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1. Introduction of stereoscopic PIV

Various concepts involving in the stereoscopic PIV are very briefly summarised in this section.
For more details, readers are recommended to read Lavision (2007); Prasad (2000); Raffel et al.
(2007). Stereoscopic PIV adopts two digital cameras viewing at the same laser illuminated
plane1 from two different angles to resolve the three velocity components on the plane; see
figure 1. Sometimes it is also called 2D3C (two-dimension three-component) PIV. The basic
principle of stereoscopic PIV is similar to a pair of human eyes simultaneously observing
an object to capture its movement in a plane as well as in the third direction. One major
difference to the two-dimensional PIV is that the illuminated plane cannot be too thin, because
the third component needs to be resolved. It should allow most of the particles to remain in
the illuminated volume after the PIV ∆t, to give valid cross-correlation signals for calculating
the third component.

1.1 Principle

In this arrangement, the two cameras simultaneously accept a pair of laser exposures to do
normal two-dimensional PIV independently. Because the common field of view (FOV) of the

−60−40−200204060−60−40−200204060xyCalibration plate inspection:: red = plane 1, green = plane 2, both mapped onto same plane for viewing ease

Fig. 1. A schematic diagrame of a typical stereoscopic PIV setup. Picture taken from Prasad
(2000).

1 Strictly speaking, it is not a plane, but a very thin volume with a typical thickness of 2 − 5mm.
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−60−40−200204060−60−40−200204060xyCalibration plate inspection:: red = plane 1, green = plane 2, both mapped onto same plane for viewing ease

Laser plane

Fig. 2. Reconstructions of displacements seen from the two cameras.

two cameras are maximized2, the resultant velocity vector fields from the two cameras are
combined and from which the 2D3C field is reconstructed, provided a successful stereoscopic
calibration having been applied.

The relationships between the real particle displacements (∆x and ∆z) and the pixel

displacements seen in each of the cameras (d1 and d2) can be worked out simply by

considering the geometries, as shown in figure 2. For camera 1,

d1 = ∆z cos α + ∆x sin α; (1)

for camera 2,

d2 = ∆z cos α − ∆x sin α; (2)

therefore the true displacements can be re-written in terms of pixel displacements, once the

viewing angle is known, as

∆x =
d1 − d2

2 cos α

∆z =
d1 + d2

2 sin α
. (3)

The displacements in the physical space can be obtained by a simple calibration of d1 and d2

to their corresponding displacements in physical space.

However, in most situations, the viewing angles are difficult to measure and moreover, if

the experiments are carried out in water, as the viewing angle deviates from 90o, the image

distortion becomes severer. This requires a robuster calibration process.

2 The two cameras can be located either on the same side (FB [forward-backward scattering] setup, like
it shown in figure 1) or on different sides (FF [forward-forward scattering] or BB [backward-backward
scattering] setup) of the plate. In the first case, the two FOVs are not possible to be the same; while the
second type of setup it is possible to make the FOV almost the same.

4 The Particle Image Velocimetry – Characteristics, Limits and Possible Applications
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−60−40−200204060−60−40−200204060xyCalibration plate inspection:: red = plane 1, green = plane 2, both mapped onto same plane for viewing ease

Fig. 3. Calibration plate images viewed from the two cameras. The viewing angle of the two
cameras in this case is about 30o each.

1.2 Calibration

To calibrate the cameras for stereoscopic PIV, one typically needs to take an image of the

calibration plate (a plate with a two-dimensional array of circular or cross-shaped markers,

which is necessary for correcting distortions), then shift the plate in the plane-normal direction

for a small amount and take a second image of it. The amount of shift should be comparable

to the laser sheet thickness, as mentioned above, typically around 2 − 5mm, depending on

and limiting by various situations. Because the amount of shift needs to be very accurate, it is

recommended to use a two-level calibration plate as it shown in figure 3, without any need to

shift.

To take into account the possible distortion, a third-ordered polynomial fitting function is

applied for mapping the global coordinates of the markers on the plate to the associated pixel

locations of them. One can also adopts higher ordered polynomial functions, but usually

third-order is sufficient. If a third-ordered polynomial function is used, the mapping function

typically looks like equation 4, as used in Lavision (2007).

[
X

Y

]
=

[
ao + a1s + a2s2 + a3s3 + a4t + a5t2 + a6t3 + a7st + a8s2t + a9st2

bo + b1s + b2s2 + b3s3 + b4t + b5t2 + b6t3 + b7st + b8s2t + b9st2

]
, (4)

where X and Y are physical coordination array of the markers on the calibration plate, with

the image size nx × ny, the origin location (xo, yo) and the normalized pixel location:

s =
2(x − xo)

nx

t =
2(y − yo)

ny
. (5)

To solve this matrix for the unknown coefficients, one needs sufficient number of markers; if

there are more markers than necessary, a least-squares fit will be applied. This fitting process is

carried out for each image in the two different normal (z) locations for both cameras (two sets

of coefficients for each camera). After the calibration is done, the angles of the line-of-sight

5Stereoscopic PIV and Its Applications on Reconstruction Three-Dimensional Flow Field
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Fig. 4. The flowchart of the computation of 2D3C vector fields adopted in Lavision (2007).

