 base.

2.4 Commutation relations for N = 3 S-folds

With this information at hand we can work out the commutation relations between the
generators of the higher form symmetries for S-folds, including the effective theory on
M5. We initially assume that all internal fluxes vanish, so we do not need to concern
ourselves with some of the symmetry generators being projected out due to the Freed-
Witten anomaly [31]. (We will address this point in section 2.8 below.) The discussion of
the N = 4 cases (that is, k = 2) is more involved than the N = 3 cases (k > 2), so we will
postpone the analysis of the former to section 2.5.

In this case we have symmetry generators arising from D3 branes wrapping generators
Γ1 of H1(S5/Zk;Z) and Γ3 of H3(S5/Zk;Z), associated (depending on the choice of bound-
ary conditions) with Zk 0-form and 2-form symmetries on the boundary theory. These

10To see this, recall that we can construct CP2 starting from C3 in two steps: first we take the unit radius
sphere

∑
i
|zi|2 = 1 over the origin, and then quotient by the U(1) action (z1, z2, z3)→ (eiαz1, e

iαz2, e
iαz3).

The U(1) quotient gives as a projection map p : S5 → CP2, with fiber S1. Clearly the Zk action (z1, z2, z3)→
(ωkz1, ωkz2, ωkz2) then acts on the S1 fiber as a shift, leaving the CP2 base invariant.
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symmetries were the ones described in [15]. The commutation relations of these operators
onM4 are straightforward to compute given the linking pairing for untwisted cohomology
(the geometric linking pairing). We have, for k > 2

D3(Σ3 × Γ1)−1D3(Ξ1 × Γ3)D3(Σ3 × Γ1) = e2πiΞ1·Σ3/kD3(Ξ1 × Γ3) (2.33)

As in su, we can alternatively describe the Zk effective theory onM5 describing these
branes in terms of dynamical A1 and A3 fields with an effective action

S
(k)
A = 2πik

∫
M5

A1 ∧ dA3 . (2.34)

We also have 1-form symmetries arising from wrapping 5-branes and 1-branes on cy-
cles in the internal space. These branes transform non-trivially under SL(2,Z), so the
different wrapping possibilities are those classified by (2.20). We can wrap 5-branes on
H2(S5/Zk; (Z ⊕ Z)ρk) = Ck and H4(S5/Zk; (Z ⊕ Z)ρk) = Ck. The first possibility leads
to generators of (−1)-form symmetries, which we will not discuss further in this paper.
The second possibility leads to a generator of a 1-form Ck symmetry. Similarly we can
wrap 1-branes on H0(S5/Zk; (Z ⊕ Z)ρk) = Ck and H2(S5/Zk; (Z ⊕ Z)ρk) = Ck, leading to
generators of 1-form and 3-form symmetries. We again focus on the 1-form symmetry part.
The commutator between the 1-brane and the 5-brane symmetry generators, which we will
denote as I and V respectively, is, for k > 2

I(Σ2)−1V(Ξ2)I(Σ2) = exp
( 2πi
|Ck|

Σ2 · Ξ2
)
V(Ξ2) . (2.35)

We have, in other words, a Ck gauge theory, which we can also represent as

S
(k)
BF = 2πi|Ck|

∫
M5

BI ∧ dBV (2.36)

where BI and BV are U(1)-valued 2-form connections.
We note explicitly that there are no string/string or 5-brane/5-brane commutation

relations because there are not distinct (p, q) configurations, due to the nontrivial mon-
odromy. Since there is only one string state and one 5-brane state they trivially must
commute with themselves.

2.5 Commutation relations for N = 4 S-folds

This case is somewhat more complicated than the previous one, mainly because the com-
ponents of the SL(2,Z) doublet stay distinct. In particular we will see that the commuta-
tion relations between F1/D1 and D5/NS5 are nontrivial to compute and essential to the
analysis.

String/5-brane commutation relations. Given the linking pairing (2.31) it is imme-
diate to compute the D1/D5 and F1/NS5 commutation relations as

D5(Σ2)−1D1(Ξ2)D5(Σ2) = (−1)Ξ2·Σ2D1(Ξ2) ,

NS5(Σ2)−1F1(Ξ2)NS5(Σ2) = (−1)Ξ2·Σ2F1(Ξ2) .
(2.37)
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So far we have ignored the Chern-Simons terms in the IIB supergravity action. Given
that one of the original examples of brane non-commutativity [2] relies on the existence
of the Chern-Simons terms, this is a fairly large omission, which we now remedy. We will
focus on the C4 ∧H3 ∧ F3 term in the IIB (pseudo) action, which is the one that plays a
fundamental role both in [2] and in our analysis. This term affects our discussion above in
that it add a term proportional to C4 ∧H3 to the canonical momentum conjugate to C2.11

This does not modify our conclusions above about the commutator of the D1 and the D5:
if we choose σ2 = β−1(PDM4 [Σ2 × RP4]) as above the contribution of the new term to
D5(Σ2) is

exp
(

2πi
∫

Σ2×RP4
F̆5 ? H̆3

)
(2.38)

and the integral in the exponential vanishes.
We next consider the F1/D1 commutator. This commutator was the crucial one in

the su(N) case analysed in [2], where it was found that the F1 and D1 branes generically
did not commute. In our case, due to the fact that the H̆3 and F̆3 fluxes live in twisted
cohomology, the analogous commutator will turn out to vanish. To see why this is the
case, we will first reformulate the analysis in [2] in terms of differential cohomology, and
then discuss why the orientifold action forces the commutator to vanish.

F1/D1 commutator in the su(N) theory. In the untwisted case studied in [2], due
to the N units of F5 flux in the internal space we have

F1(Σ2) := exp
(

2πi
∫

Σ2×pt
H̆3

)
= exp

(2πi
N

∫
Σ2×S5

H̆3 ? F̆5

)
(2.39)

where F̆5 is the background RR 5-form field. This suggests looking to the generator ΠF̆3
(η̆)

of F̆3 displacements by η̆ := i(θ(PD[Σ2 × S5] ⊗ 1/N)) (the map θ was defined in (2.9)),
which does indeed induce the commutation relation (2.41). Due to the presence of the
H̆3 ? F̆3 ? F̆5 Chern-Simons term we have

ΠF̆3
(η̆) = exp

(2πi
N

∫
Σ2×S5

H̆3 ? F̆5

)
exp

(2πi
N

∫
Σ2×S5

F̆7

)
. (2.40)

The second term vanishes in the absence of background F7 flux,12 and the first term is the
WZ term in the F1 action, as in (2.39). The commutation relation found in [2] now follows
immediately

(for su(N)) F1(Σ2)−1D1(Ξ2)F1(Σ2) = exp
(2πi
N

Σ2 · Ξ2
)
D1(Ξ2) . (2.41)

11The situation is complicated slightly due to the fact that the gauge invariant fluxes appearing in the
string theory action are of the form F̃3 = dC2 − H3 ∧ C0. An analysis taking these complications into
account (most efficiently done using the M-theory dual) leads to the same conclusion as in the text.

