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1 Introduction

Flux compactifications in type IIB orientifolds and, more generally, F-theory, make up
the bulk of the string landscape explored in the last two decades. A tacit assumption
that underlies much of the work on the subject is that it is possible to make a sufficiently
‘generic’ choice of flux which stabilises all complex structure moduli. Recent work examining
complex structure moduli stabilisation together with the interplay of flux quantisation and
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the tadpole constraint has begun to challenge this point of view. The basic picture is that
flux quantisation says that allowed fluxes sit in a lattice, whereas the tadpole constraint
limits the norm of lattice vectors that can be chosen, so that sufficiently generic choices of
quantised fluxes might surpass the maximum permitted by the tadpole. Generic choices of
fluxes however do not preserve any supersymmetry, which requires a self-duality property.
On the other hand, there typically are simple choices flux that satisfy the supersymmetry
conditions, and stay within the tadpole bound. Nonetheless, these generically either leave a
moduli space of possible complex structures, or if they completely fix complex structure
moduli, they do so at special (symmetric) points in moduli space (see e.g. refs. [1–5] for
stabilisation at symmetric points).1

As far as the stabilisation of (a large number of) complex structure moduli at generic
points is concerned, ref. [8] proposed that there is a universal bound limiting the number of
stabilised moduli as a function of the tadpole charge. The precise “tadpole conjecture” is
that the charge induced by fluxes that stabilise a large number of moduli at a generic point
in moduli space is larger than 1/3 of the number of stabilised moduli. On the other hand,
the tadpole bound limits this charge to 1/4 times the total number of complex structure
moduli, such that one cannot stabilise all moduli within the bound. Besides existing
examples in the literature, the conjecture was supported by an exploration in the K3 × K3
lattice (as well as in smaller-dimensional ones) using evolutionary algorithms [9], and later
given strong evidence in the large complex structure limit [10–13] and also in non-geometric
compactifications [14]. On the other hand, the conjecture has been challenged by the “linear
scenario” mechanism of moduli stabilisation [15]; however, there is a potential loophole in
this analysis [16].

The evolutionary algorithms used in [8, 9] provided O(105) different choices of fluxes
stabilising moduli at a generic point in the moduli space of K3 × K3 compactifications with
a charge induced that exceeds by one the tadpole bound of 24 (in units of M2-brane charge),
while no example within the bound was found. This strongly suggests that one can stabilise
moduli only at special points within the bound. For the case at hand, these points are such
that there is a left-over non-Abelian gauge symmetry, carrying with it extra massless scalar
fields. This raises the very interesting question that we investigate in this paper, namely
what is the interplay between the appearance of non-Abelian gauge symmetries at specific
points in moduli space and the induced tadpole charge of the fluxes stabilising moduli at
that specific point.

In this paper we answer this question for K3 × K3 compactifications of F-theory. Our
results show that in vacua with all complex structure moduli perturbatively stabilised in
a supersymmetric minimum, the tadpole bound enforces non-trivial gauge theory sectors.
Our analysis has two crucial ingredients. Flux solutions for M-theory on K3 × K3 where

1Note however that the constructions in type IIB orientifold compactifications require also the negative
D3 charge coming from D7 branes wrapped on four-cycles (see [6] for an exhaustive analysis of tadpole charge
coming from O3 planes, as well as D7 branes and O7 planes in Calabi-Yau three-folds in the Kreuzer-Skarke
list). These however come with a large number of moduli of their own, whose stabilisation is not taken into
account. It is very hard, if not impossible, to stabilise all D7-moduli within the bound [7]. In the F-theory
picture complex structure and D7-moduli are unified into complex structure moduli of the four-fold.
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all complex structure moduli are stabilised can be found using the approach of Aspinwall
and Kallosh [17]. This results in both K3 surfaces being attractive, i.e. they both have a
Picard lattice of the maximal rank, 20. The enumeration of solutions becomes a problem in
arithmetic, and all solutions within the tadpole bound were listed in [18].

These M-theory flux vacua have an F-theory description upon specifying an elliptic
fibration on one of the two K3 surfaces. The F-theory gauge group can then be read off
from the frame lattice of the elliptic fibration, which encodes singular fibres and sections.
For each flux solution, the frame lattices of all elliptic fibrations can be determined by
studying embeddings of an auxiliary lattice into the 24-dimensional Niemeier lattices.

We design a computer algorithm that explores all possible embeddings, and determines
the rank of the resulting gauge group in F-theory. We explore all solutions up to the
tadpole bound, and find that there is always a non-Abelian gauge group. Furthermore,
the minimum charge where moduli can be stabilised at a point where there is no left-over
non-Abelian gauge group (i.e., a point that is referred to in [8] as generic) is 30. We list the
minimum rank of the gauge groups for most of the solutions (some Picard lattices are much
harder to explore, and for those we only answer the yes-no question of whether there can
be no non-Abelian gauge groups). We also give some of the gauge groups for the simpler
Picard lattices.