(α in equation 3) of each camera should be known, or one can use this mapping function

to reconstruct the 2D3C velocity field directly based on the two-dimensional PIV vectors

calculated in each camera, e.g. figure 4 illustrates how Lavision (2007) does this computation.

6 The Particle Image Velocimetry – Characteristics, Limits and Possible Applications
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−60−40−200204060−60−40−200204060xyCalibration plate inspection:: red = plane 1, green = plane 2, both mapped onto same plane for viewing ease

Fig. 5. The concept of disparity vectors, due to the mis-alignment of the laser sheet and the
calibration plate surface. Figure taken from Lavision (2007).

1.3 Self-calibration

Stereoscopic self-calibration is useful when there is an imperfection in the calibration process

discussed in section 1.2: the laser sheet may not align perfectly with the calibration plate

surface. In this case, disparity vectors will appear when the images of camera 1 and camera 2

are dewarped3 and combined by the original calibration; see figure 5. The original calibration

coefficients (in the third-ordered polynomial function) will be modified and updated after

self-calibration iterations such that the length of the disparity vectors will be minimized

(ideally zero disparity vectors everywhere).

The prerequisite for self-calibration is that the calibration process should be done fairly well

and one has about 20 or more good quality4 particle field images from the stereoscopic

recordings for the purpose of statistical convergence. A single particle image is typically

divided into a grid of 7 × 7 (or more) sub-windows. In each of these windows, a

two-dimensional disparity vector is calculated by seeking the highest disparity signal in the

cluster (with respect to the centre of the window). A typical disparity map of an image is

shown in figure 6. Based on the disparity map generated by such figures, the calibration

coefficients are updated. Then this updated calibration coefficients are used to compute an

updated disparity map, and after which calibration will be updated again. Usually a good

self-calibration process requires two to three such iterations. To search the possible matching

particles, a method similar to particle tracking technique is used (Wieneke, 2005; 2008).

1.4 Focusing problem

Because the two cameras view the FOV at an angle, usually Scheimpflug adapters are needed.

When the object, lens and image planes intersect, the FOV in the object plane will be in

focus. Depending on the limits of different types of the Scheimpflug adapters, compensation

between the camera aperture size and the laser light intensity needs to be considered. The

3 The concept of dewarping is not introduced in this chapter, readers are referred to Lavision (2007);
Prasad (2000); Raffel et al. (2007).

4 Good quality particle images should be well focused, with proper particle size and density and low
background noise level, etc. Image preprocessing is also recommended before applying self-calibration.

7Stereoscopic PIV and Its Applications on Reconstruction Three-Dimensional Flow Field
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Fig. 6. A typical disparity map. The image window is divided into 7 × 7 sub-windows. From
the peak intensity of each sub-window, a two-dimensional disparity vector can be defined,
with respect to the centre of the sub-window. Each sub-window shown in this figure is
typically 11 × 11 pixel2.

viewing angle between a single camera and the laser sheet normal direction usually should

not be larger than 60o, above which the distortion can be too strong and the focusing is difficult

even a Scheimpflug adapter is used. In some circumstances, prisms (Prasad, 2000) can also be

adopted to help reduce the distortion.

2. An application of stereoscopic PIV: three-dimensional velocity field

reconstruction

This section presents an application of stereoscopic PIV to reconstruct a three-dimensional

turbulent vortex ring. It is a critical assessment of such an application because a turbulent

vortex ring is fully three-dimensional with no preferential direction in the azimuthal plane.

Moreover, there is an important property- the translational velocity of a ring is unambiguous.

A vortex ring in laboratory studies is usually generated by an impulsive ejection of fluid

through a nozzle or an orifice into a quiescent environment. Circulation based Reynolds

number is defined as:

Re =
Γslug

ν
=

UpL

2ν
. (6)

8 The Particle Image Velocimetry – Characteristics, Limits and Possible Applications
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where Up is the piston velocity and L is the length of the discharged slug, Γslug is the slug

circulation and ν is the kinematic viscosity of the fluid.

Vortex rings which are well-formed at the nozzle or orifice exit, under certain conditions,

undergo an instability along the core circumference in the form of azimuthal waves. This

type of instability is an important feature of the transition from laminar to turbulent rings.

Although previous investigations of this type of waviness have been made in laminar rings

or rings during the transition stage from laminar to turbulent Maxworthy (1977); Saffman

(1978); Shariff et al. (1994); Widnall & Tsai (1977), the results show that azimuthal waves are

also observed in fully turbulent vortex rings and this technique can successfully capture this

feature.