12Note that the flux being measured here is the non-torsional part of F̆7, so it can consistently be set to
0 throughout.
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F1/D1 commutator in the orientifolded theory. The orientifold changes this anal-
ysis significantly. The main difference is that H2(M4 × RP5; Z̃) is purely torsional, so
H2(M4 ×RP5; Z̃)⊗T = 0, and therefore η̆ = 0. So inserting an F1 string on Σ2 × p̃t does
not lead to a shift of F̆3 for any value of N . Accordingly:

F1(Σ2)−1D1(Ξ2)F1(Σ2) = D1(Ξ2) . (2.42)

NS5/D5 commutation relations. Finally, let us work out the commutation relations
between NS5s and D5s wrapping RP4 ⊂ RP5. From the discussion above, we have that
inserting a NS5 brane on Σ2 ×RP4 leads to a shift of H̆3 by i(PDM4 [Σ2] ^ β−1(t1)). The
F̆7 holonomy on the Ξ2 × RP4 D5 worldvolume is invariant under this shift, but the D5
worldvolume theory contains couplings that do feel this shift: recall that the full Wess-
Zumino couplings on the D5 brane onM6 ⊂ X10 is the exponential of [6, 32, 33]

∫
M6

eF−B(C0 + C2 + C4 + C6)

√√√√ Â(TM6)
Â(NM6|X10)

. (2.43)

We see that, crucially, there is a B2C4 contribution which will be affected by the shift.
The effect of the shift on this coupling is best understood in the context of differential
cohomology by constructing a singular chain C7 such that ∂C7 = Ξ2 × RP4 + Ξ̃2 × RP4,
where Ξ2 and Ξ̃2 are slightly displaced copies of the same cycle (and have, in particular,
the same orientation), and then writing13

ϕ = −
∫

Ξ2×RP4
B2C4 = −1

2

∫
C7
F̆3 ? F̆5 . (2.44)

Such a chain was constructed in section 4 of [12], and from the discussion there it follows
that ∫

C7
H̆3 ? F̆5 =

(∫
Ξ2×p̃t

H̆3

)(∫
RP5

F5

)
. (2.45)

The last integral on the right is the number of mobile D3 branes on the orientifolded
configuration, or in field theory terms the rank of the gauge group on the singularity.14 We
will denote this integral by n. The action of H̆3 → H̆3 + i(PDM4 [Σ2] ^ β−1(t1)) on ϕ is
therefore

ϕ→ ϕ− n

2 Ξ2 · Σ2
∫

p̃t
β−1(t1) = ϕ− n

4 Ξ2 · Σ2 . (2.46)

From here, we conclude that

NS5(Σ2)−1D5(Ξ2)NS5(Σ2) = exp
(
−2πin4 Ξ2 · Σ2

)
D5(Ξ2) . (2.47)

13Given than the integrand is valued in T multiplication by 1
2 ultimately leads to dependence on a choice

of quadratic refinement, see the comments below.
14It is only in the so(2n) case that we have both NS5s and D5s as symmetry generators.
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We note that in writing this formula for odd n we have chosen a specific quadratic
refinement of the holonomy term

1
2

∫
p̃t
β−1(t1) = 1

4 mod 1 . (2.48)

(The other option would have been to choose −1/4 mod 1.) This choice is meaningful
whenever n /∈ 2Z. The actual choice does not affect the classification of global forms, but
it appears to be related to the structure of SL(2,Z) duality orbits, see the discussion in
section 3. The fact that the definition of the Chern-Simons terms in string theory requires
a choice of quadratic refinement is well known, see [34–39] for a sampling of detailed
discussions, and we expect that the choice of sign in (2.48) should follow from there.

D3/D3 commutation relations. For completeness, let us mention the case of D3
branes wrapping RP3 ⊂ RP5 and RP1 ⊂ RP5. They lead to line and 3-surface exci-
tations on the theory on M5, and line and 3-surface operators acting on the boundary
states. These branes are associated with 0-form and 2-form symmetries on the field theory.
We can analyse this system via techniques very similar to the ones above, with the added
simplification that we are now working in the untwisted sector. We find that

D3(γ × RP3)−1D3(Σ3 × RP1)D3(γ × RP3) = exp
(
πiγ · Σ3

)
D3(Σ3 × RP1) . (2.49)

2.6 An effective action on AdS5

We will now verify that the brane commutation relations that we have obtained agree with
those that can be derived from the action given in [13]. We will discuss the so(2n) case
first, and then discuss the modifications needed in the other cases. The action in the so(2n)
case given in [13] is (the choice of sign is for convenience)

S
so(2n)
B = −2πi

∫
M5

[
nBF1 ∧ dBD1 + 2BF1 ∧ dBNS5 + 2BD1 ∧ dBD5

]
. (2.50)

We normalize the U(1) BI fields to have period 1 (as opposed to the perhaps more stan-
dard convention in physics of period 2π), and I stands for the type of brane which couples
electrically to BI . So, for instance, BD5 should arise from reduction of the C6 RR field
in supergravity. We can derive the brane (non-)commutation relations from here follow-
ing [2]. We work in the path integral formulation (on a euclidean spacetime), instead of
the Hamiltonian formulation on a constant time slice M4 that we have been using so far.
Assume that we have two operators U(Σ2) and V (Ξ2), defined as in section 2.5 (we assume
that there are no torsional cycles onM4, so we have chosen to replace σ2 by the Poincaré
dual 2-cycle Σ2 onM4) such that onM4

U(Σ2)−1V (Ξ2)U(Σ2) = e−2πi qΣ2·Ξ2
V (Ξ2) . (2.51)

We interpret this as V having charge q under the abelian symmetry generated by U , or
equivalently as V having charge −q under U (assuming that both operators are topological).
The path integral version of this statement is

U(Σ2)V (Ξ2) = e2πi q LG(Σ2,Ξ2)V (Ξ2) (2.52)
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with LG(Σ2,Ξ2) the Gauss linking pairing onM5. This is the kind of relation that we aim
to prove now, starting from the action (2.50).

The presence of a brane of type I wrapped on a 2-cycle CI = ∂DI leads to a factor

exp
(

2πi
∫
CI

BI

)
= exp

(
2πi

∫
DI

dBI

)
(2.53)

in the path integral. The equations of motion that follow from (2.50) in the presence of
brane insertions are

−ndBD1 − 2dBNS5 + δ(CF1) = 0 ,
ndBF1 − 2dBD5 + δ(CD1) = 0 ,

2dBF1 + δ(CNS5) = 0 ,
2dBD1 + δ(CD5) = 0 ,

(2.54)

where CF1 is the cycle in M4 wrapped by the F1 (which we can assume to be trivial in
M5 [12]), and similarly in the other cases. It is convenient to rewrite (2.54) as

dBNS5 = n

4 δ(CD5) + 1
2δ(CF1),

dBD5 = −n4 δ(CNS5) + 1
2δ(CD1),

dBF1 = −1
2δ(CNS5),

dBD1 = −1
2δ(CD5).

(2.55)

From here we can easily compute the charges of one type of operator under another.
Consider for instance a D5 wrapping a curve CD5 that links LG(CD5, CNS5) = DNS5 · CD5
times a curve CNS5 wrapped by an NS5 branes. Assuming that there are no other branes
in the problem, using the equations of motion we have

exp
[
2πi

∫
CNS5

BNS5

]
exp

[
2πi

∫
CD5

BD5

]
= exp

[
2πi

∫
DNS5

dBNS5

]
exp

[
2πi

∫
CD5

BD5

]
= exp

[
2πin4DNS5 ·CD5

]
exp

[
2πi

∫
CD5

BD5

]
(2.56)

which indeed reproduces (2.47). The rest of the commutation relations give above can be
derived similarly.