The paper is organised as follows: in section 2 we review flux vacua on K3 × K3,
presenting the M-theory solutions of [17], and the method to find their elliptic fibrations,
while in section 3 we present our results. In appendix A we give an extensive review of
lattices, introducing all the concepts needed in the paper.

2 M- and F-theory flux vacua on K3 × K3

In this section we review flux vacua of M- and F-theory on X = S1 × S2, for S1 and S2
K3 surfaces. Technical details of this material can be found in [17–23], see also [24] for a
general review on F-theory flux vacua.

2.1 M-theory flux vacua on Calabi-Yau fourfolds

M-theory on Calabi-Yau fourfolds X allows the introduction of G4 fluxes, while leaving
the metric Calabi-Yau up to a conformal factor [25], and which generate a superpotential
that depends on the location in complex structure moduli space [26]. The G4 fluxes obey a
quantisation condition

G4 +
c2(X)

2 ∈ H4(X,Z) , (2.1)

and are subject to the tadpole constraint

Nflux +NM2 = χ(X)
24 , (2.2)

where NM2 is the number of M2 branes in the space-time transverse to X and

Nflux = 1
2

∫
X
G4 ∧G4 (2.3)

is the M2-brane charge of the fluxes.
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For supersymmetric Minkowski minima the complex structure moduli of the four-fold
are such that [25]

G4 ∈ H2,2
prim(X) , (2.4)

in other words fluxes must be of Hodge type (2, 2) and primitive: G4 ∧J = 0, where J is the
Kähler form on X. Depending on how much fluxes are turned on, the (2, 2) requirement can
fix some or all of the complex structure moduli of the Calabi-Yau 4-fold. The primitivity
condition additionally constrains the Kähler moduli. Furthermore, NM2 must be positive
for supersymmetric solutions. As G4 ∈ H2,2

prim(X) is self-dual, it turns
∫

X G4 ∧ G4 into a
positive number, and thus there can only be finitely many flux choices for a fixed point in
moduli space which are bounded by the Euler characteristic of the fourfold X.

2.2 F-theory flux vacua on Calabi-Yau fourfolds

When the four-fold X carries an elliptic fibration

E ↪→X

↓
B

(2.5)

one can take the limit in which the volume of E goes to zero. Working in F-theory, one
may assume without loss of generality that the fibration is described by (a resolution of) a
Weierstrass model.2 The limit of vanishing fibre is dual to the compactification of F-theory
on X (employing the elliptic fibration by E) and yields a Lorentz invariant theory in four
dimensions if the flux has ‘one leg on the fibre’, a condition that is equivalent to demanding
that the integral of G4 over certain divisors of X vanishes [27].

The quantisation, tadpole and supersymmetry conditions for F-theory fluxes are the
same as in M-theory (eqs. (2.1)–(2.4)). The difference in the latter is that F-theory fluxes,
having one leg on the fiber, are automatically primitive in manifolds of strict SU(4) holonomy,
and therefore do not stabilise Kähler moduli. In this setup Kähler moduli are only stabilised
by non-perturbative corrections [28], which we do not consider here.

Regarding complex structure moduli stabilisation in F-theory flux compactifications, it
was conjectured in [8] that stabilisation of a large number of moduli at a generic point in
moduli space requires a flux charge Nflux which grows linearly with the number of moduli.
Furthermore, the coefficient of the linear growth was conjectured to be larger than 1

3 , while
χ
24 ∼ 1

4h
3,1 and thus a large number of complex structure moduli cannot be stabilised at

a generic point in moduli space within the tadpole bound. If the tadpole conjecture is
true, then stabilising moduli within the tadpole will force upon special points or regions
in moduli space which have some sort symmetry, or there are singularities. In F-theory,
singularities of X lead to non-Abelian gauge groups, massless matter representations, and
Yukawa couplings, depending on their codimension in X.

The tadpole conjecture hence implies the existence of non-trivial gauge theory sectors in
models with completely stabilised complex structure moduli. This is an intriguing possibility,

2Technically, this can be accomplished by passing to the associated Jacobian fibration and resolving
singularities.
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as it goes against the naive expectation that flux vacua populate generic points in moduli
space, at which no non-abelian gauge groups (beyond non-Higgsable clusters [29, 30]) reside.3

In what follows, we show that this is indeed the case for K3 × K3 compactifications
with a particularly simple flux. Since K3 × K3 does not have strict SU(4) holonomy, fluxes
can in principle stabilise all moduli, as explored in [8]. Here, we will however restrict to a
subset of all possible fluxes that are amenable to an exhaustive analysis, which can only
stabilise complex structure moduli.