2.1 Theoretical background

2.1.1 Taylor’s hypothesis

Taylor’s hypothesis (Taylor, 1938; Townsend, 1976) states that “if the velocity of the airstream

which carries the eddies is very much greater than the turbulent velocity, one may assume that

the sequence of changes in U at the fixed point are simply due to the passage of an unchanging

pattern of turbulent motion over the point”. In other words, if the relative turbulence intensity

u′ is assumed to be small enough compared to the mean advection speed U:

u′

U
≪ 1, (7)

the time-history of the flow signal from a stationary probe can be regarded as that due to

advection of a frozen spatial pattern of turbulence past the probe with the mean advection

speed U, i.e.

u (x, t) = u (x − U∆t, t + ∆t) , (8)

where ∆t is the time delay and should not be a too large value. Taylor’s hypothesis is

effectively a method to transfer the time dependent measurement results to a spatial domain.

The selection of the correct velocity scales relevant to turbulent vortex rings are discussed in

section 2.3.

2.1.2 Similarity model

All the figures presented in this chapter are plotted in the similarity coordinates derived from

the similarity model (Glezer & Coles, 1990). The reason is because the original model was

derived from Taylor’s hypothesis. Any structure plotted in the similarity coordinates contains

not only spatial but also temporal information: it can be transferred back to the physical

coordinates at any point in a series of time history. It has been proved in Gan & Nickels

(2010) that rings produced in this study are well predicted by this model.

If a proper pair of spatial and temporal origins zo, to can be found, the length and velocity

scales in a turbulent vortex ring in physical space can be shown to be self-similar, and they

can be written in terms of the similarity variables, i.e.

ξ = (z − zo)

[
ρ

I (t − to)

] 1
4

η = r

[
ρ

I (t − to)

] 1
4

; (9)

9Stereoscopic PIV and Its Applications on Reconstruction Three-Dimensional Flow Field
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−60−40−200204060−60−40−200204060xyCalibration plate inspection:: red = plane 1, green = plane 2, both mapped onto same plane for viewing ease

Fig. 7. Schematic diagram of the vortex ring generator. The diagram is not to scale. The
coordinate system adopted in this experiment is also shown, where z = 0 is set at the orifice
exit.

and from the streamfunction,

U = u
( ρ

I

) 1
4
(t − to)

3
4 V = v

( ρ

I

) 1
4
(t − to)

3
4 , (10)

where I is the hydrodynamic impulse (assumed invariant); ρ is the density (a constant when

incompressibility is assumed); u, v are the radial and axial velocity components respectively;

U, V are the corresponding non-dimensional velocities. ξ and η are the non-dimensional

similarity quantities for the length scales.

2.2 Experimental setup

A simple sketch of the ring generator is presented in figure 7.

The rectangular tank is made of 15mm thick perspex with a bottom cross-sectional area of

750mm × 750mm and a height of 1500mm. The top of the tank is uncovered. The tank is

therefore transparent from all directions of views. Other important geometrical parameters of

the vortex generator are labelled in figure 7 and is described in Gan et al. (2011).

10 The Particle Image Velocimetry – Characteristics, Limits and Possible Applications

www.intechopen.com



Stereoscopic PIV And Its Applications On Reconstruction Three-Dimensional Flow Field 9

The motion of the piston is driven by a stepper motor. The motor is able to drive the piston to

move at a constant speed of up to 1000mms−1 with an acceleration and deceleration of about

1500mms−2.

The effective Re is set to 41280 and L/D = 3.43 in order to match the conditions in Glezer

& Coles (1990) and Gan & Nickels (2010), because parts of the reconstruction validation will

rely on the data in them. The piston velocity programme is approximately a top-hat shape:

the piston acceleration/deceleration time is about 10% of the piston total movement duration.

Rings produced at this combination of Re and L/D are well in the turbulent region on the

transition map (see Glezer, 1988).

In this arrangement, the PIV (laser sheet) plane is located 6D (six orifice diameters)

downstream of the orifice exit. The PIV system is provided by LaVision Ltd: a pair of

high-speed Photron APX cameras are used as the image recording devices and the particle

illumination is realised by a Pegasus PIV Laser which consists of a dual-cavity diode pumped

Nd:YLF laser head and is capable of emitting a beam of 527nm wavelength and 10mJ energy.

The laser beam is converted to a sheet by passing through a cylindrical diverging lens. The

thickness of the sheet can be adjusted by changing the separation of a pair of telescope lenses

housed before the cylindrical lens and is set to about 4 − 5mm. The flow is seeded by 50µm

diameter, silver-coated hollow glass spheres.

After the changes in refractive index are considered, the effective angle between the two

cameras is approximately 120o. The two cameras run in single-frame single-exposure mode,

and the operation frequency is set at f = 600Hz giving a ∆t = 1.67 ms. The interrogation

window size for time series cross-correlation process is set to 16× 16 pixel2 with a 25% overlap

to give a spatial resolution of ∆x = ∆y ≈ 1.70mm (based on vector spacing, ≈ 3.4% D) in the

PIV plane. The FOV of the PIV plane is about 230 × 164 mm2.