2.7 Review of discrete torsion and Freed-Witten anomaly for k = 2

As discussed in section 2.1 we may wrap 3 and 5 branes on various cycles of the internal
RP5, but in addition to the topological restrictions there are quantum restrictions governed
by a type of Freed-Witten anomaly [31], which were worked out in [12]. In this section we
review the consequences of this anomaly for the symmetry structure of the theory. We will
discuss the k = 2 case explicitly, a very similar analysis holds for the k > 2 cases discussed
in the next section.
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The NS and RR discrete torsions, θNS and θRR take values of 0 and 1/2. There are thus
four choices of discrete torsion. A D5-brane can wrap an RP4-cycle only if θNS = 0, and sim-
ilarly an NS5-brane can wrap a RP4-cycle only if θRR = 0. Meanwhile, a D3-brane (without
a string ending on it) can wrap an RP3-cycle only if θRR = θNS = 0. A D3-brane can wrap
an RP3-cycle with a F1-string ending on it if and only if θRR = 1/2 and θNS = 0. A 3-brane
can wrap an RP3-cycle with a D1 string ending on it if and only if θRR = 0 and θNS = 0.

As argued in [12], and reviewed in section 3, the algebras of the gauge theories corre-
spond to the discrete torsion in the following ways.

so(2N) : (θNS, θRR) = (0, 0) , (2.57a)
so(2N + 1) : (θNS, θRR) = (0, 1/2) , (2.57b)

usp(2N) : (θNS, θRR) = (1/2, 0) , (2.57c)
usp(2N) : (θNS, θRR) = (1/2, 1/2) . (2.57d)

Let us now analyze in detail what happens to the symmetry generators of the bulk
theory in the presence of the discrete torsion. For concreteness we focus on the case where
(θNS, θRR) = (0, 1/2). The other cases follow analogously.

For this case, consider an F1 pushed to the boundary, which leads to an insertion of a
topological 2-surface in the field theory. The F1 string can end on a D3 brane wrapped on
RP3, so that the Freed-Witten anomaly on the D3 cancels by an explicit source term. This
implies that in the field theory the topological 2-surface can end on a 1-surface. Since the
topological 2-surface can “open up”, it cannot measure any conserved 1-form symmetries,
as any line whose charge we would like to potentially measure can leak through the holes
we can nucleate on the 2-surface.

Suppose instead that the F1 ends on the boundary, by which we mean that asymptot-
ically it looks like R × γ, with R the asymptotic radial direction in M5 ∼ R ×M4 and γ
a 1-chain in M4. From the field theory perspective, this is a Wilson line insertion on γ.
The F1 can still end on a D3 brane, which now implies that the Wilson line can end on
a point operator. Therefore, there is no operator under which the Wilson line can carry
charge. This has a simple origin in the bulk theory: due to the Freed-Witten anomaly the
NS5 brane cannot wrap a RP4-cycle for this choice of torsional flux, and thus in this case
there do not exist wrapped NS5 branes to be the symmetry operators under which the F1
string would be charged.

Finally we note that, while the boundary of the F1 along the wrapped D3 cancels the
Freed-Witten anomaly on the D3, we cannot use this mechanism to cancel the Freed-Witten
anomaly on a NS5. This follows from Poincaré duality: the insertion in the internal space
must be along a Poincaré dual to the class induced by the flux, and on the NS5 on RP4

this is not a point (which is what the F1 generator wraps in the internal RP5), but a line.

2.8 Fluxes and Freed-Witten anomalies

The analysis in the previous section can be generalised to the general N ≥ 3 S-fold case as
follows. The background 3-form fluxes are given by an element F ∈ H3(S5/Zk; (Z⊕Z)ρk).
We note that this element is in all cases torsional, and admits a flat differential cohomology
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uplift F̆ . Let us assume that we now have a 5-brane wrapping a representative Σ of a
class in the twisted homology H4(S5/Zk; (Z ⊕ Z)ρk). We represent this class by its dual
cohomology class σ ∈ H1(S5/Zk; (Z⊕Z)ρk), which can again be uplifted to a flat differential
cohomology class σ̆. A necessary condition for the Freed-Witten anomaly to vanish is that

L(F̆ , σ̆ ? λ̆) = 0 mod 1 (2.58)

for all λ ∈ H2(S5/Zk;Z) = Zk. The intuitive idea behind this condition is that by probing
by all λ we can in favourable circumstances detect whether the restriction of F to Σ is
trivial or not. If the restriction is trivial, the linking pairing above will necessarily always
vanish, and therefore if we detect any non-trivial linking pairing we will have a Freed-
Witten anomaly. (The geometries wrapped by our branes are simple enough that (2.58) is
in fact sufficient for detecting absence of anomalies.)

We note that in general it is possible to have a term on the right hand side of (2.58)
which does not depend on F̆ , and only depends on the structure of the cycle wrapped by
the brane. For instance, it was shown in [31] that in the case of a trivial SL(2,Z) bundle
over a D-brane wrapping a cycleM the right hand side is β(w2(TM)), with β the Bockstein
associated to the short exact sequence 0→ Z→ Z→ Z2 → 0. The orientifolded case was
considered in [12] (see also [39]) where it was conjectured that the right topological term
on the right hand side was β̃(w2(TM)), with β̃ now associated to the local version of the
short sequence above, namely 0 → Z̃ → Z̃ → Z̃2 → 0, and we use the fact that Z̃2 = Z2,
so we can promote w2(TM) to a class in H2(M; Z̃2).

The case of interest to us isM = RP4, and w2(TRP4) = 0, so (2.58) does not need to
be modified, at least in the k = 2 case. (Assuming that the conjecture in [12] is correct.)
This is also needed in order for the holographic results to match the field theory results.

We can phrase the previous results for k = 2 in a SL(2,Z)-covariant way. Consider
the short exact sequence of local coefficients 0 → Z̃ ⊕ Z̃ → Z̃ ⊕ Z̃ → C̃k → 0, with
associated Bockstein βk. In the k = 2 case we can embed w2(TM) into H2(M; C̃2) =
H2(M;Z2)⊕H2(M;Z2) simply by taking two copies. Denote the corresponding element
of H2(M; C̃2) by w2. (Recall that in the case of interest to us we have w2 = 0.) It is then
not hard to see that we reproduce the Freed-Witten anomalies found in [12] for the k = 2
case if we replace (2.58) by

L(F̆ − β̆k(w2), σ̆ ? λ̆) = 0 mod 1 . (2.59)

It is much less clear to us what to do in the k > 2 case, so in the rest of the analysis we
will assume that, as in the k ≤ 2 cases, the naïve condition (2.58) on F̆ is the correct one
for all k, and no additional geometric contribution appears for the branes we study.15 We
will momentarily give evidence in support of this assumption in the k = 3 case by showing
that it leads to results consistent with [16].

15We should be able to prove or refute this conjecture by lifting the 5-branes to M-theory M5 branes, and
analysing the analogous correction there. The form of the correction in M-theory was conjectured in [40]
(see also [36, 41–43]). The relevant computation seems to be rather involved, and we will not attempt
it here.
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Under this assumption, we can work out easily the k > 2 cases. Consider for instance
the k = 3 case. Here we have a flux F ∈ H3(S5/Zk; (Z⊕Z)ρ3) = Z3 and 5-branes wrapping
representatives Σ of H4(S5/Zk; (Z ⊕ Z)ρ3) = Z3. The condition (2.58) then projects out
the 5-brane generating the 1-form symmetry if and only if there is a non-trivial 3-form flux
in the internal space.

