
ARTICLE IN PRESS 

JID: EOR [m5G; August 12, 2023;22:14 ] 

European Journal of Operational Research xxx (xxxx) xxx 

Contents lists available at ScienceDirect 

European Journal of Operational Research 

journal homepage: www.elsevier.com/locate/ejor 

Interfaces with Other Disciplines 

Long-term dynamic asset allocation under asymmetric risk preferences 

Vasileios E. Kontosakos a , b , ∗, Soosung Hwang 

c , Vasileios Kallinterakis d , 
Athanasios A. Pantelous a 

a Department of Econometrics and Business Statistics, Monash Business School, Monash University, 20 Chancellors walk, Wellington Road, Clayton Campus, 

Victoria, Australia 
b Group Risk, Allianz SE, Koeniginstrasse 28, Munich, 80802, Germany 
c School of Economics, Sungkyunkwan University, 53 Myeongnyun-Dong 3-Ga Jongno-Gu, Seoul 110-745, Republic of Korea 
d Durham University Business School, Durham University, UK 

a r t i c l e i n f o 

Article history: 

Received 25 November 2021 

Accepted 28 July 2023 

Available online xxx 

JEL classification: 

G40 

C61 

G11 

Keywords: 

Decision analysis 

Asset allocation 

Asymmetric risk preferences 

Parameter uncertainty 

Simulation study 

a b s t r a c t 

We examine the impact of return predictability and parameter uncertainty on long-term portfolio alloca- 

tions when investors’ utility function quantifies their asymmetric behaviour against expected gains and 

losses on risky assets. Allowing for different return generating systems and two investable assets, we ex- 

amine the way portfolio allocation to the risky asset evolves over the course of the investment horizon in 

the presence of risk asymmetries. We find persisting horizon effects, with stocks appearing progressively 

more attractive at longer horizons as opposed to shorter ones. The role of parameter uncertainty also 

appears to be prominent in the portfolio choice problem. Accounting for this results in both significantly 

lowering the exposure to the risky asset and lessening the horizon effects driven by return predictability. 

An equally important aspect of this study relates to detecting a level of disappointment aversion below 

which it is optimal for investors to hold zero units of a risky asset. In this regard, our analysis has impli- 

cations for the nonparticipation puzzle in stock markets. 

© 2023 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Asymmetric risk preferences in investors’ decision making have 

een an integral part of the portfolio choice literature at least 

ver the course of the past two decades ( Bellemare, Kröger, & Sos- 

ou, 2020; Berkelaar, Kouwenberg, & Post, 2004; Dahlquist, Farago, 

 Tédongap, 2017; Gomes, 2005; Schmidt & Zank, 2005 ). Com- 

on among these studies is their departure from expected utility 

 Rabin, 2013 , chapter 13) which implies equal treatment of gains 

nd losses, and subsequently the consideration of frameworks that 

eflect asymmetries in the way individuals weigh expected prof- 

ts and losses in their asset allocation decisions. The incorpora- 

ion of asymmetric risk preferences in an asset allocation exercise 

s linked to two desirable effects. First, it leads to a theoretically 

ore sound model that reflects well-documented behavioral biases 

f individuals in the face of uncertainty; second and a direct con- 

equence of the aforementioned, it can generate portfolio alloca- 

ions that are consistent with the composition of market portfolios 
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hich would also mirror investors’ expectations on future move- 

ents of the participating asset classes. 

The most prominent theoretical proposition that codifies indi- 

iduals’ attitude towards potential monetary outcomes is prospect 

heory (PT, hereafter), which has proved particularly successful 

n capturing frequently encountered traits of investors’ behavior 

 Barberis & Huang, 2008; Bernard & Ghossoub, 2010; Dimmock & 

ouwenberg, 2010; Kahneman & Tversky, 1979 ). In PT, investors 

re assumed to evaluate the performance of their investments by 

nchoring to some historical reference point, engaging in the com- 

utation of gains and losses relative to that point. Investors also 

espond asymmetrically to gains versus losses—courtesy of loss 

version—by exhibiting greater sensitivity to losses compared to 

ains. 

A derivative of PT is the theory of disappointment aversion 

DA, herafter), formally introduced by Gul (1991) , which highlights 

he role of disappointment in decision making. Disappointment re- 

ects the emotional response of individuals to outcomes falling 

elow their expectations ( Bell, 1982; 1985; Summers & Duxbury, 

012 ) and constitutes one of the most intense and frequently ex- 

erienced negative emotions in real life ( Schimmack & Diener, 

997; Weiner, Russell, & Lerman, 1979 ). From an asset allocation 

erspective, the impact of DA has been confirmed in a series of 
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tudies (see Ang, Bekaert, & Liu, 2005; Dahlquist et al., 2017; Field- 

ng & Stracca, 2007; Gul, 1991 ) involving single-period, mostly 

tatic, settings. However, investors’ focus need not be confined 

ithin a single-period, as it may well stretch across multiple pe- 

iods involving a variety of horizons (be they shorter or longer 

nes), thus suggesting that the impact of DA over asset allocation 

ecisions may exhibit horizon effects. This, in turn, would necessi- 

ate the study of DA in multi-period settings, something that has 

o date received little attention in the literature. 

This paper aims at addressing this gap in the literature by 

ormalizing a multi-period dynamic framework in partial equilib- 

ium 

1 , which allows for sequential investing and reallocation of the 

vailable wealth under the impact of return predictability and un- 

ertainty around the true values of the parameters used to model 

xpected movements of the risky asset. The main tool for our anal- 

sis is Dynamic Programming (DP) which allows for recursively 

olving investor’s portfolio allocation problem at each investment 

orizon, accommodating the stochastically-driven movements of 

he risky asset. Doing so would allow one to investigate how DA 

references affect the decision-making of people who seek to max- 

mize their expected utility of wealth over long periods. In our 

etup, investors choose portfolio allocations for two investable as- 

ets, a risk-free, and a risky asset. Because it is impossible to, a 

riori, assert investors’ beliefs as per the return-generation pro- 

ess in the market, we consider two possible data-generating pro- 

esses (DGPs). The first one assumes returns are independent and 

dentically distributed (i.i.d.), and the second one assumes a vec- 

or autoregression (VAR) that uses the dividend price ratio (i.e., the 

ividend yield) as its predictor variable. An issue arising from the 

bove two DGPs pertains to the uncertainty inherent in their esti- 

ated parameters and how investors treat it. To assess the impact 

f parameter uncertainty, we compare asset allocations to the risky 

sset between cases in which parameter uncertainty is ignored and 

thers where it is considered, for both DGPs. 

Our main focus is on whether return predictability and param- 

ter uncertainty generate horizon effects (i.e., different portfolio al- 

ocations at different investment horizons). We provide the the- 

retical foundation for the multi-period dynamic asset allocation 

roblem along with a detailed simulation study where the effects 

f return predictability and parameter uncertainty are considered. 

his study presents evidence strongly supporting the role of DA in 

efining equity participation (and nonparticipation) regions, partic- 

larly in the long-run, thus contributing to the explanation of the 

onparticipation puzzle . The latter, arises when individuals refrain 

rom investing in risky assets, in favour of risk-free ones, despite 

he historical outperformance of the first over the second. We find 

hat for every portfolio allocation and level of expected equity re- 

urn, there is a critical value of DA below which it is optimal for 

 DA investor to hold zero units of the risky asset. More interest- 

ngly, we find that DA investors tend to allocate significantly less to 

quity compared to investors with isoelastic (power) utility. DA ap- 

ears to be powerful in asset allocation at every horizon: we find 

hat a small increase of the DA coefficient leads to a significant de- 

rease in equity holdings in the case of an investor who accounts 

or predictability in stock returns. 

Our study is comparable with Ang et al. (2005) in the sense 

hat both deal with portfolio optimization in the presence of asym- 

etric risk preferences. Nevertheless, despite Ang et al. (2005) fo- 

using on the single- or two-period portfolio problem, we are in- 

erested in multi-period dynamic portfolio optimization. In doing 

o we observe the variability in the composition of the optimal 
1 Our approach employs an exogenous price setting, making this study a partial 

quilibrium one. Modeling the cash flows can lead to an endogenous price setting, 

here equilibrium asset prices are attained and markets clear. For an example of 

n equilibrium study, see Lynch (20 0 0) . 

a

C

c

2

ortfolio over time as a result of investors’ risk preferences and 

he intertemporal evolution of the investment opportunity set. The 

ain drivers for the latter are the consideration of asset return 

redictability and model parameter uncertainty as to the calibra- 

ion of the DA portfolio model. Applications of parameter uncer- 

ainty in multi-period models are in general limited while, to our 

nowledge, parameter uncertainty has not been studied in a dy- 

amic programming DA framework. 

A knock-on effect of the use of DP in solving dynamic systems 

s the expansion of the state space (i.e., the universe of all possible 

olutions among which the optimal one lies too) that gives rise to 

he known curse of dimensionality of DP. This particularity is un- 

ikely to emerge in a single- or two-period portfolio problem but 

t is relevant to our multi-period long-term dynamic one as the 

xponential increment of the state space size makes the problem 

umerically cumbersome. Remedy to this is provided by applying 

 dimensionality reduction technique discussed in Epstein & Zin 

1989) , Kreps & Porteus (1979) and Ang et al. (2005) . 

With this analysis, we produce a series of original contribu- 

ions to the extant literature on investors’ portfolio choices un- 

er asymmetric risk preferences, contextualized by predictability 

nd parameter uncertainty. First, we extend the literature of in- 

estors’ portfolio choices with DA utility by providing optimal eq- 

ity participation conditions and nonparticipation regions for port- 

olio allocations. Second, we study the portfolio choice problem 

or a long-term buy-and-hold investor under return predictability 

nd parameter uncertainty. Although our study primarily focuses 

n dynamic portfolio choice, revisiting the buy-and-hold asset allo- 

ation problem for very long investment horizons (up to 40 years) 

eveals a number of important implications for the different in- 

estment behaviors of a long versus a short-term DA buy-and-hold 

nvestor. To our knowledge, this specific focus has not attracted at- 

ention so far. 2 Third, we demonstrate how the incorporation of 

redictability into asset returns affects portfolio weights at differ- 

nt horizons for a dynamic investor and how this can give rise to 

orizon effects, in the sense that investors change their portfolio’s 

omposition taking into account the variability in investment op- 

ortunities. Finally, we complete our study constructing a Bayesian 

ramework that incorporates both predictability and parameter un- 

ertainty to investigate how each of the two properties affect port- 

olio compositions in a DA context. Here, the choice of the risky 

sset return generator is crucial; for example, the impact of pa- 

ameter uncertainty on a dynamic strategy, where returns are i.i.d., 

s not as powerful as that in the case in which predictability is 

onsidered, leading to significantly different portfolio allocations. 