2.3 Accuracy justification

An important prerequisite for the reconstruction of a turbulent vortex ring using Taylor’s

hypothesis is to identify appropriate scales of the fluctuating and convective velocities in

equation 7.

The relevant convective velocity in this work is the ring advection speed, or celerity, and is

obtained from the independent two-dimensional PIV results in Gan & Nickels (2010). The

centroid-determined vortex ring radii r and celerities ut for 50 realisations are reproduced

in figure 8. From this figure the spatially averaged celerity (� data) at various streamwise

locations is obtained between z = 5.5D to z = 6.5D and the ensemble averaged ring celerity

is obtained by a least-squares fit (blue line) giving: ut = 270.34 mms−1 ≈ 0.54 Up.

The ring celerity also affects the spatial resolution in the z direction, ∆z. The reconstruction of

the planar velocity fields in the z direction is selected to give a similar spatial resolution in the

x − y plane.

The most straight-forward reconstruction process requires the entire cross-sectional area of the

ring bubble to pass normally through the PIV plane with constant celerity. Figure 8 shows that

11Stereoscopic PIV and Its Applications on Reconstruction Three-Dimensional Flow Field
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Fig. 8. Ring radius r and celerities ut as functions of streamwise distances z for the ensemble
of 50 realisations from two-dimensional PIV measurements. The grey lines are the traces of
each of the 50 realisations; �: the ensemble averaged quantities; −: the first order least
squares fit of �. Data are taken from Gan & Nickels (2010).

this condition can be approximated by the ensemble averaged values.5 The celerities of single

realisations are denoted by the grey traces and are always scattered as the ring centroid is

changed by the turbulence. This results in a variation of ±10% of the � value at each location.

If the averaged Reynolds stresses −V′V′ of the ring bubble is used (from Gan & Nickels, 2010),

taking the square root of these and the similarity value of the ring celerity, Ut = 6.4 (which

can be scaled from ut in physical space by equation 10), for rings with a Re = 41280 (see Table

1 in Gan & Nickels, 2010), equation 7 gives:

u′

U
=

V′

Ut
<

0.78

6.4
≈ 0.12. (11)

The maximum error can be estimated using the maximum fluctuation within the ring bubble

V′ which gives V′/Ut ≈ 0.33. However, only small contour regions within the ring bubble

have this value and these regions will have the largest uncertainty in the reconstruction. A

rough estimation of the contribution from ut fluctuation can also be given by figure 8, which

is u′
t/ut < ±10% , which according to equation 11 gives a value of 0.2.

A more rigorous method to assess the validity of Taylor’s reconstruction is to check whether

the material derivative of the velocity vector Du/Dt ≈ 0 which is satisfied if ut ≫ u′, v′

neglecting pressure and viscous terms. The 2D PIV results in Gan & Nickels (2010) are used for

5 Ideally the instantaneous convection velocity of the ring should be used. This requires simultaneous
measurements normal to the measurement plane which were not available.

12 The Particle Image Velocimetry – Characteristics, Limits and Possible Applications
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Fig. 9. Test of Taylor’s hypothesis by comparing (a):
〈

ut
∂u
∂z

〉
, (b):

〈
− ∂u

∂t

〉
, (c):

〈
ut

∂v
∂z

〉
and

(d):
〈
− ∂v

∂t

〉
. Data obtained from two-dimensional PIV measurements. If the Taylor’s

reconstruction is perfect, contours of these two terms will be identical.

this purpose. The convection terms

〈
ut

∂u

∂z

〉
and

〈
ut

∂v

∂z

〉
are compared with the acceleration

terms

〈
−

∂u

∂t

〉
and

〈
−

∂v

∂t

〉
in their non-dimensional forms in figure 9, where

〈
ut

∂u

∂z

〉
=

(
ut

∂u

∂z

)( ρ

I

) 1
4
(t − to)

7
4

〈
−

∂u

∂t

〉
=

(
−

∂u

∂t

)( ρ

I

) 1
4
(t − to)

7
4 . (12)

Figure 9 shows excellent agreement between the ensemble averaged acceleration and

convection terms which lends confidence to the validity of the reconstruction. The good

agreement obtained in the similarity coordinates means that Taylor’s hypothesis is valid over

the rings’ time history where the similarity transformation holds.

13Stereoscopic PIV and Its Applications on Reconstruction Three-Dimensional Flow Field
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Fig. 10. An individual vortex ring recorded by two-dimensional PIV is used to test the
Taylor’s reconstruction process. (a), (b), (c): the three continuous snapshots showing the left
core of a ring passing through the 6D station. The layers of the two-component velocity
information at the 6D station are then stacked to reconstruct the core, in (d), in which the
ensemble averaged ring celerity 270.34 mms−1, instead of the one for this particular ring, is
used. The vorticity contour levels: -240.0 (10.0) -20.0; → denotes the in-plane velocity vectors.

