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ABSTRACT

We examine the impact of return predictability and parameter uncertainty on long-term portfolio alloca-
tions when investors’ utility function quantifies their asymmetric behaviour against expected gains and
losses on risky assets. Allowing for different return generating systems and two investable assets, we ex-
amine the way portfolio allocation to the risky asset evolves over the course of the investment horizon in
the presence of risk asymmetries. We find persisting horizon effects, with stocks appearing progressively
more attractive at longer horizons as opposed to shorter ones. The role of parameter uncertainty also
appears to be prominent in the portfolio choice problem. Accounting for this results in both significantly
lowering the exposure to the risky asset and lessening the horizon effects driven by return predictability.
An equally important aspect of this study relates to detecting a level of disappointment aversion below
which it is optimal for investors to hold zero units of a risky asset. In this regard, our analysis has impli-
cations for the nonparticipation puzzle in stock markets.

Asymmetric risk preferences
Parameter uncertainty
Simulation study
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1. Introduction

Asymmetric risk preferences in investors’ decision making have
been an integral part of the portfolio choice literature at least
over the course of the past two decades (Bellemare, Kroger, & Sos-
sou, 2020; Berkelaar, Kouwenberg, & Post, 2004; Dahlquist, Farago,
& Tédongap, 2017; Gomes, 2005; Schmidt & Zank, 2005). Com-
mon among these studies is their departure from expected utility
(Rabin, 2013, chapter 13) which implies equal treatment of gains
and losses, and subsequently the consideration of frameworks that
reflect asymmetries in the way individuals weigh expected prof-
its and losses in their asset allocation decisions. The incorpora-
tion of asymmetric risk preferences in an asset allocation exercise
is linked to two desirable effects. First, it leads to a theoretically
more sound model that reflects well-documented behavioral biases
of individuals in the face of uncertainty; second and a direct con-
sequence of the aforementioned, it can generate portfolio alloca-
tions that are consistent with the composition of market portfolios
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which would also mirror investors’ expectations on future move-
ments of the participating asset classes.

The most prominent theoretical proposition that codifies indi-
viduals’ attitude towards potential monetary outcomes is prospect
theory (PT, hereafter), which has proved particularly successful
in capturing frequently encountered traits of investors’ behavior
(Barberis & Huang, 2008; Bernard & Ghossoub, 2010; Dimmock &
Kouwenberg, 2010; Kahneman & Tversky, 1979). In PT, investors
are assumed to evaluate the performance of their investments by
anchoring to some historical reference point, engaging in the com-
putation of gains and losses relative to that point. Investors also
respond asymmetrically to gains versus losses—courtesy of loss
aversion—by exhibiting greater sensitivity to losses compared to
gains.

A derivative of PT is the theory of disappointment aversion
(DA, herafter), formally introduced by Gul (1991), which highlights
the role of disappointment in decision making. Disappointment re-
flects the emotional response of individuals to outcomes falling
below their expectations (Bell, 1982; 1985; Summers & Duxbury,
2012) and constitutes one of the most intense and frequently ex-
perienced negative emotions in real life (Schimmack & Diener,
1997; Weiner, Russell, & Lerman, 1979). From an asset allocation
perspective, the impact of DA has been confirmed in a series of

0377-2217/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Please cite this article as: V.E. Kontosakos, S. Hwang, V. Kallinterakis et al., Long-term dynamic asset allocation under asymmetric risk
preferences, European Journal of Operational Research, https://doi.org/10.1016/j.ejor.2023.07.038



https://doi.org/10.1016/j.ejor.2023.07.038
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://creativecommons.org/licenses/by/4.0/
mailto:vasileios.kontosakos@allianz.com
mailto:shwang@skku.edu
mailto:Vasileios.Kallinterakis@durham.ac.uk
mailto:Athanasios.Pantelous@monash.edu
https://doi.org/10.1016/j.ejor.2023.07.038
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.ejor.2023.07.038

JID: EOR

V.E. Kontosakos, S. Hwang, V. Kallinterakis et al.

studies (see Ang, Bekaert, & Liu, 2005; Dahlquist et al., 2017; Field-
ing & Stracca, 2007; Gul, 1991) involving single-period, mostly
static, settings. However, investors’ focus need not be confined
within a single-period, as it may well stretch across multiple pe-
riods involving a variety of horizons (be they shorter or longer
ones), thus suggesting that the impact of DA over asset allocation
decisions may exhibit horizon effects. This, in turn, would necessi-
tate the study of DA in multi-period settings, something that has
to date received little attention in the literature.

This paper aims at addressing this gap in the literature by
formalizing a multi-period dynamic framework in partial equilib-
rium', which allows for sequential investing and reallocation of the
available wealth under the impact of return predictability and un-
certainty around the true values of the parameters used to model
expected movements of the risky asset. The main tool for our anal-
ysis is Dynamic Programming (DP) which allows for recursively
solving investor’s portfolio allocation problem at each investment
horizon, accommodating the stochastically-driven movements of
the risky asset. Doing so would allow one to investigate how DA
preferences affect the decision-making of people who seek to max-
imize their expected utility of wealth over long periods. In our
setup, investors choose portfolio allocations for two investable as-
sets, a risk-free, and a risky asset. Because it is impossible to, a
priori, assert investors’ beliefs as per the return-generation pro-
cess in the market, we consider two possible data-generating pro-
cesses (DGPs). The first one assumes returns are independent and
identically distributed (i.i.d.), and the second one assumes a vec-
tor autoregression (VAR) that uses the dividend price ratio (i.e., the
dividend yield) as its predictor variable. An issue arising from the
above two DGPs pertains to the uncertainty inherent in their esti-
mated parameters and how investors treat it. To assess the impact
of parameter uncertainty, we compare asset allocations to the risky
asset between cases in which parameter uncertainty is ignored and
others where it is considered, for both DGPs.

Our main focus is on whether return predictability and param-
eter uncertainty generate horizon effects (i.e., different portfolio al-
locations at different investment horizons). We provide the the-
oretical foundation for the multi-period dynamic asset allocation
problem along with a detailed simulation study where the effects
of return predictability and parameter uncertainty are considered.
This study presents evidence strongly supporting the role of DA in
defining equity participation (and nonparticipation) regions, partic-
ularly in the long-run, thus contributing to the explanation of the
nonparticipation puzzle. The latter, arises when individuals refrain
from investing in risky assets, in favour of risk-free ones, despite
the historical outperformance of the first over the second. We find
that for every portfolio allocation and level of expected equity re-
turn, there is a critical value of DA below which it is optimal for
a DA investor to hold zero units of the risky asset. More interest-
ingly, we find that DA investors tend to allocate significantly less to
equity compared to investors with isoelastic (power) utility. DA ap-
pears to be powerful in asset allocation at every horizon: we find
that a small increase of the DA coefficient leads to a significant de-
crease in equity holdings in the case of an investor who accounts
for predictability in stock returns.

Our study is comparable with Ang et al. (2005) in the sense
that both deal with portfolio optimization in the presence of asym-
metric risk preferences. Nevertheless, despite Ang et al. (2005) fo-
cusing on the single- or two-period portfolio problem, we are in-
terested in multi-period dynamic portfolio optimization. In doing
so we observe the variability in the composition of the optimal

1 Our approach employs an exogenous price setting, making this study a partial
equilibrium one. Modeling the cash flows can lead to an endogenous price setting,
where equilibrium asset prices are attained and markets clear. For an example of
an equilibrium study, see Lynch (2000).
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portfolio over time as a result of investors’ risk preferences and
the intertemporal evolution of the investment opportunity set. The
main drivers for the latter are the consideration of asset return
predictability and model parameter uncertainty as to the calibra-
tion of the DA portfolio model. Applications of parameter uncer-
tainty in multi-period models are in general limited while, to our
knowledge, parameter uncertainty has not been studied in a dy-
namic programming DA framework.

A knock-on effect of the use of DP in solving dynamic systems
is the expansion of the state space (i.e., the universe of all possible
solutions among which the optimal one lies too) that gives rise to
the known curse of dimensionality of DP. This particularity is un-
likely to emerge in a single- or two-period portfolio problem but
it is relevant to our multi-period long-term dynamic one as the
exponential increment of the state space size makes the problem
numerically cumbersome. Remedy to this is provided by applying
a dimensionality reduction technique discussed in Epstein & Zin
(1989), Kreps & Porteus (1979) and Ang et al. (2005).

With this analysis, we produce a series of original contribu-
tions to the extant literature on investors’ portfolio choices un-
der asymmetric risk preferences, contextualized by predictability
and parameter uncertainty. First, we extend the literature of in-
vestors’ portfolio choices with DA utility by providing optimal eq-
uity participation conditions and nonparticipation regions for port-
folio allocations. Second, we study the portfolio choice problem
for a long-term buy-and-hold investor under return predictability
and parameter uncertainty. Although our study primarily focuses
on dynamic portfolio choice, revisiting the buy-and-hold asset allo-
cation problem for very long investment horizons (up to 40 years)
reveals a number of important implications for the different in-
vestment behaviors of a long versus a short-term DA buy-and-hold
investor. To our knowledge, this specific focus has not attracted at-
tention so far.? Third, we demonstrate how the incorporation of
predictability into asset returns affects portfolio weights at differ-
ent horizons for a dynamic investor and how this can give rise to
horizon effects, in the sense that investors change their portfolio’s
composition taking into account the variability in investment op-
portunities. Finally, we complete our study constructing a Bayesian
framework that incorporates both predictability and parameter un-
certainty to investigate how each of the two properties affect port-
folio compositions in a DA context. Here, the choice of the risky
asset return generator is crucial; for example, the impact of pa-
rameter uncertainty on a dynamic strategy, where returns are i.i.d.,
is not as powerful as that in the case in which predictability is
considered, leading to significantly different portfolio allocations.