2.3 M- and F-theory on K3 × K3

Analysing what is the shortest integral flux that stabilises all complex structure moduli
at a given point in the moduli space of a Calabi-Yau fourfold, let alone throughout, is a
daunting task and most work has focussed on the large complex structure limit [10–12].
Here, we focus on the specific case of X = S1 × S2 for a pair of K3 surfaces S1 and S2,
where we can be significantly more precise.

A K3 surface is the unique non-trivial Calabi-Yau manifold in complex dimension two
(see [33–35] for an in-depth discussion). Any element δC of the integral middle cohomology of
a K3 surface S is dual to a curve C, and the inner form is related to the Euler characteristic
of C by

−χ(C) =
∫

S
δC ∧ δC ≡ δC · δC , (2.6)

which implies that δC · δC is an even integer. Picking a Z-basis of the middle cohomology
composed of elements δI , I = 1, . . . , 22, Poincaré duality then implies that the inner form

dIJ = δI · δJ (2.7)

defines an even unimodular lattice. By the Hirzebruch signature theorem the signature of
this lattice is (n, n+ 16), which together with b2(S) = 22 implies that n = 3. Such lattices
are covered by strong classification theorems (see appendix A for an extensive review of
lattices) and one finds that they are all isomorphic to

Λ3,19 = U ⊕ U ⊕ U ⊕ E8[−1]⊕ E8[−1] , (2.8)

where E8[−1] is minus the Cartan matrix of E8 and U is the 2× 2 matrix defined in (A.4).
Not only do we know rather explicitly what the integral middle cohomology of a K3

surface is like, but we have a complete picture of the moduli space due to the global Torelli
theorem. It says that the moduli space of Ricci-flat metrics on a K3 (which is equal to the
moduli space of M-theory on K3) is given by the coset

O(Λ3,19)\O(3, 19)/O(3)×O(19)× R+ (2.9)

that parameterises the deformations of a 3-plane Σ of positive-norm vectors inside a 22-
dimensional vector space modulo automorphisms O(Λ3,19) of Λ3,19, together with the volume
of the K3.

3See [31, 32] for estimates of the statistical cost of non-abelian gauge groups.
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The three vectors ωa ∈ H2(S,R), a = 1, 2, 3, spanning the three-plane Σ define a hyper-
Kähler structure, and for M-theory compactifications on S1 × S2, hyper-Kähler rotations
give rise to the R symmetries of the resulting 3D N = 4 theory. Choosing a complex
structure, we can write the Kähler form and holomorphic 2-form as

Ω = ω1 + iω2 , J =
√
2vol(S)ω3 . (2.10)

In this complex structure, the space H1,1(S,C) is the 20-dimensional space orthogonal to
ω1 and ω2. The intersection of this hyper-plane and the lattice of integral 2-forms defines a
sublattice whose rank can be at most 20, called the Picard lattice

Pic(S) := H1,1(S) ∩H2(S,Z) , (2.11)

which is (dual to) the lattice of holomorphic curves. This lattice has always signature (1, r).
There are special points (at finite distance) in the moduli space where the K3 surface

develops ADE singularities. For a curve C isomorphic to a P1 (so that C2 = −2), there
always exists a representative with minimal volume in its homology class given by

Vol2(C) =
∑

a

(∫
C
ωa

)2
, (2.12)

so that curves perpendicular to Σ have collapsed to zero volume. This signals the appearance
of ADE singularities. For a given choice of Σ, we can characterize the singularities by
studying the lattice generated by all vectors with norm −2 contained in Σ⊥:

ΛS = (Σ⊥)root ≡ ⟨v ∈ H2(S,Z)|v2 = −2, v · Σ = 0⟩ . (2.13)

Hence ΛS [−1] is a root lattice generated by elements which square to 2, so that we can write

ΛS [−1] = Γ1 ⊕ Γ2 ⊕ · · · (2.14)

for Γk ADE root lattices. The inner form on each Γk is the Cartan matrix of an associated
Lie algebra gk, and for each ADE summand, the associated K3 surface carries one instance
of the corresponding ADE singularity. For M-theory on a K3 surface, the non-abelian gauge
algebra is hence

g = g1 ⊕ g2 ⊕ · · · . (2.15)

