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1 Introduction

Five-dimensional N = 1 supersymmetric gauge theories play an important role in our
understanding of supersymmetric gauge theories in general. Initially, these theories have
been studied from various aspects: field theory [1–3], brane constructions [4–6], and ge-
ometry via M-theory backgrounds with Calabi-Yau singularities [7]. Recently renewed
interest has culminated in significant progress: notably from field theory [8–17], using
brane systems [18–41], and from geometry [42–73]. On the one hand, compactifications
of such theories give rise to lower dimensional field theories and moreover, what has re-
cently emerged as a major research line, constructing 4d domain walls within them is a
stepping stone for finding UV Lagrangians for a wide class of 4d N = 1 superconformal
theories [22, 74–82]. On the other hand, it is believed that those 5d field theories that
are conformal (SCFTs) arise from circle compactification of 6d SCFTs [16, 47]. Thus a
thorough study of these theories will shed light on the landscape of their six-dimensional
parents and possibly unveil new dualities [50, 51, 57–59].

One instance where the above 6d/5d relation becomes very transparent and, thus,
more tractable is the case of 5d Kaluza-Klein (KK) theories arising from twisted circle
compactifications [20, 21, 24, 25, 28, 35, 47, 50, 51, 61]. To be more explicit, in these cases
the six-dimensional parent theory emerges as a UV fixed point of a 5d supersymmetric
gauge theory by taking the gauge couplings to infinity or alternatively sending 1/g2

YM → 0
which translates to decompactifying the 6d circle. It has recently been conjectured [47]
that all 5d SCFTs are connected to 5d KK theories via RG flows and that these flows arise
by integrating out BPS particles from the 5d KK theory. From a geometric engineering
perspective arising from an M-theory compactification, such BPS particles correspond to
M2-branes wrapping holomorphic curves inside the Calabi-Yau with their masses being
identified with the volume of the curves as measured by the Kähler form. Integrating out
such states means performing a flop transition in the geometry. In fact, the resulting 5d
SCFTs at the end of such RG flows have long been known to arise from M-theory com-
pactifications on non-compact Calabi-Yau three-fold singularities obtained from collapsing
surfaces [2, 3, 7, 47, 54]. The starting point of such RG flows is then an M-theory compact-
ification which lifts to an F-theory compactification as the Calabi-Yau becomes elliptically
fibred [61]. This story is well-known in the case of the E-string theory where the starting
point of the RG flow corresponds to the total space of the anti-canonical bundle over del
Pezzo 9, which is sometimes also called the half-K3 surface. This is a rational elliptic sur-
face obtained from blowing up P2 nine times at different points. Mass-deformations of this
theory then result in the chain of 5d SCFTs corresponding to N = 1 SU(2) gauge theories
with Nf < 8 as first described by Seiberg [1].

Starting from a 5d SCFT, there is yet another mass-deformation one can turn on,
corresponding to a non-zero 1/g2

YM, which results in a weakly coupled gauge theory de-
scription in the IR. Geometrically, this corresponds to the phase where one moves away
from the boundary of the Kähler cone such that the volume of the collapsing surface is
restored to a non-zero value. This phase is important for studying magnetic monopole
strings [83–85] and their BPS spectra as well as for connecting to four-dimensional gauge
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theories [86]. Typically, in such phases the Calabi-Yau is the anti-canonical bundle over a
bouquet of surfaces which are Hirzebruch surfaces or their blowups. Such surfaces admit
a description as a P1 fibration over P1. For fibred surfaces the self-intersection number of
the fibre vanishes, so that we can distinguish the base P1 (identified with sections of the
fibration) by its non-trivial self-intersection. We henceforth denote the class of the fibre by
f , and the class of the section with negative self-intersection number1 by e. Whenever the
self-intersection of e is zero, which happens in the case of a Hirzebruch 0 surface (F0), the
identification of base and fibre is ambiguous and their roles can be swapped. This leads to
fibre-base duality among the resulting gauge theory descriptions as first noticed in [87] and
from a brane-web perspective in [5]. This duality becomes particularly interesting when
one is dealing with the class of 5d KK theories. Whereas in one frame the theory can be
naturally viewed as resulting from a circle-compactification of a six-dimensional theory,
as is the viewpoint adopted in [61], there is another frame where the theory admits a de-
scription in terms of a purely five-dimensional supersymmetric QFT. These two frames are
precisely related through fibre-base duality. The more familiar frame is the six-dimensional
frame where the “fibre” is identified with the elliptic fibre of the Calabi-Yau which decom-
poses into intersecting P1s over the base −n-curves. Here, the volume of the fibral curves
can be naturally identified with (combinations of) gauge fugacities of the six-dimensional
theory. But there is a dual frame where the same fibral curves can be viewed as gauge
nodes in a five-dimensional QFT and it is more natural to identify their volume with the
inverse of the square of the gauge coupling. In this frame the volume of the base curves
gets identified with gauge fugacities of the five-dimensional theory and it is more natural
to swap the roles of base and fibre.

Speaking from a more practical/technical point of view, in the prepotentials of 5d KK
theories presented in [61] the dependence on flavour fugacities corresponding to gauge cou-
plings and masses has been omitted. This is partly due to the fact that, as discussed above,
the superconformal fixed points of KK theories and their deformations arise in the limits
where these parameters are turned off. However, in order to arrive at a complete picture of
fibre-base duality and various other applications, it is beneficial to include the dependence
on flavour parameters explicitly in the prepotential. From the geometric viewpoint, this
means to associate non-compact divisors of the Calabi-Yau to them and parametrise the
Kähler form accordingly. Among the main applications of such a parametrisation would
be the computation of 5d BPS spectra using the 6d blowup equations of [88–91] which has
also been advocated in [92]. In this paper, we employ a parametrisation of the Kähler form
which makes both the 6d and 5d frames manifest and restores the dependence on gauge
couplings and mass parameters in the 5d prepotential. To this end, we introduce two sets
of divisors where for ease of exposition we restrict to the case of a single 5d gauge node.
The first set, denoted by fi, restricts to the fibres of compact surfaces Si which are at the
same time the irreducible components of the elliptic fibre of the Calabi-Yau. The second
set, denoted by F , restricts to the base curve ei whenever the surface Si is a blowup of
F0 and otherwise to fi. In the 6d frame the fi play the role of the fibres of the geometry,

1The other section then has a positive self-intersection number.
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while in the 5d frame the F correspond to the fibres. The F is precisely introduced for
measuring the gauge coupling strengths 1/g2 in the 5d frame and is dual to the fi in the
sense that they measure the volume of the curves fi subject to the constraint that the total
volume of the elliptic fibre is expressed as 1/g2. This ensures that the infinite coupling
limit corresponds to the F-theory limit where the theory becomes six-dimensional.

In this paper we identify the 6d and 5d duality frames for the class of rank 1 and rank 2
KK theories, see the table 1. These frames are connected by exchanging e and f whenever
possible as can be explicitly seen in the examples we study. For instance, in section 3.3,
equation (3.73) shows the 6d frame where the fi correspond to the fibres of the geometry
and give rise to the roots of the 6d gauge group. On the other hand, equation (3.75) shows
the 5d frame where f1 and e1 have been exchanged and the resulting intersection matrix
is the Cartan matrix of the 5d gauge group. Another example can be found in section 3.4
where the 6d frame can be seen in equation (3.87) corresponding to the F-theory geometry
over a −4-curve where the SO(8) gauge group has been modded out by Z3 in a twisted
compactification on S1. The 5d dual frame is obtained by swapping f2 and e2 and gives
rise to the Cartan matrix (3.89) of the 5d gauge group, namely SU(4). Similar examples
can be found in section 4.1: 6d fibre (4.5) vs 5d fibre (4.6); section 4.2: 6d fibre (4.19) vs
5d fibre (4.21); section 4.3: 6d fibre (4.34) vs 5d fibre (4.36); section 4.4: 6d fibre (4.47) vs
5d fibre (4.48). In all cases we study in this paper, the geometric prepotential we obtain
by taking the cube of the Kähler form agrees precisely with the expectation from the
corresponding 5d N = 1 QFTs. When discussing fibre-base dual theories, we only present
results for one specific 5d duality frame. Other 5d frames can be obtained from that one
by various geometric operations, but are not just related by 6d-5d fibre-base duality.

The organisation of the present paper is as follows. In section 2 we start by reviewing
known results about five-dimensional gauge theories including how to obtain their prepo-
tentials from the 5d and 6d frames, respectively, as well as geometrically in terms of triple
intersections of compact surfaces. We then proceed to describe the geometry in more detail
and explain how to define non-compact divisors in order to include the contributions of
mass parameters and gauge couplings in the prepotential. This is done in section 2.3. In
section 3 we present some instructive examples consisting of the E-string geometry, the ge-
ometry of SU(n) gauge groups over a −2-curve, as well as twisted compactifications of the
non-Higgsable SU(3) and SO(8) theories over −3 and −4 curves, respectively. In section 4,
we proceed to more exotic cases in the class of rank 1 and 2 KK theories, which admit a
fibre-base duality between the 6d frame and one 5d frame. Thereafter, we exemplify some
fibre-base like dualities between dual 5d theories realised on geometries that are related
via an exchange of e ↔ f in an F0. Finally, we present our conclusions in section 6. The
appendices A and B contain further details about our conventions on Lie algebras, math-
ematical details on the geometry of Hirzebruch surfaces, and a self-contained exposition
about the del Pezzo 9 surface giving rise to the E-string theory.

2 5d gauge theories from geometry

An N = 1 5d effective gauge theory is characterised by a gauge group G and hypermul-
tiplets in a representation R = ⊕Rj of G. Furthermore, there can be topological data k
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6d theory 5d KK theory 5d geometry

1
sp(0)(1) 6d E-string SU(2) +8F dP9

2
su(1)(1) 6d N = (2, 0) A1 theory,

rank-1 M-string SU(2)0 +1Adj F1+1
0

e−x

e−y

2
su(1)(1) 6d N = (2, 0) A2 theory ,

w/ permutation twist SU(2)π +1Adj F1+1
1

x

y

?

3
su(3)(2) 6d min SU(3) SCFT,

w/ automorphism twist SU(3)9 F10 F0
e 4e+f

2
su(3)(2) 6d SU(3) +6F theory,

w/ automorphism twist Sp(2) + 3 Λ2
F6 F3

0
e 4e+2f−2

∑
i
xi

1
su(3)(2) 6d SU(3) +12F theory,

w/ automorphism twist


SU(3)4 + 6 F
G2 + 6 F
Sp(2) + 2 Λ2 + 4 F

F2 F6
0

e 3e+4f−2
∑

i
xi

1
sp(1)(1) 6d Sp(1) +10F theory

SU(3)0 + 10 F
Sp(2) + 10 F

F0 F10
1

2e+f 2h−
∑

i
xi

1
sp(0)(1)

2
su(1)(1) 6d rank 2 E-string

SU(3) 3
2

+ 9 F
Sp(2) + 1 Λ2 + 8 F

F1+1
0 F8

1

e−w

e−z

f 2e+3f−
∑

i
xi

2
su(2)(1) 6d SU(2) +4F theory SU(2)×SU(2) +2bi-F

F4
0 F22

e
e−
∑

i
xi

e
h

2
su(1)(1)

2
su(1)(1) 6d N = (2, 0) A2 theory SU(3)0 +1Adj F1+1

0 F1+1
02

e−x

e−y

e−z

e−w

f−x
x

f−z
z

2
su(1)(1)

2
su(1)(1)

2

6d N=(2, 0) A3 theory,
w/ permutation twist Sp(2)0 +1Adj F1+1

0 F1+1
02

e−x

e−y

e−z

e−w

f−x
x

2f−z
z ?

2
su(1)(1)

2
su(1)(1) 6d N=(2, 0) A4 theory,

w/ permutation twist

SU(3) 3
2

+ 1 Sym
Sp(2)π + 1 Adj

F1+1
6 F0

x

y

e 2e+f ?

2
su(2)(1) 6d rank-2 (A1, A1) theory,

w/ permutation twist SU(3)0 +1Sym +1F F2
1 F1+1

02

x

y

h
h−
∑

i
xi
e+f−x−2y

e−x ?

2
su(1)(1)

2
su(1)(1)

3

6d N = (2, 0) D4 theory,
w/ permutation twist

G2 + 1 Adj
SU(3) 15

2
+ 1 F

F1+1
0 F1+1

02
f−x

x

3f−x

x

e−x

e−y

e−z

e−w

Table 1. Rank 1 and rank 2 KK theories [16, 47, 61]. Theories labelled with ? are referred to as
non-geometric, in the sense that these are not conventional geometric descriptions. These theories
are understood as algebraic proposals that mimic many features of local threefolds, but may not
satisfy the consistency conditions reviewed in section 2.

corresponding to classical Chern-Simons level, as for example in the case of G = SU(N ≥ 3),
or discrete θ-angle as in the cases G = Sp(N). At a generic point in the Coulomb branch,
the gauge symmetry G is broken to the maximal torus U(1)r. The Coulomb branch is
parametrised by the expectation values of scalar fields φ in the vector multiplets. Here, the
scalar field φ takes values in the Cartan subalgebra of the gauge group G. The low energy
abelian action is determined by a prepotential F5d. The prepotential is 1-loop exact and
the full quantum result is a cubic polynomial of the vector multiplet scalar φ and mass
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parameters mf , given by:

F5d = 1
2g2hijφiφj + κ

6dijkφiφjφk + 1
12

 ∑
α∈root

|α · φ|3 −
∑
f

∑
w∈Rf

|w · φ+mf |3
 , (2.1)

where hij = Tr(titj), and dijk = 1
2TrF(ti{tj , tk}) with F in the fundamental representation,

and we refer to appendix A.1 for our Lie algebra conventions.
The 1-loop correction to the prepotential renormalises the gauge coupling. The effec-

tive coupling in the Coulomb branch is simply given by a second derivative of the quantum
prepotential which fixes the exact metric on the Coulomb branch:

(τeff)ij = (g−2
eff )ij = ∂i∂jF5d, ds2 = (τeff)ijdφidφj . (2.2)

In addition, the exact spectrum of magnetic monopoles on the Coulomb branch can be
easily obtained from the quantum prepotential and their tension is given by

φDi = ∂iF5d, i = 1, . . . , r. (2.3)

Moreover, one can compute Chern-Simons couplings:

κijk = ∂i∂j∂kF5d. (2.4)

In the following paragraphs we see how to obtain the prepotential (2.1) from various view-
points ranging from a parent 6d SCFT to a geometric realisation in terms of intersecting
complex rational surfaces.

2.1 Prepotentials from 6d SCFTs

In this section we review how 5d prepotentials are obtained from a given 6d SCFT upon
twisted circle compactification following [61].

6d SCFTs can be described on their tensor branch in terms of tensor multiplets Bi
together with gauge multiplets associated to a gauge algebra gi. It is known that the gi are
either simple or trivial algebras. There are, moreover, fundamental BPS string excitations
sj charged under the Bj such that their charge is given by the Kronecker delta δij . Let Ωij

denote the Dirac pairing between si and sj . Then there is a Green-Schwarz term in the
Lagrangian on the tensor branch of the following form

ΩijBi ∧ tr(F 2
j ) (2.5)

where Fj is the field strength for the j-th gauge group if gj is simple and Fj = 0 if gj is
trivial. In the classification of [93], the Ωij matrix is the intersection matrix of −n curves
in the base of the F-theory construction. As such it is symmetric, positive definite and all
of its entries are integers.

Upon compactification on a circle, there is the possibility to twist by an element of a
discrete global symmetry group Γ. In order to generate the most general discrete symmetry
of a 6d SCFT, one has to combine two kinds of basic discrete symmetries. The first type
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acts as an outer automorphisms of the gauge algebras gi. The outer automorphism acting
on the roots of g induces an action on the irreducible representations; more precisely, the
automorphism twist acts on the Dynkin coefficients of the corresponding weights. There-
fore, we see that such an action is an action on representations of the gauge algebra. The
second type of automorphism arises from permuting tensor multiplets i 7→ σ(i) such that

gσ(i) = gi

Ωσ(i)σ(j) = Ωij
(2.6)

for all i, j. Modding out by a given permutation σ of a 6d SCFT, generates a different
pairing matrix Ωαβ

σ ; here the indices α, β label orbits of nodes i, which arise under the
repeated action of the permutation σ. In more detail, the element Ωαβ

σ can be computed
by selecting a node i, which lies inside the orbit α, and summing over all nodes j that
constitute the other orbit β, i.e.

Ωαβ
σ =

∑
j∈β

Ωij . (2.7)

This matrix may not be symmetric, but must be positive definite. One can then combine
the action of the two types of twists discussed and denote them by σ, {qα} where qα is the
degree of the action of the outer automorphism on the gauge algebra corresponding to node
α. Naturally, one is led to consider the O(qα) invariant subalgebra hα = gα/O(qα) of gα.
From the viewpoint of the compactified theory, every node α gives rise to the such defined
low energy gauge algebra hα. For a given 6d theory, the authors of [61] then define a graph
associated to the twisted compactification, such that the value of each node α is g

(qα)
i

Ωαα and
the number of edges between two nodes α and β is given by |Ωαβ |. In the first column of
table 1 we summarise all rank 1 and 2 5d theories so obtained using the notation of [61].

With these data, the authors of [61] derive the following prepotential for the twisted
circle compactification of the 6d theory

6F6d =
∑
α,β

3Ωαβ
σ φ0,α

(
Kab
β φa,βφb,β

)
+ 1

2

(∑
α

|α ·φ|3−
∑
f

∑
w(Rf )

|w(Rf ) ·φ+mf |3
)
, (2.8)

where φ0,α is the scalar living in the vector multiplet corresponding to U(1)α, i.e. the affine
node. The φa,β are scalar components of the U(1)a,β vector multiplets that parametrise
the Cartan of hβ coming from the degenerate fibre above the curve β. Here Kab

β is the
Killing form on hβ .