2. Literature review

Our research is primarily motivated by extant evidence, accord-
ing to which investors do not strictly adhere to the assumptions
of expected utility theory in their decisions, instead being prone
to viewing choices in a biased fashion, often under the influence
of emotions and cognitive biases, such as mental accounting (i.e.,
the inclination to evaluate portfolio’s assets in isolation; Barberis,
Huang, & Santos, 2001) and framing which can prompt investors to
choose an option that appears attractive on the background of less-
attractive alternatives and not because it is the optimal option (for
a more detailed discussion of the above, see Kahneman, Lovallo,
& Sibony, 2011). Several studies depart from the expected utility
framework to better explain investors’ decision-making under risk,
transforming probabilities into decision weights through nonlinear

2 Dynamic portfolio allocation has, overall, been widely studied, in both discrete
and continuous time (Ait-Sahalia, Cacho-Diaz, & Hurd, 2009; Brandt, Goyal, Santa-
Clara, & Stroud, 2005; Campbell & Viceira, 2002), however none of these studies
considers a utility function that accommodates asymmetric preferences.
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probability functions (see Diecidue, Schmidt, & Zank, 2009; Gon-
zalez & Wu, 1999; Kilka & Weber, 2001 among others). This in
turn generates skewed, instead of symmetric, probability distribu-
tion functions for the expected return of the risky assets which has
implications for the portfolio allocation decisions of market partic-
ipants. For example, in the case of PT, at odds with intuition, an in-
dicative market-observed effect of loss aversion is investor’s grow-
ing appetite for risk when in the domain of losses (they hold onto
their loser stocks hoping for a price rebound) while they become
more risk averse in the domain of gains (they sell their winner
stocks to realize profits, while profits still exist). This in essence
leads investors to sell their winning assets more quickly compared
with their losing ones. Empirical evidence (Grinblatt & Keloharju,
2001; Haigh & List, 2005; Jin & Scherbina, 2010; Locke & Mann,
2001; Odean, 1998; Shapira & Venezia, 2001; Wermers, 2003) sug-
gests that this pattern permeates both retail and institutional in-
vestors’ behavior internationally, yet leads to sub-optimal perfor-
mance. The latter has been ascribed to the effect of short-term
momentum (Jegadeesh & Titman, 1993; 2001) in stock returns,
according to which recent winners (losers) will continue outper-
forming (underperforming) in the near future; this finding, in turn,
suggests that investors in the prospect theory setting should keep
their winners (instead of quickly selling them) and sell their losers
(instead of keeping them).

The derivative DA theory extends the expected utility theory
by relaxing the independence axiom, while retaining the basic fea-
tures of PT (asymmetric preferences, reference dependence, dimin-
ishing sensitivity, and probability weighting). Moreover, it provides
us with better understanding in the way the certainty equivalent of
wealth is chosen and updated. In a DA context, the certainty equiv-
alent of wealth serves as a reference point for investor’s wealth
against which gains and losses are compared, and is updated in an
endogenous way. On the other hand, in PT these points are set ex-
ogenously and are usually equal to the current wealth (the status
quo; see Baillon, Bleichrodt, & Spinu, 2020; Werner & Zank, 2019,
for potential ways reference points can be chosen in PT).

In terms of asset allocation, by deriving the optimal portfolio
comprising a risky and a risk-free asset for an investor who uses
the DA utility function, we extend the DA-related literature. Over-
all, empirical applications of the DA theory have been rather lim-
ited to date, a fact attributed by Abdellaoui & Bleichrodt (2007) to
the theory lacking a method of formally extracting the DA coef-
ficient. To that end, Abdellaoui & Bleichrodt (2007) proposed a
trade-off method, which first derives the underlying utility func-
tion and then, based on the function, extracts the DA coefficient. In
asset allocation setups, Dahlquist et al. (2017) employed DA pref-
erences to derive analytical expressions for measures such as the
effective risk aversion when studying higher moments of return
distributions.

More importantly, we contribute to the growing portfolio choice
literature, which discusses the incorporation of parameter uncer-
tainty into the asset allocation topic. Relevant literature (Avramov
& Zhou, 2010; Barberis, 2000; Bawa, Brown, & Klein, 1979; Kacper-
czyk & Damien, 2011; Kandel & Stambaugh, 1996) integrates sev-
eral forms of uncertainty (model, parameter, or distribution) with
asset allocation decision-making. Recently obtained evidence fur-
ther corroborates the importance of predictability and param-
eter uncertainty for portfolio choices. Branger, Larsen, & Munk
(2013) and DeMiguel, Martin-Utrera, & Nogales (2015) examine
the construction of optimal portfolios under uncertainty about ex-
pected asset returns and find that parameter uncertainty is highly
relevant to portfolio choice. Chen, Ju, & Miao (2014) study the dy-
namic portfolio choice problem when investors face uncertainty
about the model’s specification, incorporating learning to construct
strategies that depart from the Bayesian approach. Hoevenaars,
Molenaar, Schotman, & Steenkamp (2014) test the impact of differ-
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ent uninformative priors on both short- and long-term equity al-
locations, whereas Johannes, Korteweg, & Polson (2014) investigate
the impact of predictability and parameter uncertainty in an ex-
pected utility framework mainly focusing on the impact of volatil-
ity on the portfolio choice problem.

Our paper is structured as follows: Section 3 formally intro-
duces the DA utility and the portfolio allocation framework along
with the definition of the predictability and parameter uncertainty
used in our empirical design. In Section 4, the case of equity non-
participation is discussed followed by a simulation study for the
empirical part of the study in Section 5. Concluding remarks are
discussed in Section 6. A number of online available appendices
can be found as supplementary material to this paper. The inter-
ested reader can have access to technical details for the problem
formulation, the algorithmic procedure, the incorporation of pa-
rameter uncertainty and predictability in the DA asset allocation
context and the performance of algorithmic implementation.

3. Extension of the DA framework

We introduce the theoretical components for the DA optimiza-
tion framework under the present section. In specific, we start
with the definition of the DA utility function (Section 3.1) and
the necessary extensions to accommodate multi-period problems
(Section 3.2). The case of parameter uncertainty is considered sep-
arately in Sections 3.5 and 3.6 after introducing the two DGPs in
Section 3.4.

3.1. A classic DA setup

We define the DA utility employed (see, Ang et al., 2005) in this
study as follows:

1

U(uw) =

Hw o
K ﬁw U(W)dF(W)+A/ UW)dF(W) |, (1)

Hw

where A is the coefficient of DA, bounded between zero and one
(i.e., 0 <A <1); U(-) is the constant relative risk aversion (CRRA)
utility function defined by U(W) =W1!-¥/(1 — y), where W de-
notes wealth; py is the implicitly defined certainty equivalent of
wealth; F(-) is the cumulative distribution function for wealth; and
K is a scalar equal to P(W < uw) +AP(W > uy).2

Eq. (1) was selected as the driver of the portfolio choice prob-
lem because it embodies the main features of the DA theory. First,
it splits the outcomes based on whether they are smaller or larger
than certainty equivalent iy ; second, using the DA coefficient A it
is clear that it penalizes portfolio wealth states better than uy,
while it also skews the probability distribution of W with the
scalar K.* It is expected that uy acts as the reference point in
defining both the scalar factor K and the sum of the integrals in
Eq. (1). The reference point is of no relevance to the portfolio al-
location problem only when A =1 as the DA preference reduces
to CRRA. In practice, given that A cannot be larger than one, any
outcome worse than wy, is weighted more heavily than one bet-
ter than it. Intuitively, asymmetries in risk preferences entail that
downside portfolio movements occur more frequently (i.e., larger

3 For the purpose of our study, the definition of P can deviate from that of the
physical probability measure strictly defined in a probability triple. In practice, we
use the quadrature probabilities provided by a Gauss-Hermite scheme as it is dis-
cussed in the following sections, which are transformed via K.

4 In asset pricing, a slightly modified version of the original DA theory is used
(Bonomo, Garcia, Meddahi, & Tédongap, 2011; Routledge & Zin, 2010) in which DA
utility in Eq. (1) is extended so that an outcome signals disappointment only when
it lies sufficiently below the certainty equivalent. The effect is captured by an addi-
tional coefficient that coexists with the DA parameter A.
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probabilities are assigned) and as a result, they should be relevant
to the DA investor.

Assume two assets, one risky asset and one risk-free asset,
whose continuously compounded returns are denoted by e¥ and e"
respectively. Then the investor’s wealth is defined as W = aX + e,
where « is investment proportion in the risky asset; X = e¥ —e' is
the excess risky asset’s return and the initial wealth is set to one,
because the optimization problem is homogeneous in wealth un-
der the CRRA utility function. When a DA investor allocates her
wealth into assets in order to maximize the DA utility for a single
period, the static optimization problem is

max U (uw). (2)

The above constitutes the asset allocation problem under the as-
sumption of DA utility in a single-period setting.

3.2. Formulation of the dynamic allocation optimization problem
with DA utility

We extend the static setup in Eq. (1) to an equation with time-
dependent wealth, certainty equivalent and probability weighting
for the potential wealth states as captured in K. The aim of this
extension is to derive the expressions that will be converted to the
objective functions used for the portfolio optimization problem. A
dynamic optimization problem with DA utility in a multiple-period
setting is considerably more complex than in a static one, because
at every horizon the optimization routine should take into account
the investment opportunity set for the whole remaining invest-
ment period (as opposed to a one-period forward-looking myopic
strategy), while the certainty equivalent of wealth is itself a func-
tion of each horizon’s optimal decision. The complexity of the op-
timization problem further increases by considering predictability,
which leads to variable investment opportunity sets. We begin by
building the optimization problem for a general utility function de-
fined over wealth U(W) and we then move to dynamic asset allo-
cation with DA utility. In doing so, we have the chance to define
variables that are also used in the DA optimization problem, in a
simpler framework without the additional complexity that comes
from the wealthOdependent utility function.