M-theory compactifications on S1 ×S2 have an F-theory uplift if one of the K3 (say, S1)
has an elliptic fibration. Reducing M-theory on one of the directions of the elliptic fibration,
sending its volume to zero and taking the T-dual, one gets a type IIB compactification to
four dimensions on S2 times the P1 base of the elliptic fibration, with a varying axion-dilaton.
The latter is the complex structure of the elliptic fibration. This is better described in
terms of F-theory, again on S1 × S2, where S1 is elliptically fibered with a fixed volume.
On an elliptically fibered K3 there are at least two algebraic curves, one corresponding
to the T 2 fiber, and the other to the section, which is equivalent to the base P1. Given
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these topologies and the fact that a section meets every fibre exactly once implies that the
homology classes of base and the fiber span a lattice with inner form(

−2 1
1 0

)
(2.16)

which is equivalent to U modulo SL(2,Z). Thus, for every elliptic fibration there is a copy
of U embedded in the Picard lattice of the K3 surface. The converse of this statement is
true as well: for any primitive embedding U ↪→ Pic(S) there exists an associated elliptic
fibration with a section. The unimodularity of U allows us to write

Pic(S) = U ⊕W , (2.17)

where W is called the frame lattice of the elliptic fibration.
The frame lattice W contains a great deal of information on the singular fibres and

further sections of the elliptic fibration. Working with a smooth model,4 an elliptic fibration
on a K3 surface can have a collection of reducible fibres over points in the P1 base, each of
which can be decomposed into a collection of P1s arranged according to an extended ADE
Dynkin diagram. The affine node is distinghuished as the component of the fibre that is
met by the section of the elliptic fibration. The root sublattice Wroot of W is generated
by all of the remaining fibre components. Passing to a Weierstrass model, all these fibre
components are collapsed, so that both Ω and the Kähler form J are perpendicular to W
(J only takes values in U ⊗ R in this case). We can read off the ADE singularities of the
Weierstrass model and hence the F-theory gauge algebra from (cf. eq. (2.13))

ΛS =Wroot ≡ ⟨v ∈W |v2 = −2⟩ . (2.18)

Generators of W which are not roots correspond to extra sections of the elliptic fibration
and we can write

MW (S) =W/Wroot (2.19)

where MW (S) is the Mordell-Weil group of S. Note that MW (S) is in general not a lattice
but can contain torsional elements. These correspond geometrically to torsional sections
and determine the global form of the F-theory gauge group [36, 37].

In a type IIB picture, the occurence of non-Abelian gauge algebras of ADE type is due
to stacks of (p, q) 7-branes located at the points of the base P1 of the elliptic K3 surface
over which the fibre degenerates. For F-theory on S1 × S2, with S1 elliptically fibered, the
(p, q) 7-branes wrap S2 entirely, but do not have any mutual intersections. This makes it
clear that F-theory on S1 × S2 has no bifundamental charged matter, but only charged
fields transforming in the adjoint.

2.4 Flux vacua on K3 × K3

Let us now describe flux vacua on S1 × S2 in M-theory. As we are ultimately interested in
flux backgrounds that have an F-theory lift, G4 cannot have components proportional to

4In M-theory, we can resolve any elliptic fibration keeping the complex structure fixed.
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the volume forms of S1 or S2, so that G4 is a sum of wedge products of integral 2-forms on
each K3. Forms of Hodge type (2, 2) are obtained either by wedging (1, 1) forms on each
K3, or the (2, 0) with the (0, 2) form of each of the K3, namely

G4 =
∑
I,J

cIJηI ∧ ηJ +Re
(
γΩ1 ∧ Ω̄2

)
, (2.20)

where ηI , ηJ are (1, 1)-forms on each K3, Ω1 and Ω2 are the (2,0) forms and the cIJ are
chosen such that G4 is primitive. For an F-theory lift, we need to make sure that at least
one of the K3 surfaces has an elliptic fibration and that G4 has vanishing wedge product
with the fibre and base of the elliptic fibration. While these conditions are automatically
satisfied for the last component of the flux, they have to be imposed by hand on the other
components. The quantisation condition is that G4 ∈ H4(S1 × S2,Z), as c2(S) is even
for any K3 surface. As the integral homology of a K3 surface has no torsion, it follows
that H4(S1 × S2,Z) = H2(S1,Z)⊗H2(S2,Z) by using the integral version of the Künneth
theorem [38].