Figure 10 (a) to (c) plots an image sequence showing a single vortex ring core passing through

the 6D station which are then used to reconstruct the vortex core in (d). The velocity vectors

are overlaid with vorticity contours. Comparing (a) to (c) with (d) shows that the peak

vorticity of the core is basically retained. The vorticity distribution of the inner core shows

a slight change in figure 10 (c) but these are small changes and close to the maximum spatial

resolution. The instantaneous vorticity is naturally very sensitive to the velocity fluctuation

however the core radius remains similar, within ±10%, see figure 11. The core is compact

being about 0.2D in size, passes through the 6D station within about 37 ms. The vorticity

surrounding the core is weaker and undergoing shedding-reattachment processes at a fairly

fast pace (Gan, 2010). Any high speed fluctuations in the weaker regions are less frozen than

the core but their features are well captured in the reconstructed image in figure 10 (d).

14 The Particle Image Velocimetry – Characteristics, Limits and Possible Applications
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Fig. 11. The core radius variation as the ring passes through the testing station for all the 50
realisations from two-dimensional PIV measurements. The grey lines are the traces of each of
the 50 realisations. r(δt) denotes the radius of a single realisation as a function of the time t;
〈r〉 denotes the average radius of all the 50 rings. The threshold to determine the radius is set
as 100s−1, which is about 50% of the peak vorticity intensity, see figure 18. Note that the core
passes through the testing station within ±19ms.
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Fig. 12. The circulation variation as the ring passes through the testing station for all the 50
realisations from two-dimensional PIV measurements. The grey lines are the β(t) traces for
each of the 50 realisations, which is calculated by equation 13. The ±10% lines are also
shown by the −− traces.

As the largest velocity fluctuations occur around the vortex core, the spatially averaged

velocity of 50 realisations can be compared with the reconstructed value. To estimate the

spatially averaged velocity error, a quantity β(t) is introduced:

β(t) =
Γ (t)− Γre

Γre
=

∮

C
u (t) · dl −

∮

C
ure · dl

∮

C
ure · dl

, (13)

where Γ is the circulation obtained along a closed loop C enclosing an area of 2D and 1.5D

in streamwise and spanwise directions respectively around each vortex core similar to that

shown in figure 10. (t) is the time when the ring passes through the 6D station, similar to that

shown in (a), (b) and (c) of figure 10. The subscript ‘re’ indicates the reconstructed ring at the

6D station as shown in (d) of figure 10. The quantity β(t) is determined for 50 realisations and

shown in figure 12.

15Stereoscopic PIV and Its Applications on Reconstruction Three-Dimensional Flow Field
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As the loops are of the same size, and the circulation is conserved, β(t) compares the

spatially-averaged variation between u(t) of each realisation with the reconstructed one.

The resulting error is less than ±10%, a similar value to the core dispersion in figure 8 and

radius variation in figure 11. The results from these tests show that the expected error of the

reconstruction is within ±10%.

A more direct assessment is to investigate the divergence field of the reconstructed

three-dimensional vortex ring. Figure 13 shows the p.d.f. (probability density function) of

the divergence of the flow field, where in (b) and (d) the divergence is normalised by the

norm of the local vector gradient tensor (∇u : ∇u)1/2; in (c) κ is defined by:

κ =
(∂u/∂x + ∂v/∂y + ∂w/∂z)2

(∂u/∂x)2 + (∂v/∂y)2 + (∂w/∂z)2
. (14)

It can be seen that most of the data points locate in regions very closed to divergence free,

bearing in mind that no experiment is divergence free, due to the finite spatial resolution.

2.4 The reconstructed velocity field

A typical instantaneous stereoscopic PIV velocity - vorticity field is shown in figure 14. Only

the in-plane velocity vectors are plotted from which the overlaid vorticity contours ωk were

determined. The level of turbulence is clearly captured by the asymmetry in the vector field

and the fluctuations of vorticity.

In order to visualise the vortex ring structure, an appropriate scalar which might be used after

Taylor’s reconstruction of velocity field is the vorticity (∇× �u ) magnitude. The structure of

the vortex ring bubble and the wake can then be observed in figure 15 with the strong level of

turbulence illustrated by the degree of the wrinkling along the isosurfaces and streamlines.

It must be pointed out that in order to visualise the ring bubble by streamlines, the ring

needs to be put in a stationary frame of reference. This is achieved by simply subtracting

the mean advection velocity of the ring at the PIV testing location6 from the instantaneous

velocity at every data point which has no effect on the vorticity field. In figure 15 the extent

of irregularity in the streamline patterns can be distinguished upstream and downstream of

the ring bubble with localised areas of high vorticity found in the wake. A wavy core is also

observed, confirming the existence of azimuthal waves.

In order to visualise the relationship between the high and low vorticity fluctuations around

the vortex ring core and the outer bubble respectively, two sections of the selected bubble

vorticity isosurface are shown in figure 16. As expected the low intensity wraps around the

core. Tube shaped vorticity isosurfaces of low intensity are shed into the wake showing some

agreements with the numerical simulations of Bergdorf et al. (2007) and Archer et al. (2008)

which show hairpin vortices being shed from the vortex bubble into the wake. Although,

hairpin structures were not clearly observed in the current study. This could be due to

the lower spatial resolution of the experiment or the different Reynolds numbers and initial

conditions compared with the numerical simulations.