. Literature review 

Our research is primarily motivated by extant evidence, accord- 

ng to which investors do not strictly adhere to the assumptions 

f expected utility theory in their decisions, instead being prone 

o viewing choices in a biased fashion, often under the influence 

f emotions and cognitive biases, such as mental accounting (i.e., 

he inclination to evaluate portfolio’s assets in isolation; Barberis, 

uang, & Santos, 2001 ) and framing which can prompt investors to 

hoose an option that appears attractive on the background of less- 

ttractive alternatives and not because it is the optimal option (for 

 more detailed discussion of the above, see Kahneman, Lovallo, 

 Sibony, 2011 ). Several studies depart from the expected utility 

ramework to better explain investors’ decision-making under risk, 

ransforming probabilities into decision weights through nonlinear 
2 Dynamic portfolio allocation has, overall, been widely studied, in both discrete 

nd continuous time ( Aït-Sahalia, Cacho-Diaz, & Hurd, 2009; Brandt, Goyal, Santa- 

lara, & Stroud, 2005; Campbell & Viceira, 2002 ), however none of these studies 

onsiders a utility function that accommodates asymmetric preferences. 
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3 For the purpose of our study, the definition of P can deviate from that of the 

physical probability measure strictly defined in a probability triple. In practice, we 

use the quadrature probabilities provided by a Gauss-Hermite scheme as it is dis- 

cussed in the following sections, which are transformed via K. 
4 In asset pricing, a slightly modified version of the original DA theory is used 

( Bonomo, Garcia, Meddahi, & Tédongap, 2011; Routledge & Zin, 2010 ) in which DA 

utility in Eq. (1) is extended so that an outcome signals disappointment only when 

it lies sufficiently below the certainty equivalent. The effect is captured by an addi- 

tional coefficient that coexists with the DA parameter A . 
robability functions (see Diecidue, Schmidt, & Zank, 2009; Gon- 

alez & Wu, 1999; Kilka & Weber, 2001 among others). This in 

urn generates skewed, instead of symmetric, probability distribu- 

ion functions for the expected return of the risky assets which has 

mplications for the portfolio allocation decisions of market partic- 

pants. For example, in the case of PT, at odds with intuition, an in-

icative market-observed effect of loss aversion is investor’s grow- 

ng appetite for risk when in the domain of losses (they hold onto 

heir loser stocks hoping for a price rebound) while they become 

ore risk averse in the domain of gains (they sell their winner 

tocks to realize profits, while profits still exist). This in essence 

eads investors to sell their winning assets more quickly compared 

ith their losing ones. Empirical evidence ( Grinblatt & Keloharju, 

0 01; Haigh & List, 20 05; Jin & Scherbina, 2010; Locke & Mann,

001; Odean, 1998; Shapira & Venezia, 2001; Wermers, 2003 ) sug- 

ests that this pattern permeates both retail and institutional in- 

estors’ behavior internationally, yet leads to sub-optimal perfor- 

ance. The latter has been ascribed to the effect of short-term 

omentum ( Jegadeesh & Titman, 1993; 2001 ) in stock returns, 

ccording to which recent winners (losers) will continue outper- 

orming (underperforming) in the near future; this finding, in turn, 

uggests that investors in the prospect theory setting should keep 

heir winners (instead of quickly selling them) and sell their losers 

instead of keeping them). 

The derivative DA theory extends the expected utility theory 

y relaxing the independence axiom, while retaining the basic fea- 

ures of PT (asymmetric preferences, reference dependence, dimin- 

shing sensitivity, and probability weighting). Moreover, it provides 

s with better understanding in the way the certainty equivalent of 

ealth is chosen and updated. In a DA context, the certainty equiv- 

lent of wealth serves as a reference point for investor’s wealth 

gainst which gains and losses are compared, and is updated in an 

ndogenous way. On the other hand, in PT these points are set ex- 

genously and are usually equal to the current wealth (the status 

uo; see Baillon, Bleichrodt, & Spinu, 2020; Werner & Zank, 2019 , 

or potential ways reference points can be chosen in PT). 

In terms of asset allocation, by deriving the optimal portfolio 

omprising a risky and a risk-free asset for an investor who uses 

he DA utility function, we extend the DA-related literature. Over- 

ll, empirical applications of the DA theory have been rather lim- 

ted to date, a fact attributed by Abdellaoui & Bleichrodt (2007) to 

he theory lacking a method of formally extracting the DA coef- 

cient. To that end, Abdellaoui & Bleichrodt (2007) proposed a 

rade-off method, which first derives the underlying utility func- 

ion and then, based on the function, extracts the DA coefficient. In 

sset allocation setups, Dahlquist et al. (2017) employed DA pref- 

rences to derive analytical expressions for measures such as the 

ffective risk aversion when studying higher moments of return 

istributions. 

More importantly, we contribute to the growing portfolio choice 

iterature, which discusses the incorporation of parameter uncer- 

ainty into the asset allocation topic. Relevant literature ( Avramov 

 Zhou, 2010; Barberis, 20 0 0; Bawa, Brown, & Klein, 1979; Kacper- 

zyk & Damien, 2011; Kandel & Stambaugh, 1996 ) integrates sev- 

ral forms of uncertainty (model, parameter, or distribution) with 

sset allocation decision-making. Recently obtained evidence fur- 

her corroborates the importance of predictability and param- 

ter uncertainty for portfolio choices. Branger, Larsen, & Munk 

2013) and DeMiguel, Martín-Utrera, & Nogales (2015) examine 

he construction of optimal portfolios under uncertainty about ex- 

ected asset returns and find that parameter uncertainty is highly 

elevant to portfolio choice. Chen, Ju, & Miao (2014) study the dy- 

amic portfolio choice problem when investors face uncertainty 

bout the model’s specification, incorporating learning to construct 

trategies that depart from the Bayesian approach. Hoevenaars, 

olenaar, Schotman, & Steenkamp (2014) test the impact of differ- 
3 
nt uninformative priors on both short- and long-term equity al- 

ocations, whereas Johannes, Korteweg, & Polson (2014) investigate 

he impact of predictability and parameter uncertainty in an ex- 

ected utility framework mainly focusing on the impact of volatil- 

ty on the portfolio choice problem. 

Our paper is structured as follows: Section 3 formally intro- 

uces the DA utility and the portfolio allocation framework along 

ith the definition of the predictability and parameter uncertainty 

sed in our empirical design. In Section 4, the case of equity non- 

articipation is discussed followed by a simulation study for the 

mpirical part of the study in Section 5 . Concluding remarks are 

iscussed in Section 6 . A number of online available appendices 

an be found as supplementary material to this paper. The inter- 

sted reader can have access to technical details for the problem 

ormulation, the algorithmic procedure, the incorporation of pa- 

ameter uncertainty and predictability in the DA asset allocation 

ontext and the performance of algorithmic implementation. 

. Extension of the DA framework 

We introduce the theoretical components for the DA optimiza- 

ion framework under the present section. In specific, we start 

ith the definition of the DA utility function ( Section 3.1 ) and 

he necessary extensions to accommodate multi-period problems 

 Section 3.2 ). The case of parameter uncertainty is considered sep- 

rately in Sections 3.5 and 3.6 after introducing the two DGPs in 

ection 3.4 . 

.1. A classic DA setup 

We define the DA utility employed (see, Ang et al., 2005 ) in this

tudy as follows: 

 (μW 

) = 

1 

K 

( ∫ μW 

−∞ 

U (W ) dF (W ) + A 

∫ ∞ 

μW 

U(W ) dF (W ) 

) 

, (1)

here A is the coefficient of DA, bounded between zero and one 

i.e., 0 < A ≤ 1 ); U(·) is the constant relative risk aversion (CRRA) 

tility function defined by U(W ) = W 

1 −γ / (1 − γ ) , where W de-

otes wealth; μW 

is the implicitly defined certainty equivalent of 

ealth; F (·) is the cumulative distribution function for wealth; and 

is a scalar equal to P (W ≤ μW 

) + AP (W > μW 

) . 3 

Eq. (1) was selected as the driver of the portfolio choice prob- 

em because it embodies the main features of the DA theory. First, 

t splits the outcomes based on whether they are smaller or larger 

han certainty equivalent μW 

; second, using the DA coefficient A it 

s clear that it penalizes portfolio wealth states better than μW 

, 

hile it also skews the probability distribution of W with the 

calar K. 4 It is expected that μW 

acts as the reference point in 

efining both the scalar factor K and the sum of the integrals in 

q. (1) . The reference point is of no relevance to the portfolio al- 

ocation problem only when A = 1 as the DA preference reduces 

o CRRA. In practice, given that A cannot be larger than one, any 

utcome worse than μW 

is weighted more heavily than one bet- 

er than it. Intuitively, asymmetries in risk preferences entail that 

ownside portfolio movements occur more frequently (i.e., larger 
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6 See Bertsekas (1995) for more details on that. 
7 As the state variables take a number of different values at each horizon, the 

state-space exponentially increases with time with every iteration of the algorithm. 

For example, a T -period problem with a state variable with s states produces s T 

possible combinations. From an analytical perspective, this is not a big obstacle 
robabilities are assigned) and as a result, they should be relevant 

o the DA investor. 

Assume two assets, one risky asset and one risk-free asset, 

hose continuously compounded returns are denoted by e y and e r 

espectively. Then the investor’s wealth is defined as W = αX + e r ,

here α is investment proportion in the risky asset; X = e y − e r is 

he excess risky asset’s return and the initial wealth is set to one, 

ecause the optimization problem is homogeneous in wealth un- 

er the CRRA utility function. When a DA investor allocates her 

ealth into assets in order to maximize the DA utility for a single 

eriod, the static optimization problem is 

ax 
α

U(μW 

) . (2) 

he above constitutes the asset allocation problem under the as- 

umption of DA utility in a single-period setting. 

.2. Formulation of the dynamic allocation optimization problem 

ith DA utility 

We extend the static setup in Eq. (1) to an equation with time- 

ependent wealth, certainty equivalent and probability weighting 

or the potential wealth states as captured in K. The aim of this 

xtension is to derive the expressions that will be converted to the 

bjective functions used for the portfolio optimization problem. A 

ynamic optimization problem with DA utility in a multiple-period 

etting is considerably more complex than in a static one, because 

t every horizon the optimization routine should take into account 

he investment opportunity set for the whole remaining invest- 

ent period (as opposed to a one-period forward-looking myopic 

trategy), while the certainty equivalent of wealth is itself a func- 

ion of each horizon’s optimal decision. The complexity of the op- 

imization problem further increases by considering predictability, 

hich leads to variable investment opportunity sets. We begin by 

uilding the optimization problem for a general utility function de- 

ned over wealth U(W ) and we then move to dynamic asset allo- 

ation with DA utility. In doing so, we have the chance to define 

ariables that are also used in the DA optimization problem, in a 

impler framework without the additional complexity that comes 

rom the wealth0dependent utility function. 