Note that writting G4 as (2.20), only the sum of the two pieces needs to be integral,
but they can in principle be non-integral individually. Finally, we need to make sure that
the tadpole constraint

Nflux = 1
2

∫
S1×S2

G4 ∧G4 ≤ 24 (2.21)

is satisfied.
As shown in [17] choices for which G4 is purely of the type

G4 = Re
(
γΩ1 ∧ Ω̄2

)
, (2.22)

with γ a constant appropiately chosen to ensure quantisation (see below), give rise to 3D
N = 2 Minkowski vacua where all deformations of Ω1 and Ω2 are fixed, while leaving J
perturbatively unfixed.5 We will restrict to such solutions from now on, mainly for two
reasons. Most importantly, this is the closest analogue of an F-theory compactification
on a manifold of strict SU(4) holonomy, where fluxes (perturbatively) only fix complex
structure moduli. Furthermore, the existence of an elliptic fibration and the subsequent
F-theory limit require us to take a particular limit of the Kähler form, which in turn limits
the possible choices of cIJ in (2.20).

Note that for K3 × K3 compactifications, the hyper-Kähler rotations of the two K3
surfaces (corresponding to the R symmetries of the 3D N = 4 theory from M-theory
compactification) prevent us from discriminating between complex structure and Kähler
deformations for a given Ricci-flat metric. For a given metric, we can however always fix a
specific complex structure and subsequently write the most general flux which results in
supersymmetric Minkowski vacua as (2.20). For the reasons explained above, we will further
limit ourselves to fluxes of the form (2.22). For every such choice the only condition for these
M-theory flux solutions to have an F-theory dual is that one of the K3 surfaces is elliptically
fibered. As we will see in the follwing, this is always the case, i.e. every flux of this type
leads to several F-theory vacua which are obtained by specifying an elliptic fibration.

5Non-perturbative corrections generically generate a superpotential for these [17].
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We now describe the flux solutions (2.22) in some more detail (for further details and
proof of the statements, see [17]). Integrality of the flux requires the complex number γ
to enforce

Re
(
γΩ1 ∧ Ω̄2

)
∈ H4(X,Z) . (2.23)

Such a γ and hence a corresponding M-theory solution exists under the following
two conditions:

1. Both K3 surfaces need to be attractive, i.e. they are both at a point in their moduli
spaces where the Picard lattice, defined in (2.11), has rank 20. The rank of the
transcendental lattices

TSi := Pic⊥ ⊂ Λ3,19 (2.24)

is hence two. Denoting the generators or TSi by pi, qi we can write its inner form as(
pi · pi pi · qi

pi · qi qi · qi

)
=
(
2ai bi

bi 2ci

)
≃ [ai, bi, ci] , (2.25)

where we introduced the abbreviation [a, b, c]. By explicitely constructing the associ-
ated K3 surfaces, [39] showed that the converse to this is true as well, i.e. there exists
an associated attractive K3 surface for every such positive definite TS . Furthermore
this K3 surface, i.e. the embedding of TS ↪→ Λ3,19 is unique up to isometry. As we
will discuss below, every attactive K3 surface admits an elliptic fibration and hence
an F-theory limit, so that all of the solutions discussed here lift to F-Theory.

2. Denoting the determinant of the inner form on TSi by Qi := 4aici − b2
i , the product

Q1Q2 must be a perfect square:

Q1Q2 = k2 for k ∈ Z. (2.26)

We can now work out the details of these solutions. As the K3 surfaces are both
attractive, one can write

Ωi = pi + τiqi (2.27)

with
τi =

−bi + i
√
Qi

2ci
, (2.28)

which makes the freezing of complex structure moduli manifest.
The condition Q1Q2 = k2 for k ∈ Z implies that the two τi live in the same field

extension of Q, which implies that the complex number γ can simultaneously satisfy
the conditions

Re(γ) ∈ Z , Re(γτ1) ∈ Z ,
Re(γτ̄2) ∈ Z , Re(γτ1τ̄2) ∈ Z .

(2.29)

The induced tadpole can then be computed as

Nflux = 1
2

∫
X
G4 ∧G4 = |γ|2k2

4c1c2
. (2.30)
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2.5 Examples

Before explaining how to find all solutions up to a given tadpole, let us construct a number
of solutions by hand. This is done by making specific choices for the integers [a1, b1, c1] and
[a2, b2, c2] specifying a pair of attractive K3 surfaces such that (2.26) is fulfilled.

2.5.1 [a, 0, a] − [b, 0, b]

Choosing TS1 = [a, 0, a] is compatible with any TS2 = [b, 0, b] as

Q1Q2 = 4a2 4b2 = (4ab)2 . (2.31)

In this case
τ1 = τ2 = i (2.32)

and a choice for γ with minimal length that obeys (2.29) is

γ = 1 . (2.33)

The induced tadpole is then
Nflux = 4ab . (2.34)

2.5.2 [a, a, a] − [b, b, b]

Choosing TS1 = [a, a, a] is compatible with TS2 = [b, b, b] as

Q1Q2 = 3a2 3b2 = (3ab)2 . (2.35)

In this case
τ1 = τ2 = 1

2(−1 + i
√
3) (2.36)

and a choice for γ with minimal length that obeys (2.29) is

γ = 2i√
3
. (2.37)

The induced tadpole is then
Nflux = 3ab . (2.38)

2.6 All M-theory solutions

All solutions with Nflux ≤ 24 were obtained in [17, 18]. Here we explain the method used
and extend the results up to Nflux = 30.