Moreover, the hypermultiplets, which are charged under the low energy gauge algebra
h, furnish a representation R which can be decomposed as R = ⊕fRf into irreducible
representations of h. Note that contrary to the prepotential given in (2.1), the so obtained
prepotential (2.8) from 6d does not depend on gauge coupling parameters 1

g2 . However,
such terms should be there and have been neglected in the initial derivation given in [61].
One central goal of the current paper is to remedy this gap.

2.2 Prepotential from geometry

As advocated in [61], the 5d gauge theory resulting from twisted circle compactification can
be equivalently described in terms of an M-theory compactification on a Calabi-Yau XS .
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This Calabi-Yau can be described as a local neighbourhood of an arrangement of surfaces
— which each need to be irreducible, compact, and holomorphic — such that these surfaces
intersect each other at most pairwise transversely. Because these surfaces can be arranged
into families, it is convenient to assign a corresponding label α. The irreducible surfaces in
each family α are denoted as Sa,α where 0 ≤ a ≤ rα and rα denotes the rank of hα. The
Kähler parameter associated to Sa,α are identified with the parameter φa,α of the Coulomb
branch in the compactified KK theory discussed above. If the invariant algebra hα for the
node α is trivial then one associates just one surface S0,α.

A key role is played by the shifted prepotential Ftrun which corresponds to the trun-
cated prepotential of a purely five-dimensional QFT where all mass and gauge coupling
deformations have been turned off. Ftrun is obtained from F6d by performing the following
replacement:

φb,α → φb,α − d∨b φ0,α, (2.9)

for all 1 ≤ b ≤ rα and for all α. The d∨a are the dual Coxeter labels of the affine twisted alge-
bra associated to the 6d gauge algebra. The prepotential 6Ftrun is composed of cubic terms
of the form κaα,bβ,cγ φa,αφb,βφc,γ and the appearing coefficients are geometrically realised
by the following intersection numbers of compact surfaces inside the Calabi-Yau XS :

κaα,aα,aα = Sa,α ∩ Sa,α ∩ Sa,α , (2.10a)
κaα,aα,bβ = 3Sa,α ∩ Sa,α ∩ Sb,β , (2.10b)
κaα,bβ,cγ = 6Sa,α ∩ Sb,β ∩ Sc,γ , (2.10c)

and the (a, α), (b, β), (c, γ) indices are assumed to be distinct and non-equal. For eval-
uating the triple intersection product of any three such surfaces one has the freedom to
evaluate the intersection number inside any one of the three. In more detail, the concept of
“gluing curves” needs to be introduced. Denote the intersection locus between two distinct
surfaces Sa,α and Sb,β in XS by Laα,bβ . In general, Laα,bβ can be reducible and splits into
geometrically irreducible components given by the sum ∑

i Liaα,bβ . Each Liaα,bβ can then
be associated to an irreducible curve Cia,α;b,β in Sa,α as well as an irreducible curve Cib,β;a,α
in Sb,β . Put differently, the intersection of Sa,α and Sb,β can be realised by identifying
the curves

Cia,α;b,β ∼ Cib,β;a,α (2.11)

with each other for all i. One may think of the process that identifies curves as in (2.11)
as an operation in which two surfaces are “gluing together” along such curves. The above
description of the local Calabi-Yau XS can be compactly summarised in terms of connected
graphs as shown for the case of rank 1 and rank 2 5d theories in the last column of
table 1. Each node of the graph corresponds to one of the surfaces Sa,α which in general
are Hirzebruch surfaces and blowups thereof. An edge between two nodes indicates that the
corresponding surfaces share one or more curves. If the number of gluing curves is greater
than 1, it is indicated on the edge. The gluing curves are written next to each surface.
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Neglecting gauge coupling and mass terms for now, the truncated prepotential Ftrun
can be expressed purely geometrically using the above data by defining a Kähler form

Jφ =
∑
a,α

φa,αSa,α, (2.12)

by the following identity

Ftrun = vol(XS) = 1
3!

∫
XS

Jφ ∧ Jφ ∧ Jφ. (2.13)

The Kähler form can also be used to measure the volume of a curve C via

vol(C) = −Jφ · C. (2.14)

where we have adopted the conventions of [61]. The identification (2.11) implies that

Jφ · Cia,α;b,β = Jφ · Cib,β;a,α, (2.15)

and the gluing curves also have to satisfy the ‘Calabi-Yau condition’ spelled out in (2.19).

2.3 The geometry of XS

So far, we have only described the compact divisors Sa,α which are related to the Coulomb
branch parameters φa,α. In the Calabi-Yau threefold XS there can be further non-compact
divisors related to the mass parameters and the gauge couplings. In order to describe such
divisors, we discuss the geometry of XS in some more detail.

As every single one of the compact surfaces Sa,α sits inside a non-compact Calabi-Yau
threefold XS , their normal bundle must be equal to their canonical bundle, KSa,α . For
a single surface Sa,α, this means that XS is simply the total space of the bundle KSa,α .
Gluing several surface Sa,α along Laα,bβ = Sa,α ∩ Sb,β implies that we should think of XS

as being glued from the total spaces of the bundles KSa,α . The surfaces Sa,α are the zero
loci of sections of the line bundles KSa,α on XS .

We can check that this gluing can be done consistently by examining the normal bundle
of Laα,bβ inside XS . This normal bundle is a sum of line bundles which can be described as

NLaα,bβ\XS = KSa,α

∣∣
Laα,bβ

⊕NLaα,bβ\Sa,α (2.16)

by taking Laα,bβ as an algebraic subvariety of Sa,α, and as

NLaα,bβ\XS = KSb,β

∣∣∣
Laα,bβ

⊕NLaα,bβ\Sb,β (2.17)

by taking Laα,bβ as an algebraic subvariety of Sb,β . Under a consistent gluing, these two
expression need to be identical. As Laα,bβ is given by the intersection of Sa,α and Sb,β ,
adjunction tells us that NLaα,bβ\Sa,α is the restriction of KSα,b to Laα,bβ . Hence, we find

KSa,α

∣∣
Laα,bβ

= NLaα,bβ\Sb,β , (2.18)

which shows that the gluing identifies the direction transverse to Saα in X with the normal
direction of Laα,bβ in Sb,β , so that (2.16) agrees with (2.17).
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Using the realisation of Laα,bβ\Sb,β as a complete intersection, it is straightforward to
work out using adjunction that

χ(Laα,bβ) =
∫
Laα,bβ

c1(Laα,bβ) =
∫
Laα,bβ

−[KSa,α ]− [KSb,β ]

= −
∫
XS

[KSa,α ] · [KSb,β ] · ([KSa,α ] + [KSb,β ])

= −
∫
Sa,α

(Laα,bβ)2 −
∫
Sb,β

(Lbβ,aα)2 .

(2.19)

When Laα,bβ is an irreducible curve of genus g, the above expression is equal to 2 − 2g,
which gives the ‘Calabi-Yau condition’ of the gluing.

The description of XS we have given makes it clear that given a collection of curves
{Ca,α} on the surfaces Sa,α, we can construct a divisor in XS that restricts to these curves
by simply taking the inverse image π−1

a,α(Ca,α) under the projection πa,α : KSa,α → Sa,α
for each Ca,α, and then gluing these to a (reducible) divisor. As the total spaces KSa,α

glue together consistently, the only extra consistency condition that arises is when one (or
some) of the {Ca,α} is a gluing curve, i.e. a component of Laα,bβ . In this case, the divisor
π−1(Ca,α) will restrict to non-trivial curves on both Sa,α and Sb,β .

Having discussed the inclusion of non-compact divisors into our geometry, we are now
ready to employ a parametrisation of the Kähler form which includes dependence on bare
gauge couplings and mass parameters. To this end, we introduce divisors Fi with the index
i running over i = 0, . . . , n0. Here n0 is the total number of surfaces Sa,α which can be
written as blowups of F0, which is equal to the total number of bare gauge couplings. The
Fi are then given by the inverse images π−1

a,α(ea,α)⋃π−1
b,β(lfb,β) where ea,α is a base of F0 (or

blowups of it) and lfb,β denotes the fibre (taken with an integer multiplicity l) of a surface
with non-zero self-intersection number of base curve (i.e. which does not arise from F0).
In cases where all Sa,α admit a description in terms of blowups of F0, the second factor in
the inverse image is missing and the Fi can be purely written in terms of inverse images of
base curves ei. The Fi are associated with gauge coupling parameters.

In case that there is only one 5d gauge algebra g, this can be summarised as follows:
suppose there are n = rk(g) compact surfaces Si and one is able to identify inside each Si
a complex curve f̃i of zero self-intersection such that

−f̃i · Sj = Cg
ij (2.20)

which implies that the f̃i act as simple roots αi of g. The non-compact divisor F , associated
to the gauge coupling g, has to intersect to compact surfaces as

−F · Si · Sj = hgij . (2.21)

Recalling the relation (A.5) between Cg
ij and h

g
ij , one finds

F |Si = D−1
i f̃i = 2

〈αi, αi〉
f̃i , (2.22)

which is verified in all the examples considered in this paper.
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We can find similar sets of non-compact divisors, denoted by Nf , which are associated
to bare mass parameters mf . The divisors Nf can restrict to blowup curves xi or fibres fi,
but never to base curves ei. Now we can parametrise the Kähler form as follows

J = −
∑
i

1
g2
i

Fi +
∑
a,α

φa,αSa,α +
∑
f

mfNf . (2.23)

which results in the geometric prepotential

Fgeom = 1
3!

∫
Xs
J ∧ J ∧ J. (2.24)

Henceforth, we will omit the indices {a, α} and parametrise all non-compact as well as
compact divisors in the geometry purely in terms of the Latin indices i, j and f . Using the
above parametrisation of the Kähler form, we can then express effective gauge couplings
as volumes of various 2-cycles as follows:

τij = ∂i∂jFgeom = vol
(
Si
⋂
Sj
)

=
∫
XS

J ∧ Si ∧ Sj . (2.25)

The parametrisation of the Kähler form is fixed in such a way that τij matches the effective
gauge coupling ∂i∂jF5d of a five-dimensional supersymmetric QFT.

3 Instructive examples

In this section, inclusion of gauge coupling and mass parameters into the geometric de-
scription is explored in a set of selected examples. Among these are untwisted compactifi-
cation, like the well-studied E-string theory or the 5d affine A-type quiver theory. Twisted
compactifications are explored for the 6d minimal SU(3) and SO(8) SCFTs with outer
automorphism twist.

3.1 −1 curve: E-string theory on a circle

Let us start with 6d N = (1, 0) E-string theory corresponding to one M5 brane probing
an M9 wall. Compactifying this theory on a circle (with a possible twist) gives a 5d Sp(1)
gauge theory with Nf = n ≤ 8. Using the fact that dijk = 0 for G = Sp(1) = SU(2), we
obtain from (2.1)

F5d = 1
g2φ

2 + 1
12

(
2|2φ|3 −

8∑
j=1
|φ+mj |3 −

8∑
j=1
|φ−mj |3

)
. (3.1)

For n = 8, setting all masses to zero, i.e. mj = 0 for j = 1, . . . , 8, we get

F5d = 1
g2φ

2. (3.2)

In particular, we see that at infinite coupling, g =∞, the monopole tension φD = ∂F/∂φ
vanishes regardless of the value of φ. This is a remnant of the fact, that the UV completion
of this 5d theory is in fact a 6d theory, namely the E-string theory.
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Let us now assume that φ > mj for all j. We can then write

F5d = 1
g2φ

2 + 1
6

(
(8− n)φ3 − 3φ

∑
j

m2
j

)
. (3.3)

The effective gauge coupling is given by

τeff = (∂φ)2F5d = 2
g2 + (8− n)φ (3.4)

which matches the result of [1].

Geometric realisation. The E-string theory in 6d is engineered geometrically in F-
theory by collapsing a rational elliptic surface (also called dP9 surface) S inside a non-
compact elliptically fibred Calabi-Yau threefold. If we consider M-Theory on the same
geometry, we find the 5d theory that was discussed as a compactification of the 6d N =
(1, 0) SCFT on a circle. Following the general discussion of geometric engineering of 5d
gauge theories, we need to exploit a ruling on S. Such a ruling is discussed in [7], see also
appendix B, where it is shown that it originates from S being a blowup of F0 at 8 points.
We can generalise this to surfaces S = dPn+1 which are blowups of F0 at n points, and
which in turn give rise to a Sp(1) gauge theory with n flavours. We can model the relevant
Calabi-Yau geometry XS as

XS = OdPn+1(KdPn+1). (3.5)

For every curve in dPn+1, there is hence an associated non-compact divisor in XS by simply
taking the preimage under the projection π : XS → dPn+1.

Let us denote the fibre and base classes of the ruling by f and e, and the n exceptional
divisors of the blowups by xi. In terms of the P1 fibration on S, we can think of the xi
as irreducible fibre components, i.e. over n points of the base, the fibre splits into the two
components xi and f − xi.

The intersections between the curves on S can be summarised as (see appendix B
for details)

e · f = 1 , xi · xj = −δij (3.6)

with all others vanishing. Note that this implies that

(f − xi) · (f − xj) = −δij , e · (f − xi) = 1 . (3.7)

Let us parametrise the Kähler form as

J = af + b[K] +
∑
i

cixi (3.8)

where [K] is the class of the dPn+1 inside XS ,

[K]|S = −c1(S) = −
(

2e+ 2f −
∑
i

xi

)
|S . (3.9)
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The flavour masses are given by integrating the Kähler form over the curves xi and f −xi,
they are given by φ ±mi [1], where φ is the Coulomb branch parameter and mi are the
mass parameters. We find

− J · xi = b+ ci − J · (f − xi) = b− ci (3.10)

so that we are led to associate b = φ and ci = mi. Note that we are in the phase
where φ > mi.

We can work out triple intersection numbers involving at least one compact divisor by
using that [K] is the Poincare dual to S inside X. The geometric prepotential is then

Fgeom = 1
6J

3 = 1
6

(
[K]3φ3 + 3([K]2 · f)φ2a+

n∑
i=1

3([K]2 · xi)φ2mi + 3([K] · x2
i )φm2

i

)

= 1
6

(
(8− n)φ3 − 6φ2a−

n∑
i=1

3φ2mi − 3φm2
i

)
(3.11)

Comparing to (3.3) we can fix a = − 1
g2 − 1

2
∑
imi.

We can now work out the volume of the elliptic curve defining F-theory on XS . The
class of the elliptic curve inside S is simply c1(S). Its volume is hence given by

Vol(fell) = −J · fell = −J · c1(S) = 2
g2 + (8− n) (3.12)

The SCFT fixed point is reached by setting all mi to zero and letting g →∞, which implies
for n = 8 that Vol(fell) → 0. This is the F-theory limit and we recover that the marginal
(n = 8) theory has a SCFT fixed point in 6d.

3.2 −2 curve: SU(n) without twist

Consider a −2 curve which supports an su(n) gauge algebra. The 5d KK theory is known
to be the affine Ân−1 quiver gauge theory

SU(2) SU(2)
· · ·

SU(2) SU(2)

SU(2)

n − 1 node

(3.13)

with n SU(2) gauge groups and SU(2)i × SU(2)i+1 bifundamental hypermultiplets. There
are n gauge couplings gi, one for each gauge group, and n mass parameters mi,i+1, one for
each bifundamental hypermultiplet.

5d gauge theory description. The prepotential of (3.13) is given by

6F5d =
n−1∑
i=0

6
g2
i

φ2
i +

n−1∑
i=0

8φ3
i −

1
2

n−1∑
i=0

(
|φi + φi+1 ±mi,i+1|3 + | − φi + φi+1 ±mi,i+1|3

)
,

(3.14)
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with the index identification i + 1 = n ∼ 0. One restricts to the dominant Weyl chamber
φi ≥ 0 for each i and chooses a suitable Coulomb branch phase

φi + φi+1 ±mi,i+1 ≥ 0 ,
−φi + φi+1 +mi,i+1 ≥ 0 ,
φi − φi+1 +mi,i+1 ≥ 0 ,

for i = 0, 1, . . . , n− 1 . (3.15)

The prepotential (3.14) in this phase becomes:

6F5d =
n−1∑
i=0

( 6
g2
i

φ2
i + 6φ3

i − 3φiφ2
i+1 − 3φi+1φ

2
i

− 3mi,i+1(φ2
i − 2φiφi+1 + φ2

i+1)− 3m2
i,i+1(φi + φi+1)

)
(3.16)

up to constant terms O(m3
i ).

5-brane web and toric geometry. The theory (3.13) can be realised as world-volume
theory of Type IIB 5-brane web. In the simplest case of an Â1 quiver, the periodic 5-brane
web is

/

//

/

//2φ1

2φ0

φ0 − φ1 +m

φ0 + φ1 −m

φ1 − φ0 +m

(3.17)

which describes the phase (3.15). Focusing on the part of the 5-brane web that describes
SU(2) with 2 fundamental flavours, one can equivalently consider the dual graph. This
yields the fan of F0 blown up at two points.

f

e− x1 h− x2

x1 x2
f − x1 − x2

(3.18)

We have labelled the rays of the fan by the associated divisor (or curve) classes as follows: e
and h are sections, and f the fibre of the ruling. The classes of the exceptional divisors are
denoted by xi. As we see below, we can geometrically realise the SU(n) theories on a −2
curve without twist by combining these surfaces Si as building blocks along a circle. The
gluing curves connecting every such surface to the one on the left/right are always given
by the toric divisors that point to the left/right, e− x1 and e− x2 in the above notation.
This can already be anticipated from the 5-brane web.
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3.2.1 SU(2)

To begin with, consider the untwisted circle compactification of a −2 curve with an su(2)
algebra. In the following, and throughout the paper, we employ the following notation
for compact surfaces Si in the Calabi-Yau geometry. Namely, a surface Si obtained from
blowing up Fn k times is denoted by ikn.