.2.1. Dynamic asset allocation with general utility function 

Assume the following dynamic asset allocation problem in dis- 

rete time in which an agent aims to maximize the expected utility 

f the end-of-period wealth W T as follows: 

max 
0 ,α1 , ... ,αT−1 

E 0 [ U(W T )] , (3) 

here α0 , α1 , . . . , αT −1 are the investment proportions of the 

isky asset at times t = 0 , 1 , . . . , T − 1 , respectively, and U(W ) =
 

1 −γ / 1 − γ . In this problem, the investor allocates her wealth at 

ime t = 0 for T periods, at t = 1 for T − 1 periods and so on until

he reaches time t = T − 1 , where she invests for a single period. 5 

ealth W t+1 is defined as W t+1 = W t R t+1 (αt ) , where R t+1 (αt ) and

t represent the portfolio return over the period t to t + 1 and 

he investment weight on the risky asset at time t , respectively. 

t time t when the investor seeks to allocate her available wealth 

ptimally between the risky and the riskless asset in order to max- 

mize her expected utility, the optimization problem becomes 

ax 
αt 

E t [ U(W t+1 Q 

∗
t+1 ,T )] , (4) 

here Q 

∗
t+1 ,T = R T (α

∗
T −1 ) R T −1 (α

∗
T −2 ) · · · R t+2 (α

∗
t+1 ) represents the 

ggregate return-to-go over the investment horizon generated by 
5 This problem mimics the optimization problem that pension fund managers 

ace over multiple periods, ( Xie, Hwang, & Pantelous, 2018 , e.g.,). 

(

e

p

4 
he optimal risky asset allocation αt+1 , αt+1 , . . . , αT −1 that maxi- 

izes investor’s expected utility. 

Using dynamic programming, we can solve the problem at time 

 = T − 1 for the asset allocation decision for the period T − 1 to T .

ontinuing recursively, we can solve the asset allocation subprob- 

em at time T − 2 using the solution to the problem at T − 1 , un-

il we reach time t . This procedure derives a final solution for the 

ortfolio allocation to the risky asset αt , αt+1 , . . . , αT −1 that will be 

ptimal as guaranteed by the principle of optimality in dynamic 

rogramming. 6 For the power utility function, the objective func- 

ion in (4) takes the form of 

ax 
αt 

E t 

[
W 

1 −γ
t+1 

1 − γ
(Q 

∗
t+1 ,T ) 

1 −γ

]
. (5) 

ackward induction suggests that Q 

∗
t+1 ,T 

represents the optimal in- 

estment decision between times t + 1 and T that maximizes the 

xpected utility. We calculate the optimal investment proportions 

f the risky asset at every time step of the investment period as 

∗
t = arg max 

αt 

E t 

[
W 

1 −γ
t+1 

(Q 

∗
t+1 ,T ) 

1 −γ

]
. (6) 

.2.2. Dynamic asset allocation with DA utility 

Having defined basic building blocks of the optimization setup, 

e now turn to the portfolio optimization problem under DA util- 

ty preference which is in-scope of the study. DA utility incorpo- 

ates CRRA preferences as a special case in which A = 1 , but the

ynamic extension of the single-period problem for DA utility is 

ar more complicated because of the so-called curse of dimensional- 

ty , i.e., the number of state variables exponentially increases with 

ime. 7 We begin by first formulating the dynamic optimization 

roblem between t and T . 

roposition 1. For given Q 

∗
t+1 ,T = R T (α

∗
T −1 ) R T −1 (α

∗
T −2 ) · · · R t+2 (α

∗
t+1 )

he DA utility function for the dynamic asset allocation problem is 

iven by 

(μt ) = 

1 

K t 

[
E t 

(
U(W t+1 Q 

∗
t+1 ,T ) 1 W t+1 Q 

∗
t+1 ,T 

≤μt 

)

+ A E t 

(
U(W t+1 Q 

∗
t+1 ,T ) 1 W t+1 Q 

∗
t+1 ,T 

>μt 

)]
, (7) 

here W t+1 Q 

∗
t+1 ,T = W T , according to the recursive definition of 

ealth. The first-order condition (FOC) for optimizing the utility of the 

ertainty equivalent return is given by 

 t 

(
dU(W T ) 

dW 

Q 

∗
t+1 ,T R t+1 (αt ) W t X t+1 1 W T ≤μt 

)

+ A E t 

(
dU(W T ) 

dW 

Q 

∗
t+1 ,T R t+1 (αt ) W t X t+1 1 W T >μt 

)
= 0 , (8) 

here X t+1 = e y t+1 − e r t is the excess return of the risky asset over the

iskless asset. 

roof. See Appendix 9.1 �
as the problem still can be mathematically formulated), but computation-wise, the 

xponential increment of the state-space renders the use of algorithmic processes 

roblematic. 
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8 Instead of quadrature-based methods, Monte-Carlo simulations or, even, 

regression-based methods, like in Brandt et al. (2005) , can be used to calculate the 

expectations in Eq. (15) . In practice however, the quadrature method offers suffi- 

cient accuracy and greater computational speed compared with the alternatives. 
For investment horizon T , the recursive formulation for the util- 

ty of the DA investor at time T − 1 is defined as follows: 

 T −1 U(μT −1 ) = E T −1 [ U(W T R T (αT −1 )) 1 W T R T (αT−1 ) ≤μT−1 
] 

+ A E T −1 [ U(W T R T (αT −1 )) 1 W T R T (αT−1 ) >μT−1 
] , (9) 

here K T −1 = P (W T R T (αT −1 ) ≤ μT −1 ) + A P (W T R T (αT −1 ) > μT −1 )

nd U(μ) = μ1 −γ / (1 − γ ) . Accordingly, at T − 2 the utility is

efined as 

 T −2 U(μT −2 ) = E T −2 [ U(W T −1 R T (α
∗
T −1 ) R T −1 (αT −2 )) 

1 W T−1 R T (α∗
T−1 

) R T−1 (αT−2 ) ≤μT−2 
] 

+ A E T −2 [ U(W T −1 R T (α
∗
T −1 ) R T −1 (αT −2 )) 

1 W T−1 R T (α∗
T−1 

) R T−1 (αT−2 ) >μT−2 
] , (10) 

here K T −2 = P (W T −1 R T (α
∗
T −1 

) R T −1 (αT −2 ) ≤ μT −2 ) + A P (W T −1 

 T (α
∗
T −1 

) R T −1 (αT −2 ) > μT −2 ) . By the same token, all intermediate 

ptimization steps are defined recursively up to time t = 0 where 

 single-period optimization problem is solved, similar to a that of 

 buy-and-hold investor. The main drawback with Proposition 1 is 

hat recursive optimization exponentially enlarges the state space 

n Q t+1 ,T in order to take into account all the possible states for 

he return of the risky asset between times t + 1 and T . Consider-

ng the time evolution of risky asset returns as a grid of multiple 

iscrete states (equivalent to a binary tree in case of only two 

tates, up and down), there is no reason to assume that returns 

ill be recombining. As a result, the recursive formulation at 

 − 2 requires tracking all states of risky asset return both at T − 2

nd T − 1 , hence they are both part of Eq. (10) . To overcome the

urse of dimensionality, we elaborate on the approach also met 

n Epstein & Zin (1989) , by considering that future uncertainty 

bout risky asset’s returns is captured by the certainty equivalent. 

nder this approach, instead of carrying backward all the possible 

tates for the equity return at each horizon, we pay attention to 

nly one variable, next-period’s certainty equivalent, keeping the 

imension of the state space fixed over time. Let μt represent the 

ertainty equivalent return for the utility at time t + 1 with the 

ptimal asset allocation: 

ax 
αt 

E (U(W t+1 )) = max 
αt 

U(W t μt (αt )) . (11) 

hen we obtain the following result: 

roposition 2. The utility of the certainty equivalent return at time 

 ≤ t < T − 1 is as follows: 

(μt ) = 

1 

K t 

[
E t 

(
U(R t+1 (αt ) μ

∗
t+1 W t 

T −1 ∏ 

i = t+2 

μ∗
i ) 1 { R t+1 (αt ) ≤ξt } 

)

+ A E t 

(
U(R t+1 (αt ) μ

∗
t+1 W t 

T −1 ∏ 

i = t+2 

μ∗
i ) 1 { R t+1 (αt ) >ξt } 

)]
. (12) 

he value of U(μt ) for the boundary condition t = T − 1 is given by 

(μT −1 ) = 

1 

K T −1 

[
E T −1 

(
U(R T (αT −1 ) W T −1 ) 1 { R T (αT−1 ) ≤μT−1 } 

)
+ A E T −1 

(
U(R T (αT −1 ) W T −1 ) 1 { R T (αT−1 ) >μT−1 } 

)]
, (13) 

nd the FOC for optimizing the utility of the certainty equivalent re- 

urn is given by 

E t 

(
dU(R t+1 (αt )) 

dαt 
X t+1 μ

∗
t+1 1 { R t+1 (αt ) ≤ξt } 

)

+ A E t 

(
dU(R t+1 (αt )) 

dαt 
X t+1 μ

∗
t+1 1 { R t+1 (αt ) >ξt } 

)
= 0 , (14) 
5 
here ξt = 

μt 
μ∗

T−1 
···μ∗

t+1 
W t 

, with μ∗’s as the optimal certainty equiva- 

ents between t + 1 and T − 1 . 

roof. See Appendix 9.2. �

Remark Notice that W t will eventually not be part of the ex- 

ressions for U(μt ) in Eqs. (12) and (13) as moving backward in 

ime we will have W t = W 0 

∏ t 
i =1 R i (αi −1 ) , where all uncertainty 

bout R n (αn −1 ) , where n ∈ { t + 1 , t + 2 , . . . , T } , will be captured by

he certainty equivalent return μ∗
n , where n ∈ { t + 1 , t + 2 , . . . , T } ,

nd W 0 is set to one given wealth homogeneity. At each horizon, 

e need to track only the states for μ∗
n , keeping the dimension of 

he state space for μ∗
n fixed and allowing for horizon effects (hedg- 

ng demands) in case the DA investor is not at horizon T − 1 . 