By exploiting the SL(2,Z) action on TSi , we can bound the values of ai, bi, ci such that

|bi| ≤ |ci| ≤ |ai| . (2.39)

Furthermore, the positive definiteness of the inner form on TSi implies that ai and ci are
both positive. Finally, we can also assume that bi is non-negative. If bi is negative, we can
map to positive bi by letting qi → −qi so that the same lattice is generated.
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To show that only finitely many solutions exist, we can use the tadpole to bound
possible ai. Let us first assume that Re(γ) ̸= 0. Then (2.23) implies Re(γ) ∈ Z which
means |γ|2 ≥ 1. Using

Qi = 4aici − b2
i ≥ 3aici (2.40)

now implies

Nflux = |γ|2Q1Q2
4c1c2

≥ 9
4a1a2 . (2.41)

As the minimal value for the ai is 1, we find that we only need to consider cases where

ai ≤
4
9Nflux . (2.42)

If Re(γ) = 0 this bound becomes slightly stronger. In this case (2.29) implies

Im(γ)
√
Qi

2ci
∈ Z (2.43)

so that
|γ|2 ≥ 4c2

i /Qi (2.44)

and we find
Nflux ≥ 3c1a2 , Nflux ≥ 3c2a1 . (2.45)

As the minimal value for ai and ci is 1, we hence find

ai ≤
1
3Nflux (2.46)

in cases where Re(γ) = 0.
In general we can only use the weaker bound which e.g. implies that we can find all

solutions of tadpole ≤ 30 by scanning over all values of bi ≤ ci ≤ ai ≤ 13. The resulting
possible values of γ and matching pairs of K3 surfaces are recorded in table 1.

For tadpole Nflux ≤ 24 the following attractive K3 surfaces appear [18]:

[a, b, c] = [1, 0, 1], [1, 1, 1], [2, 0, 1], [2, 1, 1], [3, 0, 1], [3, 1, 1], [4, 0, 1], [4, 1, 1],
[5, 0, 1], [5, 1, 1], [6, 0, 1], [6, 1, 1], [2, 0, 2], [2, 1, 2], [2, 2, 2], [3, 0, 2],
[3, 1, 2], [3, 2, 2], [4, 0, 2], [4, 2, 2], [6, 0, 2], [6, 2, 2], [3, 0, 3], [3, 3, 3],
[6, 0, 3], [6, 3, 3], [4, 0, 4], [4, 4, 4], [5, 0, 5], [5, 5, 5], [6, 0, 6], [6, 6, 6],

[7, 7, 7], [8, 8, 8] .

(2.47)

For tadpole Nflux = 25 and Nflux = 26 there are no solutions, while for N = 27 the new types

[7, 1, 1], [9, 9, 9] (2.48)

appear. For Nflux = 28 we have

[7, 0, 1], [7, 0, 7], [8, 4, 4] , (2.49)

and for Nflux = 30
[4, 2, 4], [8, 2, 2], [10, 10, 10] , (2.50)

without new solutions for Nflux = 29.
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Nflux [a1b1c1] [a2b2c2] γ

30 [10 10 10] [1 1 1] γ(6)

[8 2 2] [4 1 1] ±2i/
√
15

[5 5 5] [2 2 2] γ(6)

[4 2 4] [2 1 2] ±4i/
√
15

[4 1 1] [2 1 2] ±4i/
√
15,

±(1 + i/
√
15)

28 [8 4 4] [2 1 1] ±2i/
√
7

[7 0 1] [7 0 1] ±i/
√
7

[7 0 7] [1 0 1] γ(4)

[7 0 1] [2 1 1] ±2i/
√
7

[4 2 2] [4 2 2] ±2i/
√
7

[4 2 2] [2 1 1] ±1± i/
√
7

[2 1 1] [2 1 1] ±4i/
√
7,

±1± 3i/
√
7

27 [9 9 9] [1 1 1] γ(6)

[7 1 1] [7 1 1] ±2i/(3
√
3)

[7 1 1] [1 1 1] γ(6)

[3 3 3] [3 3 3] γ(6)

[3 3 3] [1 1 1] i
√
3γ(6)

[1 1 1] [1 1 1] 3 γ(6)