Geometry. Following [61], the geometry for the circle compactified theory reads

04
0 122

e0
e0−
∑4

i=1 xi
e1
h1

(3.19)

First, since the e0−xi curves have self-intersection (e0−xi)2 = −1, due to F0, one can flip
any e0 − xi. So, one might choose

02
0 12

22

e0
e0−
∑4

i=3 xi
e1

h1−
∑2

i=1 xi
(3.20)

where x1,2 have been flopped. Now, by virtue of inverse of the isomorphism (A.22) for x1
one finds

02
0 12

12

e0
e0−
∑4

i=3 xi
e1−x1
h1−x2

(3.21)

where h1 is inside F2
1. Repeating the isomorphism (A.22) for x2 yields

02
0 12

02

e0
e0−
∑4

i=3 xi
e1−
∑2

i=1 xi
e1

(3.22)

Finally, one splits the blowups symmetrically

02
0 12

02

e0−x1
e0−x4

e1−x2
e1−x3 (3.23)

which is possible via further flop transitions.

Consistency of geometry. Before exploring the physics associated to the geome-
try (3.23), one verifies overall consistency.

• Firstly, one verifies the consistency condition (2.15) on gluing curves of (3.23). With
Jφ = ∑

i φiSi, the truncated Kähler form, one obtains:

1st component: S0|S1 · Jφ = S1|S0 · Jφ = φ0 + φ1 , (3.24a)
2nd component: S0|S1 · Jφ = S1|S0 · Jφ = φ0 + φ1 . (3.24b)

• Secondly, one verifies the Calabi-Yau condition (2.19)

1st component: (S0|S1)2 + (S1|S0)2 = −2 , (3.25a)
2nd component: (S0|S1)2 + (S1|S0)2 = −2 , (3.25b)

which is consistent for genus g = 0.
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• Lastly, the fibre intersections are computed to be

−
(
f0 ·KS0 f0 · S1|S0

f1 · S0|S1 f1 ·KS1

)
=
(

2 −2
−2 2

)
= C

Â
(1)
1
, (3.26)

which is consistent with 6d origin of an su(2) gauge algebra.

Prepotential via intersection numbers. The triple intersection numbers for the com-
pact surfaces in (3.23) give rise to the following cubic part of the prepotential:

6Ftrun ≡ J3
φ = 6φ3

0 − 6φ1φ
2
0 − 6φ2

1φ0 + 6φ3
1 . (3.27)

Besides the compact surfaces, one may also add non-compact ones that introduce defor-
mation parameters. For this, one may parametrise the Kähler form as follows

J |S0 = φ0KS0 + φ1S1|S0 + a0f0 + b0e0 +
1∑
i=0

Mixi , (3.28a)

J |S1 = φ0S0|S1 + φ1KS1 + a1f1 + b1e1 +
3∑
i=2

Mixi . (3.28b)

recalling that x0 ≡ x4 and i = 4 ∼ 0. The introduced parameters can be determined via
the following two requirements:

• The volume of the blowup curves match the physical mass terms given in (3.14).
Based on (3.28), one computes

Vol(x1) = φ0 − φ1 +M1
!= φ0 − φ1 +m0,1 , (3.29a)

Vol(e0 − x1) = φ0 + φ1 −M1 − a0
!= φ0 + φ1 −m0,1 , (3.29b)

Vol(x2) = −φ0 + φ1 +M2
!= −φ0 + φ1 +m0,1 , (3.29c)

Vol(e1 − x2) = φ0 + φ1 −M2 − a1
!= φ0 + φ1 −m0,1 , (3.29d)

which is identified as the contributions of the first bifundamental with mass parameter
m0,1. The second bifundamental, with parameter m1,0, contributes as

Vol(x4) = φ0 − φ1 +M4
!= φ0 − φ1 +m1,0 , (3.30a)

Vol(e0 − x4) = φ0 + φ1 −M4 − a0
!= φ0 + φ1 −m1,0 , (3.30b)

Vol(x3) = −φ0 + φ1 +M3
!= −φ0 + φ1 +m1,0 , (3.30c)

Vol(e1 − x3) = φ0 + φ1 −M3 − a1
!= φ0 + φ1 −m1,0 . (3.30d)

The set of linear equations (3.29), (3.30) are straightforwardly solved by

M1 = M2 = m0,1 , M3 = M4 = m1,0 , a0 = a1 = 0 . (3.31)
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• The effective gauge coupling (2.25) is geometrically given by

(τeff) =
(
J |S0 ·KS0 J |S0 · S1|S0

J |S1 · S0|S1 J |S1 ·KS1

)

=
(

6φ0 − 2φ1 − (m0,1 +m1,0)− 2b0 −2(φ0 + φ1) +m0,1 +m1,0
−2(φ0 + φ1) +m0,1 +m1,0 6φ1 − 2φ0 − (m0,1 +m1,0)− 2b1

)
!=
(
∂2F5d
∂φi∂φj

) (3.32)

such that comparing to the field theory expectation (2.2) imposes

b0 = − 1
g2

0
, b1 = − 1

g2
1
. (3.33)

Therefore, the Kähler form may be written as

J = −
1∑
i=0

1
g2
i

Fi +
1∑
i=0

φiSi +
1∑
i=0

mi,i+1Ni,i+1 , (3.34a)

where the non-compact surfaces Fi, Ni,i+1 restrict to the compact surfaces as follows:

Fi|Sj = δijei ,

N0,1|S0 = x1

N0,1|S1 = x2
,

N1,0|S0 = x4

N1,0|S1 = x3
. (3.34b)

Based on (3.34) one computes the volume of the elliptic fibre

Vol(fell) = Vol(f0) + Vol(f1) = 1
g2

0
+ 1
g2

1
= τ , (3.35)

which equals the modular parameter τ .
Finally, the triple intersection numbers of the compact surfaces with the non-compact

ones are

Fi · Sj · Sk =

Fi|Sj ·KSj = −2δi,j , for j = k ,

Fi|Sj · Sk|Sj = 0 , for j 6= k ,
(3.36a)

Fi · Fj · Sk = 0 , ∀i, j, k , (3.36b)

Ni,i+1 · Sj · Sk =

Ni,i+1|Sj ·KSj = −1 · (δi,j + δi+1,j) , for j = k ,

Ni,i+1|Sj · Sj+1|Sj = δi,j + δi+1,j , for k = j + 1 ∼ j − 1 ,
(3.36c)

Ni,i+1 ·Nj,j+1 · Sk = Ni,i+1|Sk ·Nj,j+1|Sk = δi,kδj,k + δi+1,kδj+1,k , (3.36d)
Ni,i+1 · Fj · Sk = 0 , ∀i, j, k . (3.36e)

These intersection numbers give rise to the geometric prepotential 6Fgeom = J3 which
matches (3.16). Therefore, the geometry (3.23) describes the Â1 KK-theory (3.13) in the
phase (3.15).
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3.2.2 SU(3)

Consider a −2 curve with an su(3) gauge algebra and its untwisted circle compactification.

Geometry. Following [61], the relevant geometry is given by

06
0 12

24

e0 e1

h1

e2

e0−
∑6

i=1 xi

h2

(3.37)

In S0 = F6
0, any of the e0 − xi curves has self-intersection (e0 − xi)2 = −1; hence, can be

flopped. So, one may choose

02
0 12

24
4

e0 e1

h1

e2

e0−
∑6

i=5 xi

h2−
∑4

i=1 xi

(3.38)

i.e. the blowups x1,2,3,4 have been flopped. Applying the isomorphism (A.22) separately
for x1,2,3,4 yields

02
0 12

24
0

e0 e1

h1

e2−
∑4

i=1 xi

e0−
∑6

i=5 xi

h2=e2

(3.39)

In F4
0, any of the e2−xi curves has self-intersection (e2−xi)2 = −1; hence, can be flopped.

One may choose

02
0 12

2

22
0

e0 e1

h1−
∑2

i=1 xi

e2−
∑4

i=3 xi

e0−
∑6

i=5 xi

e2

(3.40)

i.e. x1,2 have been flopped. Applying the isomorphism (A.22) separately for x1 and x2 yields

02
0 12

0

22
0

e0 e1−
∑2

i=1 xi

h1=e1

e2−
∑4

i=3 xi

e0−
∑6

i=5 xi

e2

(3.41)
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Lastly, the blowups can be distributed symmetrically to yield

02
0 12

0

22
0

e0−x1 e1−x2

e1−x3

e2−x4

e0−x6

e2−x5

(3.42)

which can be achieved via further flop transitions.

Consistency of geometry. Next, the consistency of the geometry (3.42) is verified.

• Firstly, the consistency condition (2.15) for the gluing curves in (3.42) reads

S0|S1 · Jφ = S1|S0 · Jφ = φ0 + φ1 , (3.43a)
S0|S2 · Jφ = S2|S0 · Jφ = φ0 + φ2 , (3.43b)
S1|S2 · Jφ = S2|S1 · Jφ = φ1 + φ2 , (3.43c)

where Jφ = ∑
i φiSi denotes the truncated Kähler form for (3.42).

• Secondly, one verifies the Calabi-Yau condition (2.19) and finds

(S0|S1)2 + (S1|S0)2 = −2 , (3.44a)
(S0|S2)2 + (S2|S0)2 = −2 , (3.44b)
(S1|S2)2 + (S2|S1)2 = −2 , (3.44c)

which is consistent for genus g = 0.

• Lastly, the fibre intersections read

−

 f0 ·KS0 f0 · S1|S0 f0 · S2|S0

f1 · S0|S1 f1 ·KS1 f1 · S2|S1

f2 · S0|S2 f2 · S1|S2 f2 ·KS2

 =

 2 −1 −1
−1 2 −1
−1 −1 2

 = C
Â

(1)
2
, (3.45)

which is consistent with 6d origin of an su(3) gauge algebra.

Prepotential via intersection numbers. For the geometry (3.42), one finds the fol-
lowing cubic part of the prepotential from the intersection numbers of the compact surface:

6Ftrun ≡ J3
φ = 6φ3

0 − 3φ1φ
2
0 − 3φ2φ

2
0 − 3φ2

1φ0 − 3φ2
2φ0 + 6φ3

1 + 6φ3
2 − 3φ1φ

2
2 − 3φ2

1φ2 .

(3.46)
Besides the compact surfaces, one may also add non-compact ones that introduce defor-
mation parameters. For this, one may parametrise the Kähler form as follows

J |S0 = φ0KS0 + φ1S1|S0 + φ2S2|S0 + a0f0 + b0e0 +
1∑
i=0

Mixi , (3.47a)

J |S1 = φ0S0|S1 + φ1KS1 + φ2S2|S1 + a1f1 + b1e1 +
3∑
i=2

Mixi , (3.47b)

J |S2 = φ0S0|S2 + φ1S1|S2 + φ2KS2 + a2f2 + b2e2 +
5∑
i=4

Mixi , (3.47c)
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recalling that x0 ≡ x6 and i = 6 ∼ 0. The additional parameters are determined by two
requirements:

• The volume of the blowup curves match the physical mass terms given in (3.14).
Based on (3.47), one computes

Vol(x6) = φ0 − φ2 +M6
!= φ0 − φ2 +m2,0 , (3.48a)

Vol(e0 − x6) = φ0 + φ2 −M6 − a0
!= φ0 + φ2 −m2,0 , (3.48b)

Vol(x5) = −φ0 + φ2 +M5
!= −φ0 + φ2 +m2,0 , (3.48c)

Vol(e2 − x5) = φ0 + φ2 −M5 − a2
!= φ0 + φ2 +m1,0 , (3.48d)

which is identified as the contributions of the SU(2)2 × SU(2)0 bifundamental with
mass parameter m2,0. The SU(2)0 × SU(2)1 bifundamental hypermultiplets, with
mass parameters m0,1, contributes as

Vol(x1) = φ0 − φ1 +M1
!= φ0 − φ1 +m0,1 , (3.49a)

Vol(e0 − x1) = φ0 + φ1 −M1 − a0
!= φ0 + φ1 −m0,1 , (3.49b)

Vol(x2) = −φ0 + φ1 +M2
!= −φ0 + φ1 +m0,1 , (3.49c)

Vol(e1 − x2) = φ0 + φ1 −M2 − a1
!= φ0 + φ1 −m0,1 . (3.49d)

The remaining blowups have volumes given by

Vol(x3) = φ1 − φ2 +M3
!= φ1 − φ2 +m1,2 , (3.50a)

Vol(e1 − x3) = φ1 + φ2 −M3 − a1
!= φ1 + φ2 −m1,2 , (3.50b)

Vol(x4) = −φ1 + φ2 +M4
!= −φ1 + φ2 +m1,2 , (3.50c)

Vol(e2 − x4) = φ1 + φ2 −M4 − a2
!= φ1 + φ2 −m1,2 , (3.50d)

which identifies them as SU(2)1×SU(2)2 bifundamental hypermultiplet with mass pa-
rameterm1,2. The set of linear equations (3.48)–(3.50) are straightforwardly solved by

M5 = M6 = m2,0 , M1 = M2 = m0,1 , M3 = M4 = m1,2 , a0 = a1 = a2 = 0 .
(3.51)

• The effective gauge coupling (2.25) is geometrically given by

(τeff) =

 J |S0 ·KS0 J |S0 · S1|S0 J |S0 · S2|S0

J |S1 · S0|S1 J |S1 ·KS1 J |S1 · S2|S1

J |S2 · S0|S2 J |S2 · S1|S2 J |S2 ·KS2

 !=
(
∂2F5d
∂φi∂φj

)

with J |S0 ·KS0 = 6φ0 − φ1 − φ2 − (m0,1 +m2,0)− 2b0 ,
J |S1 ·KS1 = 6φ1 − φ0 − φ2 − (m0,1 +m1,2)− 2b1 ,
J |S2 ·KS2 = 6φ2 − φ0 − φ1 − (m1,2 +m2,0)− 2b2 ,
J |S0 · S1|S0 = J |S1 · S0|S1 = −(φ0 + φ1) +m0,1 ,

J |S0 · S2|S0 = J |S2 · S0|S2 = −(φ0 + φ2) +m2,0 ,

J |S1 · S2|S1 = J |S2 · S1|S2 = −(φ1 + φ2) +m1,2 , (3.52)
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such that comparing to the field theory expectation (2.2) imposes

b0 = − 1
g2

0
, b1 = − 1

g2
1
, b2 = − 1

g2
2
. (3.53)

Therefore, the Kähler form may be written as

J = −
2∑
i=0

1
g2
i

Fi +
2∑
i=0

φiSi +
2∑
i=0

mi,i+1Ni,i+1 , (3.54a)

where the parameter i+ 1 = 3 ∼ 0 is periodically identified. The non-compact surfaces Fi,
Ni,i+1 restrict to the compact surfaces as follows:

Fi|Sj = δijei , Ni,i+1|Sj = δi,j x2i+1 + δi+1,j x2i+2 . (3.54b)

Based on (3.54), the volume of the elliptic fibre is given by

Vol(fell) =
2∑
i=0

Vol(fi) = 1
g2

0
+ 1
g2

1
+ 1
g2

2
= τ , (3.55)

which equals the modular parameter τ .
Lastly, the triple intersection numbers of the compact surfaces with the non-compact

ones are

Fi · Sj · Sk =

Fi|Sj ·KSj = −2δi,j , for j = k ,

Fi|Sj · Sk|Sj = 0 , for j 6= k ,
(3.56a)

Fi · Fj · Sk = 0 , ∀i, j, k , (3.56b)

Ni,i+1 · Sj · Sk =



Ni,i+1|Sj ·KSj = −1 · (δi,j + δi+1,j) , for j = k ,

Ni,i+1|Sj · Sj+1|Sj = δi,j , for k = j + 1 ,
Ni,i+1|Sj · Sj−1|Sj = δi+1,j , for k = j − 1 ,
Ni,i+1|Sj · Sk|Sj = 0 , for k 6∈ {j, j ± 1} ,

(3.56c)

Ni,i+1 ·Nj,j+1 · Sk = Ni,i+1|Sk ·Nj,j+1|Sk = δi,kδj,k + δi+1,kδj+1,k , (3.56d)
Ni,i+1 · Fj · Sk , = 0 ∀i, j, k . (3.56e)

These intersection numbers give rise to the geometric prepotential 6Fgeom = J3 which
matches (3.16). Therefore, the geometry (3.42) describes the Â2 KK-theory (3.13) in the
phase (3.15).