3.2.1. Dynamic asset allocation with general utility function

Assume the following dynamic asset allocation problem in dis-
crete time in which an agent aims to maximize the expected utility
of the end-of-period wealth Wy as follows:
0 dn3X Eo[U(Wr)], (3)
where o, q,...,¢r_1 are the investment proportions of the
risky asset at times t=0,1,...,T — 1, respectively, and U(W) =
W1-Y/1 — y. In this problem, the investor allocates her wealth at
time t = 0 for T periods, at t =1 for T — 1 periods and so on until
she reaches time t = T — 1, where she invests for a single period.®
Wealth W, is defined as Wy, 1 = W;R;, 1 (a¢), where R, ¢ (a¢) and
o, represent the portfolio return over the period t to t +1 and
the investment weight on the risky asset at time t, respectively.
At time t when the investor seeks to allocate her available wealth
optimally between the risky and the riskless asset in order to max-
imize her expected utility, the optimization problem becomes

max Ec[UWe1Q7 1 )] (4)
where Qf ;= Rr(af_)Rr_1(05_y) - Reya(oy, ) represents the

aggregate return-to-go over the investment horizon generated by

5 This problem mimics the optimization problem that pension fund managers
face over multiple periods, (Xie, Hwang, & Pantelous, 2018, e.g.,).
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the optimal risky asset allocation o 1, @yq, .-
mizes investor’s expected utility.

Using dynamic programming, we can solve the problem at time
t =T —1 for the asset allocation decision for the period T —1 to T.
Continuing recursively, we can solve the asset allocation subprob-
lem at time T — 2 using the solution to the problem at T — 1, un-
til we reach time t. This procedure derives a final solution for the
portfolio allocation to the risky asset o, o, 1, ..., ar_1 that will be
optimal as guaranteed by the principle of optimality in dynamic
programming.® For the power utility function, the objective func-
tion in (4) takes the form of

.,ar_1 that maxi-

14

Backward induction suggests that Q, ; ; represents the optimal in-
vestment decision between times t +1 and T that maximizes the
expected utility. We calculate the optimal investment proportions
of the risky asset at every time step of the investment period as

Wl
"L‘:‘Xﬁf[l = <Q:m>”]. (5)

af = AgMaXE, [W;‘K(Q:H.TW} ®)

3.2.2. Dynamic asset allocation with DA utility

Having defined basic building blocks of the optimization setup,
we now turn to the portfolio optimization problem under DA util-
ity preference which is in-scope of the study. DA utility incorpo-
rates CRRA preferences as a special case in which A =1, but the
dynamic extension of the single-period problem for DA utility is
far more complicated because of the so-called curse of dimensional-
ity, i.e., the number of state variables exponentially increases with
time.” We begin by first formulating the dynamic optimization
problem between ¢ and T.

Proposition 1. For given Qf ; 1 = Rr(a_)Rr_1(@F_y) - - Repa (o, ),
the DA utility function for the dynamic asset allocation problem is
given by

1
U(pe) = E [Et (U(‘A/r+1 Q¢*+1_T)1W[+1Q;H_T§M[)

+ AE, (U(Wt+1Qt*+1,T)1V%+1Q§+L»,>Mr)i|’ (7)

where Wi 1Qf ¢ = Wr, according to the recursive definition of
wealth. The first-order condition (FOC) for optimizing the utility of the
certainty equivalent return is given by

du(wW;
Ey (d(T) Fr1.7Res1 () WiXeia 1WT§M:>

dUu (W,
+AEt<d(T) 1rRe (at)M/tXt+11W1>Mt> =0, (8)

where X; 1 = e¥t+1 — e't is the excess return of the risky asset over the
riskless asset.

Proof. See Appendix 9.1 O

6 See Bertsekas (1995) for more details on that.

7 As the state variables take a number of different values at each horizon, the
state-space exponentially increases with time with every iteration of the algorithm.
For example, a T-period problem with a state variable with s states produces s”
possible combinations. From an analytical perspective, this is not a big obstacle
(as the problem still can be mathematically formulated), but computation-wise, the
exponential increment of the state-space renders the use of algorithmic processes
problematic.
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For investment horizon T, the recursive formulation for the util-
ity of the DA investor at time T — 1 is defined as follows:

Kr_1U(ur-1) = Er_1[UWrRr (r—1)) VwiRy (ar_y)<pars )
+ AEr 1 [UWrRr (@r- 1) Wwkr (ar_yopra s (9)

where  Kr_q = P(WrRr(ar_1) < pr—1) +AP(WrRr(@r_1) > tir_1)
and U(u) =pu'"7/(1—1y). Accordingly, at T —2 the utility is
defined as

Kr_oU(ur—2) = Er_o[UWr_1Rr(@7_1)Rr—1(ar-2))
W, Ry e Rr 1 (o 2)<par o)
+ AEr_o[U(Wr_1Rr (a7_1)Rr_1(ar-2))
W, Re e R (o) > par2 ) (10)

where Kr_p =PWr_1Rr(e;_pRr_1(ar_2) < pur_2) + AP(Wr_4
Rr(a_)Rr_1(ar_2) > pr_3). By the same token, all intermediate
optimization steps are defined recursively up to time t = 0 where
a single-period optimization problem is solved, similar to a that of
a buy-and-hold investor. The main drawback with Proposition 1 is
that recursive optimization exponentially enlarges the state space
in Q;y1 1 in order to take into account all the possible states for
the return of the risky asset between times t + 1 and T. Consider-
ing the time evolution of risky asset returns as a grid of multiple
discrete states (equivalent to a binary tree in case of only two
states, up and down), there is no reason to assume that returns
will be recombining. As a result, the recursive formulation at
T — 2 requires tracking all states of risky asset return both at T — 2
and T — 1, hence they are both part of Eq. (10). To overcome the
curse of dimensionality, we elaborate on the approach also met
in Epstein & Zin (1989), by considering that future uncertainty
about risky asset’s returns is captured by the certainty equivalent.
Under this approach, instead of carrying backward all the possible
states for the equity return at each horizon, we pay attention to
only one variable, next-period’s certainty equivalent, keeping the
dimension of the state space fixed over time. Let ; represent the
certainty equivalent return for the utility at time t +1 with the
optimal asset allocation:

n})ng(U(Wm)) = n}ng(Wfo(oer)). (11)

Then we obtain the following result:

Proposition 2. The utility of the certainty equivalent return at time
0<t<T-1is as follows:

1 T-1
U(ue) = K [Et (U(Rt+1 (o) i We l—[ LR, ., (ar)<§r})

i=t+2
T-1

+A]Et<U(Rr+1 (ae)pg We H M?)I{Rt+1(a[)>§t]>i|~ (12)
i=t+2

The value of U(u¢) for the boundary condition t =T — 1 is given by
1
U(pr—1) = e |:ET—1 (U(RT (or—1)Wr_q )1{Rr(o¢1,1)5m4})

+AE7r_4 (U Rr(@r—ODWr— ) Ry (ar_1)> s })i| . (13)

and the FOC for optimizing the utility of the certainty equivalent re-
turn is given by

E, <dU (Re1(att))

dor X i Ui, (at><st}>

dU (Re41 (a
AR (WXHWEJ{RM <ar>>&}> =0 (14)
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where & = ﬁ with p*’s as the optimal certainty equiva-
T-1 t+1
lents between t +1 and T — 1.

Proof. See Appendix 9.2. O

Remark Notice that W; will eventually not be part of the ex-
pressions for U(u¢) in Eqgs. (12) and (13) as moving backward in
time we will have Wy = Wy [T_; Ri(®;j_1), where all uncertainty
about Ry (ot,_1), where ne {t +1,t +2,..., T}, will be captured by
the certainty equivalent return w}, where ne {t+1,t+2,...,T},
and W is set to one given wealth homogeneity. At each horizon,
we need to track only the states for u}, keeping the dimension of
the state space for p}; fixed and allowing for horizon effects (hedg-
ing demands) in case the DA investor is not at horizon T — 1.

Investor’s gains or losses at time t + 1 are now calculated with
respect to &, that is, the certainty equivalent at time ¢ for the op-
timal certainty equivalent from ¢ + 1 to T. Adopting the dynamic
DA utility in Eq. (12), next period’s optimal certainty equivalent
u* is used to define this period’s DA utility. To solve for the op-
timal certainty equivalent p* and portfolio « we use dynamic pro-
gramming. As an example of the advantage of using the certainty
equivalent, we can rewrite the FOC in Eq. (14) for power utility as
follows:

E¢ (R;z/] (ote ) Xe 11 l/«;ﬂ IRHW[),}:) + AE; (R;ry] (ote)Xr i1 /‘L?+1 1Rr+1(0[“;gt) =0. (15)

By using certainty equivalent as each period’s endogenously de-
fined reference point, based on return expectations, the dimen-
sion of the state-space remains unchanged with time. The bene-
fit from reducing the dimensionality of the state space is ampli-
fied as the investment horizon increases, since for longer horizons
the optimization problem using numerical methods becomes in-
tractable. Then at each time step we need to determine the op-
timal values for ;& and o that simultaneously solve Eqs. (12) and
(15). For this we adopt a Gaussian quadrature scheme (see Davis
& Rabinowitz, 2007, for an in-depth review of numerical integra-
tion methods) as in Balduzzi & Lynch (1999) and Campbell & Vi-
ceira (1999) that allows us to discretize the continuous probabil-
ity distributions of the risky asset’s returns in the E(-) in the two
equations. In essence, the scheme allows us to track the states
{Rea () IV (]'[IT:}LZ 11;), where N is the number of quadra-
ture states for the certainty equivalent return and R, is the re-
turn given by the corresponding DGP.® We then solve the dis-
cretized expression of Eq. (12) (adjusted for power utility in place
of U(-)) in parallel with the FOC for the DA maximization problem
in Eq. (15) recursively incorporating the calculations from periods
T —1 to t + 1. Due to the complexity of the notations and a neces-
sary brief introduction of the discretization method, details on the
solution of the system of equations are laid out in Appendix 8 of
the supplementary online material.