Investor’s gains or losses at time t + 1 are now calculated with 

espect to ξt , that is, the certainty equivalent at time t for the op- 

imal certainty equivalent from t + 1 to T . Adopting the dynamic 

A utility in Eq. (12) , next period’s optimal certainty equivalent 
∗ is used to define this period’s DA utility. To solve for the op- 

imal certainty equivalent μ∗ and portfolio α we use dynamic pro- 

ramming. As an example of the advantage of using the certainty 

quivalent, we can rewrite the FOC in Eq. (14) for power utility as 

ollows: 

 t 

(
R 

−γ
t+1 

(αt ) X t+1 μ
∗
t+1 1 R t+1(αt ) ≤ξt 

)
+ A E t 

(
R 

−γ
t+1 

(αt ) X t+1 μ
∗
t+1 1 R t+1(αt ) >ξt 

)
= 0 . (15) 

y using certainty equivalent as each period’s endogenously de- 

ned reference point, based on return expectations, the dimen- 

ion of the state-space remains unchanged with time. The bene- 

t from reducing the dimensionality of the state space is ampli- 

ed as the investment horizon increases, since for longer horizons 

he optimization problem using numerical methods becomes in- 

ractable. Then at each time step we need to determine the op- 

imal values for μ and α that simultaneously solve Eqs. (12) and 

15) . For this we adopt a Gaussian quadrature scheme (see Davis 

 Rabinowitz, 2007 , for an in-depth review of numerical integra- 

ion methods) as in Balduzzi & Lynch (1999) and Campbell & Vi- 

eira (1999) that allows us to discretize the continuous probabil- 

ty distributions of the risky asset’s returns in the E (·) in the two

quations. In essence, the scheme allows us to track the states 

R t+1 (αt ) μs 
t+1 

∗}N 
s =1 

(∏ T −1 
i = t+2 μ

∗
i 

)
, where N is the number of quadra- 

ure states for the certainty equivalent return and R t+1 is the re- 

urn given by the corresponding DGP. 8 We then solve the dis- 

retized expression of Eq. (12) (adjusted for power utility in place 

f U(·) ) in parallel with the FOC for the DA maximization problem 

n Eq. (15) recursively incorporating the calculations from periods 

 − 1 to t + 1 . Due to the complexity of the notations and a neces-

ary brief introduction of the discretization method, details on the 

olution of the system of equations are laid out in Appendix 8 of 

he supplementary online material. 

.3. Asset allocation with parameter uncertainty 

The second theoretical result is the formulation of the DA port- 

olio optimization problem in the presence of parameter uncer- 

ainty. Investors who account for parameter uncertainty consider 

he true values of model parameters to be unknown. In fact, they 

cknowledge that by continuously updating risk and return expec- 

ations by incorporating new information over time, the values of 

odel parameters are constantly changing, and as a result, their 

ctual values are never known with complete certainty. In practice, 

he difference to the case where parameters are considered fixed 
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9 To determine the variable that best fits our data, we test the following pre- 

dictors: dividend yield (the sum of the dividends over a year divided by the level 

of the index at the end of the year; provided that the asset pays dividends); term 

spread (the difference between the 10-year Treasury bond and the 1-year Treasury 

bond); credit spread (the difference between Moody’s BAA corporate bond yield 

and its AAA equivalent); the 3-month Treasury bill; and the 10-year Treasury bond. 

The criteria for selecting the best fit are (a) whether a variable enters the VAR as 

statistically significant and (b) how much of the risky asset’s excess return variabil- 

ity it explains. More thorough analysis can be of course conducted for detecting the 

most suitable predictor or set of predictors but it is outside the scope of the current 

study. The objective of this exercise is to observe the effects introduced by return 

predictability compared to the case where returns are i.i.d., which in practice (see 

Section 5 ) is possible by using just one predictor variable. 
nd known rests on whether investor treats model parameter as 

nputs or outputs of the portfolio model. Overall, parameter uncer- 

ainty has been discussed extensively in static portfolio setups. Part 

f the literature includes Bayesian frameworks that use asset pric- 

ng models ( Pástor, 20 0 0; Pástor & Stambaugh, 20 0 0 ), diffuse pri-

rs ( Bawa et al., 1979; Brown, 1978 ), robust optimization ( Garlappi, 

ppal, & Wang, 2007 ) and shrinkage methods ( Kourtis, Dotsis, & 

arkellos, 2012; Wang, 2005 ). In terms of multi-period portfolio 

ptimization, parameter uncertainty in mean-variance portfolio se- 

ups is studied among others in Barberis (20 0 0) and DeMiguel 

t al. (2015) . In an effort to accommodate parameter uncertainty 

n a multi-period DA framework and observe the horizon effects in 

he long-term portfolio allocation, we formulate the corresponding 

ptimization problem. 

First, as a general rule, one can investigate the effects of param- 

ter uncertainty on asset allocation by allowing uncertainty in the 

arameter estimates (e.g., the mean and variance of asset returns 

nd the correlation matrix as well in case of more advanced mod- 

lling) as opposed to the case where model parameters are treated 

s known. Faced with uncertainty, investors maximize the follow- 

ng utility function at time t : 

ax 
α

∫ ∞ 

−∞ 

W 

1 −γ
t+ n 

1 − γ
p(r t+ n | Y ; θ ) dr t+ n , (16) 

here W = αX + e r follows the recursive formulation in 

roposition 2 ; n is the investment horizon, U(·) is the utility 

f wealth, and p(r t+ n | Y ; θ ) is the probability density function of 

he expected returns conditional on observed return data Y and 

he set of parameters θ (in our case the mean and variance of 

he risky asset’s return). Uncertainty arises for θ , because these 

arameters become known only after the end of the investment 

orizon. A popular approach in the literature for manoeuvring the 

arameter uncertainty problem is to use a Bayesian framework 

hat incorporates uncertainty in the parameters of θ . Integrating 

ut θ in the prior distribution p(r t+ n | Y ; θ ) , we obtain the posterior

redictive distribution, which updates the distribution parameters 

y embodying the new data. A DA investor now maximizes 

max 
α

[∫ 
W t+ n ≤μW 

U(W t+ n ) p(r t+ n | Y ) dr t+ n 

+ A 

∫ 
W t+ n >μW 

U(W t+ n ) p(r t+ n | Y ) dr t+ n 

]
, (17) 

n place of Eq. (16) , in line with the DA utility definition in Eq. (1) ,

here the distribution of the returns is now conditional on ob- 

erved stock return data only, not on the set θ . To obtain optimal 

ortfolios under parameter uncertainty, the optimization procedure 

s described in Section 3.2.2 is followed. Nevertheless, in order to 

ccount for parameter uncertainty in the generation of asset re- 

urns, a sampling algorithm sensitive to the choice of the under- 

ying DGP needs to be applied. Hence, we take a detour to briefly 

ntroduce the two DGPs used in the study before we proceed with 

he remaining results. 

.4. Definition of the DGPs 

We introduce the two DGPs used to derive optimal portfolio al- 

ocations under the theoretical models introduced in this section. 

e use return generators with the same properties throughout the 

ortfolio optimisation exercise to allow comparison between the 

ases where parameter uncertainty is ignored and when it is con- 

idered in the calibration of the portfolio model. Following the ex- 

ensive discussion in the finance literature, we consider two sys- 

ems: one that assumes equity returns are i.i.d., and a vector au- 

oregression that uses the equity price-dividend ratio as a predictor 

f equity return. 
6 
First, a straight-forward data generator comprising a single 

quation is presented. This DGP is able to model i.i.d. returns with 

o autocorrelation structure. The second data generator is a more 

omplex vector autoregression (VAR) in which one period’s asset 

eturn is related to (i.e., can be ‘predicted’ by) previous period’s 

sset price dividend ratio. As opposed to the first one, the second 

odel allows for some degree of correlation between the response 

asset return) and the explanatory variable (dividend ratio). The 

urpose of introducing the i.i.d. return generator and producing a 

ull-fledged portfolio analysis based on it (see Section 5 ), before 

eriving the same set of results for the VAR, is to have a basis that

llows us to isolate the effects introduced by return predictability 

s modelled by the VAR. 

.4.1. i.i.d. returns 

When investors ignore predictability in returns, they consider 

hem to be i.i.d., and they use the following model to estimate 

ext-period’s excess equity return: 

 t = (μ − r) + εt . (18) 

n our case, x t is the continuously compounded excess return in 

eriod t , μ is the mean asset return over some specified period, r

s the yield of a riskless asset for the same period as defined by 

he modeller and εt are i.i.d. disturbance terms distributed as εt ∼
 (0 , σ ) , where σ is the return volatility. By providing values for 

, r and σ one can trivially extract excess return values out of Eq. 

18) . This is the simplest way one can sample return values from a 

robability distribution as it requires only random sampling for the 

rror terms in ε without paying any attention to autocorrelation 

tructures. 

.4.2. Return predictability 

In practice, asset returns are not i.i.d. Researchers have docu- 

ented risk drivers that can be used to predict part of the variabil- 

ty in asset returns ( Ang & Bekaert, 2007; Campbell & Yogo, 2006; 

ochrane, 2008; Lettau & Ludvigson, 2001 ). Investors use available 

nformation to predict future returns for optimal asset allocation 

roblems. In our study, we replicate the prediction process using 

 VAR model, where asset returns and the predictable variable are 

ointly considered. 

This results in time-varying investment opportunity sets, as op- 

osed to time-independent sets when returns are i.i.d., which are 

onditional on the predictor variable in the VAR model. Investors 

eact to the variability by modifying the proportion of their cur- 

ent investment allocated to the risky asset. To determine a suit- 

ble driver for equity return, we examined a number of financial 

ariables, 9 and chose the dividend yield, calculated as the dividend 

rice ratio for of the risky asset, to drive next-period’s equity re- 

urn. The optimal number of lags was calculated as one, confirmed 

y both the Akaike and the Bayesian information criteria. We then 

odel the dividend-adjusted log excess returns of the risky asset 

s a first-order VAR of the following form: 

 t = C + BX t−1 + E t . (19) 
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Table 1 

Summary statistics. 

S&P 500 3-month T-bill Excess Return 

Annualized 

mean 0.1045 0.0344 0.0695 

stdev 0.1625 0.0088 0.1644 

Quarterly 

mean 0.0251 0.0085 0.0166 

stdev 0.0817 0.0044 0.0822 

Annualized S&P 500 and T-bill summary statistics. Excess return is calculated by 

subtracting the 3-month T-bill rate from the value of the S &P 500 for the same 

period. 

Table 2 

Parameter estimates for the Data Generating Process (VAR). 