These results support the claims in [16]. Two of the N = 1 theories constructed in
that paper were argued to flow to SCFTs in the same N = 1 conformal manifolds as
certain N = 3 theories: a k = 3 N = 3 theory of rank one with non-trivial internal flux
(corresponding to the G(1, 1, 3) complex reflection group, in the notation of [15]), and a
k = 3 N = 3 theory of rank three with no internal flux (corresponding to G(3, 3, 3)).
According to our analysis16 we expect the first theory to have trivial 1-form symmetry
group, and the second to admit a global form having a Z3 1-form symmetry group. The
N = 1 theories in proposed in [16] do indeed exhibit these 1-form symmetry structure.17

Finally, let us comment briefly on the 0-form symmetries of the models. This was
in fact already done in [15], so we just quote their results (which were obtained by a
similar reasoning to the one above): in the absence of flux the N = 3 theory associated
to the Zk quotient of S5 has a Zk 2-form symmetry, generated by D3 branes wrapping the
Zk generators of H3(S5/Zk;Z), for appropriate boundary conditions. Different choices of
boundary conditions lead to 0-form symmetries, and the D3 branes just described end on
the boundary, giving the point operators charged under the 0-form symmetry. Non-trivial
fluxes make these brane wrappings suffer from a Freed-Witten anomaly, and the boundary
SCFTs do not have the 0-form symmetry any longer.

2.9 ’t Hooft anomalies and non-invertible symmetries

The action given in (2.50) does not include a term involving the outer automorphism 0-
form symmetry of the Spin(2N) theory. To account for this we add two U(1) fields A1 and
A3 with a coupling

S
so(2n)
A = 4πi

∫
M5

A1 ∧ dA3 . (2.60)

This theory can also be described as a Z2 gauge theory with action

S
so(2n)
A = πi

∫
M5

A1 ^ δA3 (2.61)

16We are assuming that our analysis remains valid for arbitrarily small rank. We expect this to be the
case: while we have focused on the holographic description in order to stay close to the literature on the
N = 4 case, the analysis of the “SymTFT reduction” along the lines of [8, 25, 44] proceeds along nearly
identical lines, and applies to the arbitrary rank case. There is nevertheless a subtlety at rank 1: here the
N = 3 theories are expected to be discrete gaugings of the N = 4 U(1) theory, and at least for certain choices
of global form we expect the 1-form symmetries that we find to be embedded into the larger U(1) × U(1)
1-form symmetry group present in this case. We thank Simone Giacomelli for emphasising this case to us.

17One might hope to also compare the 0-form symmetry sector, and more generally the full non-invertible
symmetry sector we describe below, but unfortunately the theories in [16] are not expected to flow to N = 3
SCFTs, only to N = 1 SCFTs in the same conformal manifold as the N = 3 SCFTs. The marginal operators
that interpolate between both fixed points are expected to break the relevant discrete 0-form symmetries.
We thank Gabi Zafrir for explaining this last point to us.
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where the A1, A3 fields are Z2 := Z/2Z fields related to the continuous fields by Ai := 2Ai

(reducing coefficients appropriately from R/2Z to Z2).
The operators in this theory behave precisely as the D3 branes wrapped on RP1 and

RP3 described above. More generally, for k > 2 we have [15]

SkA = 2πik
∫
M5

A1 ∧ dA3 , (2.62)

or in terms of finite fields Ai := kAi

SkA = 2πi
k

∫
M5

A1 ^ δA3 . (2.63)

This is nevertheless not the full answer: as discussed in [45] (see also [46]), the in-
terplay of the outer automorphism 0-form symmetry with the 1-form symmetry sector is
subtle. For instance, in the SO(() 2n) theory there is a mixed ’t Hooft anomaly involving
0-form and 1-form symmetries, which leads to 2-group symmetries in the Spin(2n) case
upon gauging the magnetic 1-form symmetry [47]. Other choices of gauging lead to non-
invertibles symmetries, see [22]. In this section we would like to reproduce some of these
results from the holographic perspective, and extend them to the N = 3 case, where we
also find non-invertible symmetries.18 Our analysis is incomplete in two important re-
spects: first, we will restrict ourselves to the case of n = 2k ∈ 2Z, with vanishing discrete
θ angle. And we will focus on deriving the anomaly of the SO(() 4k) theory. Since other
global forms are obtained by gauging, we expect that the bulk dynamics is the same in all
cases, but it is still important to understand the structure of the field theory symmetries
directly from the holographic dual for all global forms. The non-invertible symmetries for
the theories at hand were understood in [24] (see also [23, 25] for closely related results),
and below we generalise this analysis to the N = 3 case. To our knowledge the case of
2-group symmetries has not yet been fully understood in holographic terms, but see [88–94]
for progress on understanding 2-groups in various string constructions.

In general, extending slightly the discussion in [8], given a (possibly twisted) differential
cohomology cochain F̆ on M5 × RP5, up to topologically trivial terms we can express
its leading contribution to the effective theory on M5 in terms of torsional differential
cohomology classes on RP5 times differential cochains onM5. We have

H̆3 = B̆F1 ? t̆
NSNS
1 + θ̆NS ? t̆

NSNS
3 ; F̆3 = B̆D1 ? t̆

RR
1 + θ̆RR ? t̆

RR
3 (2.64)

in the twisted sector, with t̆NSNS
i , t̆RR

i flat differential cohomology uplifts of the generators
of H i(RP5; (Z̃⊕ Z̃)ρ2), and

F̆5 = Ă1 ? ŭ4 + Ă3 ? ŭ2 + . . . (2.65)

in the untwisted sector (ŭ4 is a flat uplift of the generator of H i(RP5;Z)). We have omitted
some terms in F̆5 proportional to n that do not enter in the computation of the anomaly.

18This adds to the large amount of evidence that has accumulated during the last year showing that non-
invertible symmetries appear in many interesting physical theories. We refer the reader to [20–25, 48–87]
for some of the recent developments in this field.
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The IIB pseudo-action onM5 × RP5 includes a term of the form

SIIB = 2πi
∫
M5×RP5

F̆5 ? H̆3 ? F̆3 . (2.66)

Introducing the expansions above into this expression, and using∫
RP5

ŭ4 ? t̆
RR
1 ? t̆NSNS

1 = 1
2 mod 1 (2.67)

(which we can derive using similar arguments to the ones given above, see the general
derivation below) we obtain the effective coupling

Sanomaly = πi

∫
M5

A1 ^ BF1 ^ BD1 . (2.68)

Here we have used that this integral is a primary invariant to express it in terms of more
conventional cochain integrals. If we choose Dirichlet boundary conditions for A1, BF1
and BD1, which corresponds to the SO(() 2n) choice of global form, this is precisely the
anomaly theory described in [45].

The coupling (2.66) can be written more covariantly as

SIIB = −2πi
2

∫
M5×(S5/Zk)

F̆5 ? F̆ ? F̆ . (2.69)

where the factor of −1/2 encodes the fact that we are dealing with a quadratic refinement,
as we will explain momentarily. The overall choice of sign is conventional, we have chosen
the sign that agrees with existing conventions in M-theory, where the dual coupling arises
from expanding −1

6
∫
Ğ3

4, with Ğ4 = F̆4 + F̆4. Here F̆4 and F̆4 are the M-theory duals of
F5 and F̆ respectively. The subtleties in dealing with this fractional prefactor have been
extensively discussed in the M-theory setting, starting with [34, 35].