3.2.3 SU(even)

For the general case, one proceeds in an analogous manner to sections 3.2.1–3.2.2.
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Geometry. The geometric description is based on [61]

04n
0

12 24 (n−1)2n−2

n2n

(n+1)2n+2(2n−2)4n−4(2n−1)4n−2

· · ·

· · ·

e0

e1

h1 e2 h2 en−1

hn−1

en

hn

hn+1

en+1

e2n−2h2n−2e2n−1

e0−
∑4n

i=1 xi

h2n−1

(3.57)

and all 4n blowups are inside the 0-th compact surface S0 = F4n
0 . Since all the blowups

are at the gluing of S0 with S2n−1 = F4n−2, one can flop 4n− 2 out of them and obtains

02
0

12 24 (n−1)2n−2

n2n

(n+1)2n+2(2n−2)4n−4(2n−1)4n−2
4n−2

· · ·

· · ·

e0

e1

h1 e2 h2 en−1

hn−1

en

hn

hn+1

en+1

e2n−2h2n−2e2n−1

e0−
∑4n

i=4n−1 xi

h2n−1−
∑4n−2

i=1 xi

(3.58)

Next, applying the isomorphism (A.22) 4n− 2 times reduces F4n−2
4n−2 → F4n−2

0 . As a conse-
quence, all these 4n− 2 blowups are in the gluing curve to S2n−2 = F4n−4. In detail,

02
0

12 24 (n−1)2n−2

n2n

(n+1)2n+2(2n−2)4n−4(2n−1)4n−2
0

· · ·

· · ·

e0

e1

h1 e2 h2 en−1

hn−1

en

hn

hn+1

en+1

e2n−2h2n−2e2n−1−
∑4n−3

i=1 xi

e0−
∑4n

i=4n−1 xi

e2n−1

(3.59)
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and, again, one can flop 4n− 4 blowups into S2n−2 = F4n−4. This leads to

02
0

12 24 (n−1)2n−2

n2n

(n+1)2n+2(2n−2)4n−4
4n−4(2n−1)2

0

· · ·

· · ·

e0

e1

h1 e2 h2 en−1

hn−1

en

hn

hn+1

en+1

e2n−2

h2n−2−
∑4n−4

i=1 xi

e2n−1−
∑4n−2

i=4n−3 xi

e0−
∑4n

i=4n−1 xi

e2n−1

(3.60)

and applying the isomorphism (A.22) 4n − 4 times reduces F4n−4
4n−4 → F4n−4

0 . Thus, the
geometry becomes

02
0

12 24 (n−1)2n−2

n2n

(n+1)2n+2(2n−2)4n−4
0(2n−1)2

0

· · ·

· · ·

e0

e1

h1 e2 h2 en−1

hn−1

en

hn

hn+1

en+1

e2n−2−
∑4n−4

i=1 xi

e2n−2

e2n−1−
∑4n−2

i=4n−3 xi

e0−
∑4n

i=4n−1 xi

e2n−1

(3.61)
and one realises that this processes of flop transition and isomorphism (A.22) can be
repeated systematically for all compact surfaces Si. Therefore, one can reduce all surfaces
to F2

0 and all blowups can be distributed symmetrically as follows:

02
0

12
0 22

0 (n−1)2
0

n2
0

(n+1)2
0(2n−2)2

0(2n−1)2
0

· · ·

· · ·

e0−x1

e1−x2

e1−x3 e2−x4 e2−x5 en−1−x2n−2

en−1−x2n−1

en−x2n

en−x2n+1

en+1−x2n+3 en+1−x2n+2

e2n−2−x4n−4

e2n−2−x4n−3

e2n−1−x4n−2

e0−x4n

e2n−1−x4n−1

(3.62)

which is a fully symmetric arrangement of F2
0 surfaces glued along e − x curves to the

neighbouring compact surfaces.
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Prepotential via intersection numbers. The claim is as follows:

• The compact surfaces Si in (3.62) give rise to the truncated Kähler form

Jφ =
2n−1∑
i=0

φiSi , (3.63)

whose intersection numbers induce the (truncated) geometric prepotential

6Ftrun ≡ J3
φ =

2n−1∑
i=0

6φ3
i −

2n−1∑
i=0

3φiφ2
i+1 −

2n−1∑
i=0

3φiφ2
i−1 (3.64)

with the identification φ2n ≡ φ0.

• One can add 2n non-compact surfaces Fi for i = 0, 1, . . . , 2n− 1 which restrict to the
compact surfaces in (3.62) as follows:

Fi|Sj = δijei . (3.65)

and further 2n non-compact surfaces Ni,i+1 for i = 0, 1, . . . , 2n− 1 which are charac-
terised by

Ni,i+1|Sj = δi,j x2i+1 + δi+1,j x2i+2 . (3.66)

The Kähler form is supplemented via

J = −
2n−1∑
i=0

1
g2
i

Fi +
2n−1∑
i=0

φiSi +
2n−1∑
i=0

mi,i+1Ni,i+1 , (3.67)

and the associated prepotential becomes

6Fgeom ≡ J3 = 6Ftrun +
2n−1∑
i=0

( 6
g2
i

φ2
i − 3mi,i+1(φ2

i − 2φiφi+1 + φ2
i+1)

− 3m2
i,i+1(φi + φi+1)

)
(3.68)

with the identification φ2n ≡ φ0. Hence, the geometric result agrees with prepoten-
tial (3.16) of the affine quiver gauge theory (3.13) in the phase (3.15).

3.2.4 SU(odd)

The geometry is given by [61]

04n+2
0

12 24 n2n· · ·

· · · (n+1)2n+2(2n− 1)4n−2(2n)4n

e0

e1

h1 e2 h2 en

hn

hn+1

en+1

e2n−1h2n−1e2n

h2n

e0−
∑4n+2

i=1 xi

(3.69)
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and one observes that the same reasoning as for SU(2n) applies. In brief, the 0-th surface
S0 = F4n+2

0 carries all 4n+ 2 blowups. Due to the degree 0, all curves of the form e0 − xi
can be flopped into the surface S2n = F4n. The isomorphism (A.22) suggests that one
flops as many blowups into a given Hirzebruch surface as its degree. Thus, 4n blowups
are flopped into S2n such that the repeated application of the isomorphism (A.22) yields
F4n

4n → F4n
0 , but all the blowups are then in the gluing curves to S2n−1 = F2n−2. Repeating

this process for all other compact surfaces yields the claim.

3.3 −3 curve: SU(3) with Z2 twist

Consider a −3 curve with an su(3) gauge algebra such that the 6d theory has no hyper-
multiplets, also known as the 6d minimal SU(3) SCFT. The circle compactification with a
Z2 outer automorphism twist on su(3)

3
su(3)(2) (3.70)

is known to be dual to a 5d SU(3) gauge theory with Chern-Simons level κ = 9 [33, 47].

5d description. The 5d gauge theory description is based on the prepotential (2.1),
which can be evaluated using appendix A.1.2. Restricting to the Weyl chamber, i.e.
〈φ, αi〉 ≥ 0 for i = 1, 2, and choosing κ = 9, one finds:

6F5d = 6
g2 (φ2

0 − φ0φ1 + φ2
1) + 8φ3

0 + 24φ2
0φ1 − 30φ0φ

2
1 + 8φ3

1 , (3.71)

which has been computed before in [33].

Geometry. According to [61], the geometry of the twisted circle compactification is de-
scribed by

010 10
e0 4e1+f1 (3.72)

and one computes the fibre intersections

−
(
f0 ·KS0 f0 · S1|S0

f1 · S0|S1 f1 ·KS1

)
=
(

2 −1
−4 2

)
= C

Â
(2)
2

(3.73)

which is consistent with the 6d origin of a −3 curve with an su(3) algebra and Z2 twist.
The associated truncated Kähler form Jφ = ∑1

i=0 φiSi to (3.72) gives rise to the following
cubic part of the prepotential

6Ftrun ≡ J3
φ = 8φ3

0 + 8φ3
1 + 24φ2

0φ1 − 30φ0φ
2
1 . (3.74)

In order to include the gauge coupling terms, it is instructive to note that

−
(
f0 ·KS0 f0 · S1|S0

e1 · S0|S1 e1 ·KS1

)
=
(

2 −1
−1 2

)
= CA2 ⇒

−Jφ · f0 = 〈α1, φ〉 ,
−Jφ · e1 = 〈α2, φ〉 ,

(3.75)
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which identifies f0 and e1 with the simple roots αi of the 5d gauge algebra su(3), see
appendix A.1.2. One proceeds by adding a non-compact surface F to the Kähler form

J = − 1
g2F + φ0S0 + φ1S1 (3.76)

which is characterised by the restrictions to the compact surfacesF |S0 = a0e0 + b0f0 ,

F |S1 = a1e1 + b1f1 .
(3.77)

The parameters ai, bi are determined from the effective coupling (2.2). Imposing that(
J |S0 ·KS0 J |S0 · S1|S0

J |S1 · S0|S1 J |S1 ·KS1

)
!=
(
∂2F5d
∂φi∂φi

)
≡ (τeff) (3.78)

is equivalent to imposing that the intersection numbers of F with the Si,(
F |S0 ·KS0 F |S0 · S1|S0

F |S1 · S0|S1 F |S1 ·KS1 ,

)
=
(

8a0 − 2b0 −10a0 + b0
a1 + 4b1 −2a1 − 2b1

)
!=
(

2 −1
−1 2

)
≡ −hij , (3.79)

equal the negative inverse metric tensor hij of the 5d gauge group SU(3). For simply laced
Lie algebras, hij equals the Cartan matrix. To see that (3.78) is equivalent to (3.79), one
recalls that, firstly, the cubic parts of prepotential (3.71) are reproduced by (3.74) and,
secondly, there are no other deformation parameters or non-compact surfaces. Solving the
system of linear equations (3.79), one findsa0 = 0 , b0 = 1 ,

a1 = 1 , b1 = 0 ,
−→

F |S0 = f0 ,

F |S1 = e1 .
(3.80)

One observes that F |Si restricts to f0 and e1 respectively, because these act as simple
roots (3.75). Moreover, the prefactor of 1 equals 2

〈αi,αi〉 for roots of A2.
As a result, the Kähler form (3.76) leads to the following geometric prepotential:

6Fgeom ≡ J3 = 6
g2

(
φ2

0 − φ0φ1 + φ2
1

)
+ 8φ3

0 + 8φ3
1 + 24φ2

0φ1 − 30φ0φ
2
1 . (3.81)

which matches the field theory result (3.71). In addition, consider the elliptic fibre

fell =
1∑
i=0

difi = 2f0 + f1 , (3.82)

with di = Coxeter numbers of A(2)
2 . Computing the volume with respect to (3.76) yields

Vol(f0) = 2φ0 − φ1

Vol(f1) = 1
g2 − 4φ0 + 2φ1

⇒ Vol(fell) = 1
g2 . (3.83)

The geometry (3.72) displays the 6d properties manifestly, like the fibre intersection (3.73)
and the elliptic fibre (3.83). On the other hand, the 5d description is based on a simple
exchange of fibre and base in the F0 in (3.72), which becomes apparent in the intersection
properties (3.75). Consequently, the 6d and 5d geometric frame are related by a fibre-
base duality.
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3.4 −4 curve: SO(8) with Z3 twist

The 6d minimal SO(8) SCFT is realised by a −4 curve supporting a so(8) gauge algebra.
The circle compactification twisted by a Z3 outer automorphism on the so(8) algebra

4
so(8)(3) (3.84)

is known to be dual to a 5d SU(4) gauge theory with Chern-Simons level κ = 8 [79].

5d description. The 5d gauge theory description is based on the prepotential (2.1),
which can be evaluated using appendix A.1.2. Restricting to the Weyl-chamber of A3, i.e.
〈φ, αi〉 ≥ 0 for i = 1, 2, 3, and specialising to κ = 8 yields

6F5d = 6
g2

(
φ2

0 − φ0φ1 + φ2
1 − φ1φ2 + φ2

2

)
+ 8φ3

0 + 24φ1φ
2
0 − 30φ2

1φ0 + 8φ3
1 + 8φ3

2 − 24φ1φ
2
2 + 18φ2

1φ2 .

(3.85)

Geometry. As argued in [61], the geometry is described by

010 18 20
e0 h1 e1 3e2+f2 (3.86)

and one verifies that

−fi · Sj =

 2 −1 0
−1 2 −1
0 −3 2

 (3.87)

which equals the affine Cartan matrix of D̂(3)
4 up to similarity transformation. Again, this

is consistent with the 6d so(8) gauge algebra together with the Z3 twist.
Based on the truncated Kähler form Jφ = ∑2

i=0 φiSi, the triple intersection numbers
of the compact surfaces Si induce the following cubic part of the prepotential

6Ftrun = 8φ3
0 + 8φ3

1 + 8φ3
2 + 24φ2

0φ1 − 30φ0φ
2
1 + 18φ2

1φ2 − 24φ1φ
2
2 . (3.88)

In order to include the only gauge theory parameter, the coupling g, it is useful to notice

 f0 ·KS0 f0 · S1|S0 f0 · S2|S0

f1 · S0|S1 f1 ·KS1 f1 · S2|S1

e2 · S0|S2 e2 · S1|S2 e2 ·KS2

 =

 2 −1 0
−1 2 −1
0 −1 2

 = CA3 ⇒


−Jφ · f0 = 〈α1, φ〉
−Jφ · f1 = 〈α2, φ〉
−Jφ · e2 = 〈α3, φ〉

(3.89)

which identifies f0, f1, and e2 as acting as simple roots αi of the 5d gauge algebra su(4),
see appendix A.1.2. Incorporating the gauge coupling contributions can be achieved by
adding a non-compact surface F to the Kähler form

J = − 1
g2F + φ0S0 + φ1S1 + φ2S2 , (3.90)
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which is characterised by its restrictions to the compact surfaces Si, i.e.

F |Si = aiei + bifi for i = 0, 1, 2 . (3.91)

The parameters ai, bi are determined by matching the effective gauge coupling as follows:

(J · Si · Sj)
!=
(
∂2F5d
∂φi∂φj

)
≡ (τeff) , (3.92)

i.e. combining (2.2) and (2.25). Since the triple intersection numbers of the compact
surfaces reproduce the cubic part of the prepotential (3.85), and as there are no other de-
formation parameters or non-compact surfaces, the set of conditions (3.92) is equivalent to

(F · Si · Sj) =

8a0 − 2b0 b0 − 10a0 0
8b1 + b1 6a1 − 2b1 b1 − 8a1

0 a2 + 3b2 −2a2 − 2b2

 !=

−2 1 0
1 −2 1
0 1 −2

 ≡ −hij , (3.93)

where hij is the inverse metric tensor of the 5d SU(4) gauge group, see appendix A.1.2.
Again, for the simply laces A3 algebra, hij equals the Cartan matrix. The system of linear
equations (3.93) is solved by

a0 = 0 , b0 = 1 ,
a1 = 0 , b1 = 1 ,
a2 = 1 , b2 = 0 ,

−→


F |S0 = f0 ,

F |S1 = f1 ,

F |S2 = e2 .

(3.94)

One observes that F |Si restricts to f0, f1, and e2 respectively, because these act as simple
roots (3.89). Also, note that the prefactor of 1 equals 2

〈αi,αi〉 for roots of A3.
The Kähler form (3.90) induces the following geometric prepotential:

6Fgeom ≡ J3 = 6
g2

(
φ2

0 − φ0φ1 + φ2
1 − φ1φ2 + φ2

2

)
+ 8φ3

0 + 8φ3
1 + 8φ3

2

+ 24φ2
0φ1 − 30φ0φ

2
1 + 18φ2

1φ2 − 24φ1φ
2
2 .

(3.95)

Consequently, the geometric result (3.95) matches the field theory expectation (3.85).
Moreover, consider the elliptic fibre

fell =
2∑
i=0

difi = f0 + 2f1 + f2 , (3.96)

with di = Coxeter numbers of D(3)
4 . The fibre volumes of (3.86) with respect to (3.90) are

Vol(f0) = 2φ0 − φ1 ,

Vol(f1) = −φ0 + 2φ1 − φ2 ,

Vol(f2) = 1
g2

0
− 3φ1 + 2φ2 ,

⇒ Vol(fell) = 1
g2 . (3.97)
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The geometry (3.86) had been derived to display the 6d properties manifestly, like the fibre
intersection (3.87) and the elliptic fibre (3.97). On the other hand, the 5d gauge theory is
more conveniently described by simply exchanging the fibre and base in the F0 in (3.86).
As a result, the 5d gauge algebra becomes manifest in the intersection properties (3.89).
This is another example in which the 6d and 5d geometric frame are related by a fibre-
base duality.

4 Fibre-base duality: 6d to 5d

The examples considered in section 3 followed a transparent pattern: the compactified 6d
theory is geometrically encoded in a collection of Hirzebruch surfaces such that their fibres
encode the elliptic fibre from the F-theory construction. The geometry for the dual 5d
theory, on the other hand, has been obtained via fibre-base duality from the 6d frame.
In this section, fibre-base duality between the 6d frame and one particular 5d frame is
investigate for rank 1 and rank 2 KK theories of table 1. As it turns out, not all examples
admit a 6d-5d fibre-base duality.

4.1 6d N = (2, 0) A1 — 5d SU(2)θ=0 + 1Adj

To begin with, consider a −2 curve with an su(1) algebra

2
su(1)(1) (4.1)

which is known as N = (2, 0) A1 theory or 6d rank-1 M-string theory. The 5d KK theory
is known to be a SU(2) gauge theory with one adjoint hypermultiplet [94, 95].

5d description. The prepotential (2.1) is computed by restricting to the Weyl chamber
φ ≥ 0 and choosing, for instance, the phase

2φ+m ≥ 0 ≥ −2φ+m, (4.2)

where m is the mass parameter of the adjoint hypermultiplet. The prepotential in this
phase reads

6F5d = 6 1
g2φ

2 − 6m2φ (4.3)

and g denotes the gauge coupling.

Geometry. As detailed in [61], the geometric description for (4.1) is given by

F1+1
0

e−x

e−y

(4.4)
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and one confirms that

Jφ = φS ⇒ Ftrun = 1
3!J

3
φ = 0 and f · S = 0 . (4.5)

The last equation is compatible with the trivial 6d gauge algebra. In view of a 5d gauge
theory description, it is convenient to notice that

−Jφ · e = 2φ = 〈α, φ〉 (4.6)

such that the base e is identified with the simple root α of A1, see appendix A.1.2. To
include the gauge theory parameter, one may parametrise the Kähler form as

J |S = φKS + ae+ bf + cx+ dy (4.7)

and determine the coefficients as follows:

• The volume of curves with self-intersection −1 need to match the BPS masses. It is
instructive to determine the truncated volume of the blowups

−Jφ · x = 〈0, φ〉 = 0 (4.8)

such that x is identified as the trivial weight in the adjoint representation of SU(2).
Recalling (4.6), one finds that the following −1 curves furnish the adjoint represen-
tation:

Vol(e+ x) = 〈α, φ〉+m

Vol(x) = 〈0, φ〉+m

Vol(e− x) = −(〈−α, φ〉+m)

α ↓

α ↓

and Vol(e− x) = Vol(e− y) (4.9)

and the volume conditions are solved by

c = d = m , b = 0 . (4.10)

Note that these volumes motivate the choice of the phase (4.2).

• The effective gauge coupling is geometrically given by

J · S · S = −2a != ∂2F
∂2φ

= 2
g2 ⇒ a = − 1

g2 (4.11)

and needs to match the field theory expression (2.2).

The Kähler form can now be written as

J = − 1
g2F + φS +mN (4.12)

where the non-compact surfaces F and N are glued to S via

F |S = e and N |S = x+ y . (4.13)
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It is reassuring to see that the non-compact divisor N associated to the mass m of the
adjoint hypermultiplet has gluing curves x and y with the compact surface S, as expected
in [61]. In conclusion, the geometric prepotential Fgeom = 1

3!J
3 agrees with the field theory

expectation (4.3). Moreover, the basic curves have volumes given by

Vol(e) = 2φ , Vol(f) = 1
g2 , Vol(x) = Vol(y) = m. (4.14)

Here, fibre-base duality is clearly at play. The 6d elliptic fibre f has volume given by the
coupling, while the fibre for the 5d frame is e, because it acts as a root of su(2).