24 [8 8 8] [1 1 1] γ(6)

[6 0 6] [1 0 1] γ(4)

[6 0 3] [2 0 1] ±i/
√
2

[6 0 2] [3 0 1] ±i/
√
3

[6 0 2] [1 1 1] γ(6)

[6 0 1] [6 0 1] ±i/
√
6

[4 4 4] [2 2 2] γ(6)

[3 0 3] [2 0 2] γ(4)

[3 0 3] [1 0 1] (1 + i)γ(4)

[3 0 2] [3 0 2] ±i
√
2/3

[3 0 1] [2 2 2] γ(6)

[2 2 2] [1 1 1] 2γ(6)

[2 0 1] [2 0 1] ±1± i/
√
2

23 [6 1 1] [6 1 1] ±2i/
√
23

[3 1 2] [3 1 2] ±4i/
√
23

22 [6 2 2] [3 1 1] ±2i/
√
11

21 [7 7 7] [1 1 1] γ(6)

[6 3 3] [2 1 1] ±2i/
√
7

[1 1 1] [1 1 1] (2±
√
3i)γ(6)

Nflux [a1b1c1] [a2b2c2] γ

20 [5 0 5] [1 0 1] γ(4)

[5 0 1] [5 0 1] ±i/
√
5

[3 2 2] [3 2 2] ±2i/
√
5

[1 0 1] [1 0 1] (1± 2i)γ(4)

19 [5 1 1] [5 1 1] ±2i/
√
19

18 [6 6 6] [1 1 1] γ(6)

[3 3 3] [2 2 2] γ(6)

16 [4 0 4] [1 0 1] γ(4)

[4 0 2] [2 0 1] ±i/
√
2

[4 0 1] [4 0 1] ±i/2
[4 0 1] [1 0 1] γ(4)

[2 0 2] [2 0 2] γ(4)

[2 0 2] [1 0 1] (1 + i)γ(4)

[2 0 1] [2 0 1] ±1
[1 0 1] [1 0 1] 2γ(4)

15 [5 5 5] [1 1 1] γ(6)

[4 1 1] [4 1 1] ±2i/
√
15

[2 1 2] [2 1 2] ±4i/
√
15

14 [4 2 2] [2 1 1] ±2i/
√
7

[2 1 1] [2 1 1] ±1± i/
√
7

12 [4 4 4] [1 1 1] γ(6)

[3 0 3] [1 0 1] γ(4)

[3 0 1] [3 0 1] ±i/
√
3

[3 0 1] [1 1 1] γ(6)

[2 2 2] [2 2 2] γ(6)

[1 1 1] [1 1 1] 2γ(6)

11 [3 1 1] [3 1 1] ±2i/
√
11

9 [3 3 3] [1 1 1] γ(6)

[1 1 1] [1 1 1]
√
3iγ(6)

8 [2 0 2] [1 0 1] γ(4)

[2 0 1] [2 0 1] ±i/
√
2

[1 0 1] [1 0 1] (1 + i)γ(4)

7 [2 1 1] [2 1 1] ±2i/
√
7

6 [2 2 2] [1 1 1] γ(6)

4 [1 0 1] [1 0 1] γ(4)

3 [1 1 1] [1 1 1] γ(6)

Table 1. All solutions with Nflux ≤ 30, table partly reproduced and extended from [18]. The
notation [a, b, c] for the K3 surfaces is introduced in (2.25) and the constant γ in the four-form flux
in (2.22). Here γ(6) = 2i√

3e
2πik/6, with k = 1, . . . , 6 and γ(4) = e2πik/4 with k = 1, . . . , 4.
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2.7 F-theory lifts and the Kneser-Nishiyama method

Having found all flux solutions in M-theory, we are now ready to construct all F-theory lifts.
As the fluxes (2.23) are always of the type that lifts to F-theory, we only need to choose an
elliptic fibration on either S1 or S2. After this choice, we can read off the gauge group from
the frame lattice. The set of possible gauge groups can hence be inferred by studying which
frame lattices can occur for any of the attractive K3 surfaces appearing in (2.47).

Let us simply denote the attractive K3 surface that is equipped with an elliptic fibration
by S. As explained in section 2.3, an elliptic fibration on S is specified by a primitive
embedding U ↪→ Pic(S). Once such an embedding is specified we may write

Pic(S) = U ⊕W (2.51)

where W is the frame lattice of the elliptic fibration which for attactive K3 surfaces has
signature (0, 18).