For k > 2, switching on a background for the 1-form symmetry corresponds to taking

F̆ = B̆2 ? t̆1 (2.70)

with t̆1 a flat uplift of the single generator of H1(S5/Zk; (Z ⊕ Z)ρk) = Ck. Expanding F̆5
as in (2.65), and integrating, we find an effective coupling

Sanomaly = 2πiqk
∫
M5

A1 ^ B2 ^ B2 , (2.71)

with

qk = −1
2

∫
S5/Zk

ŭ4 ? t̆1 ? t̆1 =


−1

3 for k = 3 ,
−1

4 for k = 4 ,
0 for k = 6 ,

(2.72)

and the anomaly theory (2.68) for k = 2. (With a caveat to be discussed below.) We note
that the sign of qk can be absorbed in a redefinition of A1, or in the F-theory formulation
in a sign redefinition of C̆3.
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To compute qk, consider the F-theory description of the system, where we have

qk = −1
2

∫
X7
k

ŭ4 ? t̆2 ? t̆2 . (2.73)

Here X7
k is an elliptically fibered 7-fold over S5/Zk encoding the data of the SL(2,Z)

fibration over S5/Zk. We have abused notation slightly and also called u4 the pull-
back to H4(X7

k ;Z) of the generator of H4(S5/Zk;Z), which in turn is the pullback of
the generator of H4(P2;Z). (This last statement follows easily from the Gysin exact se-
quence.) The class t2 ∈ H2(X7

k ;Z) should be understood as the uplift to M-theory of t1 ∈
H1(S5/Zk; (Z⊕Z)ρk). Mathematically, what we mean by “uplift” is that the given element
of H1(S5/Zk; (Z⊕ Z)ρk) survives to a non-trivial element of H2(X7

k ;Z) in the Leray-Serre
spectral sequence (keeping in mind H1(T 2;Z) = (Z⊕ Z)ρk as a local coefficient system).

A useful alternative viewpoint on X7
k is that it is a fibration of Mk (defined in section 2.3

above) over P2. The class u4 is still a pullback of the fundamental class of P2 to the
total space of the fibration, while t2 arises from the generator of H2(Mk;Z) = Ck in the
Leray-Serre spectral sequence. By a push-pull argument, this implies that qk reduces to
a quadratic refinement of the Chern-Simons coupling on Mk, which we can write (again
abusing notation slightly, by denoting t2 the generator of H2(Mk;Z) and t̆2 a flat uplift to
differential cohomology)

qk = −1
2

∫
Mk

t̆2 ? t̆2 . (2.74)

This kind of quadratic refinement, in a situation very analogous to ours, was computed
in [8]. The idea is to construct a (Calabi-Yau) manifold K4

k such that ∂K4
k = Mk, and

then translate the computation of the quadratic refinement of the Chern-Simons term to
a problem in intersection theory on K4

k . We refer the reader to [8] for details. In our
case there is a natural choice of K4

k : consider an elliptic fibration over C with a Kodaira
singularity at z = 0 of type IV ∗ (leading to an E6 gauge theory, if this was an M-theory
background). We take K4

3 to be the total space of the fibration over a disk D = {|z| ≤ 1}.
Recalling that the monodromy around the singularity is precisely ρ3, we have ∂K4

3 = Mk.
Similarly, K4

4 comes from an E7 singularity, K4
6 from an E8 singularity, and K4

2 from a D4
singularity. Repeating the computation of [8] for these geometries leads to the results for
qk stated above. (The local form of the geometry close to the singular locus is of the form
C2/Γ, with Γ ⊂ SU(2), which are some of the cases studied in that paper, so the details
are essentially identical.)

The k = 2 case requires some additional comments. In this case we have H2(Mk; (Z⊕
Z)ρk) = Z2⊕Z2. We denote the two generators tNSNS

2 and tRR
2 . From the arguments above

one obtains

q2 = −1
2

∫
M2
t̆NSNS
2 ? t̆NSNS

2 = −1
2

∫
M2
t̆RR
2 ? t̆RR

2 = 1
2 mod 1 (2.75)

and

−1
2

∫
M2
t̆NSNS
2 ? t̆RR

2 + t̆RR
2 ? t̆NSNS

2 = 1
2 mod 1 . (2.76)
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The second integral leads to (2.68) when we expand as in (2.64) (replacing t1 by t2)
and (2.65), as advertised. On the other hand, (2.75) would lead to contributions to the
anomaly theory of the form

Sanomaly = πi

∫
M5

[
A1 ^ BF1 ^ BF1 +A1 ^ BD1 ^ BD1

]
. (2.77)

These couplings in fact vanish under the assumption that M5 is Spin and has no torsion.
First, note that sinceM5 has no torsion, BF1 is necessarily the mod 2 reduction of a class
in H2(M5;Z). This implies, in particular, that Sq1(BF1) = ρ2(β(BF1)) = 0, where ρ2
indicates reduction modulo 2 and β is the Bockstein homomorphism associated to 0 →
Z→ Z→ Z2 → 0. We therefore have (viewing all classes as living in singular cohomology
with Z2 coefficients)∫

M5
A1 ^ BF1 ^ BF1 =

∫
M5

A1 ^ Sq2(BF1) =
∫
M5

Sq2(A1 ^ BF1)

=
∫
M5

ν2 ^ A1 ^ BF1 = 0 , (2.78)

with ν2 the second Wu class of M5, which vanishes since M5 is a Spin manifold by as-
sumption. It would be interesting to understand what is the fate of these couplings when
we relax our assumptions onM5.

Non-invertible symmetries. The existence of the cubic anomalies (2.68) and (2.71)
implies the existence of non-invertible symmetries upon gauging the 1-form symmetries
appearing in the anomaly, as argued in [21] and further studied in [22]. In this case the
generator

U(Σ3) = exp
(
πi

∫
Σ3
A3

)
(2.79)

of the 0-form symmetry in the SO(() 4k) theory is not invariant under gauge transformations
in the 1-form symmetry sector, so the operator does not survive in the theory where
the full Z2 × Z2 1-form symmetry of the SO(() 4k) theory has been gauged (which by a
suitable choice of conventions we can call the Sc(4k) theory). The fundamental observation
of [21, 22] is that we can still construct a gauge invariant operator by stacking U(Σ3) with
an Z2 gauge theory coupling to the 1-form background in a suitably anomalous way:

N (Σ3) = U(Σ3) exp
[
πi

∫
Σ3

(
γ1 ^ δφ1 + γ1 ^ BD1 + φ1 ^ BF1

)]
. (2.80)

Here γ1 and φ1 are dynamical (topological) fields living on the defect, which should be
integrated over. The operator N (Σ3) is now invariant under gauge transformations of the
1-form symmetry backgrounds BD1 and BF1, and survives in the Sc(4k) theory. The price
to pay is that N (Σ)−1 does no longer exist (we say that N (Σ3) is non-invertible), and in
particular N (Σ3) × N (Σ3)† is not the identity but rather a condensation defect [54] (see
also [52, 95, 96]).

The analysis in [21] extends straightforwardly to the N = 3 S-folds that we studied
above: due to the cubic anomaly (2.71) the 0-form symmetry generator will not survive
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in the theory where we gauge the 1-form symmetry, but if a suitably anomalous dressing
exists then this might lead to a non-invertible symmetry generator.

Interestingly, a number of recent works [23–25] have argued that the anomalous BF
theory in (2.80) arises from reducing the Chern-Simons action on the symmetry generating
D-branes along torsional cycles in the internal space. It is natural to guess that this is also
the case for the cases studied here. Luckily, the relevant analysis has already been done
in [24] for the k = 2 case and in [25] for the k > 2 case. (The theories studied in [25] were
non-Higgsable clusters in d = 6 and not N = 3 S-folds, but the relevant computation is
identical in both cases.) In all cases one can see that the resulting theory is anomalous
in precisely the right way to lead to a gauge-invariant defect in the gauged theory. For
instance, it follows from the discussion in [25] that in the k > 2 cases, after reduction on
the torsional cycle in the internal space, there is an effective Chern-Simons theory on the
dynamical symmetry generator with action19

SCS = 2πi
∫ [1

k
A3 + qkc ^ δc+ 2qkB2 ^ c

]
, (2.81)

with c a dynamical cocycle valued on Ck, and A3, B2 background fields as above. (The
difference in the normalisation of the A3 dependent term with respect to [25] is due to the
difference in the setups we are considering.) The anomalous variation of this action under
gauge transformations for B2 precisely cancels the anomalous variation due to (2.71).