4.2 6d SU(3) + 6F with Z2 twist — 5d Sp(2) + 3Λ2

The Z2-twisted circle compactification of a −2 curve with an su(3) gauge algebra

2
su(3)(2) (4.15)

is known to be dual to a 5d Sp(2) gauge theory with three hypermultiplets transforming
in the rank-2 anti-symmetric representation Λ2 ≡ [0, 1]C of Sp(2) [28].

5d description. The 5d gauge theory description is based on the prepotential (2.1) and
can be evaluated using appendix A.1.3. Since the 5d theory has non-trivial matter content,
restricting to the Weyl-chamber of C2, i.e. 〈φ, αi〉 ≥ 0 for i = 1, 2, is insufficient for reaching
a single, well-defined 5d phase. A suitable choice of phase is given by

phase
choice

〈φ, v1〉+mf ≥ 0

〈φ, v2〉+mf ≥ 0

〈φ, v3〉+mf ≥ 0

〈φ, v4〉+mf ≥ 0

〈φ, v5〉+mf ≤ 0

α2 ↓

α1 ↓

α1 ↓

α2 ↓

(4.16)

where vi ∈ [0, 1]C . In the phase (4.16), the prepotential becomes

6F5d = 6
g2

(
2φ2

0 − 2φ0φ1 + φ2
1

)
+ 8φ3

0 + 12φ1φ
2
0 − 18φ2

1φ0 + 5φ3
1

− 3
3∑

f=1
mf

(
4φ2

0 − 4φ0φ1 + φ2
1

)
− 3

3∑
f=1

m2
fφ1 ,

(4.17)

where g denotes the gauge coupling and mf are the mass parameter of the three hyper-
multiplets.
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Geometry. The Z2 twisted circle compactification of SU(3) on a −2 curve (4.15) is
geometrically described by [47]

06 13
0

e0 4e1+2f1−2
∑

i
xi (4.18)

for which one computes that the fibre intersections

−
(
f0 ·KS0 f0 · S1|S0

f1 · S0|S1 f1 ·KS1

)
=
(

2 −1
−4 2

)
≡ C

Â
(2)
2

(4.19)

yield the affine Cartan matrix of the twisted algebra Â(2)
2 . Hence, (4.18) describes the 6d

duality frame of an A2 algebra with a Z2 twist. The truncated Kähler form Jφ = ∑
i φiSi

induces the following truncated prepotential

6Ftrun = 8φ3
0 + 12φ2

0φ1 − 18φ0φ
2
1 + 5φ3

1 , (4.20)

which agrees with (4.17).
The parameters of the 5d Sp(2) gauge theory, one coupling g and three mass parameters

mf , have to be incorporated into the Kähler form for a complete description. Before
proceeding, it is useful to recall that the dual 5d frame can be geometrically realised by an
F0 isomorphism e↔ f , see for instance [92, 96]. The immediate consequence is that

−
(
f0 ·KS0 f0 · S1|S0

e1 · S0|S1 e1 ·KS1

)
=
(

2 −1
−2 2

)
≡ CC2 ⇒

−Jφ · f0 = 〈α1, φ〉
−Jφ · e1 = 〈α2, φ〉

(4.21)

i.e. f0 and e1 correspond to the simple roots α1,2 of C2, see appendix A.1.3. To begin with,
the Kähler form can be extend to include all gauge theory parameters

J = − 1
g2F +

1∑
i=0

φiSi +
3∑

f=1
mfNf . (4.22)

The gluing curves of the non-compact surfaces F , Nf with the compact Si are determined
by parametrising (4.22) restricted to the Si as follows:

J |S0 = φ0KS0 + φ1S1|S0 + a0f0 + b0e0 ,

J |S1 = φ0S0|S1 + φ1KS1 + a1f1 + b1e1 +
3∑

f=1
cfxf ,

(4.23)

and the appearing parameters are fully fixed by physical requirements.

• The fundamental BPS particles need to be identified. It is helpful to evaluate the
(truncated) volume of the blowups xi

−Jφ · xf = −2φ0 + φ1 = 〈v4, φ〉 , (4.24)

where v4 = (−2, 1) ∈ [0, 1]C , see appendix A.1.3. Recalling (4.21), the full set of
[0, 1]C weights is recovered via acting with the C2 roots, i.e. adding f0 or e1 to the
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blowups xf . The resulting −1 curves have to have volumes given by the BPS masses
as follows:

Vol(2f0 + e1 + xf ) != 〈v1, φ〉+mf

Vol(2f0 + xf ) != 〈v2, φ〉+mf

Vol(f0 + xf ) != 〈v3, φ〉+mf

Vol(xf ) != 〈v4, φ〉+mf

Vol(e1 − xf ) != − (〈v5, φ〉+mf )

α2 ↓

α1 ↓

α1 ↓

α2 ↓

⇒

cf = mf , f = 1, 2, 3 ,
a1 = b0 = 0 ,

(4.25)

which in retrospect motivates the phase (4.16).

• The effective coupling from geometry (2.25) has to match the field theory expecta-
tion (2.2). The resulting linear equations are solved by

a0 = 2
3∑

f=1
mf − 2 1

g2 , b1 = − 1
g2 . (4.26)

As a result, the non-compact surfaces F , Nf in (4.22) restrict to the compact surfaces as
follows F |S0 = 2f0

F |S1 = e1
and

Nf |S0 = 2f0

Nf |S1 = xf
for f = 1, 2, 3 . (4.27)

One observes that F |Si restricts to 2f0 and e1 respectively, because f0, e1 act as simple
roots (4.21). Also, the prefactors are equal to 2

〈αi,αi〉 = 2, 1 for the roots of C2.
Computing the volumes of the basic curves yields

Vol(f0) = 2φ0 − φ1 Vol(f1) = −2φ0 + 2φ1

Vol(e1) = −4φ0 + 2φ1 + 1
g2 Vol(xj) = −2φ0 + φ1 +mj .

(4.28)

Moreover, one can keep track of the volume of the elliptic fibre, which in the 6d frame (4.18)
is given by

fell = d0f0 + d1f1 = 2f0 + f1 Vol(fell) = 1
g2 (4.29)

with di = Coxeter numbers of A(2)
2 .

4.3 6d SU(3) + 12F with Z2 twist — 5d G2 + 6F

The 6d theory given by a −1 curve supporting an su(3) gauge algebra has 12 fundamental
hypermultiplets. Consider the Z2 twisted circle compactification

1
su(3)(2) (4.30)

where Z2 acts as outer automorphism on su(3). The resulting KK theory is known to have
three different 5d gauge theory descriptions; among them is a G2 theory [47].
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5d description. The 5d G2 gauge theory with six fundamental hypermultiplets is based
on the prepotential (2.1), which can be evaluated using appendix A.1.4. Since the 5d theory
has non-trivial matter content, restricting to the Weyl-chamber of G2, i.e. 〈φ, αi〉 ≥ 0 for
i = 1, 2, is insufficient for reaching a single, well-defined 5d phase. A suitable choice of
phase is given by

...

phase
choice

〈φ,w1〉+mf ≥ 0

〈φ,w5〉+mf ≥ 0

〈φ,w6〉+mf ≤ 0

〈φ,w7〉+mf ≤ 0

α1 ↓

α2 ↓

α1 ↓

(4.31)

where wi ∈ [1, 0]G2 , see appendix A.1.4. In the phase (4.31), the prepotential becomes

6F5d = 6
g2

(
3φ2

1 − 3φ1φ2 + φ2
2

)
+ 8φ3

1 − 6φ2
2φ1 + 2φ3

2

− 3
6∑

f=1
mf (4φ2

1 − 4φ1φ2 + φ2
2)− 3

6∑
f=1

m2
fφ2 ,

(4.32)

where g is the gauge coupling and mf are the mass parameter.

Geometry. The geometric description for (4.30) is given by [60]

26
0 12

3e+4f−2
∑

i
xi e (4.33)

and one verifies that

−
(
f1 ·KS1 f1 · S2|S1

f2 · S1|S2 f2 ·KS2

)
=
(

2 −1
−4 2

)
≡ C

Â
(2)
2

(4.34)

yields the affine Cartan matrix of A(2)
2 , which is consistent with the 6d gauge algebra su(3)

accompanied by a Z2 twist.
The parameters of the 5d G2 gauge theory, one coupling g and six mass parameters

mf , have to be incorporated into the Kähler form

J = − 1
g2F +

2∑
i=1

φiSi +
6∑

f=1
mfNf (4.35)

for a complete description. Before proceeding, it is useful to recall that the dual 5d frame
can be geometrically realised by an F0 isomorphism e↔ f on S2, see for instance [61, 92].
The immediate consequence is that

−
(
f1 ·KS1 f1 · S2|S1

e2 · S1|S2 e2 ·KS2

)
=
(

2 −1
−3 2

)
≡ CG2 ⇔

−Jφ · f1 = 〈α1, φ〉
−Jφ · e2 = 〈α2, φ〉

(4.36)

i.e. f1 and e2 correspond to the simple roots α1,2 of G2, see appendix A.1.4.
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The full Kähler form (4.35) restricted to the compact surfaces Si can be parametrised as

J |S1 = φ1KS1 + φ2S2|S1 + a1e1 + b1f1 ,

J |S1 = φ1S1|S2 + φ2KS2 + a2e2 + b2f2 +
6∑

f=1
cfxf .

(4.37)

The parameters are determined as follows:

• The volume of −1 curves need to reproduce the masses of fundamental BPS particles.
In detail, the truncated volume of the blowups are give by

−Jφ · xi = −2φ1 + φ2 = 〈w5, φ〉 (4.38)

where w5 ∈ [1, 0]G2 , see appendix A.1.4. Recalling (4.36), the remaining weights
can be constructed by acting with the simple roots of G2, i.e. adding f1 or e2 to
the blowups xf . The resulting −1 curves need to have volumes that match the BPS
masses as follows:

Vol(3f1 + e2 + xf ) = 〈w1, φ〉+mf

Vol(2f1 + e2 + xf ) = 〈w2, φ〉+mf

Vol(2f1 + xf ) = 〈w3, φ〉+mf

Vol(f1 + xf ) = 〈w4, φ〉+mf

Vol(xf ) = 〈w5, φ〉+mf

Vol(e2 − xf ) = − (〈w6, φ〉+mf )

Vol(f1 + e2 − xf ) = − (〈w7, φ〉+mf )

α1 ↓

α2 ↓

α1 ↓

α1 ↓

α2 ↓

α1 ↓

⇒

cf = Mf , f = 1, . . . , 6 ,
a1 = b2 = 0 .

(4.39)

Note that this identification motivates the phase (4.31).

• The geometric effective coupling (2.25) needs to match the field theory expecta-
tion (2.2). The arising linear equations are solved by

b1 = − 3
g2 + 2

6∑
f=1

mf , a2 = − 1
g2 . (4.40)

As a result, the non-compact surfaces F and Nf in the Kähler form (4.35) are glued to the
compact surfaces as follows:

F |Si =

3f1 , i = 1 ,
e2 , i = 2 ,

Nf |Si =

2f1 , i = 1 ,
xf , i = 2 .

(4.41)
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An immediate observation is that F |Si restricts to 3f1 and e2 respectively, because f1, e2
act as simple roots (4.36). Also, the prefactors are equal to 2

〈αi,αi〉 = 3, 1 for the roots
of G2.

Moreover, one can keep track of the volume of the elliptic fibre, which in the 6d
frame (4.33) is given by

fell = d0f1 + d1f2 = 2f1 + f2 Vol(fell) = 1
g2 (4.42)

with di = Coxeter numbers of A(2)
2 .

4.4 6d Sp(1) + 10F — 5d Sp(2) + 10F

The 6d theory corresponding to a −1 curves with an sp(1) gauge algebra has 10 fundamental
hypermultiplets. The untwisted circle compactification of

1
sp(1)(1) (4.43)

is known to have two 5d gauge theory descriptions [25]: SU(3)0 with 10 fundamentals as
well as Sp(2) with 10 fundamental hypermultiplets. In this section, the 5d Sp(2) theory
is considered, because its geometric description is related to the 6d theory via fibre-base
duality.

5d description. The 5d gauge theory description is based on the prepotential (2.1),
which can be evaluated via appendix A.1.3. Besides restricting to the Weyl-chamber of C2,
one needs to choose a suitable phase, such as

phase
choice

〈φ,w1〉+mf ≥ 0

〈φ,w2〉+mf ≥ 0

〈φ,w3〉+mf ≤ 0

〈φ,w4〉+mf ≤ 0

α1 ↓

α2 ↓

α1 ↓

(4.44)

where wi ∈ [1, 0]C , see appendix A.1.3. The prepotential becomes

6F5d = 6
g2

(
2φ2

1 − 2φ1φ2 + φ2
2

)
+ 8φ3

1 − 18φ2
1φ2 + 12φ1φ

2
2 − 2φ3

2 − 3
10∑
f=1

mfφ
2
1 , (4.45)

with g the gauge coupling, and mf the mass parameters of the fundamental
hypermultiplets.

Geometry. Geometrically, the theory (4.43) is described by [61]

10 210
1

2e1+f1 2h2−
∑10

i=1 xi (4.46)
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and one verifies straightforwardly that

−
(
f1 ·KS1 f1 · S2|S1

f2 · S1|S2 f2 ·KS2

)
=
(

2 −2
−2 2

)
≡ C

Ã
(1)
1

(4.47)

which is consistent with the 6d gauge algebra A1 ∼= C1 without any twist.
In view of the 5d description, a useful observation on the geometry (4.46) is

−
(
e1 ·KS1 e1 · S2|S1

f2 · S1|S2 f2 ·KS2

)
=
(

2 −1
−2 2

)
≡ CC2 ⇒

−Jφ · e1 = 〈α1, φ〉
−Jφ · f2 = 〈α2, φ〉

(4.48)

which identifies e1, f2 as the simple roots αi of the 5d Sp(2) gauge group, see ap-
pendix A.1.3.

In order the include all gauge theory parameters, one gauge coupling g and ten mass
parameters mi, one may parametrise the Kähler form as

J = − 1
g2F +

2∑
i=1

φiSi +
10∑
f=1

mf

2 Nf . (4.49)

The gluing curves of the non-compact F , Nf with the compact Si are determined by
parametrising the restrictions of (4.49) via

J |S1 = φ1KS1 + φ2S2|S1 + a1e1 + b1f1 ,

J |S2 = φ1S1|S2 + φ2KS2 + a2e2 + b2f2 +
10∑
f=1

cfxf .
(4.50)

The parameters are determined as follows:

• The volume of −1 curves should match the BPS masses. It is instructive to consider
the blowups xi

−Jφ · xf = −φ1 + φ2 = 〈w2, φ〉 , (4.51)

where w2 ∈ [1, 0]C , see appendix A.1.3. Recalling (4.48), the remaining weights are
realised by adding e1 or f2 to the blowups. The volumes of the resulting −1 curves
are required to match the BPS masses

Vol(e1 + xf ) != 〈w1, φ〉+mf

Vol(xf ) != 〈w2, φ〉+mf

Vol(f2 − xf ) != − (〈w3, φ〉+mf )

Vol(e1 + f2 − xf ) != − (〈w4, φ〉+mf )

α1 ↓

α2 ↓

α1 ↓

⇒

cf = mf , f = 1, . . . , 10 ,
b1 = a2 = 0 .

(4.52)

Again, the volume the −1 define the phase of the theory, which motivates (4.44).
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• The geometric effective coupling (2.25) needs to match the field theory expecta-
tion (2.2). The arising linear equations are solved by

a1 = − 2
g2 , b2 = − 1

g2 −
1
2

10∑
f=1

mf . (4.53)

In summary, the non-compact surfaces F and Nf in (4.49) are glued to the Si as follows:

F |Si =

2e1 , i = 1 ,
f2 , i = 2 ,

Nf |Si =

0 , i = 1 ,
2xf − f2 , i = 2 .

(4.54)

Again, the F |Si restrict to 2e1, and f2 respectively, because the e1, f2 act as simple
roots (4.48). The prefactors equal 2

〈αi,αi〉 = 2, 1 for the roots of C2. In addition, one
may keep track of the elliptic fibre associated to (4.46) and compute its volume to be

Vol(fell) = Vol(f1) + Vol(f2) = 2
g2 . (4.55)

4.5 6d Rank-2 E-string — 5d Sp(2) + 1Λ2 + 8F

The rank-2 E-string is given by a −1 curve with an sp(0) algebra intersecting a −2 curve
with a trivial su(1) algebra

1
sp(0)(1)

2
su(1)(1) (4.56)

The 5d reduction has two gauge theory descriptions [16]: SU(3) 3
2
with nine fundamentals

and Sp(2) with one rank-2 anti-symmetric and eight fundamental hypermultiplets. In
this section, the Sp(2) theory is consider because of the natural fibre-base duality to the
6d frame.

5d description. The 5d gauge theory description is based on the prepotential (2.1),
which is evaluated via the details provided in appendix A.1.3. Since the 5d theory has
non-trivial matter content, restricting to the Weyl-chamber of C2, i.e. 〈φ, αi〉 ≥ 0 for
i = 1, 2, is insufficient for reaching a single, well-defined 5d phase. A suitable choice of
phase is given by

phase
choice

〈φ,w1〉+mf ≥ 0

〈φ,w2〉+mf ≥ 0

〈φ,w3〉+mf ≤ 0

〈φ,w4〉+mf ≤ 0

α1 ↓

α2 ↓

α1 ↓

and
phase
choice

〈φ, v1〉+mf ≥ 0

〈φ, v2〉+mf ≥ 0

〈φ, v3〉+mf ≥ 0

〈φ, v4〉+mf ≤ 0

〈φ, v5〉+mf ≤ 0

α2 ↓

α1 ↓

α1 ↓

α2 ↓

(4.57)
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with wi ∈ [1, 0]C and vi ∈ [0, 1]C , see appendix A.1.3. In the phase (4.57), the prepotential
becomes

6F5d = 6
g2

(
2φ2

0 − 2φ0φ1 + φ2
1

)
− 3

8∑
f=1

m2
fφ1 − 6M2φ0 , (4.58)

where g denotes the gauge coupling, mf are the mass parameters of the fundamental
hypermultiplets, and M is the mass parameter of the Λ2 hypermultiplet.