Parameter With predictability Without predictability 

c 1 0.1222 0.0128 

(0.0173) (0.0178) 

c 2 −0.0004 −0.0317 

(0.0119) (0.0150) 

b 11 0.0259 0.0 

0.1176 –

b 12 0.0220 0.0 

(0.1354) –

b 21 −0.7068 0.0 

(0.0807) –

b 22 0.9978 0.9932 

(0.0929) (0.0912) 

σ11 0.0850 0.0856 

(0.0037) (0.0042) 

σ22 0.0408 0.0752 

(0.0017) (0.0029) 

ρ −0.5216 −0.2980 

(0.0021) (0.0028) 

This table shows VAR estimation and the corresponding standard errors of the pa- 

rameters for the two systems (predictability/no predictability). We used maximum 

likelihood (MLE) to calculate the model in Eq. (19) . For the nonpredictability system, 

the autoregressive coefficient matrix is set to zero, whereas, when we account for 

predictability in returns, all four coefficients are free to vary without restrictions. 

Parentheses include the standard errors of the estimated coefficients. The S&P 500 

and dividend yield quarterly data for the period January 1934 to September 2016 

are used in our calculations. 
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n the model of Eq. (19) , X t = 

(
y t − r t−1 

(d/p) t−1 

)
where y t − r t−1 = x t is

he excess equity return; r t is the risk-free rate; (d/p) t−1 is the 

ividend price ratio; B is the (2 × 2) matrix of the autoregression 

oefficients; C is a (2 × 1) vector of the constant terms; and E is a 

ector of i.i.d. normally distributed disturbance terms. 

We use the lagged rate r t−1 to indicate that the value of the 

isk-free rate is known at the time of portfolio formation t − 1 , in

ontrast to the risky asset, whose return becomes known at time t

nly. When asset returns are not predictable (i.e., DGP of Eq. (18) ), 

ll elements of the matrix with the autoregressive coefficients B 

re not different from zero, and returns are assumed to be i.i.d. 

s a result, the VAR model reduces to the i.i.d. return generator of 

q. (18) . We use maximum likelihood estimation (MLE) to calculate 

he VAR in Eq. (19) , and Table 2 reports the results. 

.5. Parameter uncertainty with i.i.d. returns 

Having defined the two asset return generators, we now exam- 

ne how they affect investor’s risk (i.e., variance) and return (i.e., 

ean) expectations compared to the case where these two vari- 

bles are treated as known. The difference to the case where mean 

nd variance are known is that investors are now faced with a dis- 

ribution of different mean and variance values, namely the poste- 

ior distribution, instead of fixed values. The posterior distribution 
7

as the property that it absorbs information generated during the 

nvestment horizon, based on sampled asset price trajectories from 

 frequently calibrated DGP, which cannot be know at time t = 0 .

ccordingly, the starting mean and variance expectations, namely 

he prior , are shifted in order to reflect the newly absorbed in- 

ormation. Again, it was important to define the two DGPs prior 

o the current section because the choice of the DGP changes the 

ay the sampling step mentioned in Section 3.3 is defined and im- 

lemented. Assuming investors are unaware of the true parameter 

alues, we use an uninformative (diffuse) prior of the type 

p(μ, σ ) d μd σ ∝ 

1 

σ
d μd σ, (20) 

hereas the joint posterior of the mean return μ and volatility σ
s 

p(μ, σ | Y ) ∝ p(μ, σ ) × L (μ, σ | Y ) , (21)

here L is the likelihood function. The following lemmas report 

he results for the case of i.i.d. returns ( Lemma 1 ) and predictive

eturns ( Lemma 2 ), where the VAR is used. 

emma 1. The distribution of the posterior moments for the case of 

ormally distributed i.i.d. returns is given by 

2 | Y ∼ In v − Gamma 

(
N 

2 

, 
1 

2 

N+1 ∑ 

i =1 

(y i − μ) 2 
)

| σ, Y ∼ N 

(
μ, 

σ 2 

N 

)
, 

here Y is the observed asset return data; N is the sample size; and 

is the sample mean return. 

roof. See Appendix 10.1. �

To construct the posterior predictive distribution for the i.i.d. 

eturns of the risky asset, we first sample once from the marginal 

osterior distribution p(σ 2 | Y ) , and then from p(μ| σ, Y ) , which is

ow conditional on σ . We repeat this process to generate a suf- 

ciently large number of pairs (μ, σ ) to create return values and 

ubsequently the posterior distribution for the returns of the risky 

sset, by sampling each pair (μ, σ ) from the posterior distribution. 

ppendix 10.1 provides details about the sampling procedure from 

he derived distributions for the mean and variance. 

.6. Parameter uncertainty with return predictability 

The VAR in Eq. (19) also can be written in the following com- 

act form: 

 = BZ + E, (22) 

here X = (X 1 . . . X T ) is a (2 × T ) matrix with the number of ob-

ervations T for the estimated variables; Z = (z 0 . . . z T ) a ( 3 × T )

atrix; B ≡ (c B ) is a (2 × 3) matrix of the autoregressive coeffi- 

ients and the constant terms; and the E = (ε1 . . . εT ) is a (2 × T )

atrix with the serially uncorrelated disturbance terms. A suitable 

ninformative prior is the Jeffreys prior given by 

p(B, 	) = p(B ) p(	) ∝ | 	| −(m +1) / 2 , (23) 

here m = 2 is the total number of regressors on the left-hand 

ide of Eq. (22) ; p(B ) is constant and B is independent of 	, the

ovariance matrix of the VAR error terms in E. We obtain the pos- 

erior density for the parameter matrix B and the covariance ma- 

rix of Eq. (22) by the following lemma. 

emma 2. The posterior distribution, p(v ec(B ) , 	| X ) for the coeffi- 

ient matrix, B and the variance-covariance matrix, 	 conditional on 

ormally distributed asset return data X is given by 

| X ∼ W 

−1 ((X − Z ̂  B ) ′ ((X − Z ̂  B ) , T − n − 1) 
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 ec(B ) | 	, X ∼ N (v ec( ̂  B ) , 	 � Z ′ Z −1 ) , 

here T is the number of observations and n is the number of predic- 

or variables. 

roof. See Appendix (10.2). �

Again, to sample from p(v ec(B ) , 	| X ) , we sample first from

p(	| X ) –the variance-covariance matrix–conditional on data set X 

nd then from the posterior distribution p(v ec(B ) , 	| X ) , which

ill give a draw for the matrix of the VAR coefficients. Ap- 

endix (10.2) presents the details of this process and the return- 

enerating procedure. 

Given the several portfolio optimization problems and the rela- 

ive complexity of their solution, a flowchart with the overarching 

high-level) solution process of the formulated optimization prob- 

ems is presented below, see flowchart in Fig. 1 . 

. Nonparticipation under DA utility 

An interesting result, namely equity non-participation , is derived 

nd discussed by showing that it is embedded in the context and 

heory of disappointment aversion. We derive a theorem which 

hows that there’s always a level of disappointment aversion, let 

t be A 

∗, below which the optimal investment in risky asset(s) is 

ero (i.e., α∗ = 0 ). The theoretical finding is backed by numerical 

xamples that track the relationship between α, A and A 

∗ at differ- 

nt horizons. 

The case for nonparticipation in risky assets has been a sub- 

ect of considerable research to date. Mental accounting ( Thaler & 

unstein, 2008 , which assumes the nonfungibility of monetary re- 

ources allocated to each asset; see e.g.,) motivates narrow fram- 

ng ( Barberis & Huang, 2008 ), which prompts investors to perceive 

igh-volatility assets as “risky” in isolation without assessing their 

ontributions to the risk-return profile of their portfolio. Nonpartic- 

pation also can be promoted by the omission bias ( Ritov & Baron, 

999 ), whereby omissions (e.g., not investing in stocks) are favored 

ver equivalent commissions (investing in stocks), because com- 

issions, unlike omissions, involve commitment to a course of ac- 

ion, thus entailing the possibility of a loss. Other alternative ex- 

lanations proposed to account for nonparticipation include the fa- 

iliarity bias ( Huberman, 2001; Massa & Simonov, 2006 , choosing 

ore over less familiar assets, believing the latter to be riskier;), 

he recognition bias ( Boyd, 2001 , preferring more over less rec- 

gnizable assets;) and limited cognition ( Hirshleifer, 2008 , when 

nvestors view risk diversification as a decision of enhanced com- 

lexity;). 

Under CRRA preferences holding positive portfolio allocations to 

isky assets when the expected excess return is positive (E (X ) > 0) 

s always optimal. However, this is not always the case with DA 

tility preferences. Under DA preferences refraining from holding 

isky assets even if the expected excess return is positive can be 

ptimal in certain cases. The following result shows that it is not 

ptimal to hold risky assets whenever the DA coefficient lies below 

 critical value A 

∗. 

heorem 1. Let μ = μW 

(A, α) , with 

• μ(A, :) ∈ C 

1 , ∀ A ∈ [0 , 1] 

• dμ(A, 0) 
dα

= ξ (A ) ≤ 0 , ∀ A ∈ [0 , 1] 10 

• E (X ) > 0 and E (X1 W ≥ξ (A ) ) > 0 , where X = e y − e r is the return

of the risky asset in excess of the risk–free rate. 
10 Positive risk premium when the end-of-period wealth exceeds the negative im- 

act of the decrease in the certainty equivalent as the investment proportion of the 

isky asset increases. Suppose that the expected return of the risky asset is zero. 

he certainty equivalent decreases when the proportion of the risky asset increases. 

his occurs because for α < 0 negative excess return states have higher wealth than 

 and hence are downweighted. 

e

u

g

A

q

α
t

8 
Then, setting 

 

∗ = 

E (X 1 W ≥ξ (A ) ) 

E (X 1 W <ξ(A ) ) 
, (24) 

e have the following: 

1. For every A ≤ A 

∗, α∗ = 0 , 

2. For every A > A 

∗, α∗ > 0 , 

where α∗ is the optimal investment proportion in the risky asset 

hich maximizes μ(A, α) for a given A . A 

∗ is independent of the risk

version parameter γ . 

roof. See section 9.3 �

Our Theorem 1 completes Proposition 2.1 of Ang et al. (2005) , 

nd can be intuitively presented in the following way: as DA in- 

reases, investors allocate less wealth to the risky asset for an ar- 

itrary level of risk aversion γ . Given that the utility of wealth is 

 continuous function within the domain of A , there should be a 

evel of A , let A 

∗, at which the optimal portfolio allocation to the

isky asset, α∗, equals zero. Recalling the condition d μ(A, 0) /d α ≤
 , we see that a further decrease in the portfolio weight allocated 

o the risky asset α∗ (e.g., because of short selling the risky asset) 

ill result in a higher certainty equivalent return. When invest- 

ent in the risky asset is nonzero, an increase in the investment 

n the risky asset decreases the certainty equivalent. This is intu- 

tively correct, because, by increasing the portfolio allocation to eq- 

ities to a nonzero level, investors become more willing to accept 

n amount of risk instead of holding only the risk-free security. 

his consequently implies that the monetary amount that can keep 

nvestors away from buying stocks should be lower. Subsequently, 

he following relationship will prevail: 

 = α∗X + R > R, 

or α∗ < 0 and negative states ( X < 0 ) of the excess equity return.

herefore, the optimal allocation for this critical level of the DA 

oefficient, A 

∗, is zero and α = α∗ = 0 . 