3.3. Asset allocation with parameter uncertainty

The second theoretical result is the formulation of the DA port-
folio optimization problem in the presence of parameter uncer-
tainty. Investors who account for parameter uncertainty consider
the true values of model parameters to be unknown. In fact, they
acknowledge that by continuously updating risk and return expec-
tations by incorporating new information over time, the values of
model parameters are constantly changing, and as a result, their
actual values are never known with complete certainty. In practice,
the difference to the case where parameters are considered fixed

8 Instead of quadrature-based methods, Monte-Carlo simulations or, even,
regression-based methods, like in Brandt et al. (2005), can be used to calculate the
expectations in Eq. (15). In practice however, the quadrature method offers suffi-
cient accuracy and greater computational speed compared with the alternatives.
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and known rests on whether investor treats model parameter as
inputs or outputs of the portfolio model. Overall, parameter uncer-
tainty has been discussed extensively in static portfolio setups. Part
of the literature includes Bayesian frameworks that use asset pric-
ing models (Pastor, 2000; Pastor & Stambaugh, 2000), diffuse pri-
ors (Bawa et al., 1979; Brown, 1978), robust optimization (Garlappi,
Uppal, & Wang, 2007) and shrinkage methods (Kourtis, Dotsis, &
Markellos, 2012; Wang, 2005). In terms of multi-period portfolio
optimization, parameter uncertainty in mean-variance portfolio se-
tups is studied among others in Barberis (2000) and DeMiguel
et al. (2015). In an effort to accommodate parameter uncertainty
in a multi-period DA framework and observe the horizon effects in
the long-term portfolio allocation, we formulate the corresponding
optimization problem.

First, as a general rule, one can investigate the effects of param-
eter uncertainty on asset allocation by allowing uncertainty in the
parameter estimates (e.g., the mean and variance of asset returns
and the correlation matrix as well in case of more advanced mod-
elling) as opposed to the case where model parameters are treated
as known. Faced with uncertainty, investors maximize the follow-
ing utility function at time ¢ :

) th—)’
max/ L p(regn|Y: 0)drein, (16)
o —00 1- y

where W =X +e" follows the recursive formulation in
Proposition 2; n is the investment horizon, U(-) is the utility
of wealth, and p(ren|Y; @) is the probability density function of
the expected returns conditional on observed return data Y and
the set of parameters 0 (in our case the mean and variance of
the risky asset’s return). Uncertainty arises for 6, because these
parameters become known only after the end of the investment
horizon. A popular approach in the literature for manoeuvring the
parameter uncertainty problem is to use a Bayesian framework
that incorporates uncertainty in the parameters of . Integrating
out @ in the prior distribution p(r:4,|Y; 6), we obtain the posterior
predictive distribution, which updates the distribution parameters
by embodying the new data. A DA investor now maximizes

max [ / UWesn) p(rean]¥)dresn
o Wein<pw

+A UWein) p(resn |Y)drt+nj|a (17)
Wein>puw

in place of Eq. (16), in line with the DA utility definition in Eq. (1),
where the distribution of the returns is now conditional on ob-
served stock return data only, not on the set 6. To obtain optimal
portfolios under parameter uncertainty, the optimization procedure
as described in Section 3.2.2 is followed. Nevertheless, in order to
account for parameter uncertainty in the generation of asset re-
turns, a sampling algorithm sensitive to the choice of the under-
lying DGP needs to be applied. Hence, we take a detour to briefly
introduce the two DGPs used in the study before we proceed with
the remaining results.

3.4. Definition of the DGPs

We introduce the two DGPs used to derive optimal portfolio al-
locations under the theoretical models introduced in this section.
We use return generators with the same properties throughout the
portfolio optimisation exercise to allow comparison between the
cases where parameter uncertainty is ignored and when it is con-
sidered in the calibration of the portfolio model. Following the ex-
tensive discussion in the finance literature, we consider two sys-
tems: one that assumes equity returns are i.i.d., and a vector au-
toregression that uses the equity price-dividend ratio as a predictor
of equity return.
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First, a straight-forward data generator comprising a single
equation is presented. This DGP is able to model i.i.d. returns with
no autocorrelation structure. The second data generator is a more
complex vector autoregression (VAR) in which one period’s asset
return is related to (i.e., can be ‘predicted’ by) previous period’s
asset price dividend ratio. As opposed to the first one, the second
model allows for some degree of correlation between the response
(asset return) and the explanatory variable (dividend ratio). The
purpose of introducing the i.i.d. return generator and producing a
full-fledged portfolio analysis based on it (see Section 5), before
deriving the same set of results for the VAR, is to have a basis that
allows us to isolate the effects introduced by return predictability
as modelled by the VAR.

3.4.1. iid. returns

When investors ignore predictability in returns, they consider
them to be i.i.d.,, and they use the following model to estimate
next-period’s excess equity return:

xi=(U—r)+e. (18)

In our case, x; is the continuously compounded excess return in
period t, u is the mean asset return over some specified period, r
is the yield of a riskless asset for the same period as defined by
the modeller and ¢; are i.i.d. disturbance terms distributed as ¢; ~
N(0,0), where o is the return volatility. By providing values for
/i, rand o one can trivially extract excess return values out of Eq.
(18). This is the simplest way one can sample return values from a
probability distribution as it requires only random sampling for the
error terms in € without paying any attention to autocorrelation
structures.

3.4.2. Return predictability

In practice, asset returns are not i.i.d. Researchers have docu-
mented risk drivers that can be used to predict part of the variabil-
ity in asset returns (Ang & Bekaert, 2007; Campbell & Yogo, 2006;
Cochrane, 2008; Lettau & Ludvigson, 2001). Investors use available
information to predict future returns for optimal asset allocation
problems. In our study, we replicate the prediction process using
a VAR model, where asset returns and the predictable variable are
jointly considered.

This results in time-varying investment opportunity sets, as op-
posed to time-independent sets when returns are i.i.d., which are
conditional on the predictor variable in the VAR model. Investors
react to the variability by modifying the proportion of their cur-
rent investment allocated to the risky asset. To determine a suit-
able driver for equity return, we examined a number of financial
variables,? and chose the dividend yield, calculated as the dividend
price ratio for of the risky asset, to drive next-period’s equity re-
turn. The optimal number of lags was calculated as one, confirmed
by both the Akaike and the Bayesian information criteria. We then
model the dividend-adjusted log excess returns of the risky asset
as a first-order VAR of the following form:

X =C+BX,_1 +E. (19)

9 To determine the variable that best fits our data, we test the following pre-
dictors: dividend yield (the sum of the dividends over a year divided by the level
of the index at the end of the year; provided that the asset pays dividends); term
spread (the difference between the 10-year Treasury bond and the 1-year Treasury
bond); credit spread (the difference between Moody’s BAA corporate bond yield
and its AAA equivalent); the 3-month Treasury bill; and the 10-year Treasury bond.
The criteria for selecting the best fit are (a) whether a variable enters the VAR as
statistically significant and (b) how much of the risky asset’s excess return variabil-
ity it explains. More thorough analysis can be of course conducted for detecting the
most suitable predictor or set of predictors but it is outside the scope of the current
study. The objective of this exercise is to observe the effects introduced by return
predictability compared to the case where returns are i.i.d., which in practice (see
Section 5) is possible by using just one predictor variable.
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Table 1
Summary statistics.

S&P 500 3-month T-bill Excess Return
Annualized

mean 0.1045 0.0344 0.0695

stdev 0.1625 0.0088 0.1644
Quarterly

mean 0.0251 0.0085 0.0166

stdev 0.0817 0.0044 0.0822

Annualized S&P 500 and T-bill summary statistics. Excess return is calculated by
subtracting the 3-month T-bill rate from the value of the S &P 500 for the same
period.

Table 2
Parameter estimates for the Data Generating Process (VAR).

Parameter With predictability Without predictability

o 0.1222 0.0128
(0.0173) (0.0178)

(o) —0.0004 -0.0317
(0.0119) (0.0150)

by 0.0259 0.0
0.1176 -

b1y 0.0220 0.0
(0.1354) -

by —0.7068 0.0
(0.0807) -

b, 0.9978 0.9932
(0.0929) (0.0912)

oy 0.0850 0.0856
(0.0037) (0.0042)

(2%} 0.0408 0.0752
(0.0017) (0.0029)

0 -0.5216 —0.2980
(0.0021) (0.0028)

This table shows VAR estimation and the corresponding standard errors of the pa-
rameters for the two systems (predictability/no predictability). We used maximum
likelihood (MLE) to calculate the model in Eq. (19). For the nonpredictability system,
the autoregressive coefficient matrix is set to zero, whereas, when we account for
predictability in returns, all four coefficients are free to vary without restrictions.
Parentheses include the standard errors of the estimated coefficients. The S&P 500
and dividend yield quarterly data for the period January 1934 to September 2016
are used in our calculations.

(d/p)e-1
the excess equity return; r; is the risk-free rate; (d/p)¢_1 is the
dividend price ratio; B is the (2 x 2) matrix of the autoregression
coefficients; C is a (2 x 1) vector of the constant terms; and E is a
vector of i.i.d. normally distributed disturbance terms.