Freed-Witten anomalies as a Stückelberg mechanism. Finally, let us briefly com-
ment on the effective action in the case with 3-form flux in the internal space, namely,
with θRR or θNS different from 0. We emphasise that the discussion in this section is
not needed for the rest of the paper, but it provides a nice alternative viewpoint on the
operator-centered viewpoint that we have adopted in most of the paper.

From the expansion (2.64) and∫
RP5

t̆1 ? t̆3 ? ŭ2 = 1
2 (mod 1) , (2.82)

integration of (2.66) over RP5 leads to couplings of the form20

Sθ = πi

∫
M5

[
A3 ^ θNS ^ BD1 +A3 ^ θRR ^ BF1

]
. (2.83)

In continuous notation, this modifies the combined action (2.50) and (2.60) to

S
so(2n)
B,θ = −2πi

∫
M5

[
nBF1 ∧ dBD1 + 2BF1 ∧ (dBNS5 − θRRA3)

+ 2BD1 ∧ (dBD5 − θNSA3) + 2A1 ∧ dA3
]
. (2.84)

The presence of the Stückelberg terms gives a nice effective field theory reinterpretation
of the fact, pointed out above, that some of the symmetry operators are absent in the
presence of background 3-form fluxes.

19We are very thankful to J. Heckman for pointing out that the results in [25] would be very useful for
our analysis, and for discussions on the normalisation of the c-dependent terms in (2.81).

20We are ignoring the mixed ’t Hooft anomaly contribution here, which leads to subtleties in the definition
of the Stückelberg action that we do not fully understand.
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F1 D1 D5 NS5
Repe ⊗ Repm Vect⊗ 1 1⊗Vect Spin⊗ 1 1⊗ Spin

so(2n+ 1) (ze, zm) ∈ (Z2 × Z2) (0, 0) (0, 1) (1, 0) absent
usp(2n)θRR=0 (ze, zm) ∈ (Z2 × Z2) (1, 0) (0, 0) absent (0, 1)
so(4k + 2) (ze, zm) ∈ (Z4 × Z4) (2, 0) (0, 2) (1, 0) (0,±1)

so(4k)
(ze,S , ze,C ; zm,S , zm,C)
∈ (Z2 × Z2)× (Z2 × Z2)

(1, 1; 0, 0) (0, 0; 1, 1) (1, 0; 0, 0) (0, 0; 1, 0)

Table 1. The dictionary between field-theory lines and their dual bulk-worldsheets from [2, 12, 13].
Note that for so(4k+2) the sign of the 1-form charge of the NS5 brane relative to that of the D5 brane
is not fixed by our analysis, though we believe it is related to the choice of quadratic refinement,
see the comments in section 2.5. Matching with [1] requires this charge to be (0,−1) for so(8k+ 2)
and (0, 1) for so(8k + 6).

3 The N = 4 theories from the k = 2 S-fold

Specializing to k = 2, we now compare the results of the above analysis with existing
results on so and usp N = 4 gauge theories [1, 2, 12, 13, 24], yielding an important cross
check of our methods.

To do so, we start with the dictionary between branes and line operators established
in [2, 12, 13]. Applying this dictionary to the bulk-commutation relations derived in sec-
tion 2.5, we reproduce the field-theory mutual locality relations of [1], thereby demonstrat-
ing that the allowed global structures of N = 4 S-folds perfectly agrees with the known
global structures of N = 4 theories with so and usp gauge algebras. We also discuss how
the 1-form symmetries can be understood using the bulk effective action considered in sec-
tion 2.6, section 2.9. As a final check, we conclude by showing that the SL(2,Z) orbits of
the bulk theory agree with the field theory orbits described in [1].

Let us fix the action of S and T generators of SL(2,Z) in string theory to be

F1 S−→ D1, D1 S−→ F1, NS5 S−→ D5, D5 S−→ NS5,

F1 T−→ F1, D1 T−→ F1 + D1, NS5 T−→ NS5 + D5, D5 T−→ D5,
(3.1)

where the bar over a brane denotes an antibrane, and the sum of two branes is interpreted
as a bound state.

3.1 The line operator dictionary

The (non-topological) Wilson and ’t Hooft lines of N = 4 gauge theories are described
holographically as the boundaries of dynamical strings in the AdS5 dual. The latter can
arise either from ten-dimensional strings or from ten-dimensional five-branes wrapped on
(torsion) four cycles. The dictionary between the two was first worked out for su theories
(i.e., for k = 1) in [2, 12]. Here we focus on the k = 2 dictionary for so and usp theories
obtained in [2, 12, 13] and summarized in table 1.
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Let us describe briefly how this dictionary is worked out. Since an F1 string ending
on the M4 boundary is dual to a Wilson line in the vector representation of the gauge
group, applying S-duality simultaneously to the bulk and boundary theories implies that a
D1 string ending onM4 is dual to an ’t Hooft line in the vector representation of the dual
gauge group. Meanwhile, it was argued in [12] that the boundary of a D5 brane wrapping
a RP4 cycle in RP5 and ending onM4 is dual to a Wilson line in the spinor representation
of the gauge group. (As reviewed in section 2.7 this is only possible when the gauge algebra
is so(n), i.e. when θNS = 0.) Thus, by S-duality the boundary of an NS5 brane wrapping a
RP4 cycle in RP5 and ending onM4 is dual to an ’t Hooft line in the spinor representation
of the Langlands dual gauge group.

Turning on discrete torsion restricts which five-branes can wrap RP4, hence in the
so(2n + 1) and usp(2n) theories, only one of the D5, NS5, and D5+NS5 branes will be
present as a line operator in the dual theory. Likewise, depending on the torsion either the
F1, the D1 or the F1+D1 can end on a wrapped D3 brane, hence the corresponding line
operator is no longer charged under a 1-form symmetry.

3.2 Field theory mutual locality from bulk non-commutativity

We now use the dictionary above, together with the bulk brane commutation relations
derived in section 2.5, to reproduce the mutual locality relations obtained used field theory
methods in [1].

Label an arbitrary bound state of nF1 F1 strings, nD1 D1 strings, etc., by

[nF1, nD1, nD5, nNS5] = (nF1F1 + nD1D1 + nD5D5 + nNS5NS5). (3.2)

In section 2.5, we obtained the following commutation relations in the k = 2 S-fold

F1(Σ2)D1(Ξ2) = D1(Ξ2)F1(Σ2) , (3.3a)
F1(Σ2)D5(Ξ2) = D5(Ξ2)F1(Σ2) , (3.3b)

F1(Σ2)NS5(Ξ2) = exp
(2πi

2 Σ2 · Ξ2
)
NS5(Ξ2)F1(Σ2) , (3.3c)

D1(Σ2)D5(Ξ2) = exp
(2πi

2 Σ2 · Ξ2
)
D5(Ξ2)D1(Σ2) , (3.3d)

D1(Σ2)NS5(Ξ2) = NS5(Ξ2)D1(Σ2) , (3.3e)

D5(Σ2)NS5(Ξ2) = exp
(2πin

4 Σ2 · Ξ2
)
NS5(Ξ2)D5(Σ2) . (3.3f)

Since each commutation produces at most a phase, the same is true for an arbitrary bound
state, for which we obtain
(
[mF1,mD1,mD5,mNS5](Ξ2)

)−1[nF1, nD1, nD5, nNS5](Σ2) [mF1,mD1,mD5,mNS5](Ξ2)

= exp
[
2πi

(
nF1mNS5 − nNS5mF1

2 + nD1mD5 − nD5mD1
2 + (nD5mNS5 − nNS5mD5)n

4

)]
· [nF1, nD1, nD5, nNS5](Σ2). (3.4)
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The bulk theories are selected by a choice of boundary condition on the fields. Commu-
tation relations of the fields constrain the possible boundary conditions [19], and consistent
choices thereof are equivalent to mutually commuting sets of operators.