6 It is assumed here that the ring advection velocity in the vicinity of the PIV testing location is constant.
Figure 8 shows that it is a fairly reasonable assumption.
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Fig. 15. A three-dimensional vorticity magnitude contour. Isosurface levels are 150s−1,
100s−1, 50s−1. Streamlines are shown in the second figure. The colour bar shows the
streamwise velocity level on the core surface.

18 The Particle Image Velocimetry – Characteristics, Limits and Possible Applications

www.intechopen.com



Stereoscopic PIV And Its Applications On Reconstruction Three-Dimensional Flow Field 17

−60−40−200204060−60−40−200204060xyCalibration plate inspection:: red = plane 1, green = plane 2, both mapped onto same plane for viewing ease

Fig. 16. Isosurfaces of the three-dimensional vorticity magnitude, showing the high intensity
core and two portions of the low intensity vorticity blobs wrapping around the core and shed
to the wake. Isosurface intensities: 150s−1 and 90s−1. Colour code on the core surface
indicates the streamwise vorticity ωk.

The three components of the vorticity, ωi ωj ωk in the two central cross-sectional planes

y − z and x − z are plotted in figure 17. The reconstructed azimuthal vorticity contours

in (a) and (b) can be compared with the instantaneous vorticity contours obtained from

the two-dimensional PIV results, shown in figure 18. Note that Figure 17 and 18 belong

to different realisations. Because the rings are very turbulent, contour shapes are noisier

especially for low level vorticity, and are expected to be different for different realisations due

to the stochastic nature of the flow. However, the main features and the maximum intensities

show good agreements with the main difference being that the reconstructed fields show less

low level azimuthal vorticity. A long streamwise vorticity ωk structure is observed in the

three-dimensional view in figure 19, which agrees with the findings in Bergdorf et al. (2007).

In the ring bubble region, the streamwise vorticity are found to wrap around the vortex core, in

a manner such that the positive and the negative valued vortices are separated by each other.

This can be seen by the colour code on the core isosurface in figure 16 and shows reasonable

agreement with the results in Archer et al. (2008). However, the structure of the vorticity is

difficult to identify in the three-dimensional view due to the effect of turbulence which breaks

the isosurfaces thresholded at ωk = 30s−1 into pieces. The colour code on the ωk isosurface

indicates the strength of the streamwise stretching term Sk = (�ω · ∇)�uk. The positive value

of ωk reflects the stretching of the streamwise vortex tubes. The negative valued streamwise

vortex tubes are not shown but the structure and the stretching strength of these tubes was

found to be similar.
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Fig. 19. The streamwise vorticity wraps around the core. The core position is shown by the
yellow coloured isosurface of vorticity magnitude ωm = 140s−1. The vorticity isosurfaces
wrapping around the core are ωk = 30s−1. Colour code on ωk surface indicates the
positive-valued streamwise (axial) vortex stretching term Sk.
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2.5 The azimuthally averaged quantities

Statistically speaking, an ensemble-averaged vortex ring bubble tends to be axisymmetric7.

It is interesting to compare the azimuthally averaged velocity components to those by

two-dimensional ensemble averaged ones, which may also serve as a validation of the

technique.

The azimuthally averaging process is applied in a cylindrical coordinate system in which the

process begins at θ = 0 and ends at θ = 2π. The first step is to locate the ‘best’ centre point, or

a proper axis of symmetry as the results from the azimuthally averaging process will depend

heavily on the location of this axis. The axis is found by a best r.m.s. fit of the core area to a

circle. After this, data format in Cartesian coordinates is converted to cylindrical coordinates.

More details can be found in Gan et al. (2011).

The velocities are non-dimensionalised by equation 10 and presented in the similarity

coordinates calculated from equation 9. Figure 20 shows the dimensionless velocities Uθ

(radial), Vθ (axial), Wθ (azimuthal) and the dimensionless vorticity ω̂θ , where:

ω̂θ =
∂Vθ

∂η
−

∂Uθ

∂ξ
, (15)

and θ here denotes an azimuthally averaging result, ξ, η denote the axial and radial direction

in cylindrical coordinates respectively.

In figure 20, noise increases towards the centre due to the reduced number of data points

for averaging8. However, the main area of interest is obviously the core region. The central

region exhibits low azimuthal velocities in figure 20 c): a long region of positive mean velocity

is observed in the wake while a weak negative mean velocity can be observed in the core

centre region. The presence of a mean velocity in the core region is not surprising, a number

of researchers have also observed such behaviour, nevertheless the magnitude is considerably

smaller than both the convection velocity Vθ and the radial velocity Uθ components shown in

figure 20 a) and b). The opposite sensed mean velocity in the inner region can be partly due

to the noise and partly due to a possible mechanism of conservation of angular momentum

of the vortex ring bubble. The streamline pattern in figure 15 also suggests the presence of a

mean azimuthal velocity.