Remark The critical level of DA, A 

∗, is estimated as the ratio 

etween the states of the expected risk premium E (X ) that could 

esult in non-negative wealth ( W ≥ ξ (A ) ), and those that result in

trictly negative wealth ( W < ξ (A ) ). Given E (X ) > 0 and A 

∗ ∈ [0 , 1]

e have that 

 (X 1 W ≥ξ (A ) ) = A 

∗
E (X 1 W <ξ(A ) ) . (25) 

q. (25) shows that a DA investor shapes her expectations of the 

lating outcomes – states of equity premium that lead to changes 

n wealth that exceed the negative impact of ξ (A ) – by under- 

eighting those outcomes that result in strictly negative states of 

ealth (RHS in Eq. (25) ). The coefficient A 

∗ expresses the extent to 

hich the disappointing outcomes are underweighted. As A 

∗ ap- 

roaches zero, the expectations of the disappointing outcomes are 

ery strongly underweighted, reflecting the low degree of DA and 

he high level of asymmetry in the DA utility function. Contrary to 

hat, when A 

∗ → 1 −, the two expectations in Eq. (25) are approxi-

ately equal, and the investor does not account for DA in her de- 

ision making. Equivalently, the investor uses an almost fully sym- 

etric utility function, similar to a power utility function. 

A calculation of risky asset participation based on A 

∗, by us- 

ng the historical mean equity return from 1934 to 2019 calculated 

t μ = 10 . 45% as tracked by the S&P500 is presented in Fig. 2 . To

xtract A 

∗, the level that results in allocating zero wealth to eq- 

ity, a binary search algorithm is used. A typical binary search al- 

orithm for our problem works by discretizing the state space of 

 (e.g., a linearly spaced vector within [0,1]) and performing se- 

uential searches for the target value of A (i.e., the one that makes 

= 0 ). This is done by iteratively comparing the target value to 

he middle element of the state space and cutting the state space 
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Fig. 1. Flowchart of the solution step for the optimal DA portfolio. Where available and to help readability, references to relevant parts of the paper are provided. For better 

understanding, the information in the flowchart can be combined with that in Appendix F in the supplementary online material. 
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n half with every iteration until the optimal value is detected 

 Sedgewick & Wayne, 2011 , for the implementation details of the 

inary search algorithm, see sections 3.1 and 3.2 in). The reason 

he binary search algorithm fits in our application, is that in every 

teration, that is for every halving of the input space A , the algo-

ithm knows on which ‘side’ of the state space should look for the 

olution. The only condition that needs to be in place is that the 

elation between A and α be strictly monotonic. 

. Asset allocation with DA preference: Simulation study 

The theoretical results in Sections 3 and 4 are used in a numer- 

cal simulation study split in two parts. The first deals with the 

emaining analyses for equity non-participation in Section 4 and 
9 
he second with the main topic of the paper, that is asset alloca- 

ion in the long-run, derived as the solution to the optimization 

roblem presented in Section 3 . Before we discuss the results of 

he simulation study, we briefly describe the data and the calibra- 

ion results for the two DGPs, that model either i.i.d. or predictable 

eturns (VAR). 

.1. Data and model calibration 

To study the portfolio choice problem, we use quarterly data 

rom the U.S. market from January 1934 to September 2019 for 

he S&P 500 index (index returns and dividend-price ratios), the 

isky asset, and the 3-month Treasury bill yield as risk-free asset. 

s mentioned in Section 3.4.2 the dividend-price ratio (dividend 
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Fig. 2. Stock market participation/nonparticipation regions with DA preferences. 

The graph shows how the expected level of stock returns (stated annually) affects 

the critical level of the DA coefficient ( A ∗). Two lines are presented: the solid one 

corresponds to the critical DA coefficients for the data set used in our study (1934–

2019), and the dashed line plots the critical DA values for the data set used in Ang 

et al. (2005) . The gray circles represent the critical DA level ( A ∗ , which induces non- 

participation), which corresponds to the historical mean of the equity return for the 

two data samples. 
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ield) serves as the predictor variable for the VAR. The data sets 

elated to the S&P 500 returns and the 3-month T-bill rates can be 

asily acquired by a number of sources as they are readily available 

nline. 11 

.1.1. Calibration of i.i.d. return generator 

Based on the data described above, the following summary 

tatistics were derived: 

To link the parameter estimates with the i.i.d. model in Eq. (18) , 

= 0 . 02515 , r = 0 . 00854 , and σ = 0 . 08175 , all of which are given

n Table 1 . 

.1.2. Calibration of the VAR 

The MLE of the VAR in Eq. (19) produced the following values: 

Simulating asset return trajectories under the assumption that 

he dividend yield at time t can forecast asset returns at time t + 1 ,

e match the first two moments of the historical returns’ distri- 

ution up to two to three significant digits. All coefficients of the 

atrix with the autoregressive parameters B are statistically signif- 

cant at the 5% level, and both series (dividend yield and excess as- 

et log returns) are stationary. It cannot but catch one’s attention 

he relatively weak coefficient and statistical insignificance of the 

xplanatory variable. Although a reasonable reaction to this would 

e to admit that predictability is simply not there, in our view, 

his effect is intertwined with the presence of parameter uncer- 

ainty. Facing uncertainty about the actual calibrated parameters 

f the VAR cannot but be reflected in the predictive capacity of 

he model, as – in Bayesian portfolio theory – different asset price 

ealizations would lead to different models of different predictive 

apacity. As a result, instead of discarding the case of predictability, 

e opt for studying it in a parameter uncertainty DA setup already 

iscussed in Section 3 . 

.2. Equity non-participation in the long-run 

We simulate asset return trajectories under the i.i.d. assumption 

nd using the DGP with predictability in a Monte Carlo setup, in 
11 Our sources are the online platform of Bloomberg Professional Services (for the 

ata on S&P 500 returns) and the Federal Reserve (for the risk free asset). 

v

a

a

10 
rder to estimate the excess return and the corresponding return 

olatility. We examine two relationships: first, how A 

∗ changes 

ith time depending on whether returns are i.i.d. or predictable 

 Fig. 3 ), and second, how allocation to the risky asset is affected 

y the choice of A , in Fig. 4 . In the second, investment horizon is

xed at one or ten years. To extract A 

∗ we use the binary search

lgorithm presented in Section 4 while to determine α at differ- 

nt levels of A the optimization problem introduced in Section 3 is 

olved. 

The left graph of Fig. 3 plots the critical level of the coeffi- 

ient of DA (A 

∗) across investment horizons for a buy-and-hold DA 

nvestor. The DA coefficient (A 

∗) is critical, because a decreasing 

 

∗ within these setting results in larger market participation, as a 

ower A 

∗ implies that the investor has to be more disappointment 

verse to refrain from holding the risky asset. For a longer than a 

-year investment horizon, a DA investor who follows a buy-and- 

old strategy will hold risky assets regardless of the DGP assumed 

or equity returns. 

The right graph of Fig. 3 reports critical levels of A 

∗ for dy- 

amic asset allocation strategies for various investment horizons 

 T − t , where t is the current horizon). In the case of i.i.d. returns

dashed line), the critical DA coefficient remains constant regard- 

ess of the investment horizon as a result of the invariable op- 

ortunity set. The solid line corresponds to predictable returns us- 

ng the VAR to forecast the next-period’s equity return as a func- 

ion of the dividend price ratio. Contrary to the case of i.i.d. re- 

urns, where A 

∗ remains constant, investors’ participation increases 

t longer horizons as a result of the decreasing A 

∗. 

To obtain more insight into non-participation, we additionally 

lot portfolio allocation to the risky asset with respect to differ- 

nt levels of disappointment aversion. This analysis serves also as 

n introduction to the simulation study for the optimal portfolio 

onstruction discussed in the next section as it tracks all the four 

ifferent investment profiles for which optimal portfolios will be 

erived. Moreover, effects observed in Fig. 4 are relevant for the 

nalyses in the following section. 

Fig. 4 shows primarily two behaviours. First, that the 10-year 

ine always stands above the 1-year line; this implies that investors 

ecome less disappointment averse the longer the horizon they 

nvest for. Second and more interesting, the vertical distance be- 

ween the two allocation lines (i.e., 1-year vs 10-year) is linked 

o the size of the horizon effect (hedging demand) generated as 

 result of the different allocation between short- and long-term 

nvestment horizons. Investing for shorter periods typically entails 

maller portfolio allocation to the risky asset, a strategy that serves 

s a hedge against adverse market movements. As discussed in 

he next section, a buy-and-hold investor who uses the VAR to 

odel asset returns (top row, second plot of Fig. 4 ) invests very 

ifferently at short and long horizons. This results in observing the 

argest vertical distance between the 1-year and 10-year allocation 

ines among the four plots presented. 

Said result is of importance. It suggests that the DA framework 

an generate equity non-participation conditions by using a suf- 

ciently low A (or equivalently a large enough A 

∗). In addition, 

alues of A around 0.5 can result in relatively low portfolio allo- 

ations to the risky asset, especially when investment horizon is 

hort. Reasonably low values of DA can thus lead to portfolios with 

imited risky asset participation, a pattern frequently observed in 

ractice 

.3. Portfolio allocation for buy-and-hold strategies 

We first investigate the asset allocation problem at different in- 

estment horizons for buy-and-hold strategies. Here, agents choose 

 portfolio allocation for a specific investment horizon determined 

t time t = 0 . This strategy results in the same allocation regard- 
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Fig. 3. Critical DA level (A ∗) that induces nonparticipation in the stock market. The plot on the left refers to a buy-and-hold investor while that on the right to a dynamic 

investor. The dashed line corresponds to the case of i.i.d. returns (normality and nonpredictability), and the solid line corresponds to the case of predictable returns. Investors 

invest in the stock market when their DA coefficient lies in the area above the lines. To display the graphs more clearly, the one on the left (buy-and-hold) plots the A ∗ for 

a period up to 10 years, as beyond that point A ∗ remains constant and very close to zero. 