Deriving mutual locality conditions for the so(4j) case. We now demonstrate
how to derive the mutual locality conditions in field-theory from the bound-state commu-
tators (3.4). We focus here on the so(4j) case with θNS = 0 = θRR. The so(4j+2), usp(2n),
and so(2n+ 1) cases proceed analogously.

In the so(4j) case, there are no restrictions on brane wrappings, so an arbitrary bound
state [nF1, nD1, nD5, nNS5] is possible. Two such bound states

[mF1,mD1,mD5,mNS5] and [nF1, nD1, nD5, nNS5]

commute if

nF1mNS5 − nNS5mF1 + nD1mD5 − nD5mD1 + (nD5mNS5 − nNS5mD5)j ∈ 2Z. (3.5)

Motivated by the dictionary in table 1, we define

(zes, zec; zms, zmc) := (nF1 + nD5, nF1;nD1 + nNS5, nD1) ,
(z′es, z′ec; z′ms, z′mc) := (mF1 +mD5,mF1;mD1 +mNS5,mD1) .

(3.6)

In these new variables, the condition (3.5) becomes

zec(z′ms − z′mc)− (zms − zmc)z′ec + zmc(z′es − z′ec)− (zes − zec)z′mc
+ j((zes − zec)(z′ms − z′mc)− (zms − zmc)(z′es − z′ec))

= (1 + j)
(
zeczms − zesz′mc + zmcz

′
es − zmsz′ec

)
+ j

(
zecz

′
mc + zesz

′
ms − zmcz′ec − zmsz′es

)
∈ 2Z. (3.7)

That is, the bulk-brane non-commutativity is equivalent to the mutual locality conditions
of [1].

Note that the mutual locality conditions in (3.7) distinguishes so(8l) from so(8l + 4).
For instance, in the so(8l) case, we have j ∈ 2Z, and so the commuting condition reduces to

zeczms − zesz′mc + zmcz
′
es − zmsz′ec ∈ 2Z.

Extending this result to so(4k+2), so(2n+1), and usp(2n) theories is straightforward.
The center of so(4k + 2) is Z4, corresponding to the fact that condensing two D5 “fat”
strings leaves behind an F1 string as explained by [12], consistent with table 1. Analo-
gously, condensing two NS5 fat strings leaves behind a D1 string. Thus we can write the
commutativity relation in terms of the number of lines from D5 and NS5 branes, and we
recover the Z4 × Z4 relation of [1].

In the case of so(2n + 1), the center is Z2 and only lines from F1, D1, and D5 bulk
branes are present with the F1 lines being endable. This simplifies the commutativity
relation to the Z2 × Z2 relation of [1]. The usp results are analogous.
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3.3 Interpreting the bulk effective action

For an alternate perspective, consider the effective action (2.84), generalizing [13]:

S = −2πi
∫
M5

[
nBF1 ∧ dBD1 + 2BF1 ∧ (dBNS5 − θRRA3)

+ 2BD1 ∧ (dBD5 − θNSA3) + 2A1 ∧ dA3
]
. (3.8)

When θRR = 0 = θNS and n ∈ 2Z we can perform a GL(4,Z) field redefinition to obtain

S = −2πi
∫
M5

[
2B2 ∧ dC2 + 2B̃2 ∧ dC̃2 + 2A1 ∧ dA3

]
. (3.9)

This describes a Z2 0-form bulk gauge theory and a Z2×Z2 1-form bulk gauge theory, and
these correspond to the global symmetries in the field theory side.

Meanwhile, when θRR = 0 = θNS and n ∈ 2Z + 1 we can perform a GL(4,Z) field
redefinition to obtain

S = −2πi
∫
M5

[
4B2 ∧ dC2 + 2A1 ∧ dA3

]
. (3.10)

This describes a Z2 0-form bulk gauge theory and a Z4 1-form bulk gauge theory.
Finally, when θRR = 1

2 and θNS = 0 we, through a Stückelberg mechanism, integrate
out A1 to obtain

S = −2πi
∫
M5

2BD1 ∧ dBD5. (3.11)

This is a Z2 1-form gauge theory. The other two choices of discrete torsion can be obtained
from this one via SL(2,Z) transformations.

3.4 SL(2,Z) duality webs

In this section, we display the SL(2,Z) duality webs of all of the k = 2 theories. As in [1],
the possible theories are classified by their line operator content, which we specify by listing
generators for the lines of that theory. Meanwhile, through the dictionary in table 1, each
theory is also classified by the boundary conditions for bulk strings / fat strings. These
two different classifications are equivalent, and here we demonstrate that the classifications
are consistent under the action of SL(2,Z). That is, the duality webs of SL(2,Z) on both
the bulk description and the field theory description are equivalent.

so(4j). As is evident in section 3.2, and also discussed in [1], the mutual locality con-
ditions for so(8j) and so(8j + 4) differ. However, there are some duality webs that are
common to both cases. We display these in figures 1–3, followed by the remaining duality
webs which differ between the so(8j) and so(8j + 4) cases.

These diagrams agree with figures 7 and 8 of [1].

so(4j + 2). To map out the duality web in this case, note that — unlike in the so(4j)
case — a pair of fat D5 strings leave behind an F1 string when they annihilate [12]. Thus,
repeatedly applying T takes NS5→ NS5 + D5→ NS5 + 2D5 = NS5 + F1, etc.

As noted in table 1, the relative sign of the D5 and NS5 brane charges under the
maximal 1-form symmetry is not fixed by our analysis, so we keep it arbitrary in figure 4.
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 F1
(1, 1; 0, 0),

D5
(1, 0; 0, 0)

Spin(4j)

  F1
(1, 1; 0, 0),

D1+D5
(1, 0; 1, 1)

SO(4j)−


 D1

(0, 0; 1, 1),
NS5

(0, 0; 1, 0)
(SO(4j) /Z2) + +

+ +


 D1

(0, 0; 1, 1),
F1+NS5

(1, 1; 1, 0)
(SO(4j) /Z2)− −

− −


 F1+D1

(1, 1; 1, 1),
NS5+D5

(1, 0; 1, 0)
(SO(4j) /Z2)− +

+ −


 F1+D1

(1, 1; 1, 1),
F1+NS5+D5
(0, 1; 1, 0)

(SO(4j) /Z2) + −
− +



T

S

T

S

T T

S S

 F1
(1, 1; 0, 0),

D1
(0, 0; 1, 1)

SO(4j)+

S,T

Figure 1. The SL(2,Z) webs shared by both so(8j) and so(8j + 4) theories.