We use the lagged rate r,_; to indicate that the value of the
risk-free rate is known at the time of portfolio formation t — 1, in
contrast to the risky asset, whose return becomes known at time ¢
only. When asset returns are not predictable (i.e., DGP of Eq. (18)),
all elements of the matrix with the autoregressive coefficients B
are not different from zero, and returns are assumed to be i.i.d.
As a result, the VAR model reduces to the i.i.d. return generator of
Eq. (18). We use maximum likelihood estimation (MLE) to calculate
the VAR in Eq. (19), and Table 2 reports the results.

In the model of Eq. (19), X; = <yt - rt*1> where y; —1,_1 =x; is

3.5. Parameter uncertainty with ii.d. returns

Having defined the two asset return generators, we now exam-
ine how they affect investor’s risk (i.e., variance) and return (i.e.,
mean) expectations compared to the case where these two vari-
ables are treated as known. The difference to the case where mean
and variance are known is that investors are now faced with a dis-
tribution of different mean and variance values, namely the poste-
rior distribution, instead of fixed values. The posterior distribution
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has the property that it absorbs information generated during the
investment horizon, based on sampled asset price trajectories from
a frequently calibrated DGP, which cannot be know at time t = 0.
Accordingly, the starting mean and variance expectations, namely
the prior, are shifted in order to reflect the newly absorbed in-
formation. Again, it was important to define the two DGPs prior
to the current section because the choice of the DGP changes the
way the sampling step mentioned in Section 3.3 is defined and im-
plemented. Assuming investors are unaware of the true parameter
values, we use an uninformative (diffuse) prior of the type

p(p,o0)dudo « éd,uda, (20)

whereas the joint posterior of the mean return p and volatility o
is

p(u. oY) o p(p, o) x L(p, oY), (21)

where L is the likelihood function. The following lemmas report
the results for the case of i.i.d. returns (Lemma 1) and predictive
returns (Lemma 2), where the VAR is used.

Lemma 1. The distribution of the posterior moments for the case of
normally distributed i.i.d. returns is given by

N .1N+1
o?lY ~Inv— Gamma(z, 5 Z(Vi M)2>
iz

_ o2
nlo,Y NN(M, N)’

where Y is the observed asset return data; N is the sample size; and
W is the sample mean return.

Proof. See Appendix 10.1. O

To construct the posterior predictive distribution for the i.i.d.
returns of the risky asset, we first sample once from the marginal
posterior distribution p(o2|Y), and then from p(u|o,Y), which is
now conditional on o. We repeat this process to generate a suf-
ficiently large number of pairs (¢, ) to create return values and
subsequently the posterior distribution for the returns of the risky
asset, by sampling each pair (i, o) from the posterior distribution.
Appendix 10.1 provides details about the sampling procedure from
the derived distributions for the mean and variance.

3.6. Parameter uncertainty with return predictability

The VAR in Eq. (19) also can be written in the following com-
pact form:

X =BZ +E, (22)

where X = (X;...X7) is a (2 x T) matrix with the number of ob-
servations T for the estimated variables; Z = (zg...zr) a 3 xT)
matrix; B= (cB) is a (2 x 3) matrix of the autoregressive coeffi-
cients and the constant terms; and the E = (¢7...€7) isa (2 xT)
matrix with the serially uncorrelated disturbance terms. A suitable
uninformative prior is the Jeffreys prior given by

p(B.X) =pB)p(T) o |T|-MD2, (23)

where m =2 is the total number of regressors on the left-hand
side of Eq. (22); p(B) is constant and B is independent of X, the
covariance matrix of the VAR error terms in E. We obtain the pos-
terior density for the parameter matrix B and the covariance ma-
trix of Eq. (22) by the following lemma.

Lemma 2. The posterior distribution, p(vec(B), X|X) for the coeffi-
cient matrix, B and the variance-covariance matrix, X conditional on
normally distributed asset return data X is given by

TIX~W (X -ZB) (X -2ZB),T-n-1)
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vec(B)| =, X ~ N (vec(B), X @ ZZ™"),

where T is the number of observations and n is the number of predic-
tor variables.

Proof. See Appendix (10.2). O

Again, to sample from p(vec(B), X|X), we sample first from
p(X|X)-the variance-covariance matrix-conditional on data set X
and then from the posterior distribution p(vec(B), X|X), which
will give a draw for the matrix of the VAR coefficients. Ap-
pendix (10.2) presents the details of this process and the return-
generating procedure.

Given the several portfolio optimization problems and the rela-
tive complexity of their solution, a flowchart with the overarching
(high-level) solution process of the formulated optimization prob-
lems is presented below, see flowchart in Fig. 1.

4. Nonparticipation under DA utility

An interesting result, namely equity non-participation, is derived
and discussed by showing that it is embedded in the context and
theory of disappointment aversion. We derive a theorem which
shows that there’s always a level of disappointment aversion, let
it be A*, below which the optimal investment in risky asset(s) is
zero (i.e., o* = 0). The theoretical finding is backed by numerical
examples that track the relationship between «, A and A* at differ-
ent horizons.

The case for nonparticipation in risky assets has been a sub-
ject of considerable research to date. Mental accounting (Thaler &
Sunstein, 2008, which assumes the nonfungibility of monetary re-
sources allocated to each asset; see e.g.,) motivates narrow fram-
ing (Barberis & Huang, 2008), which prompts investors to perceive
high-volatility assets as “risky” in isolation without assessing their
contributions to the risk-return profile of their portfolio. Nonpartic-
ipation also can be promoted by the omission bias (Ritov & Baron,
1999), whereby omissions (e.g., not investing in stocks) are favored
over equivalent commissions (investing in stocks), because com-
missions, unlike omissions, involve commitment to a course of ac-
tion, thus entailing the possibility of a loss. Other alternative ex-
planations proposed to account for nonparticipation include the fa-
miliarity bias (Huberman, 2001; Massa & Simonov, 2006, choosing
more over less familiar assets, believing the latter to be riskier;),
the recognition bias (Boyd, 2001, preferring more over less rec-
ognizable assets;) and limited cognition (Hirshleifer, 2008, when
investors view risk diversification as a decision of enhanced com-
plexity;).

Under CRRA preferences holding positive portfolio allocations to
risky assets when the expected excess return is positive (E(X) > 0)
is always optimal. However, this is not always the case with DA
utility preferences. Under DA preferences refraining from holding
risky assets even if the expected excess return is positive can be
optimal in certain cases. The following result shows that it is not
optimal to hold risky assets whenever the DA coefficient lies below
a critical value A*.

Theorem 1. Let i = uw (A, o), with

e 1(A,:)eC' VAe[0,1]

o WAD) _ £(A) <0,VAE[0,1] 10

e E(X) > 0 and E(X1yga)) > 0, where X =¥ —e" is the return
of the risky asset in excess of the risk—free rate.

10 positive risk premium when the end-of-period wealth exceeds the negative im-
pact of the decrease in the certainty equivalent as the investment proportion of the
risky asset increases. Suppose that the expected return of the risky asset is zero.
The certainty equivalent decreases when the proportion of the risky asset increases.
This occurs because for @ < 0 negative excess return states have higher wealth than
R and hence are downweighted.
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Then, setting
o EXweew)
EX1y_g@))’
we have the following:

(24)

1. For every A < A*, a* =0,
2. For every A > A*, a* > 0,

where o* is the optimal investment proportion in the risky asset
which maximizes (A, ) for a given A. A* is independent of the risk
aversion parameter y.

Proof. See section 9.3 O

Our Theorem 1 completes Proposition 2.1 of Ang et al. (2005),
and can be intuitively presented in the following way: as DA in-
creases, investors allocate less wealth to the risky asset for an ar-
bitrary level of risk aversion y. Given that the utility of wealth is
a continuous function within the domain of A, there should be a
level of A, let A*, at which the optimal portfolio allocation to the
risky asset, o*, equals zero. Recalling the condition du (A, 0)/do <
0, we see that a further decrease in the portfolio weight allocated
to the risky asset o* (e.g., because of short selling the risky asset)
will result in a higher certainty equivalent return. When invest-
ment in the risky asset is nonzero, an increase in the investment
in the risky asset decreases the certainty equivalent. This is intu-
itively correct, because, by increasing the portfolio allocation to eq-
uities to a nonzero level, investors become more willing to accept
an amount of risk instead of holding only the risk-free security.
This consequently implies that the monetary amount that can keep
investors away from buying stocks should be lower. Subsequently,
the following relationship will prevail:

W =a'X+R >R,

for o* < 0 and negative states (X < 0) of the excess equity return.
Therefore, the optimal allocation for this critical level of the DA
coefficient, A*, is zero and o = a* = 0.

Remark The critical level of DA, A*, is estimated as the ratio
between the states of the expected risk premium E(X) that could
result in non-negative wealth (W > &£(A)), and those that result in
strictly negative wealth (W < £(A)). Given E(X) > 0 and A* € [0, 1]
we have that

EX1wogn) =A'EX 1y £a))- (25)

Eq. (25) shows that a DA investor shapes her expectations of the
elating outcomes - states of equity premium that lead to changes
in wealth that exceed the negative impact of £(A)- by under-
weighting those outcomes that result in strictly negative states of
wealth (RHS in Eq. (25)). The coefficient A* expresses the extent to
which the disappointing outcomes are underweighted. As A* ap-
proaches zero, the expectations of the disappointing outcomes are
very strongly underweighted, reflecting the low degree of DA and
the high level of asymmetry in the DA utility function. Contrary to
that, when A* — 1-, the two expectations in Eq. (25) are approxi-
mately equal, and the investor does not account for DA in her de-
cision making. Equivalently, the investor uses an almost fully sym-
metric utility function, similar to a power utility function.