The dimensionless circulation Γθ can be computed by equation 16 from the contour plot in

figure 20 d).

Γθ =
∫

S
ω̂θ dξdη, (16)

where S denotes the entire area of the FOV in the similarity coordinates. A value of 7.08 is

found, which is similar to the circulation from the two-dimensional PIV results, 6.87 (see Gan

& Nickels, 2010).

7 If one produces a large number of turbulent vortex rings from a circular orifice, and does an ensemble
average, the resultant velocity field is approximately axisymmetric.

8 Recall that the raw data is stored in the Cartesian coordinates; towards smaller radii, there are less data
points.
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Fig. 20. The mean structures of velocity and vorticity calculated by the azimuthally
averaging process: averaging along the θ direction in similarity coordinates. Contours shown
are Uθ (radial), Vθ (axial), Wθ (azimuthal) and ω̂θ (azimuthal) in (a), (b), (c) and (d),
respectively; the subscript θ denotes that the corresponding quantity is calculated by the
azimuthally averaging process.

If the azimuthally averaged velocity components make sense it is also possible to compare the

turbulence quantities, one can refer to Gan et al. (2011) for more details.

The turbulence production is believed to be closely related to the vortex stretching, this

mechanism is expected to take place in the ring core and bubble windward regions (Gan &

Nickels, 2010). The stretching effect can be assessed via the vorticity equation. In Cartesian

coordinates, the stretching term (�ω · ∇)�u represents the vortex stretching in three principal

directions, Si, Sj, Sk: ⎛
⎝

Si

Sj

Sk

⎞
 = (�ω · ∇)

⎛
⎝

ui

uj

uk

⎞
 , (17)

on ωi, ωj, ωk respectively.

Because the flow field of a vortex ring is close to axisymmetric, the stretching of the vortex

tubes in the windward bubble surface is expected to be orientated in the radial direction (due

to the mean velocity direction). To better illustrate the stretching effect, the vorticity and

the stretching vector in equation 17 are transferred from Cartesian coordinates to cylindrical

coordinates, as for velocities: ω (i, j) 
→ ω (θ, r), S (i, j) 
→ S (θ, r), ωk and Sk are unaffected.
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Fig. 21. Vortex ring core ωθ = −140s−1 shown by the yellow coloured isosurface; and the
radial vorticity ωr = ±30s−1. The colour code on the ωr isosurface shows the magnitudes of
the radial stretching term |Sr|, with the positive valued Sr dyed on the positive ωr and
negative valued Sr dyed on the negative ωr.

The radial vorticity ωr is plotted in figure 21, with the radial direction stretching term Sr

coloured on the isosurface. Figure 21 supports the expectation that vortices are being stretched

in the radial direction and this stretching mechanism prevails on the windward side of the

bubble. The compression of vorticity, i.e. the correlation of the opposite sensed vorticity and

the stretching value, is much weaker (less than 20%) compared with stretching and is not

shown here. The vorticity in the windward bubble region can also be seen in figure 17, in

Cartesian coordinates. The streamwise stretching, which has been mentioned in section 2.4,

is believed to be responsible for the turbulence production in the wake region however this is

very small overall.

3. Conclusions

The first part of this chapter introduces the 2D3C working principle of stereoscopic PIV

and its calibration procedure and its self-calibration to increase the accuracy level. The

second part of the chapter presents an application of stereoscopic PIV for reconstructing a

fully three-dimensional vortex ring. It has shown that by fixing the laser sheet position

and hence the two cameras’ FOV, and reconstructing the fully three-dimensional velocity

field by Taylor’s hypothesis, the accuracy of the results is limited. In other words, due

to the intrinsic nature of Taylor’s hypothesis, the resultant velocity field is never really

instantaneous. However, there are various aspects which can increase the potential accuracy

of such reconstruction and thus deserve further discussion.

3.1 Possible accuracy improvements

In order to freeze the ring structure better, the results of equation 11 needs to be closer to zero.

Nevertheless, it is expected that for fully turbulent vortex ring, the level of turbulence intensity

u′ scales with Reynolds number (because u′ ∼ Up), hence scales with vortex ring circulation
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Γ and the advection speed ut. Simply increasing Reynolds number will not improve the

situation. Certain treatments independent of the ring will be necessary. A possible way

is to move the PIV measurement (cameras and the laser sheet together) against the ring

advection direction - an ‘active scanning’ process. Equation 11 shows that by simply moving

the PIV measurement plane at the same speed as the ring, it can bring down the ratio u′/ut

significantly (doubling the denominator). Moreover, to resolve the wake correctly, an active

scanning seems to be compulsory.