 F1+D5
(0, 1; 0, 0),

F1+D1+NS5
(1, 1; 0, 1)

Sc(8j)−

  D5
(1, 0; 0, 0),

F1+NS5
(1, 1; 1, 0)

Ss(8j)−


 D1+NS5

(0, 0; 0, 1),
F1+D1+D5
(0, 1; 1, 1)

(SO(8j) /Z2) + −
+ +


 NS5

(0, 0; 1, 0),
D1+D5

(1, 0; 1, 1)
(SO(8j) /Z2) + +

− +


 F1+NS5

(1, 1; 1, 0),
D1+D5

(1, 0; 1, 1)
(SO(8j) /Z2)− −

+ −


 NS5+D5

(1, 0; 1, 0),
F1+D1+D5
(0, 1; 1, 1)

(SO(8j) /Z2)− +
− −


 F1+D5

(0, 1; 0, 0),
D1+NS5

(0, 0; 0, 1)
Sc(8j)+

  D5
(1, 0; 0, 0),

NS5
(0, 0; 1, 0)

Ss(8j)+



T

S

T

S

T T

S S

S,T S,T

Figure 2. SL(2,Z) webs unique to so(8j) theories.
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 F1+D5
(0, 1; 0, 0),

NS5
(0, 0; 1, 0)

Sc(8j + 4)+

  D5
(1, 0; 0, 0),

D1+NS5
(0, 0; 0, 1)

Ss(8j + 4)+


 F1+D5

(0, 1; 0, 0),
NS5+D5

(1, 0; 1, 0)
(Sc(8j + 4)−

  D5
(1, 0; 0, 0),

F1+D1+NS5
(1, 1; 0, 1)

(Ss(8j + 4)−


 D1+NS5

(0, 0; 0, 1),
D1+D5

(1, 0; 1, 1)
(SO(8j + 4) /Z2)− +

+ +


 NS5

(0, 0; 1, 0),
F1+D1+D5
(0, 1; 1, 1)

(SO(8j + 4) /Z2) + +
+ −


 D1+D5

(1, 0; 1, 1),
F1+D1+NS5
(1, 1; 0, 1)

(SO(8j + 4) /Z2) + −
− −


 F1+NS5

(1, 1; 1, 0),
F1+D1+D5
(0, 1; 1, 1)

(SO(8j + 4) /Z2)− −
− +



T

S

T

S S

T

S, T

Figure 3. SL(2,Z) webs unique to so(8j + 4) theories.

Since the relative sign of the NS5 and D5 center charge affects the labels of (Spin(4j+
2)/Z4)±1, by comparing with [1] we can deduce that the two have center charges of the
same sign for so(8k + 6) and of opposite sign for so(8k + 2). This suggests that the choice
of quadratic refinement is sensitive to the amount of 5-form flux supporting the geometry,
but we have not attempted to derive this fact from string theory. Up to this subtlety, this
diagram agrees with figure 6 of [1].

so(2n + 1) and usp(2n). There are a few extra subtleties in this case, which is why
we have saved it for last. Firstly, note that in our paper, S and T refer to the generators
of the SL(2,Z) self-duality of type IIB string theory. As a consequence, our T generator
differs slightly from the identically-named field theory operation defined in [1], which we
denote T̂. We have ignored this distinction so far because T̂ = T in most cases, but for
usp(2n) theories T̂ = T2, related to the fact that the O3+ is not T invariant [12].21

A second subtlety relates to the action of T̂ = T2 on the branes. As before, T2 maps
NS5 → NS5 + 2D5, so the result depends on the end product of the two D5 fat strings
annihilating each other (but with the added subtlety that individual D5 fat strings cannot
be isolated due to the B2 torsion). By analogy with before we expect that either complete
annihilation occurs or an F1 string is left behind, depending on whether n is even or odd,
respectively. Assuming this to be true, we obtain the duality webs in figures 5 and 6.

The agreement between these figures and figure 5 of [1] validates our guess about the
end product of the annihilation of two D5 fat strings. It would interesting to derive this
directly from string theory.

21One also finds T̂ = T1/2 for so(3), but for simplicity we will ignore this low-n special case.
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 F1
(2, 0),

D1
(0, 2)

SO(4j + 2)+


 F1

(2, 0),
D5

(1, 0)
Spin(4j + 2)


 D1

(0, 2),
NS5

(0,±1)
(Spin(4j + 2)/Z4)0



 F1+D1
(2, 2) ,

NS5+D5
(1,±1)

(Spin(4j + 2)/Z4)±1

  F1+D1
(2, 2) ,

NS5+D5
(1,∓1)

(Spin(4j + 2)/Z4)∓1



 D1
(0, 2),

F1+NS5
(2,±1)

(Spin(4j + 2)/Z4)2


 F1

(2, 0),
D1+D5
(1, 2)

SO(4j + 2)−



T, S

S

T

T

T

S

T

T

S

T

Figure 4. SL(2,Z) webs for so(4j + 2) theories.

 F1
(0, 0),

D1
(0, 1)

SO(2n+ 1)+

  D1
(0, 0),

F1
(1, 0)

USp(2n)


 F1

(0, 0),
D5

(1, 0)
Spin(2n+ 1)

  D1
(0, 0),

NS5
(0, 1)

(USp(2n) /Z2)+


 F1

(0, 0),
D1+D5
(1, 1)

SO(2n+ 1)−

  D1
(0, 0),

F1+NS5
(1, 1)

(USp(2n) /Z2)−



T S
T2

T S
T2

ST T2

Figure 5. SL(2,Z) webs for so(2n+ 1) and usp(2n) theories with even n.
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 F1
(0, 0),

D1
(0, 1)

SO(2n+ 1)+

  D1
(0, 0),

F1
(1, 0)

USp(2n)


 F1

(0, 0),
D5

(1, 0)
Spin(2n+ 1)

  D1
(0, 0),

NS5
(0, 1)

(USp(2n) /Z2)+


 F1

(0, 0),
D1+D5
(1, 1)

SO(2n+ 1)−

  D1
(0, 0),

F1+NS5
(1, 1)

(USp(2n) /Z2)−



T S
T2

T S

ST

T2

Figure 6. SL(2,Z) webs for so(2n+ 1) and usp(2n) theories with odd n > 1.

4 Conclusions

In this paper we have developed a holographic description of the symmetry operators of
N = 3 and N = 4 4d SCFTs via S-folds. The N = 4 S-folds are dual to SYM theories
with BCD gauge algebras, and in this setting our results for the symmetry operators,
anomaly, global forms and SL(2,Z) orbits are consistent with previous literature. The
N = 3 S-folds are dual to non-Lagrangian SCFTs, and our analysis provides novel data on
their symmetries.

There is an aspect of our analysis that was not fully justified, that we would like
to highlight: in the derivation of the Freed-Witten anomaly cancellation condition, we
assumed that there was no non-perturbative contribution on the right hand side of (2.58)
(akin to the W3 term appearing in [31]). Although we gave some circumstantial evidence
for the validity of our assumption, it would be interesting to verify if our assumption is
valid by a direct analysis of the M5 brane anomaly [36, 40–43].

Even in the N = 4 case where the field theory dual is well understood, our analysis is
not quite complete. In the theories dual to so(4N+2) there are two inequivalent choices for
the quadratic refinement. The choice which correctly reproduces the full SL(2,Z) orbits
depends on N . In the field theory this difference is related to the fractional instanton
number (see for instance [1, 97, 98] for the computation of fractional instanton numbers
using field theory methods), so we expect that a careful treatment of the relevant quadratic
refinement of the string theory action should reproduce this dependence on the fractional
instanton number, as in the examples considered in [8, 19].

The techniques developed in this paper should be extendable to N < 3 S-folds (see for
instance [99–101] for pioneering work in this direction), and a geometric characterization
of the symmetries of those theories would be interesting. An alternative direction for
generalization is the class of N = 1 orientifold SCFTs studied in [102–105].

Another direction for further study would be to derive the fusion rules for symmetry
generators in the non-invertible case directly using D-brane methods. (See [23] for a study
of this problem in a different system.) The non-trivial duality bundle on the non-abelian
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theory on the stack of D3 branes — or alternatively, the poorly understood dynamics of
the non-abelian (2, 0) theory in six dimensions — should make this computation fairly
interesting.
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