Fig. 4. Participation in the risky asset for different levels of disappointment aversion. The graph plots portfolio allocation to the risky asset for varying levels of disappoint- 

ment aversion, A for the different cases considered in the study. As per Theorem 1 there’s always the marginal level A ∗ beyond which (i.e., A < A ∗) no equity participation is 

predicted by the model. 
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ess of the investment horizon for an investor with power utility 

hen returns follow the i.i.d. process in Eq. (18) . Our goal is to ex-

lore the effects of the DA utility function in conjunction with pa- 

ameter uncertainty on the optimal asset allocation. We mainly fo- 

us on whether parameter uncertainty in a DA framework induces 

orizon effects (that is whether long-term allocation to the risky 

sset is different than short-term allocation. Fig. 5 shows the opti- 

al buy-and-hold portfolio allocations to the risky asset for a DA 
11 
nvestor ( A = 0 . 44 or A = 0 . 30 ) and an investor with power util-

ty ( A = 1 ; solid line) when returns are i.i.d. and parameter uncer-

ainty about μ and σ is either considered (solid line) or ignored 

dashed line). A DA investor who acknowledges parameter uncer- 

ainty will decrease her portfolio allocation to the risky asset with 

he investment horizon compared to the one with the power util- 

ty who will hold the same portfolio regardless of the horizon. This 

omes as the result of the evolution of cumulative return variance 
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Fig. 5. Optimal portfolio allocation for a buy-and-hold investment strategy. The investor uses the i.i.d. return generator, and either incorporates (optimization problem in 

17 ) or ignores (optimization problem in 2 ) uncertainty in model parameters. The investor in the top row uses a CRRA (i.e., power) utility function with two levels of risk 

aversion, whereas the other two cases (middle and bottom rows) make use of the DA utility function with two different values for the DA coefficient. A = 0 . 44 is equivalent 

to the value of the loss aversion (LA) parameter calculated in Tversky & Kahneman (1992) , that is, DA = 1 /λ = 0 . 44 . We observe that a DA investor holds a significantly 

different portfolio from one who uses a power utility function. 
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12 More specifically, when we model returns as i.i.d., the two-period variance is 

equal to 

v ar r 1 ,r 2 = v ar r 1 + v ar r 2 ⇔ σr 1 ,r 2 = 

√ 

v ar r 1 + v ar r 2 . 

When returns are predictable, the covariance between equity returns and the pre- 

dictor variable should be taken into consideration as well. The two-period variance 

is now equal to 

v ar r 1 ,r 2 = v ar r 1 + v ar r 2 + 2 cov (r 1 , r 2 ) . 

Given that the covariance term in our VAR estimation is negative (see ρ , σ11 , and 

σ22 in the first column of Table 2 ), the following holds: 

v ar r 1 + v ar r 2 + 2 cov (r 1 , r 2 ) < v ar r 1 + v ar r 2 . 
t different horizons. In the following, the key components of our 

odel, namely disappointment aversion, predictability and param- 

ter uncertainty are discussed. 

.3.1. The effect of disappointment aversion 

Incorporating DA drastically changes the portfolio composition 

ver different investment horizons compared to the CRRA case 

 A = 1 ). A DA investor ( A = 0 . 44 or A = 0 . 30 ) will increase her

nvestment proportion to the risky asset when allocating wealth 

or longer periods. The effect of DA appears to be more pow- 

rful at short horizons ( T < 10 ), as a DA investor holds signifi-

antly less equity compared to one with power utility. For exam- 

le, Fig. 5 shows that a DA investor invests 20% to 50% of her

ealth in the risky asset when her investment horizon is shorter 

han ten years (between 60% and 20% less equity compared to one 

ith power utility), whereas an even more DA investor ( A = 0 . 30 )

ill hold no more than 10% to 40% equity for the same horizon. 

owever, investors with DA utility will allocate similar to those 

ith power utility as the investment horizon increases. A DA in- 

estor appears to be very conservative in the short run, whereas, 

onger investment horizons, even a very DA investor ( A = 0 . 30 , i.e.,

or whom losses in her utility function are weighed more than 3 

imes than gains) is willing to accept the additional risk in antici- 

ation of higher terminal wealth, because of the lower volatility as 

 result of the longer investment horizon. 

.3.2. Effects of predictability 

Predictability is critical in the case of a buy-and-hold investor. 

nvestors who take predictability into account will hold signifi- 

antly larger weights in equity for longer investment horizons. The 

eason is that volatility does not grow in proportion to asset re- 

urns. This results in lower long-term volatility, compared to the 
12 
hort-term, thus making equities appear more attractive to an in- 

estor with a long-term outlook. Fig. 7 displays optimal allocations 

o the risky asset for three levels of risk aversion (the ones most 

ommonly used in relevant studies) and four levels of DA, among 

hich is the value of 1 
λ

, where λ is the loss aversion coefficient 

qual to λ = 2 . 25 , as calculated in Tversky & Kahneman (1992) . As

xpected, both risk aversion and DA affect the asset allocation to 

he risky asset as the more risk averse or disappointment averse 

n investor becomes, the lower the allocation in the risky asset 

ill be. 

The horizon effects we report for the buy-and-hold investor 

ho uses the VAR to forecast equity returns can be traced to the 

volution of return volatility. Long-term volatility is lower than in 

he case of i.i.d. returns due to the correlation between the predic- 

or variable and the predicted equity return. 12 

As a result, the long-term volatility for a buy-and-hold investor 

ho uses the VAR is much smaller than that for the investor who 

ses the i.i.d. return generator, growing slower than linearly. In 
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Fig. 6. Evolution of per-period and long-term volatility for the risky asset. The dotted line corresponds to the case of an investor who models returns as i.i.d., whereas the 

solid line shows the volatility for an investor who uses the VAR to forecast equity returns. 

Fig. 7. Optimal portfolio allocation when the VAR is used. The investor follows a buy-and-hold strategy by choosing the portfolio allocation to the risky asset in the beginning 

of the investment period. A = 0 . 44 is equivalent to the value of the loss aversion (LA) parameter calculated in Tversky & Kahneman (1992) , that is, DA = 1 /λ = 0 . 44 . The 

graphs on the left column ignore parameter uncertainty, whereas those on the right account for this. Three levels of risk aversion and four levels of disappointment aversion 

are represented. Accordingly, the results are solutions to the optimization problems in 2 and 17 (parameter uncertainty) when the VAR of Eq. (19) is used. 
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articular, under i.i.d. returns, the 40-year total volatility equals 

 . 1625 
√ 

40 = 1 . 02 , compared to 0.5091 when the VAR is used; that

s, it is half as much (see Fig. 6 ). This result shows how the invest-

ent allocation in stocks can be affected (i.e., increase) by using a 

ariable believed to predict stock returns. 

The intuition behind this effect is twofold. On the one hand, 

hen the dividend yield decreases, the asset price will increase, in 

ffect, disproportionately com pared to the dividend yield. This sig- 

als that the current price is too high or equivalently that the ex- 

ected return is too low. The too high current price mean-reverts, 

esulting in the negative association ( ρ < 0 ; see Table 2 ) between

he dividend yield and the future realized return, which, in turn, 
13 
educes the rate of increase of the variance, thus rendering equity 

ore attractive at longer horizons. On the other hand, investors 

elying on a given strategy (in our case, the dividend yield) could 

evelop an illusion of control if they grow overly confident in the 

trategy’s ability to generate precise predictions of future returns. 

verreliance is bound to boost investors’ overconfidence levels, and 

ead them to assume higher risk in their investments by increasing 

heir equity exposure ( Gervais & Odean, 2001; Odean, 1998 ). Over- 

onfidence is expected to be further encouraged by the fact that 

nvestors whose outlook involves long horizons and/or buy-and- 

old strategies monitor their investments less frequently; neglect 

eads them to experience feelings of regret and/or disappointment 
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qually less frequently, prompting them to view equity as less risky 

because longer horizons experience fewer price fluctuations than 

o shorter ones) and thus tacitly encourage them to increase their 

xposure to risk ( Benartzi & Thaler, 1995 ). 

.3.3. The effect of parameter uncertainty 

For A = 1 , when parameter uncertainty is ignored, return and 

ariance grow linearly with time and the choice of the investment 

orizon becomes irrelevant to the solution of the asset allocation 

roblem. Under parameter uncertainty, variance grows faster than 

inearly and equity is not as attractive as when predictability is ig- 

ored. Factoring this understanding in the decision making typ- 

cally results in lower portfolio allocation to the risky asset. In 

emma 1 we see that the magnitude of the horizon effects de- 

ends on the available data incorporated into the model, in the fol- 

owing way: given σ , the variance of μ is inversely proportional to 

(the sample size of risky asset return); subsequently, the larger 

he N (i.e., longer investment horizon), the lower the variance of μ
nd, equivalently, the smaller the uncertainty around its true value. 

 shorter investment horizon would result in a significantly lower 

llocation to the risky asset for an investor who considers uncer- 

ainty compared to one who ignores it, especially for longer hori- 

ons. 

When returns are generated according to the VAR and param- 

ter uncertainty is incorporated (right column of Fig. 7 ), a DA in- 

estor who accounts for predictability will allocate a smaller pro- 

ortion of her investment to the risky asset compared to an in- 

estor who ignores parameter uncertainty. In that case, equities do 

ot appear as attractive as when parameter uncertainty is ignored, 

ecause of the higher volatility of equity returns; the latter is due 

o uncertainty dampening the correlation between the predictor 

ariable and the dependent variable (i.e., equity return), which, 

n turn, increases the volatility. Expressing uncertainty about the 

odel parameters is, in essence, equivalent to expressing uncer- 

ainty about the forecasting capacity of the predictor variable (i.e., 

he dividend price ratio). This uncertainty, in turn, can prompt in- 

estors to start viewing the VAR process as potentially misspeci- 

ed, thus rendering them more ambiguity averse and leading them 

o reduce their exposure to equity investments Under parameter 

ncertainty a DA investor will, in general, still hold larger weights 

or longer horizons compared to shorter ones, but they will be sig- 

ificantly lower than those allocated when parameter uncertainty 

s ignored. 

.4. Portfolio allocation for dynamic strategies 

We now present the results for the case of a DA investor who 

ollows a dynamic strategy and reallocates her available wealth at 

he beginning of each period between the risk-free and the risky 

sset. 13 An investor who dynamically allocates wealth considers the 

nvestment opportunity set for the whole investment horizon T −
and assigns the optimal weight to the risky asset knowing that 

he will have the chance to revise her strategy by the end of the 

ext period in case her expectations of the risky asset’s return and 

olatility change. 

.4.1. The effect of disappointment aversion 

The dynamic case entails that investors reallocate their avail- 

ble wealth at the end of each year, considering the optimal solu- 

ions from the solved subproblems at each horizon. For the same 

evel of risk aversion, the more disappointment averse an investor 

rows, the less she allocates to equities. The horizon effect of DA is 
13 See appendix for execution times of the algorithm for each case studied in this 

ection. 

t

r

i

s

14 
isible by measuring the equity allocation at a short- and a long- 

erm investment horizon T − t . The dynamic allocation to the risky 

sset drops as the investment horizon becomes shorter as a result 

f the lower per-period volatility for longer investment horizons 

hown in Fig. 6 . A moderately DA investor will still be heavily in-

ested in equity even at very short horizons (dashed line in Fig. 9 ),

hereas a more DA investor will almost refrain from holding any 

nits of the risky asset even when having a relatively low level of 

isk aversion. 