The next question is that how fast the scan speed is optimal. Definitely scan with an infinite

speed gives no error. However, first it is not allowed, even it is capable to; second, it may not

be necessary in applications where Reynolds number is not too high. A proper quantity can be

searched to judge what scan speed gives satisfactory accuracy level. For instance, a possible

candidate can be the spatial velocity correlation tensor, or the structure function, which is

expected to converge as the scan speed increases. Thus, a scan speed can be considered

adequate and economic (in terms of hardware requirement and computational expense),

above which the increase of the accuracy is less significant while the cost-benefit ratio is high.

In different flow problems, the optimal scan speed is expected to vary. Similar to the accuracy

assessment given in section 2.3, a crude estimation of the scan speed could be made from the

eddy turn over time: if the mean flow is of the only interest, a moderate scan speed should be

enough; if small eddies are to be resolved, higher speed is required.

It has been pointed out that there exists an upper limit of the active scanning speed, it is not

allowed to go to infinity. In other words, it is never possible to capture a truly frozen flow field.

It is because if the flow is really frozen, there will be no particle displacement, thus the PIV

fails to work. In order to allow a particle displacement to compute the velocity, a minimum

time duration of PIV ∆t has to be given at one measurement station along the scanning path.

In this aspect, this PIV ∆t, despite its shortness - in order of millisecond, limits the highest

scan speed.

Nevertheless there is a potential solution for this limitation: a second stereoscopic PIV system

can be introduced, aligning with the first system in the scanning path, and with a spacing

l to the first one; see figure 22.9 Thus the value of l/Uscan effectively gives the PIV ∆t.

Theoretically, this dual-system arrangement allows the choice of the Uscan value to a much

higher value: at a fixed Uscan, PIV ∆t can be adjusted by setting the spacing l between the two

systems (two laser sheets) very carefully. The highest scan speed in this case is then limited

by the required spatial resolution in the scan direction, which is much more relaxed than the

limit from the particle displacements. The high speed cameras available nowadays can work

at several kHz frame rates, which allows very high scan speed while maintaining good spatial

resolution in the scanning direction. By choosing a very high value of Uscan, one approaches

a truly frozen and instantaneous flow structure.

3.2 Comparison to tomographic PIV

The state-of-the-art tomographic PIV is also a candidate to provide truly instantaneous

three-dimensional velocity information of a flow field. Its working principle is developed

9 Vortex ring study is definitely not the only customer of this method. It can be applied to many general
flow problems. Figure 22 shows an application on a turbulent jet flow.
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Fig. 22. A simple sketch of the proposed scan system including dual stereo recording PIV
systems, denoted in the figure by S1 (M1) and S2 (M2). The two systems can be mounted on
a rail-carriage system, so that they can move together, at a designed speed Uscan. M1 can be a
beam splitter. l denotes the spacing of the two systems, U denotes the scan speed Uscan. This
scan system can be applied to any flow problem. A sample flow field - turbulent jet flow - is
shown.

from the medical tomographic applications. The illuminated particle volume is viewed

by several cameras (the more cameras used, the more accurate the results will be) at the

same time. Then the most-likely three-dimensional particle distribution in the volume is

reconstructed by the tomographic algorithm, based on the intersections of lines of sight giving

the estimated particle location; see Elsinga et al. (2006) for more details. Albeit its robustness

of measuring the truly instantaneous three-dimensional velocity field, its major weakness lies

in its relatively low signal-noise ratio compared to the two-dimensional and stereoscopic PIV.

It is because tomographic reconstruction is an inverse problem, i.e. the three-dimensional

information is reconstructed from its two-dimensional projections, regardless of how many

cameras are used, the error or the noise (in particular ghost particles, which will be discussed

later below) is inevitable.

In addition to this intrinsic problem, tomographic PIV would also encounter some difficulties

when a large volume of flow is to be examined. To reach the same FOV as the current

experiment, a minimum required FOV will be 100mm3. This means that first of all, this volume

needs to be illuminated; the emission intensity of practical lasers would be very weak when it

is diffused to such a large volume.

Second, it would be extremely difficult for the cameras to be focused on such a deep FOV

(which means the aperture needs to be very small) while accepting enough light during

very short laser emission time. Therefore, if tomographic PIV is to be used, one can only

produce small scaled flows, but small scaled flow reduces the spatial resolution, probably

to an undesired level. The spatial resolution is also limited by the interrogation volume

(similar to interrogation window for planner PIV configuration) size. For the practical sparsity

level of particle field, the commonly acceptable interrogation volume size is typically 48

voxel3, while the planner PIV can easily reach 16 pixel2. Thus the absolute spatial resolution
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limit of tomographic PIV is normally much lower than that of stereoscopic PIV with typical

voxel − pixel ratio of unit.

Moreover, although tomographic PIV can also provide temporal-resolved information, its

working principle requires iteration and can only give the most likely (not true) particle

distribution in the FOV (due to the intersection of lines of sight giving ghost particles,

although the cross-correlation signals of which are weaker). This is a considerable error source

of tomographic PIV, among others. In addition, compared with the active scanning method,

with the same amount of information10, to resolve temporal information, it must either be

more computational expensive or less accurate.
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