A calculation of risky asset participation based on A*, by us-
ing the historical mean equity return from 1934 to 2019 calculated
at u = 10.45% as tracked by the S&P500 is presented in Fig. 2. To
extract A*, the level that results in allocating zero wealth to eq-
uity, a binary search algorithm is used. A typical binary search al-
gorithm for our problem works by discretizing the state space of
A (e.g., a linearly spaced vector within [0,1]) and performing se-
quential searches for the target value of A (i.e., the one that makes
o = 0). This is done by iteratively comparing the target value to
the middle element of the state space and cutting the state space
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Definition of the dynamic portfolio
allocation optimization problem
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Proposition 1; solution to be designed

via DA utility in Equation (1)

Identification of curse of dimen-

based on Dynamic Programming

Size of state space of risky asset's return
increases exponentially with time (relevant
for long horizon portfolio allocation):

e Solution via application of

sionality that hinders solution
of the optimization problem

Definition of the dynamic port-
folio allocation optimization

dimensionality reduction technique;
Section 3.2.2

e Formulation of final optimization

problem in next step

Proposition 2

e uncertainty about risky asset’s

problem via DA utility using di-
mensionality reduction technique

!

Dynamic Programming solu-

tion for problem in Proposition 2
¥

Solution via Dynamic Programming (Appendices

return is captured in the certainty

equivalent return

B-D and F)
e returns of risky asset are log-normally
distributed <~

e Discretization is needed to deal with the
probability distribution of risky asset'’s

Portfolio allocation style:
e Buy-and-hold single-period optimization
problem

e Dynamic (annual rebalancing)
fixed-horizon optimization problem

returns: Gaussian quadrature is used

N

Use of Data Generating Processes (Section 3.4
and Appendix F):

e i.i.d. with fixed model parameters
e i.i.d. with uncertain model parameters

e Predictable risky asset’s returns via the
price-dividend ratio (VAR) with fixed VAR
calibrated parameters

e Predictable risky asset’s returns via the
price-dividend ratio (VAR) with parameter
uncertainty in VAR calibration.

Derivation of Optimal DA portfolio;
Section 5

Fig. 1. Flowchart of the solution step for the optimal DA portfolio. Where available and to help readability, references to relevant parts of the paper are provided. For better
understanding, the information in the flowchart can be combined with that in Appendix F in the supplementary online material.

in half with every iteration until the optimal value is detected
(Sedgewick & Wayne, 2011, for the implementation details of the
binary search algorithm, see sections 3.1 and 3.2 in). The reason
the binary search algorithm fits in our application, is that in every
iteration, that is for every halving of the input space A, the algo-
rithm knows on which ‘side’ of the state space should look for the
solution. The only condition that needs to be in place is that the
relation between A and « be strictly monotonic.

5. Asset allocation with DA preference: Simulation study

The theoretical results in Sections 3 and 4 are used in a numer-
ical simulation study split in two parts. The first deals with the
remaining analyses for equity non-participation in Section 4 and

the second with the main topic of the paper, that is asset alloca-
tion in the long-run, derived as the solution to the optimization
problem presented in Section 3. Before we discuss the results of
the simulation study, we briefly describe the data and the calibra-
tion results for the two DGPs, that model either i.i.d. or predictable
returns (VAR).

5.1. Data and model calibration

To study the portfolio choice problem, we use quarterly data
from the U.S. market from January 1934 to September 2019 for
the S&P 500 index (index returns and dividend-price ratios), the
risky asset, and the 3-month Treasury bill yield as risk-free asset.
As mentioned in Section 3.4.2 the dividend-price ratio (dividend
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Fig. 2. Stock market participation/nonparticipation regions with DA preferences.
The graph shows how the expected level of stock returns (stated annually) affects
the critical level of the DA coefficient (A*). Two lines are presented: the solid one
corresponds to the critical DA coefficients for the data set used in our study (1934-
2019), and the dashed line plots the critical DA values for the data set used in Ang
et al. (2005). The gray circles represent the critical DA level (A*, which induces non-
participation), which corresponds to the historical mean of the equity return for the
two data samples.

yield) serves as the predictor variable for the VAR. The data sets
related to the S&P 500 returns and the 3-month T-bill rates can be
easily acquired by a number of sources as they are readily available
online."

5.11. Calibration of i.i.d. return generator

Based on the data described above, the following summary
statistics were derived:

To link the parameter estimates with the i.i.d. model in Eq. (18),
i = 0.02515, r = 0.00854, and o = 0.08175, all of which are given
in Table 1.

5.1.2. Calibration of the VAR

The MLE of the VAR in Eq. (19) produced the following values:

Simulating asset return trajectories under the assumption that
the dividend yield at time t can forecast asset returns at time t + 1,
we match the first two moments of the historical returns’ distri-
bution up to two to three significant digits. All coefficients of the
matrix with the autoregressive parameters B are statistically signif-
icant at the 5% level, and both series (dividend yield and excess as-
set log returns) are stationary. It cannot but catch one’s attention
the relatively weak coefficient and statistical insignificance of the
explanatory variable. Although a reasonable reaction to this would
be to admit that predictability is simply not there, in our view,
this effect is intertwined with the presence of parameter uncer-
tainty. Facing uncertainty about the actual calibrated parameters
of the VAR cannot but be reflected in the predictive capacity of
the model, as - in Bayesian portfolio theory - different asset price
realizations would lead to different models of different predictive
capacity. As a result, instead of discarding the case of predictability,
we opt for studying it in a parameter uncertainty DA setup already
discussed in Section 3.

5.2. Equity non-participation in the long-run

We simulate asset return trajectories under the i.i.d. assumption
and using the DGP with predictability in a Monte Carlo setup, in

1" QOur sources are the online platform of Bloomberg Professional Services (for the
data on S&P 500 returns) and the Federal Reserve (for the risk free asset).
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order to estimate the excess return and the corresponding return
volatility. We examine two relationships: first, how A* changes
with time depending on whether returns are i.i.d. or predictable
(Fig. 3), and second, how allocation to the risky asset is affected
by the choice of A, in Fig. 4. In the second, investment horizon is
fixed at one or ten years. To extract A* we use the binary search
algorithm presented in Section 4 while to determine « at differ-
ent levels of A the optimization problem introduced in Section 3 is
solved.

The left graph of Fig. 3 plots the critical level of the coeffi-
cient of DA (A*) across investment horizons for a buy-and-hold DA
investor. The DA coefficient (A*) is critical, because a decreasing
A* within these setting results in larger market participation, as a
lower A* implies that the investor has to be more disappointment
averse to refrain from holding the risky asset. For a longer than a
5-year investment horizon, a DA investor who follows a buy-and-
hold strategy will hold risky assets regardless of the DGP assumed
for equity returns.

The right graph of Fig. 3 reports critical levels of A* for dy-
namic asset allocation strategies for various investment horizons
(T —t, where ¢ is the current horizon). In the case of i.i.d. returns
(dashed line), the critical DA coefficient remains constant regard-
less of the investment horizon as a result of the invariable op-
portunity set. The solid line corresponds to predictable returns us-
ing the VAR to forecast the next-period’s equity return as a func-
tion of the dividend price ratio. Contrary to the case of i.i.d. re-
turns, where A* remains constant, investors’ participation increases
at longer horizons as a result of the decreasing A*.

To obtain more insight into non-participation, we additionally
plot portfolio allocation to the risky asset with respect to differ-
ent levels of disappointment aversion. This analysis serves also as
an introduction to the simulation study for the optimal portfolio
construction discussed in the next section as it tracks all the four
different investment profiles for which optimal portfolios will be
derived. Moreover, effects observed in Fig. 4 are relevant for the
analyses in the following section.

Fig. 4 shows primarily two behaviours. First, that the 10-year
line always stands above the 1-year line; this implies that investors
become less disappointment averse the longer the horizon they
invest for. Second and more interesting, the vertical distance be-
tween the two allocation lines (i.e., 1-year vs 10-year) is linked
to the size of the horizon effect (hedging demand) generated as
a result of the different allocation between short- and long-term
investment horizons. Investing for shorter periods typically entails
smaller portfolio allocation to the risky asset, a strategy that serves
as a hedge against adverse market movements. As discussed in
the next section, a buy-and-hold investor who uses the VAR to
model asset returns (top row, second plot of Fig. 4) invests very
differently at short and long horizons. This results in observing the
largest vertical distance between the 1-year and 10-year allocation
lines among the four plots presented.

Said result is of importance. It suggests that the DA framework
can generate equity non-participation conditions by using a suf-
ficiently low A (or equivalently a large enough A*). In addition,
values of A around 0.5 can result in relatively low portfolio allo-
cations to the risky asset, especially when investment horizon is
short. Reasonably low values of DA can thus lead to portfolios with
limited risky asset participation, a pattern frequently observed in
practice

5.3. Portfolio allocation for buy-and-hold strategies

We first investigate the asset allocation problem at different in-
vestment horizons for buy-and-hold strategies. Here, agents choose
a portfolio allocation for a specific investment horizon determined
at time t = 0. This strategy results in the same allocation regard-
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Fig. 3. Critical DA level (A*) that induces nonparticipation in the stock market. The plot on the left refers to a buy-and-hold investor while that on the right to a dynamic
investor. The dashed line corresponds to the case of i.i.d. returns (normality and nonpredictability), and the solid line corresponds to the case of predictable returns. Investors
invest in the stock market when their DA coefficient lies in the area above the lines. To display the graphs more clearly, the one on the left (buy-and-hold) plots the A* for
a period up to 10 years, as beyond that point A* remains constant and very close to zero.
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ment aversion, A for the different cases considered in the study. As per Theorem 1 there’s always the marginal level A* beyond which (i.e., A < A*) no equity participation is

predicted by the model.

less of the investment horizon for an investor with power utility
when returns follow the i.i.d. process in Eq. (18). Our goal is to ex-
plore the effects of the DA utility function in conjunction with pa-
rameter uncertainty on the optimal asset allocation. We mainly fo-
cus on whether parameter uncertainty in a DA framework induces
horizon effects (that is whether long-term allocation to the risky
asset is different than short-term allocation. Fig. 5 shows the opti-
mal buy-and-hold portfolio allocations to the risky asset for a DA

1

investor (A =0.44 or A=0.30) and an investor with power util-
ity (A = 1; solid line) when returns are i.i.d. and parameter uncer-
tainty about u and o is either considered (solid line) or ignored
(dashed line). A DA investor who acknowledges parameter uncer-
tainty will decrease her portfolio allocation to the risky asset with
the investment horizon compared to the one with the power util-
ity who will hold the same portfolio regardless of the horizon. This
comes as the result of the evolution of cumulative return variance
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Fig. 5. Optimal portfolio allocation for a buy-and-hold investment strategy. The investor uses the i.i.d. return generator, and either incorporates (optimization problem in
17) or ignores (optimization problem in 2) uncertainty in model parameters. The investor in the top row uses a CRRA (i.e., power) utility function with two levels of risk
aversion, whereas the other two cases (middle and bottom rows) make use of the DA utility function with two different values for the DA coefficient. A = 0.44 is equivalent
to the value of the loss aversion (LA) parameter calculated in Tversky & Kahneman (1992), that is, DA = 1/A = 0.44. We observe that a DA investor holds a significantly

different portfolio from one who uses a power utility function.

at different horizons. In the following, the key components of our
model, namely disappointment aversion, predictability and param-
eter uncertainty are discussed.