Geometry. Utilising [61], the geometry from 6d setup (4.56) is given by

01+1
0 18

1

e0−w

e0−z

f0
2e1+3f1−

∑8
i=1 xi (4.59)

and one computes immediately

−
(
e0 ·KS1 e0 · S2|S1

f1 · S1|S2 f1 ·KS2

)
=
(

2 −1
−2 2

)
≡ CC2 ⇒

−Jφ · e0 = 〈α1, φ〉
−Jφ · f1 = 〈α2, φ〉

(4.60)

which identifies the Cartan matrix of the 5d Sp(2) gauge group. Moreover, {e0, f1} act as
simple roots αi of C2, see appendix A.1.3. On the other hand, The 6d gauge algebras are
trivial on both nodes of (4.56). This piece of information is encoded in the elliptic fibre
fell of the Calabi-Yau. One can readily confirm it by noticing that

−f0 · Si = KS1 · Si = 0 , (4.61)

where KS1 = −2e1−3f1−
∑8
i=1 xi is the canonical Kähler form of F8

1, as well as the gluing
curve identified with f0 in the geometry (4.59). Therefore the elliptic fibre is given by

fell = f0 = −KS1 . (4.62)

The full Kähler form

J = − 1
g2F +

1∑
i=0

φiSi +
8∑

f=1

mf

2 NF
f +MNΛ (4.63)

includes all gauge theory parameter g, mf , and M . To derive the gluing curves of the
non-compact surfaces with the compact surfaces, one parametrises (4.63) as follows:

J |S0 = φ0KS0 + φ1S1|S0 + a0e0 + b0f0 + dww + dzz ,

J |S1 = φ0S0|S1 + φ1KS1 + a1e1 + b1f1 +
8∑

f=1
cfxf .

(4.64)

The parameters are determined as follows:

• The volumes of −1 curves should reproduce the masses of fundamental BPS particles.
To get some insight, one computes the truncated volume of the blowups

−Jφ · xf = −φ0 + φ1 = 〈w2, φ〉 , (4.65a)
−Jφ · w = −Jφ · z = 0 = 〈v3, φ〉 , (4.65b)
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where w2 ∈ [1, 0]C and v3 ∈ [0, 1]C , see appendix A.1.3. Recalling (4.60), one con-
structs the remaining −1 curves that furnish the representations [1, 0]C and [0, 1]C by
adding the base e0 and fibre f1 to the blowups. The volumes of the resulting curves
need to satisfy

Vol(e0 + xf ) != 〈w1, φ〉+mf

Vol(xf ) != 〈w2, φ〉+mf

Vol(f1 − xf ) != − (〈w3, φ〉+mf )

Vol(e0 + f1 − xf ) != − (〈w4, φ〉+mf )

α1 ↓

α2 ↓

α1 ↓

Vol(e0 + f1 + w) != 〈v1, φ〉+M

Vol(e0 + w) != 〈v2, φ〉+M

Vol(w) != 〈v3, φ〉+M

Vol(e0 − w) != −〈v4, φ〉+M

Vol(e0 + f1 − w) != − (〈v5, φ〉+M)

α2 ↓

α1 ↓

α1 ↓

α2 ↓

(4.66)

such that one finds

b0 = a1 = 0 , cf = mf , f = 1, . . . 8 , dw = dz = M . (4.67)

The volumes of these −1 curves define the phase of the theory, which motivates (4.57)

• The geometric effective coupling (2.25) needs to match the field theory expecta-
tion (2.2). The arising linear equations are solved by

a0 = − 2
g2 , b1 = − 1

g2 −
1
2

8∑
f=1

mf . (4.68)

As a result, the gluing curves of the non-compact surfaces F , NF
f , and NΛ, in (4.63) with

the compact surfaces Si are as follows:

F |Si =

2e0 , i = 0 ,
f1 , i = 1 ,

NF
f |Si =

0 , i = 0 ,
2xf − f1 , i = 1 ,

NΛ|Si =

w + z , i = 0 ,
0 , i = 1 .

(4.69)

An immediate observation is that F |Si restrict to 2e0, f1 respectively, because {e0, f1} act
as simple roots (4.60). The prefactors equal 2

〈αi,αi〉 = 2, 1 for the roots of C2. Moreover,
for the NF

f divisors restricted to S1, the volumes of curves 2xf − f1 have positive volumes
Vol(2xf − f1) = mf , implying the curves are effective. In addition, one may keep track of
the elliptic fibre associated to (4.59) and compute its volume to be

Vol(fell) = Vol(f0) = Vol(−KS1) = 2
g2 . (4.70)

The factor of 2 would be due to the node of −1 curve in (4.56), which has been also
observed in rank-1 E-string, see (3.12).
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4.6 6d N = (2, 0) A2 — 5d SU(3)0 + 1Adj

The 6d N = (2, 0) A2 theory is given by

2
su(1)(1)

2
su(1)(1) (4.71)

and the untwisted circle reduction is known to be SU(3)0 with one hypermultiplet in the
adjoint representation [94, 95].

5d description. Since the 5d KK descriptions is known, the prepotential (2.1) is derived
using appendix A.1.2. In addition to restricting to the Weyl-chamber of A2, i.e. 〈φ, αi〉 ≥ 0
for i = 1, 2, the following phase is chosen

phase
choice

〈φ, α1 + α2〉+mf ≥ 0

〈φ, α2〉+mf ≥ 0 〈φ, α1〉+mf ≥ 0

〈φ, 0〉+mf ≥ 0 〈φ, 0〉+mf ≥ 0

〈φ,−α2〉+mf ≤ 0 〈φ,−α1〉+mf ≤ 0

〈φ,−(α1 + α2)〉+mf ≤ 0

α1 ↙

α2 ↘

↓ α2

↓ α2

α1 ↓

α1 ↓

α1 ↘

α2 ↙

(4.72)

with α1,2 the simple roots of A2, see appendix A.1.2. The prepotential becomes

6F5d = 6
g2

(
φ2

0 − φ0φ1 + φ2
1

)
− 6m2(φ0 + φ1) , (4.73)

with g the gauge coupling and m the mass parameter of the adjoint hypermultiplet.

Geometry. Utilising [61], the geometry from 6d setup (4.71) is given by

01+1
0 11+1

02

e0−x

e0−y

e1−z

e1−w

f0−x
x

f1−z
z (4.74)

such that one readily confirms that

−fi · Sj = 0 , (4.75)

which is reflecting the fact that the 6d gauge algebras are trivial. In order to describe 5d
SU(3) gauge theory via (4.74), it is useful to observe that

−
(
e0 ·KS0 e0 · S1|S0

e1 · S0|S1 e1 ·KS1

)
=
(

2 −1
−1 2

)
≡ CA2 ⇒

−Jφ · e0 = 〈α1, φ〉
−Jφ · e1 = 〈α2, φ〉

(4.76)

which identifies the e0,1 as the simple roots αi of the 5d su(3) gauge algebra, see ap-
pendix A.1.2. As above, the two gauge theory parameter, one gauge coupling g and one
mass parameter, are introduced by suitably parametrising the Kähler form:

J = − 1
g2F +

1∑
i=0

φiSi +mN . (4.77)
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The intersections of the non-compact F , N with the compact Si are determined by re-
stricting (4.77) as

J |S0 = φ0KS0 + φ1S1|S0 + a0e0 + b0f0 + cxx+ cyy ,

J |S1 = φ0S0|S1 + φ1KS1 + a1e1 + b1f1 + czz + cww .
(4.78)

and determining the parameter as follows:

• Firstly, one identifies the −1 curves that give rise to the fundamental BPS particles.
It is instructive to evaluate the volumes of the blowups; in detail,

−Jφ · x = −Jφ · y = −Jφ · z = −Jφ · w = 0 = 〈0, φ〉 (4.79)

where 0 is a trivial weight in [1, 1]A, see appendix A.1.2. Recalling (4.76), the re-
maining weights are realised by the following −1 curves:

Vol(e0+e1+x)
Vol(e0+e1+z) = 〈α1 + α2, φ〉+m

Vol(e1 + z) = 〈α2, φ〉+m Vol(e0 + x) = 〈α1, φ〉+m

Vol(z) = −〈0, φ〉+m Vol(x) = −〈0, φ〉+m

Vol(e1 − z) = − (〈−α2, φ〉+m) Vol(e0 − x) = − (〈−α1, φ〉+m)

Vol(e0+e1−x)
Vol(e0+e1−z) = − (〈−(α1 + α2), φ〉+m)

α1 ↙

α2 ↘

↓ α2

↓ α2

α1 ↓

α1 ↓

α1 ↘

α2 ↙

(4.80)

and volumes have to match the BPS masses. Additionally, the self-gluings in (4.74)
impose

Vol(e0 − x) = Vol(e0 − y) and Vol(e1 − z) = Vol(e1 − w) (4.81)

such that one finds

cI = m , I = x, y, z, w , bi = 0 , i = 0, 1 . (4.82)

One notes that the choices of volumes motivate the choice of phase (4.72).

• Secondly, the geometric effective gauge coupling (2.25) needs to match the field theory
expectation (2.2). The arising linear equations are solved by

a0 = a1 = − 1
g2 . (4.83)

Consequently, the non-compact surfaces F , N in (4.77) restrict to the compact Si as follows:

F |Si = ei , N |Si =

x+ y , i = 0 ,
z + w , i = 1 .

(4.84)
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One may notice, as above, that the F |Si restrict to the ei respectively, because the ei act
as simple roots (4.76). The prefactor of 1 equals 2

〈αi,αi〉 for the roots of A2. Moreover, the
volumes of the fibres are given by

Vol(fi) = Vol(fell) = 1
g2 , i = 0, 1 , (4.85)

which identifies the volume of the elliptic fibre.

4.7 6d N = (2, 0) A3 with twist — 5d Sp(2)0 + 1Adj

Starting from the 6d N = (2, 0) A3 theory, the twist by the permutation symmetry

2
su(1)(1)

2
su(1)(1)

2
su(1)(1) permutation

twist
2

su(1)(1)

2
su(1)(1)

2
(4.86)

leads to the 5d KK theory described by Sp(2)0 with one adjoint hypermultiplet [97]. Al-
though the theory is known to be non-geometric, it is nevertheless interesting to explore
the possibility of fibre-base duality.

5d description. Since the 5d KK descriptions is known, the prepotential (2.1) is derived
using appendix A.1.3. In addition to restricting to the Weyl-chamber of C2, i.e. 〈φ, αi〉 ≥ 0
for i = 1, 2, the following phase is chosen

phase
choice

〈φ, 2α1 + α2〉+mf ≥ 0

〈φ, α1 + α2〉+mf ≥ 0

〈φ, α2〉+mf ≥ 0 〈φ, α1〉+mf ≥ 0

〈φ, 0〉+mf ≥ 0 〈φ, 0〉+mf ≥ 0

〈φ,−α2〉+mf ≤ 0 〈φ,−α1〉+mf ≤ 0

〈φ,−(α1 + α2)〉+mf ≤ 0

〈φ,−(2α1 + α2)〉+mf ≤ 0

α1 ↓

α1 ↙

α2 ↘

↓ α2

↓ α2

α1 ↓

α1 ↓

α1 ↘

α2 ↙

α1 ↓

(4.87)

with α1,2 the simple roots of C2, see appendix A.1.3. The prepotential becomes

6F5d = 6
g2

(
2φ2

0 − 2φ0φ1 + φ2
1

)
− 6m2(φ0 + φ1) , (4.88)

with g the gauge coupling and m the mass parameter of the adjoint hypermultiplet.

Geometry. Following [61], the geometry derived from the 6d setup (4.86) is given by

01+1
0 11+1

02

e0−x

e0−y

e1−z

e1−w

f0−x
x

2f1−z
z (4.89)
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such that one readily confirms that

−fi · Sj = 0 , (4.90)

which is reflecting the fact that the 6d gauge algebras are trivial.
For the 5d Sp(2) gauge theory, it is helpful to observe that

−
(
e0 ·KS0 e0 · S1|S0

e1 · S0|S1 e1 ·KS1

)
=
(

2 −1
−2 2

)
≡ CC2 ⇒

−Jφ · e0 = 〈α1, φ〉
−Jφ · e1 = 〈α2, φ〉

(4.91)

which identifies the e0,1 as the simple roots α1,2 of the 5d sp(2) gauge algebra, see ap-
pendix A.1.3. As above, the two gauge theory parameter, one gauge coupling g and one
mass parameter, can be included in the Kähler form:

J = − 1
g2F +

1∑
i=0

φiSi +mN . (4.92)

The gluing curves of the F , N with the compact Si can be determined by parametris-
ing (4.92) restricted to the Si as

J |S0 = φ0KS0 + φ1S1|S0 + a0e0 + b0f0 + cxx+ cyy ,

J |S1 = φ0S0|S1 + φ1KS1 + a1e1 + b1f1 + czz + cww .
(4.93)

The parameters are determined as follows:

• Firstly, one identifies the −1 curves that give rise to the fundamental BPS particles.
It is instructive to evaluate the volumes of the blowups; in detail,

−Jφ · x = −Jφ · y = −Jφ · z = −Jφ · w = 0 = 〈0, φ〉 (4.94)

where 0 is a trivial weight in [2, 0]C , see appendix A.1.3. Recalling (4.91), the re-
maining weights are realised by the following −1 curves:

Vol(2e0+e1+x)
Vol(2e0+e1+z) = 〈2α1 + α2, φ〉+m

Vol(e0+e1+x)
Vol(e0+e1+z) = 〈α1 + α2, φ〉+m

Vol(e1 + z) = 〈α2, φ〉+m Vol(e0 + x) = 〈α1, φ〉+m

Vol(z) = 〈0, φ〉+m Vol(x) = 〈0, φ〉+m

Vol(e1 − z) = − (〈−α2, φ〉+m) Vol(e0 − x) = − (〈−α1, φ〉+m)

Vol(e0+e1−x)
Vol(e0+e1−z) = − (〈−(α1 + α2), φ〉+m)

Vol(2e0+e1−x)
Vol(2e0+e1−z) = − (〈−(2α1 + α2), φ〉+m)

α1 ↓

α1 ↙

α2 ↘

↓ α2

↓ α2

α1 ↓

α1 ↓

α1 ↘

α2 ↙

α1 ↓

(4.95)
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and the volumes are required to match the BPS masses. The self-gluings in (4.89)
impose

Vol(e0 − x) = Vol(e0 − y) and Vol(e1 − z) = Vol(e1 − w) (4.96)

such that one finds

cI = m , I = x, y, z, w , bi = 0 , i = 0, 1 . (4.97)

This identification of volumes motivates the choice of phase (4.87).

• Secondly, the geometric effective gauge coupling (2.25) needs to match the field theory
expectation (2.2). The arising linear equations are solved by

a0 = − 2
g2 , a1 = − 1

g2 . (4.98)

As a result, the non-compact surfaces F , N in (4.92) restrict to the compact Si ones as
follows:

F |Si =

2e0 , i = 0 ,
e1 , i = 1 ,

, N |Si =

x+ y , i = 0 ,
z + w , i = 1 .

(4.99)

One realises that F |Si restrict to 2e0 and e1 respectively, because the ei act as simple
roots (4.91). The prefactors equal 2

〈αi,αi〉 = 2, 1 for the roots of C2. Moreover, the volumes
of the fibres are given by

Vol(f0) = 2
g2 ,

Vol(f1) = 1
g2 ,

such that Vol(fell) = 1
g2 (4.100)

which yields the volume of the elliptic fibre. The factor 2 is due to the permutation twist
in (4.86).

4.8 6d N = (2, 0) D4 with twist — 5d G2 +1Adj

The 6d N = (2, 0) D4 theory is geometrically realised by four −2 curves, supporting
trivial su(1) algebras, which intersect in the pattern of the D4 Dynkin diagram. The circle
reduction twisted by permutations on the tensor multiplets

2
su(1)(1)

2
su(1)(1)

2
su(1)(1)

2
su(1)(1)

permutation
twist

2
su(1)(1)

2
su(1)(1)

3

(4.101)

is known to admit a 5d descriptions as G2 with one adjoint hypermultiplet [97].
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5d description. Since the 5d KK descriptions is known, the prepotential (2.1) is derived
using appendix A.1.4. In addition to restricting to the Weyl-chamber of G2, i.e. 〈φ, αi〉 ≥ 0
for i = 1, 2, the following phase is chosen

...

...

phase
choice

〈φ, 3α1 + 2α2〉+mf ≥ 0

〈φ, α1 + α2〉+mf ≥ 0

〈φ, α2〉+mf ≥ 0 〈φ, α1〉+mf ≥ 0

〈φ, 0〉+mf ≥ 0 〈φ, 0〉+mf ≥ 0

〈φ,−α2〉+mf ≤ 0 〈φ,−α1〉+mf ≤ 0

〈φ,−(α1 + α2)〉+mf ≤ 0

〈φ,−(3α1 + 2α2)〉+mf ≤ 0

α2 ↓

α1 ↙

α2 ↘

↓ α2

↓ α2

α1 ↓

α1 ↓

α1 ↘

α2 ↙

α2 ↓

(4.102)

with α1,2 the simple roots of G2, see appendix A.1.4. The prepotential becomes

6F5d = 6
g2

(
3φ2

0 − 3φ0φ1 + φ2
1

)
− 6m2(φ0 + φ1) , (4.103)

with g the gauge coupling and m the mass parameter of the adjoint hypermultiplet.