.4.2. Effects of predictability 

With i.i.d. returns, an investor who dynamically allocates the 

vailable wealth at each horizon uses the i.i.d. asset return gen- 

rator with parameters equal to the historical annual mean and 

olatility of the S&P 500, seen in Table 1 . As expected she has

he same investment opportunity set at every horizon, and the al- 

ocation to the risky asset does not change at different horizons 

dashed line in Fig. 8 ). 

Contrary to i.i.d. returns, the left column of Fig. 9 reports opti- 

al portfolio allocations for four different levels of the DA coeffi- 

ient A and three levels of the risk aversion coefficient γ at differ- 

nt horizons T − t when the VAR is used. The four levels of DA are

he same as those used in the buy-and-hold case. When investors 

elieve returns to be forecastable, they use the VAR to predict next 

eriod’s equity return and allocation drops for the investment hori- 

on for all four different values of A . As the investment horizon 

 − t shortens, a DA investor who follows a dynamic strategy allo- 

ates a smaller proportion of her wealth to the risky asset, whereas 

 DA and risk-averse investor will hold no units of the risky asset 

s T − t approaches zero. Again, dynamically investing in the risky 

sset in the short run is not as attractive as in the long run given

he higher volatility per period of the former. As a consequence, 

he more disappointment averse an investor is, the more likely she 

s to be affected by short-run volatility. This gives rise to horizon 

ffects when investors try to hedge their portfolios at shorter hori- 

ons. 

.4.3. The effect of parameter uncertainty 

Let us assume an investor who uses the i.i.d. return generator 

nd considers uncertainty in parameters. In this case she will ex- 

ibit slightly different portfolio allocations compared to when pa- 

ameters are treated as known. Fig. 8 shows that both a DA in- 

estor and one who uses the power utility function will slightly 

ncrease their portfolio allocation to the risky asset with the in- 

estment horizon (solid line) to eventually hold a portfolio po- 

ition very similar to an investor who ignores parameter uncer- 

ainty (dashed line). Investing for a longer horizon appears to be 

ess risky than holding the risky asset in the short run as a result 

f the lower per-period volatility of the latter. As a result, an in- 

estor who dynamically invests with a shorter-term outlook will 

old slightly less equity in their portfolio compared to an investor 

ho invests for a longer horizon. 

Turning to the case of predictability, the right column of 

ig. 9 reports results that reflect optimal allocations to the risky 

sset for investors who rebalance their portfolios annually by pre- 

icting asset returns based on the dividend yield when parameter 

ncertainty is accounted for. These plots mainly reveal two facts: 

rst, equity allocation is, in general, lower compared with the case 

f an investor who ignores parameter uncertainty, and, second, the 

mpact of parameter uncertainty on hedging demands is stronger 

ompared to the case where this is ignored due to the changes in 

he opportunity set. When we express uncertainty about the pa- 

ameters of the VAR, we use the posterior predictive distribution 

n Lemma 2 in place of the VAR model with fixed parameters as 

tated in Eq. (19) . In this case, instead of simulating future return 
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Fig. 8. Dynamic portfolio allocation when returns are i.i.d. Investor chooses between the risky and the riskless asset and uses the i.i.d. return generator for the risky asset. 

The objective of this exercise is to show how the portfolio allocation to the risky asset changes for an investor who acknowledges parameter uncertainty (optimization 

problem in 17 ) compared with one who ignores (optimization problem in 11 ) it and holds the same portfolio throughout the investment horizon. A = 0 . 44 is equivalent to 

the value of the loss aversion (LA) parameter calculated in Tversky & Kahneman (1992) , that is, DA = 1 /λ = 0 . 44 . 

Fig. 9. Optimal portfolio allocation for a dynamic strategy. Investor uses the VAR to forecast returns. The left columns report results when parameter uncertainty is ignored 

(optimization problem in 11 with predictable returns as in 19 ), whereas the one on the right accounts for parameter uncertainty (problem in 17 ). Each line corresponds to a 

different level of the DA coefficient (A) as follows: solid line, A = 1; dashed line, A = 0.70; dotted line, A = 0.44; solid/dotted line, A = 0.30. A = 0 . 44 is equivalent to the 

value of the loss aversion (LA) parameter calculated in Tversky & Kahneman (1992) , that is, DA = 1 /λ = 0 . 44 . 

15 
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aths conditioning on fixed values for the model parameters (con- 

tant terms, matrix of AR coefficients, and variance-covariance ma- 

rix), we sample from their posterior distributions, each time ob- 

aining a new set of parameters that is conditional on observed 

ata only. 

The results exhibit a pattern similar to the one in the left col- 

mn of Fig. 9 . The more disappointment averse and risk averse an 

nvestor grows, the lower the equity allocation will be at differ- 

nt investment horizons. Still, similar to the case of a DA investor 

ho follows a buy-and-hold strategy, parameter uncertainty mit- 

gates the magnitude of the observed hedging demands. The un- 

erlying cause for this behavior can be explained by the way the 

ean return and variance change over time. Investors’ uncertainty 

bout the predictive capacity of the dividend yield results in higher 

ong-term per-period volatility, which explains investors’ lower al- 

ocation to the risky asset compared to allocation in the left col- 

mn of Fig. 9 , where parameter uncertainty is ignored. Similar to 

 buy-and-hold investor, considering parameter uncertainty in dy- 

amic investing makes investors aware of changes in the invest- 

ent opportunity, as a result of the weakened predictive capac- 

ty of the dividend price ratio. Subsequently, investors doubt that 

igher or lower equity allocations will result in more optimal port- 

olios. In these cases, portfolio allocations will not change signifi- 

antly among different investment horizons, moderating therefore 

he observed horizon effects. 

. Concluding remarks 

Risk asymmetries implied by disappointment aversion (DA) can 

ecisively change intertemporal portfolio choices, especially when 

isk asymmetry is studied together with predictability and parame- 

er uncertainty. Our contribution suggests that a DA investor would 

llocate lower weights to equity compared to an investor who 

ses a standard CRRA power utility function. What is more, DA in- 

roduces horizon effects for a buy-and-hold investor regardless of 

hether she employs either of the return generators and accounts 

or or ignores parameter uncertainty. When the latter is consid- 

red, equity allocation at longer horizons is significantly lower to 

hen parameter uncertainty is ignored, and there could be cases 

here parameter uncertainty changes the return distribution by 

his much that long-term equity allocation is lower to shorter term 

ne. 

A dynamic investor who accounts for predictability will hold a 

ompletely different portfolio to one who uses an i.i.d. return gen- 

rator as the distribution of the future returns generated by the 

AR is significantly different from that of i.i.d. returns, because of 

he correlation between the dividend price ratio and the return of 

he risky asset. As opposed to the latter, a dynamic allocation will 

xhibit horizon effects as a result of the time-varying investment 

pportunity set. Furthermore, the incorporation of parameter un- 

ertainty in the DA framework with predictability can drastically 

hange equity allocations over time. Although a portfolio that ig- 

ores parameter uncertainty and is based on the i.i.d. return gener- 

tor will be no materially different to one that accounts for param- 

ter uncertainty, this is no longer when investing under the VAR. 

here, equity allocation would be much lower for the portfolio that 

ccounts for parameter uncertainty as a result of the additional es- 

imation risk in the VAR model parameters. 

Overall, it is beneficial to examine parameter uncertainty as a 

pecial case in a portfolio model, as frameworks that do not ac- 

ount for this may generate portfolios with too large equity allo- 

ations. When model parameters are taken as uncertain, a DA in- 

estor will still allocate larger weights to stocks at longer horizons. 

evertheless, the difference between a long-term and a short-term 

quity weight is smaller compared to the case in which parameter 
16 
ncertainty is ignored, and as a result of the doubts investors cast 

n the predictive power of the dividend yield. 

Our results should be of particular interest to policy makers, as 

hey indicate that DA, conditional on its magnitude, tacitly fosters 

imited-to-no participation in equity investing. To the extent that 

A is likely to affect individual investors more ( Barber, Odean, & 

hu, 2009 , given their lower sophistication levels,), financial liter- 

cy programs could raise awareness of DA, while training people to 

ssess their investments from a longer-term perspective, regardless 

f price movements in the short run (where the effects of DA are 

ore likely to be felt). This, in turn, will help enhance the partic- 

pation of retail investors in equity turnover (thus benefiting mar- 

et liquidity), while ensuring that those that invest in equities are 

ess likely to exit the market because of disappointment-related 

easons. Our results are also relevant to finance practitioners, in 

articular brokers and financial advisors, who, by virtue of their 

rofession, tend to engage with retail investors on a regular basis. 

or these practitioners, accounting for DA in their clients’ risk pro- 

ling and overall day-to-day interactions would considerably help 

nform their professional practice, by permitting practitioners ad- 

itional insight into their clients’ trading decisions. Such insight 

ould allow them to educate their clients about the role of DA in 

rading, thus helping them potentially improve their trading deci- 

ions. From an academic perspective, and to the extent that dis- 

ppointment stems from prior investment experience, our results 

lso offer an alternative explanation of previously documented ev- 

dence ( Seru, Shumway, & Stoffman, 2010; Strahilevitz, Odean, & 

arber, 2011 ) of the reluctance of investors to reenter the market 

f they have exited it previously at a loss. 

There are a number of interesting avenues for future research. 

xploration of behavioral utility functions, particularly the DA the- 

ry, in the context of an asset allocation optimization problem is 

ar from complete. In practice, investors’ portfolios contain riskless 

nd numerous asset classes of risky assets. Hence, a natural exten- 

ion of the current framework seems to be building one able to 

eal with multi-asset portfolios, with additional asset classes, and 

ncorporating consumption and trading costs. Moreover, given that 

rices of financial assets are determined by the forces of supply 

nd demand, which stem from the trading and investment deci- 

ions of market participants, it would be of great interest to de- 

art from partial equilibrium and study this interplay in a general 

quilibrium context. Doing so would allow us to investigate the in- 

eraction between investors with CRRA preferences and those us- 

ng a DA utility function and, eventually, to reveal the role that DA 

lays in both defining asset prices and determining trading behav- 

ors. Finally, another important direction for future exploitation is 

o focus on portfolio and consumption problems, rather than just 

 maximization of terminal wealth as it is performed in Ang et al. 

2005) and our study. Thus, like for the case of CRRA utility, port- 

olio choice under DA might also result in dependence of the port- 

olio decision on future consumption-wealth ratios. 
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