5.3.1. The effect of disappointment aversion

Incorporating DA drastically changes the portfolio composition
over different investment horizons compared to the CRRA case
(A=1). A DA investor (A=0.44 or A=0.30) will increase her
investment proportion to the risky asset when allocating wealth
for longer periods. The effect of DA appears to be more pow-
erful at short horizons (T < 10), as a DA investor holds signifi-
cantly less equity compared to one with power utility. For exam-
ple, Fig. 5 shows that a DA investor invests 20% to 50% of her
wealth in the risky asset when her investment horizon is shorter
than ten years (between 60% and 20% less equity compared to one
with power utility), whereas an even more DA investor (A = 0.30)
will hold no more than 10% to 40% equity for the same horizon.
However, investors with DA utility will allocate similar to those
with power utility as the investment horizon increases. A DA in-
vestor appears to be very conservative in the short run, whereas,
longer investment horizons, even a very DA investor (A = 0.30, i.e.,
for whom losses in her utility function are weighed more than 3
times than gains) is willing to accept the additional risk in antici-
pation of higher terminal wealth, because of the lower volatility as
a result of the longer investment horizon.

5.3.2. Effects of predictability

Predictability is critical in the case of a buy-and-hold investor.
Investors who take predictability into account will hold signifi-
cantly larger weights in equity for longer investment horizons. The
reason is that volatility does not grow in proportion to asset re-
turns. This results in lower long-term volatility, compared to the

12

short-term, thus making equities appear more attractive to an in-
vestor with a long-term outlook. Fig. 7 displays optimal allocations
to the risky asset for three levels of risk aversion (the ones most
commonly used in relevant studies) and four levels of DA, among
which is the value of % where A is the loss aversion coefficient
equal to A = 2.25, as calculated in Tversky & Kahneman (1992). As
expected, both risk aversion and DA affect the asset allocation to
the risky asset as the more risk averse or disappointment averse
an investor becomes, the lower the allocation in the risky asset
will be.

The horizon effects we report for the buy-and-hold investor
who uses the VAR to forecast equity returns can be traced to the
evolution of return volatility. Long-term volatility is lower than in
the case of i.i.d. returns due to the correlation between the predic-
tor variable and the predicted equity return.'?

As a result, the long-term volatility for a buy-and-hold investor
who uses the VAR is much smaller than that for the investor who
uses the i.i.d. return generator, growing slower than linearly. In

12 More specifically, when we model returns as i.i.d., the two-period variance is
equal to

vary, r, = vary, +vary, & oy, r, = /var, + var,.

When returns are predictable, the covariance between equity returns and the pre-
dictor variable should be taken into consideration as well. The two-period variance
is now equal to

vary, r, = vary, 4+ vary, + 2cov(ry, r).

Given that the covariance term in our VAR estimation is negative (see p, oy, and
0y, in the first column of Table 2), the following holds:

vary, + vary, + 2cov(ry, r2) < vary, + vary,.
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Fig. 7. Optimal portfolio allocation when the VAR is used. The investor follows a buy-and-hold strategy by choosing the portfolio allocation to the risky asset in the beginning
of the investment period. A = 0.44 is equivalent to the value of the loss aversion (LA) parameter calculated in Tversky & Kahneman (1992), that is, DA = 1/A = 0.44. The
graphs on the left column ignore parameter uncertainty, whereas those on the right account for this. Three levels of risk aversion and four levels of disappointment aversion
are represented. Accordingly, the results are solutions to the optimization problems in 2 and 17 (parameter uncertainty) when the VAR of Eq. (19) is used.

particular, under i.i.d. returns, the 40-year total volatility equals
0.1625+/40 = 1.02, compared to 0.5091 when the VAR is used; that
is, it is half as much (see Fig. 6). This result shows how the invest-
ment allocation in stocks can be affected (i.e., increase) by using a
variable believed to predict stock returns.

The intuition behind this effect is twofold. On the one hand,
when the dividend yield decreases, the asset price will increase, in
effect, disproportionately compared to the dividend yield. This sig-
nals that the current price is too high or equivalently that the ex-
pected return is too low. The too high current price mean-reverts,
resulting in the negative association (p < 0; see Table 2) between
the dividend yield and the future realized return, which, in turn,

13

reduces the rate of increase of the variance, thus rendering equity
more attractive at longer horizons. On the other hand, investors
relying on a given strategy (in our case, the dividend yield) could
develop an illusion of control if they grow overly confident in the
strategy’s ability to generate precise predictions of future returns.
Overreliance is bound to boost investors’ overconfidence levels, and
lead them to assume higher risk in their investments by increasing
their equity exposure (Gervais & Odean, 2001; Odean, 1998). Over-
confidence is expected to be further encouraged by the fact that
investors whose outlook involves long horizons and/or buy-and-
hold strategies monitor their investments less frequently; neglect
leads them to experience feelings of regret and/or disappointment
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equally less frequently, prompting them to view equity as less risky
(because longer horizons experience fewer price fluctuations than
do shorter ones) and thus tacitly encourage them to increase their
exposure to risk (Benartzi & Thaler, 1995).

5.3.3. The effect of parameter uncertainty

For A =1, when parameter uncertainty is ignored, return and
variance grow linearly with time and the choice of the investment
horizon becomes irrelevant to the solution of the asset allocation
problem. Under parameter uncertainty, variance grows faster than
linearly and equity is not as attractive as when predictability is ig-
nored. Factoring this understanding in the decision making typ-
ically results in lower portfolio allocation to the risky asset. In
Lemma 1 we see that the magnitude of the horizon effects de-
pends on the available data incorporated into the model, in the fol-
lowing way: given o, the variance of u is inversely proportional to
N (the sample size of risky asset return); subsequently, the larger
the N (i.e., longer investment horizon), the lower the variance of
and, equivalently, the smaller the uncertainty around its true value.
A shorter investment horizon would result in a significantly lower
allocation to the risky asset for an investor who considers uncer-
tainty compared to one who ignores it, especially for longer hori-
zons.

When returns are generated according to the VAR and param-
eter uncertainty is incorporated (right column of Fig. 7), a DA in-
vestor who accounts for predictability will allocate a smaller pro-
portion of her investment to the risky asset compared to an in-
vestor who ignores parameter uncertainty. In that case, equities do
not appear as attractive as when parameter uncertainty is ignored,
because of the higher volatility of equity returns; the latter is due
to uncertainty dampening the correlation between the predictor
variable and the dependent variable (i.e., equity return), which,
in turn, increases the volatility. Expressing uncertainty about the
model parameters is, in essence, equivalent to expressing uncer-
tainty about the forecasting capacity of the predictor variable (i.e.,
the dividend price ratio). This uncertainty, in turn, can prompt in-
vestors to start viewing the VAR process as potentially misspeci-
fied, thus rendering them more ambiguity averse and leading them
to reduce their exposure to equity investments Under parameter
uncertainty a DA investor will, in general, still hold larger weights
for longer horizons compared to shorter ones, but they will be sig-
nificantly lower than those allocated when parameter uncertainty
is ignored.

5.4. Portfolio allocation for dynamic strategies

We now present the results for the case of a DA investor who
follows a dynamic strategy and reallocates her available wealth at
the beginning of each period between the risk-free and the risky
asset.’3An investor who dynamically allocates wealth considers the
investment opportunity set for the whole investment horizon T —
t and assigns the optimal weight to the risky asset knowing that
she will have the chance to revise her strategy by the end of the
next period in case her expectations of the risky asset’s return and
volatility change.

5.4.1. The effect of disappointment aversion

The dynamic case entails that investors reallocate their avail-
able wealth at the end of each year, considering the optimal solu-
tions from the solved subproblems at each horizon. For the same
level of risk aversion, the more disappointment averse an investor
grows, the less she allocates to equities. The horizon effect of DA is

13 See appendix for execution times of the algorithm for each case studied in this
section.
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visible by measuring the equity allocation at a short- and a long-
term investment horizon T — t. The dynamic allocation to the risky
asset drops as the investment horizon becomes shorter as a result
of the lower per-period volatility for longer investment horizons
shown in Fig. 6. A moderately DA investor will still be heavily in-
vested in equity even at very short horizons (dashed line in Fig. 9),
whereas a more DA investor will almost refrain from holding any
units of the risky asset even when having a relatively low level of
risk aversion.