Geometry. The theory (4.101) is geometrically realised by [61]

01+1
0 11+1

02
f0−x
x

3f1−x
x

e0−x

e0−y

e1−z

e1−w
(4.104)

and due to the self-gluing curves, the truncated prepotential is trivially zero. Moreover,
one verifies

−fi · Sj = 0 , (4.105)

which is reflecting the fact that the 6d gauge algebras are trivial.
For the 5d G2 gauge theory, it is instructive to note that

−
(
e0 ·KS0 e0 · S1|S0

e1 · S0|S1 e1 ·KS1

)
=
(

2 −1
−3 2

)
≡ CG2 ⇒

−Jφ · e0 = 〈α1, φ〉
−Jφ · e1 = 〈α2, φ〉

(4.106)

which identifies the e0,1 as the simple roots α1,2 of the 5d G2 gauge algebra, see ap-
pendix A.1.4. As above, the two gauge theory parameter, one gauge coupling g and one
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mass parameter m, are introduced by suitably parametrising the Kähler form:

J = − 1
g2F +

1∑
i=0

φiSi +mN . (4.107)

In order to determine the gluing curves of F , N with the compact Si, one restricts the
Kähler form (4.107) to the Si and expands in a suitable base as follows:

J |S0 = φ0KS0 + φ1S1|S0 + a0e0 + b0f0 + cxx+ cyy ,

J |S1 = φ0S0|S1 + φ1KS1 + a1e1 + b1f1 + czz + cww .
(4.108)

The parameters are determined as follows:

• Firstly, one identifies the −1 curves that give rise to the fundamental BPS particles.
It is instructive to evaluate the volumes of the blowups; in detail,

−Jφ · x = −Jφ · y = −Jφ · z = −Jφ · w = 0 = 〈0, φ〉 (4.109)

where 0 is a trivial weight in [0, 1]G2 , see appendix A.1.4. Recalling (4.106), the
remaining weights are realised by the following −1 curves:

Vol(3e0+2e1+x)
Vol(3e0+2e1+z) = 〈3α1 + 2α2, φ〉+m

Vol(3e0+e1+x)
Vol(3e0+e1+z) = 〈3α1 + α2, φ〉+m

Vol(2e0+e1+x)
Vol(2e0+e1+z) = 〈2α1 + α2, φ〉+m

Vol(e0+e1+x)
Vol(e0+e1+z) = 〈α1 + α2, φ〉+m

Vol(e1 + z) = 〈α2, φ〉+m Vol(e0 + x) = 〈α1, φ〉+m

Vol(z) = 〈0, φ〉+m Vol(x) = 〈0, φ〉+m

Vol(e1 − z) = − (〈−α2, φ〉+m) Vol(e0 − x) = − (〈−α1, φ〉+m)

Vol(e0+e1−x)
Vol(e0+e1−z) = − (〈−(α1 + α2), φ〉+m)

Vol(2e0+e1−x)
Vol(2e0+e1−z) = − (〈−(2α1 + α2), φ〉+m)

Vol(3e0+e1−x)
Vol(3e0+e1−z) = − (〈−(3α1 + α2), φ〉+m)

Vol(3e0+2e1−x)
Vol(3e0+2e1−z) = − (〈−(3α1 + 2α2), φ〉+m)

α2 ↓

α1 ↓

α1 ↓

α1 ↙

α2 ↘

↓ α2

↓ α2

α1 ↓

α1 ↓

α1 ↘

α2 ↙

α1 ↓

α1 ↓

α2 ↓

(4.110)

and the self-gluing curves in (4.104) impose

Vol(e0 − x) = Vol(e0 − y) and Vol(e1 − z) = Vol(e1 − w) . (4.111)

These conditions are solved by

cI = m, I ∈ {x, , y, z, w} , bi = 0 , i = 0, 1 , (4.112)

One notes that these volumes motivate the choice of phase (4.102).
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• Secondly, the geometric effective gauge coupling (2.25) needs to match the field theory
expectation (2.2). The arising linear equations are solved by

a0 = − 3
g2 , a1 = − 1

g2 . (4.113)

Consequently, the non-compact surfaces F and N , introduced in (4.107), are glued to the
compact Si as follows:

F |Si =

3e0 , i = 0
e1 , i = 1

, N |Si =

x+ y , i = 0 ,
z + w , i = 1 .

(4.114)

An immediate observation is that the F |Si restrict to 3e0 and e1 respectively, because the
ei act as simple roots (4.106). The prefactors equal 2

〈αi,αi〉 = 3, 1 for the roots of G2.
Moreover, the volumes of the fibres are given by

Vol(f0) = 3
g2 ,

Vol(f1) = 1
g2 ,

such that Vol(fell) = 1
g2 (4.115)

which yields the volume of the elliptic fibre. The factor 3 is due to the permutation twist
in (4.101).

5 Fibre-base like duality: 5d to 5d

Inspecting table 1, it is clear that some twisted compactifications of 6d SCFTs may lead
to several 5d descriptions. In section 4, only the 5d theories that are related by fibre-base
duality to the 6d setup have been considered. Nevertheless, most of the 5d theories admit
an honest geometric description. As detailed, for instance in [60, 96], these geometric
frames are in many cases related by some operations on the Hirzebruch surfaces and their
gluing curves. In this section, two examples are considered for which the relation between
two 5d frames is simply realised in terms of the F0 isomorphism e↔ f .

5.1 SU(3)3
2
+ 1Sym — Sp(2)π + 1Adj

Starting from the 6d N = (2, 0) A4 theory, the twist by the Z2 permutation symmetry

2
su(1)(1)

2
su(1)(1)

2
su(1)(1)

2
su(1)(1) permutation

twist
2

su(1)(1)

2
su(1)(1)

(5.1)

leads to a 5d KK theory with two known gauge theory descriptions: SU(3) 3
2
with one

rank-2 symmetric hypermultiplet [16] and Sp(2)π with one adjoint hypermultiplet [97].
In this section, it is demonstrated that a suitable 5d frame for Sp(2) is related via a F0

isomorphism e ↔ f to a 5d frame for the SU(3) description. In other words, this mimics
a fibre-base like duality between the two dual 5d theories.

– 47 –



J
H
E
P
0
5
(
2
0
2
1
)
2
0
0

5d Sp(2) description. Since the 5d KK descriptions is known, the prepotential (2.1)
is derived using appendix A.1.3. In addition to restricting to the Weyl-chamber of C2, i.e.
〈φ, αi〉 ≥ 0 for i = 1, 2, the following phase is chosen

phase
choice

〈φ, 2α1 + α2〉+mf ≥ 0

〈φ, α1 + α2〉+mf ≥ 0

〈φ, α2〉+mf ≥ 0 〈φ, α1〉+mf ≥ 0

〈φ, 0〉+mf ≥ 0 〈φ, 0〉+mf ≥ 0

〈φ,−α2〉+mf ≥ 0 〈φ,−α1〉+mf ≥ 0

〈φ,−(α1 + α2)〉+mf ≥ 0

〈φ,−(2α1 + α2)〉+mf ≤ 0

α1 ↓

α1 ↙

α2 ↘

↓ α2

↓ α2

α1 ↓

α1 ↓

α1 ↘

α2 ↙

α1 ↓

(5.2)

with α1,2 the simple roots of C2, see appendix A.1.3. The prepotential becomes

6F5d = 12φ2
1φ2 − 18φ1φ

2
2 + 8φ3

2 + 6
g2

(
2φ2

1 − 2φ1φ2 + φ2
2

)
− 6m2φ1 − 24mφ2

1 + 36mφ1φ2 − 18mφ2
2 ,

(5.3)

with g the gauge coupling and m the mass parameter of the adjoint hypermultiplet.

Geometry. The geometric proposal for (5.1) in [61] does not have a manifest fibre-base
duality between the 6d and 5d frame. A convenient 5d geometry is given by [96]

11+1
6 20

x

y

e1 2e2+f2
(5.4)

and one notices that

−
(
f1 ·KS1 f1 · S2|S1

f2 · S1|S2 f2 ·KS2

)
=
(

2 −1
−2 2

)
≡ CC2 ⇒

−Jφ · f1 = 〈α1, φ〉
−Jφ · f2 = 〈α2, φ〉

(5.5)

which identifies the f1,2 as the simple roots α1,2 of the 5d sp(2) gauge algebra, see ap-
pendix A.1.3. The gauge theory parameters can be incorporated into the Kähler form via

J = − 1
g2F +

2∑
i=1

φiSi +mN . (5.6)

where the gluing curves of the non-compact surfaces F and N with the compact Si are
determined as follows:
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• Firstly, one identifies the −1 curves that give rise to the fundamental BPS particles.
It is instructive to evaluate the volumes of the blowups; in detail,

−Jφ · x = −Jφ · y = 2φ1 = −〈−(2α1 + α2), φ〉 (5.7)

where 2α1 + α2 is the highest weight of [2, 0]C , see appendix A.1.3. Recalling (5.5),
the volumes of the relevant −1 curves are required to satisfy:

Vol(4f1 + f2 − x) = 〈(2α1 + α2), φ〉+m

Vol(3f1 + 2f2 − x) = 〈(α1 + α2), φ〉+m

Vol(2f1 + 2f2 − x) = 〈α2, φ〉+m Vol(3f1 + f2 − x) = 〈α1, φ〉+m

Vol(2f1 + f2 − x) = 〈0, φ〉+m Vol(2f1 + f2 − x) = 〈0, φ〉+m

Vol(2f1 − x) = 〈−α2, φ〉+m Vol(f1 + f2 − x) = 〈−α1, φ〉+m

Vol(f1 − x) = 〈−(α1 + α2), φ〉+m

Vol(x) = − (〈−(2α1 + α2), φ〉+m)

α1 ↓

α1 ↙

α2 ↘

↓ α2

↓ α2

α1 ↓

α1 ↓

α1 ↘

α2 ↙

α1 ↓

(5.8)

and the self-gluing curves in (5.4) impose

Vol(x) = Vol(y) . (5.9)

One notes that these volumes motivate the choice of phase (5.2).

• Secondly, the geometric effective coupling (2.25) needs to match the field theory
result (2.2).

Consequently, one finds

F |Si =

2f1 , i = 1
f2 , i = 2

, N |Si =

6f1 − x− y , i = 1 ,
3f2 , i = 2 .

(5.10)

One may note that F |Si restricts to 2f1 and f2 respectively, because the fi act as simple
roots (5.5). The prefactors equal 2

〈αi,αi〉 = 2, 1 for the roots of C2.

Fibre-base dual SU(3). Returning to the geometry (5.4), one aims to utilise the same
geometry for the SU(3) KK theory. As a first check, one computes

−
(
f1 ·KS1 f1 · S2|S1

e2 · S1|S2 e2 ·KS2

)
=
(

2 −1
−1 2

)
= CA2 ⇒

−Jφ · f1 = 〈α1, φ〉
−Jφ · e2 = 〈α2, φ〉

(5.11)

which indicates the 5d su(3) gauge algebra and identifies f1, e2 as simple roots αi, see
appendix A.1.2. Besides restricting to the Weyl-chamber of A2, i.e. 〈φ, αi〉 ≥ 0 for i = 1, 2,
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the following phase is chosen

phase
choice

〈v1, φ〉+m ≥ 0

〈v2, φ〉+m ≤ 0

〈v3, φ〉+m ≤ 0 〈v4, φ〉+m ≤ 0

〈v5, φ〉+m ≤ 0

〈v6, φ〉+m ≤ 0

α2 ↓

α1 ↙

α2 ↘

α2 ↘

α1 ↙

α2 ↓

(5.12)

with vi ∈ [2, 0]A, see appendix A.1.2. The prepotential becomes

6F5d = 6
g2

(
φ2

1 − φ1φ2 + φ2
2

)
+ 12φ2

1φ2 − 18φ1φ
2
2 + 8φ3

2

+ 3mφ2
1 − 15mφ1φ2 + 15mφ2

2 − 6m2φ1 ,

(5.13)

with g the gauge coupling and m the mass parameter of the hypermultiplet in the 2nd
rank symmetric representation. The Kähler form is supplemented by non-compact surfaces
as follows:

J = − 1
g2F +

2∑
i=1

φiSi + m

2 N . (5.14)

The gluing curves of F and N with the compact surfaces Si are determined via two
constraints.

• One identifies the −1 curves that give rise to the fundamental BPS particles. The
blowups provide some insights

−Jφ · x = −Jφ · y = 2φ1 = 〈v1, φ〉 (5.15)

with the highest weight vector v1 ∈ [2, 0]A. The identical volumes for x and y is
a consequence of the self-gluing in (5.4). Recalling (5.11), the set of −1 curves is
given by

Vol(x) != 〈v1, φ〉+m

Vol(f1 − x) != − (〈v2, φ〉+m)

Vol(2f1 − x) != − (〈v3, φ〉+m) Vol(f1 + e2 − x) != − (〈v4, φ〉+m)

Vol(2f1 + e2 − x) != − (〈v5, φ〉+m)

Vol(2f1 + 2e2 − x) != − (〈v6, φ〉+m)

α2 ↓

α1 ↙

α2 ↘

α2 ↘

α1 ↙

α2 ↓

(5.16)
and the self-gluing imposes

Vol(x) != Vol(y) . (5.17)

These conditions motivate the phase (5.12).

– 50 –



J
H
E
P
0
5
(
2
0
2
1
)
2
0
0

• The effective coupling (2.25) derived from the geometry has to agree with field the-
ory (2.2).

These constraints lead to

F |Si =

f1 , i = 1
e2 , i = 2

, N |Si =

2x+ 2y − 5f1 , i = 1
−5e2 , i = 2

. (5.18)

As above, the F |Si restrict to f1 and e2 respectively, because the f1, e2 act as simple
roots (5.11). The prefactor of 1 equals 2

〈αi,αi〉 for the roots of A2. Moreover, one verifies
that 6Fgeom = J3 matches the field theory result (5.13).

5.2 5d G2 + 1Adj — 5d SU(3)15
2
+ 1F

The twisted circle reduction of 6d N = (2, 0) D4 (4.101) is known to admit two different 5d
descriptions: G2 with one adjoint hypermultiplet [97] and SU(3) 15

2
with one fundamental

hypermultiplet [60].
The G2 theory has already been discussed in section 4.8, where the 5d frame has been

obtained via fibre-base duality from the 6d frame. In this section, it is demonstrated that
a suitable 5d frame for SU(3) is related via a F0 isomorphism e ↔ f to another 5d frame
for the G2 description (in a different phase). In other words, this mimics a fibre-base like
duality between the two dual 5d theories.

5d SU(3) description. The SU(3) gauge theory with Chern-Simons level κ = 15
2 has

one fundamental hypermultiplet. The prepotential is derived from (2.1) via the data sum-
marised in appendix A.1.2. In addition to restricting to the A2 Weyl chamber, a phase
needs to be choose. A suitable choice is

phase
choice

〈φ,w1〉+mf ≥ 0

〈φ,w2〉+mf ≥ 0

〈φ,w3〉+mf ≤ 0

α1 ↓

α2 ↓

(5.19)

with wi ∈ [1, 0]A, see appendix A.1.2. In this phase, the prepotential becomes

6F = 8φ3
1 + 18φ2

1φ2 − 24φ1φ
2
2 + 7φ3

2 + 6
g2

(
φ2

1 − φ1φ2 + φ2
2

)
− 3mφ2

1 + 3mφ1φ2 − 3m2φ2

, (5.20)

with g the gauge coupling and m the mass of the fundamental hypermultiplet.

Geometry. For the SU(3) frame, one may employ the following geometry [60]

18 21
0

e1 e2+3f2 (5.21)
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which is argued to be flop equivalent to (4.104). One straightforwardly verifies that

−
(
f1 ·KS1 f1 · S2|S1

f2 · S1|S2 f2 ·KS2

)
=
(

2 −1
−1 2

)
≡ CA2 ⇒

−Jφ · f1 = 〈αi, φ〉
−Jφ · f2 = 〈α2, φ〉

(5.22)

which identifies the Cartan matrix of the 5d su(3) gauge algebra. In addition, the fibres fi
act as simple roots αi of A2, see appendix A.1.2.

The gauge theory parameter can be included as follows:

J = − 1
g2F +

2∑
i=1

φiSi + m

2 N (5.23)

and the gluing curves of the non-compact surfaces with the compact Si are determined via
two conditions:

• Firstly, the volume of the −1 curves match BPS masses. Based on (5.22) and

−Jφ · x = φ2 = −〈w3, φ〉 , (5.24)

with w2 ∈ [1, 0]A, one concludes that the BPS mass are given by

Vol(f1 + f2 − x) != 〈w1, φ〉+m

Vol(f2 − x) != 〈w2, φ〉+m

Vol(x) != − (〈w3, φ〉+m)

α1 ↓

α2 ↓

(5.25)

which motivates the phase (5.19).

• The geometric effective gauge coupling (2.25) needs to match the field theory re-
sult (2.2).

As a result, the non-compact surfaces are glued as follows:

F |Si = fi for i = 1, 2 , N |Si =

f1 i = 1
f2 − 2x i = 2

. (5.26)

The F |Si restrict to the fi respectively, because the fi act as simple roots (5.22). The
prefactor of 1 equals 2

〈αi,αi〉 for the roots of A2.

Fibre-base dual G2. Inspecting (5.21) shows an interesting instance of fibre-base dual-
ity. In detail,

−
(
f1 ·KS1 f1 · S2|S1

e2 · S1|S2 e2 ·KS2

)
=
(

2 −1
−3 2

)
≡ CG2 ⇒

−Jφ · f1 = 〈αi, φ〉
−Jφ · e2 = 〈α2, φ〉

(5.27)
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such that f1, e2 act as simple roots αi of G2, see appendix A.1.4. Therefore, one is lead to
another description of G2 with one adjoint hypermulitplet, but this time in a different phase

...

...