5.4.2. Effects of predictability

With i.i.d. returns, an investor who dynamically allocates the
available wealth at each horizon uses the i.i.d. asset return gen-
erator with parameters equal to the historical annual mean and
volatility of the S&P 500, seen in Table 1. As expected she has
the same investment opportunity set at every horizon, and the al-
location to the risky asset does not change at different horizons
(dashed line in Fig. 8).

Contrary to i.i.d. returns, the left column of Fig. 9 reports opti-
mal portfolio allocations for four different levels of the DA coeffi-
cient A and three levels of the risk aversion coefficient y at differ-
ent horizons T —t when the VAR is used. The four levels of DA are
the same as those used in the buy-and-hold case. When investors
believe returns to be forecastable, they use the VAR to predict next
period’s equity return and allocation drops for the investment hori-
zon for all four different values of A. As the investment horizon
T —t shortens, a DA investor who follows a dynamic strategy allo-
cates a smaller proportion of her wealth to the risky asset, whereas
a DA and risk-averse investor will hold no units of the risky asset
as T —t approaches zero. Again, dynamically investing in the risky
asset in the short run is not as attractive as in the long run given
the higher volatility per period of the former. As a consequence,
the more disappointment averse an investor is, the more likely she
is to be affected by short-run volatility. This gives rise to horizon
effects when investors try to hedge their portfolios at shorter hori-
zons.

5.4.3. The effect of parameter uncertainty

Let us assume an investor who uses the i.i.d. return generator
and considers uncertainty in parameters. In this case she will ex-
hibit slightly different portfolio allocations compared to when pa-
rameters are treated as known. Fig. 8 shows that both a DA in-
vestor and one who uses the power utility function will slightly
increase their portfolio allocation to the risky asset with the in-
vestment horizon (solid line) to eventually hold a portfolio po-
sition very similar to an investor who ignores parameter uncer-
tainty (dashed line). Investing for a longer horizon appears to be
less risky than holding the risky asset in the short run as a result
of the lower per-period volatility of the latter. As a result, an in-
vestor who dynamically invests with a shorter-term outlook will
hold slightly less equity in their portfolio compared to an investor
who invests for a longer horizon.

Turning to the case of predictability, the right column of
Fig. 9 reports results that reflect optimal allocations to the risky
asset for investors who rebalance their portfolios annually by pre-
dicting asset returns based on the dividend yield when parameter
uncertainty is accounted for. These plots mainly reveal two facts:
first, equity allocation is, in general, lower compared with the case
of an investor who ignores parameter uncertainty, and, second, the
impact of parameter uncertainty on hedging demands is stronger
compared to the case where this is ignored due to the changes in
the opportunity set. When we express uncertainty about the pa-
rameters of the VAR, we use the posterior predictive distribution
in Lemma 2 in place of the VAR model with fixed parameters as
stated in Eq. (19). In this case, instead of simulating future return
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Fig. 8. Dynamic portfolio allocation when returns are i.i.d. Investor chooses between the risky and the riskless asset and uses the i.i.d. return generator for the risky asset.
The objective of this exercise is to show how the portfolio allocation to the risky asset changes for an investor who acknowledges parameter uncertainty (optimization
problem in 17) compared with one who ignores (optimization problem in 11) it and holds the same portfolio throughout the investment horizon. A = 0.44 is equivalent to
the value of the loss aversion (LA) parameter calculated in Tversky & Kahneman (1992), that is, DA = 1/A = 0.44.
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Fig. 9. Optimal portfolio allocation for a dynamic strategy. Investor uses the VAR to forecast returns. The left columns report results when parameter uncertainty is ignored
(optimization problem in 11 with predictable returns as in 19), whereas the one on the right accounts for parameter uncertainty (problem in 17). Each line corresponds to a
different level of the DA coefficient (A) as follows: solid line, A = 1; dashed line, A = 0.70; dotted line, A = 0.44; solid/dotted line, A = 0.30. A = 0.44 is equivalent to the
value of the loss aversion (LA) parameter calculated in Tversky & Kahneman (1992), that is, DA = 1/A = 0.44.
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paths conditioning on fixed values for the model parameters (con-
stant terms, matrix of AR coefficients, and variance-covariance ma-
trix), we sample from their posterior distributions, each time ob-
taining a new set of parameters that is conditional on observed
data only.

The results exhibit a pattern similar to the one in the left col-
umn of Fig. 9. The more disappointment averse and risk averse an
investor grows, the lower the equity allocation will be at differ-
ent investment horizons. Still, similar to the case of a DA investor
who follows a buy-and-hold strategy, parameter uncertainty mit-
igates the magnitude of the observed hedging demands. The un-
derlying cause for this behavior can be explained by the way the
mean return and variance change over time. Investors’ uncertainty
about the predictive capacity of the dividend yield results in higher
long-term per-period volatility, which explains investors’ lower al-
location to the risky asset compared to allocation in the left col-
umn of Fig. 9, where parameter uncertainty is ignored. Similar to
a buy-and-hold investor, considering parameter uncertainty in dy-
namic investing makes investors aware of changes in the invest-
ment opportunity, as a result of the weakened predictive capac-
ity of the dividend price ratio. Subsequently, investors doubt that
higher or lower equity allocations will result in more optimal port-
folios. In these cases, portfolio allocations will not change signifi-
cantly among different investment horizons, moderating therefore
the observed horizon effects.

6. Concluding remarks

Risk asymmetries implied by disappointment aversion (DA) can
decisively change intertemporal portfolio choices, especially when
risk asymmetry is studied together with predictability and parame-
ter uncertainty. Our contribution suggests that a DA investor would
allocate lower weights to equity compared to an investor who
uses a standard CRRA power utility function. What is more, DA in-
troduces horizon effects for a buy-and-hold investor regardless of
whether she employs either of the return generators and accounts
for or ignores parameter uncertainty. When the latter is consid-
ered, equity allocation at longer horizons is significantly lower to
when parameter uncertainty is ignored, and there could be cases
where parameter uncertainty changes the return distribution by
this much that long-term equity allocation is lower to shorter term
one.

A dynamic investor who accounts for predictability will hold a
completely different portfolio to one who uses an i.i.d. return gen-
erator as the distribution of the future returns generated by the
VAR is significantly different from that of i.i.d. returns, because of
the correlation between the dividend price ratio and the return of
the risky asset. As opposed to the latter, a dynamic allocation will
exhibit horizon effects as a result of the time-varying investment
opportunity set. Furthermore, the incorporation of parameter un-
certainty in the DA framework with predictability can drastically
change equity allocations over time. Although a portfolio that ig-
nores parameter uncertainty and is based on the i.i.d. return gener-
ator will be no materially different to one that accounts for param-
eter uncertainty, this is no longer when investing under the VAR.
There, equity allocation would be much lower for the portfolio that
accounts for parameter uncertainty as a result of the additional es-
timation risk in the VAR model parameters.

Overall, it is beneficial to examine parameter uncertainty as a
special case in a portfolio model, as frameworks that do not ac-
count for this may generate portfolios with too large equity allo-
cations. When model parameters are taken as uncertain, a DA in-
vestor will still allocate larger weights to stocks at longer horizons.
Nevertheless, the difference between a long-term and a short-term
equity weight is smaller compared to the case in which parameter
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uncertainty is ignored, and as a result of the doubts investors cast
on the predictive power of the dividend yield.

Our results should be of particular interest to policy makers, as
they indicate that DA, conditional on its magnitude, tacitly fosters
limited-to-no participation in equity investing. To the extent that
DA is likely to affect individual investors more (Barber, Odean, &
Zhu, 2009, given their lower sophistication levels,), financial liter-
acy programs could raise awareness of DA, while training people to
assess their investments from a longer-term perspective, regardless
of price movements in the short run (where the effects of DA are
more likely to be felt). This, in turn, will help enhance the partic-
ipation of retail investors in equity turnover (thus benefiting mar-
ket liquidity), while ensuring that those that invest in equities are
less likely to exit the market because of disappointment-related
reasons. Our results are also relevant to finance practitioners, in
particular brokers and financial advisors, who, by virtue of their
profession, tend to engage with retail investors on a regular basis.
For these practitioners, accounting for DA in their clients’ risk pro-
filing and overall day-to-day interactions would considerably help
inform their professional practice, by permitting practitioners ad-
ditional insight into their clients’ trading decisions. Such insight
could allow them to educate their clients about the role of DA in
trading, thus helping them potentially improve their trading deci-
sions. From an academic perspective, and to the extent that dis-
appointment stems from prior investment experience, our results
also offer an alternative explanation of previously documented ev-
idence (Seru, Shumway, & Stoffman, 2010; Strahilevitz, Odean, &
Barber, 2011) of the reluctance of investors to reenter the market
if they have exited it previously at a loss.

There are a number of interesting avenues for future research.
Exploration of behavioral utility functions, particularly the DA the-
ory, in the context of an asset allocation optimization problem is
far from complete. In practice, investors’ portfolios contain riskless
and numerous asset classes of risky assets. Hence, a natural exten-
sion of the current framework seems to be building one able to
deal with multi-asset portfolios, with additional asset classes, and
incorporating consumption and trading costs. Moreover, given that
prices of financial assets are determined by the forces of supply
and demand, which stem from the trading and investment deci-
sions of market participants, it would be of great interest to de-
part from partial equilibrium and study this interplay in a general
equilibrium context. Doing so would allow us to investigate the in-
teraction between investors with CRRA preferences and those us-
ing a DA utility function and, eventually, to reveal the role that DA
plays in both defining asset prices and determining trading behav-
iors. Finally, another important direction for future exploitation is
to focus on portfolio and consumption problems, rather than just
a maximization of terminal wealth as it is performed in Ang et al.
(2005) and our study. Thus, like for the case of CRRA utility, port-
folio choice under DA might also result in dependence of the port-
folio decision on future consumption-wealth ratios.
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