...
...

phase
choice

〈φ, 3α1 + 2α2〉+mf ≥ 0

〈φ, α1 + α2〉+mf ≥ 0

〈φ,−(α1 + α2)〉+mf ≤ 0

〈φ,−(3α1 + α2)〉+mf ≥ 0

〈φ,−(3α1 + 2α2)〉+mf ≤ 0

α2 ↓

α1 ↙

α2 ↘

α1 ↘

α2 ↙

α2 ↓

(5.28)

The prepotential in this phase equals

6F = 8φ3
1 + 18φ2

1φ2 − 24φ1φ
2
2 + 7φ3

2 + 6
g2

(
3φ2

1 − 3φ1φ2 + φ2
2

)
− 72mφ2

1 + 72mφ1φ2 − 21mφ2
2 − 3m2φ2

. (5.29)

The Kähler form can be expressed as

J = − 1
g2F +

2∑
i=1

φiSi +mN (5.30)

and the non-compact surfaces F and N are glued to the Si via

F |Si =

3f1 i = 1
e2 i = 2

, N |Si =

12f1 i = 1
4f2 − x i = 2

. (5.31)

Analogously to the cases discussed above, the F |Si restrict to 3f1 and e2 respectively,
because f1 and e2 act as simple roots (5.27). The prefactors equal 2

〈αi,αi〉 = 3, 1 for the
roots of G2. Also, note that in this construction −Jφ · x = −〈−(3α1 + 2α2), φ〉, which
justifies the phase (5.28).

6 Conclusions

In this work, a geometric description of twisted circle compactifications of 6d N = (1, 0)
SCFTs has been analysed with the aim to fully characterise the resulting 5d theory. For a
number of such theories, we have shown how to recover the prepotential of the 5d gauge
theory on the Coulomb branch from the geometric prepotential of M-theory on a Calabi-Yau
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threefold XS . We explicitly described the non-compact divisors which must be included
in the Kähler potential of XS to reflect the contribution of mass parameters and gauge
couplings. The strategy to find these divisors is composed of three steps: firstly, determine
a geometric description such that there exist curves of self-intersection zero which act as
roots of the 5d gauge algebra. Secondly, identify the weights of the blowup modes under
the gauge algebra and construct the −1 curves that correspond to the fundamental BPS
particles. The volumes of these curves have to reproduce the BPS masses. Moreover, this
step identifies the phase of the 5d theory on the Coulomb branch. Thirdly, the geometric
expression for the matrix of effective gauge couplings has to reproduce the corresponding
field theory expression. As a result, the non-compact surfaces in the Kähler form are
determined by their intersection with the compact surfaces. This is sufficient information
to reproduce the physical quantities and to compute the prepotential Fgeom = 1

3!J
3 up to

constant terms.
This description then allows us to identify the effective gauge coupling with the volume

of the elliptic fibre of the F-Theory description of the parent 6d SCFTs. In particular, we
made this identification for the 5d reduction of the E-string theory, the untwisted 5d
reduction of su(n) on a −2, the Z2 twisted compactification of the 6d N = (1, 0) minimal
SU(3) SCFT, and the Z3 twisted reduction of the minimal SO(8) SCFT.

In a number of examples of rank 1 and rank 2 KK theories, we observed a fibre-
base duality between the 6d and 5d frame, which is realised via an exchange of fibre and
base in F0. For non-gauge theoretic nodes and, in particular, non-geometric theories,
the appearance of some form of fibre-base duality between the 6d and 5d frame is not
guaranteed. In all cases considered in section 4, the geometry for the 6d frame, which
manifests the elliptic fibre, is fibre-dual to one of the 5d descriptions, precisely by an F0
isomorphism e↔ f .

For M-theory on a given non-compact Calabi-Yau threefold, compact surfaces in the
geometry may exhibit different rulings, which corresponds to different effective gauge theory
descriptions. In the limit in which we shrink the compact surfaces, all of these theories
flow to the same 5d SCFT, so that such a phenomenon encodes a UV duality. A particular
instance of this phenomenon is when the fibre of one ruling becomes a section of another.
Seen from 6d, the circle reduction admits more than one 5d description in this case, and
not all 5d frames are related to the 6d frame via fibre-base duality. We have demonstrated
that some of the dual 5d theories are related among each other by a fibre-base like duality
relating different 5d frames.

The geometric description of 5d theories by a collection of complex compact surfaces
sitting inside a non-compact threefold is a resourceful approach to the understanding of
quantum field theories. There are a number of open issues that would be interesting to
address in future research. Starting from a specific twisted compactification, the resulting
collection of surfaces and their gluing rules are far from unique. In this work, the geo-
metric frame suitable for a gauge theory in one specific phase has been chosen. Hence,
the transitions between different phases have not been addressed, although it is expected
that these are straightforward. Moreover, one may also choose to follow the isomorphisms
relating the different phases, and establish parameter maps between the different gauge
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theory descriptions. Fibre-base like dualities relating different 5d descriptions of the same
SCFT have also been observed in [54, 59, 60, 96]. In the present work we have collected
evidence for an elegant relation between the divisor F and the fibres that establish the
gauge algebra. One may wonder whether there is an analogous, systematic relation for the
divisors Nf associated to hypermultiplet mass parameters.
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A Background material

A.1 Lie algebras and weight spaces

The evaluation of the prepotential (2.1) relies on the gauge group as well as the represen-
tations of the matter content. This appendix provides a brief summary. For more details,
the reader is, for instance, referred to [98, 99] as well as [16, appendix A].

A.1.1 Notation

Give a Lie algebra, the simple roots are αi, and the simple coroots are α∨i . The Cartan
matrix is defined via

Aij = 〈αi, α∨j 〉 = 2〈αi, αj〉
〈αi, αi〉

. (A.1)

A convenient basis is the Dynkin basis, or weight basis, defined by the fundamental weights
being the basis vectors. Then, the Cartan matrix is the transformation matrix that provides
the expansion of the simple roots αi in the basis of the fundamental weights, i.e.

αi =
∑
k

Aikωk ⇔ ωi =
∑
k

(A−1)ikαk (A.2)

Note that the j-th row of the Cartan matrix gives the simple root αj in terms of the
fundamental weights.

The vector φ of Coulomb moduli is an expanded in the basis of simple coroot

φ =
∑
i

φiα
∨
i , (A.3)

which defines the components φi used throughout this paper. Next, consider the following
expressions

〈φ, αi〉 =
∑
j,k

φjAik〈α∨j , ωk〉 =
∑
j,k

φjAikδjk =
∑
k

Aikφk (A.4)
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likewise

〈φ, φ〉 =
∑
i,j

φiφj〈α∨i , α∨j 〉 =
∑
i,j

φjD
−1
j Ajiφi ≡

∑
i,j

φjhjiφi (A.5)

where hij is the inverse of the metric tensor defined as follows

(h−1)ij = (A−1)ijDj (A.6)

where Dj is defined via

Aij = 〈αi, α∨j 〉 = 2〈αi, αj〉
〈αi, αi〉

= D−1
j 〈αi, αj〉 ⇔ D−1 = diag

( 2
〈α1, α1〉

, . . . ,
2

〈αr, αr〉

)
.

(A.7)

Recall that the factors 2
〈αi,αi〉 can only take three different values: 1 for all roots on A, D,

E algebras and the long roots in B, C, F4; 2 for the short roots of B, C, and F4; and 3 for
the short root of G2. The Chern-Simons term in (2.1) can be expressed as follows:

6FCS
tree-level = κ dijk φ

iφjφk with dijk = 1
2TrF (ti {tj , tk}) (A.8)

TrRf
(ti {tj , tk})φiφjφk = 2c(3)

Rf
dijkφ

iφjφk = 2c(3)
Rf

∑
w∈Rf

〈φ,w〉3 (A.9)

with c(3)
Rf

the cubic Dynkin index. Since c(3)
F = 1 for su(n), one finds

dijkφ
iφjφk =

∑
w∈F
〈φ,w〉3 for su(n) . (A.10)

In the following subsection, the roots and weights for the Lie algebra relevant for this
paper are summarised.

A.1.2 SU(2), SU(3), and SU(4)

SU(2). The simple root is α = 2 and the representations relevant for this work have
weight systems given by

[1]A
w1=1

w2=−1

α ↓

[2]A
2

0

−2

α ↓

α ↓

(A.11)

where the arrows indicate the action of the simple roots. The Cartan matrix, which equals
the inverse metric tensor, reads

CA1 = 2 = h . (A.12)
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SU(3). The simple roots are α1 = (2,−1) , α2 = (−1, 2) and the weight systems for the
relevant representation are as follows

[1, 0]A
w1=(1,0)

w2=(−1,1)

w3=(0,−1)

α1 ↓

α2 ↓

[2, 0]A
v1=(2,0)

v2=(0,1)

v3=(−2,2) v4=(1,−1)

v5=(−1,0)

v6=(0,−2)

α2 ↓

α1 ↙

α2 ↘

α2 ↘

α1 ↙

α2 ↓

[1, 1]A
(1,1)

(−1,2) (2,−1)

(0,0) (0,0)

(2,−1) (−2,1)

(−1,−1)

α1 ↙

α2 ↘

↓ α2

↓ α2

α1 ↓

α1 ↓

α1 ↘

α2 ↙

(A.13)

where the arrows indicate the action of the simple roots. In addition, the Cartan matrix
and the inverse metric tensor are given by

CA2 =
(

2 −1
−1 2

)
= hij . (A.14)

SU(4). The simple roots are α1 = (2,−1, 0) , α2 = (−1, 2,−1), α3 = (0,−1, 2) and the
Cartan matrix, which equals the inverse metric tensor, is given by

CA3 =

 2 −1 0
−1 2 −1
0 −1 2

 = hij . (A.15)

A.1.3 Sp(2)

The simple roots are α1 = (2,−1) , α2 = (−2, 2) and a1 is the short root. The representa-
tions relevant for this work have the weights systems given by

[1, 0]C
w1=(1,0)

w2=(−1,1)

w3=(1,−1)

w4=(−1,0)

α1 ↓

α2 ↓

α1 ↓

[0, 1]C
v1=(0,1)

v2=(2,−1)

v3=(0,0)

v4=(−2,1)

v5=(0,−1)

α2 ↓

α1 ↓

α1 ↓

α2 ↓

[2, 0]C
(2,0)

(0,1)

(−2,2) (2,−1)

(0,0) (0,0)

(2,−2) (−2,1)

(0,−1)

(−2,0)

α1 ↓

α1 ↙

α2 ↘

↓ α2

↓ α2

α1 ↓

α1 ↓

α1 ↘

α2 ↙

α1 ↓

(A.16)
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where the arrows indicate the action of the simple roots. In addition, the Cartan matrix
and the inverse metric tensor hij are given by

CC2 =
(

2 −1
−2 2

)
, (hij) =

(
4 −2
−2 2

)
. (A.17)

A.1.4 G2

The simple roots are given by α1 = (2,−1), α2 = (−3, 2) and α1 is the short root. The
representations relevant for this paper have the following weight systems

[1, 0]G
w1=(1,0)

w2=(−1,1)

w3=(2,−1)

w4=(0,0)

w5=(−2,1)

w6=(1,−1)

w7=(−1,0)

α1 ↓

α2 ↓

α1 ↓

α1 ↓

α2 ↓

α1 ↓

[0, 1]G
(0,1)

(3,−1)

(1,0)

(−1,1)

(−3,2) (2,−1)

(0,0) (0,0)

(3,−2) (−2,1)

(1,−1)

(−1,0)

(−3,1)

(0,−1)

α2 ↓

α1 ↓

α1 ↓

α1 ↙

α2 ↘

↓ α2

↓ α2

α1 ↓

α1 ↓

α1 ↘

α2 ↙

α1 ↓

α1 ↓

α2 ↓

(A.18)

where the arrows indicate the action of the simple roots. In addition, the Cartan matrix
and the inverse metric tensor hij are given by

CG2 =
(

2 −1
−3 2

)
, (hij) =

(
6 −3
−3 2

)
. (A.19)

A.2 Geometry of Hirzebruch surfaces

A Hirzebruch surface is a P1 fibration over P1, and one denotes by Fn a Hirzebruch surface
with a degree −n fibration. The fibre P1 is denoted by f , while the base P1 is e. The
intersections numbers are

e2 = −n , f2 = 0 , e · f = 1 . (A.20)
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Another curve inside Fn is defined by h := e + nf , which for F0 becomes equal to e. For
n ≥ 0, the set of holomorphic curves, the Mori cone, is generated by e and f .

One may also consider surfaces that arise from blowing up Fn is a number of points.
Let b be the number of blowups, such that the blowup of Fn at b points is denoted by Fbn.
The exceptional divisors created by the blowups are the curves xi for i = 1, . . . , b. The
intersection number of e, f , h with the xi are given by

xi · xj = −δi,j , e · xi = 0 , f · xi = 0 , h · xi = 0 . (A.21)

Following the conventions of [61], the total transforms of the curves e, f , h are denoted by
the same names e, f , h in Fbn.

A single theory may enjoy many (isomorphic) geometric descriptions. To transition
between them, it is useful to recall the Fbn → Fbn+1 isomorphism, see for instance [62, eqs.
(2.19)–(2.22)],

e− xi → e

f − xi → xi

xi → f − xi
xj → xj j 6= i

(A.22)

which comes into play in section 3.2.

B Rulings on rational elliptic surfaces

In this appendix, we give an explicit realisation of a rational elliptic surface dP9 [100] that
shows that we can also view it as a blowup F8

0 of the Hirzebruch surface F0 = P1 × P1 at
eight points. Seen in this way, dP9 inherits the two rulings on F0, and we can derive the
inner form between divisors.

Consider a hypersurface S of degree (1, 2, 2) inside P1
w × P1

y × P1
z. Denoting the homo-

geneous coordinates of the three P1s by [w1 : w2], [y1 : y2] and [z1 : z2], such a hypersurface
can be written as

P (y, z)w1 = Q(y, z)w2 (B.1)

for two homogeneous polynomials P and Q that have both degrees 2 in [y1 : y2] and [z1 : z2].
Projecting to P1

w, this surface has the structure of an elliptic fibration, with the fibre
embedded in Py × Pz. Denoting the hyperplane divisors of the three P1s by Hw, Hy, Hz,
we find that c1(S) = Hw, which is represented by the generic fibre of this elliptic fibration.
We hence identify S as a rational elliptic surface.

Let us now discuss the ruling. For a generic point on P1
y×P1

z, (B.1) fixes a unique point
on P1

w. However, over points (qi, pi) on P1
y × P1

z where Q = P = 0, there is no constraint
on P1

w and we find another P1 in S. As Q and P are in the class 2Hy + 2Hz, there are∫
P1
y×P1

z

(2Hy + 2Hz)2 = 8 (B.2)
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such points. We hence see that dP9 is F0 blown up at 8 points (qi, pi). We can now describe
the inner form among divisors on dP9 from this perspective. Let us denote Hy restricted to
S by e andHz restricted to S by f . We then have that e2 = f2 = 0 (asHy·Hy = Hz ·Hz = 0)
and e ·f = 1 (as Hy ·Hz = 1 on S). Let us denote the P1s sitting at the 8 points Q = P = 0
by xi. As these are P1s and

∫
S c1(S) · xi =

∫
P1
w×P1

y×P1
z
Hw · xi = 1 we find using adjunction

that xi · xi = −1. All other intersections must vanish, xi · xj = −δij as these sit over
different points of P1

y × P1
z, and similarly xi · e = xi · f = 0 as a generic hyperplane section

misses any of the points Q = P = 0. In summary, the only non-vanishing intersections of
the inner form are

e · f = 1 x2
i = −1 (B.3)

which in particular shows that this lattice is unimodular, i.e. e, f, xi generate H2(S,Z).
Note that the curves xi all become sections of the elliptic fibration on S: for every xi, we
may assign every point on a copy of the base P1

w to the point (pi, qi) in the fibre.
We can also discuss the details of the (blown-up) ruling. As we want f to be class

represented by the fibre and f = Hz, i.e. the fibre class is given by e.g. z1 = 0, the projection
of the ruling acts on the level of the ambient space as π : P1

x×P1
y×P1

z → P1
z, i.e. it projects

S down to P1
z. Over a generic point z, the fibre of the ruling is the P1 described by

Q(z, y)w1 = P (z, y)w2 , (B.4)

which is smooth as Q(z, y) and P (z, y) do not vanish simultaneously for any y for such a
fixed z. The class of the fibre f . If we now take [z1 : z2] to correspond to the image of one
of the (qi, pi), the fibre is given by

Q(qi, y)w1 = P (qi, y)w2 , (B.5)

where now P = Q = 0 for y = pi. This implies that this set is the union of the P1
y times

the unique point in P1
w given by the above equation, together with the P1 at pi × P1

w = xi.
If we denote the first curve by x̂i, linear equivalence gives

f = x̂i + xi (B.6)

for all i. In other words, the fibre of the ruling splits into pairs of P1s of classes xi and
x̂i = f − xi over 8 points on P1

z.
As we may as well project down to P1

y, there is another ruling with fibre e and base
f . The fibre components of this ruling are seen to be xi and x̌i = e− xi by repeating the
same arguments as above.

As h1,1(S) = 10, the ten classes e, f, xi span all of H1,1(S,Q) and we can work out the
class of c1(S) in terms of them by computing intersections. As

c1(S) · e = Hw ·Hy = 2
c1(S) · f = Hw ·Hz = 2
c1(S) · xi = Hw · xi = 1

(B.7)
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we find that

c1(S) = Hw = 2e+ 2f −
8∑
i=1

xi . (B.8)

This is of course precisely the result we are expecting for a surface that is reached from F0
by blowing up at 8 points.

By construction, the cone of effective curves contains e, f and the xi, as well as c1(S).
Furthermore, we have seen that there are the additional effective curves x̂i = f − xi
and x̌i = e − xi. All of these must have positive volume and due their negative self-
intersection they are among the extremal generators of the Mori cone. Note that we can
write f = xi + x̂i, e = xi + x̌i, but that c1(S) is not a positive linear combination of
e, f, xi, x̂i, x̌i, so that is also among the extremal rays of the cone of effective curves. Note
that in the explicit realisation of S we have given, the volumes of the xi are locked to all
be identical.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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