Instead of trying to determine all embeddings U ↪→ Pic(S) modulo isomorphism, we
use the Kneser-Nishiyama method which greatly simplifies the problem and gives us direct
access to the frame lattices W which occur for various elliptic fibrations.6

For a given Pic(S), all possible W can be found as follows. By theorem 2 (see
appendix A.2), any TS can be embedded (not necessary uniquely) into the root lattice E8,
and we define

T0 := T⊥
S ⊂ E8 (2.52)

which is lattice of signature (6, 0).
Any W which appears in (2.51) must be such that q(W ) = q (Pic(S)) = −q(TS) by

theorem 4. Hence we also have that q(W [−1]) = −q(T0) and there must exist an even self-
dual lattice N of signature (24, 0) in which both W and T0 are each primitively embedded
such that they are orthogonal complements. Even self-dual lattices of signature (24, 0) are
classified and are known as the 24 Niemeier lattices NI ; see appendix A.4 for a brief review.
Any W which appears in (2.51) must hence be such that one of the NI is an overlattice of
W ⊕ T0 with W and T0 each primitively embedded and mutually orthogonal,

NI ⊇W ⊕ T0 . (2.53)

As this holds for every choice of T0, we can proceed without loss of generality by picking
one T0 among the different possibilities. We can then determine all W ’s by finding all the
primitive embeddings of our chosen T0 into all of the Niemeier lattices NI :

{W} ∼=
⋃
I

{i : T0 ↪→ NI | i primitive} , (2.54)

where it is understood that we delete duplicates on the right-hand side.
6As discussed above, this determines the singular fibres and Mordell-Weil group. It does not however

uniquely fix the elliptic fibration up to isomorphism of S. In other words, the same collections of singular
fibres and Mordell-Weil groups might appear for several elliptic fibrations on the same attractive K3 surface,
without these being isomorphic as complex surfaces; see [23] for a detailed discussion.
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Phrased in this way, the determination of all possible frame lattices becomes feasible.
We have given a list of the Niemeier lattices in appendix A.4 and in appendix A.5 we have
collected some useful results which allow us to classify embeddings of root lattices in them.
All of the Niemeier lattices except one (the Leech lattice) are constructed using ADE root
lattices, reviewed in appendix A.3. In the cases of main interest to us, T0 contains a root
lattice of rank at least 4, which greatly simplifies classifying primitive embeddings. We
will also consider a few cases with Nflux ≥ 25, which are not necessarily subject to this
simplification.

Also note that the above allows us to show that any attractive K3 surface admits an
elliptic fibration. First note that fixing the lattice TS uniquely determins the embedding of
TS into Λ3,19 by Theorem 3, so that Pic(S) is uniquely determined as well. For any TS of
rank two, there always exists a primitive embedding into E8 by Theorem 2, so that we can
always find a suitable T0. The same theorem then guarantees that T0 embeds into some
Niemeier lattice. This also follows from our construction of T0 and the fact that one of
the Niemeier lattices is E3

8 . The orthogonal complement then gives us a suitable frame
lattice W on S. It then follows that W ⊕U ⊕ TS = Pic(S)⊕ TS has Λ3,19 as an overlattice,
showing the existence of an elliptic fibration.

3 Method and results

In this section we explain how to use the Kneser-Nishiyama method to examine the frame
lattices discussed above for every elliptically fibered K3 allowing to satisfy the tadpole bound
Nflux ≤ 24, and report on the results of a systematic scan regarding the properties of their
root sublattices in relation to the tadpole conjecture. We show that the conjecture holds
for this type of flux vacua. We also consider the cases corresponding to 25 ≤ Nflux ≤ 30 to
understand the behaviour of symmetry enhancements above the tadpole bound; we find
that no frame lattice without roots exists for Nflux < 30. At Nflux = 30, however, we show
that there is indeed a frame lattice without roots by giving an explicit construction.

3.1 Finding T0

The first step in the Kneser-Nishiyama method is to find a lattice T0 for every TS of a
suitable form; namely, what we look for is a lattice whose generating vectors are as short as
possible (e.g. with many roots), facilitating its embedding into the Niemeier lattices. To
this end we can proceed by directly computing orthogonal complements of TS for various
embeddings into E8 and compiling lists of the resulting T0’s, picking the one satisfying
our requirements. The computation of all possible T0’s is, however, amenable to exact
algorithmic solutions implemented for example in SAGEMATH — it is nothing more than the
computation of a lattice genus.7 For illustrative purposes, in the following we describe a
strategy for the former procedure, whose results can be cross-checked with those obtained
with SAGEMATH.

7For even lattices, a genus is the set of all lattices of a given rank sharing a given discriminant quadratic
form. Note that the set of frame lattices corresponding to a given K3 surface is also a genus, but its
computation is generically not feasible with direct algorithmic tools. This is largely due to the high rank of
frame lattices, in this case 18.
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The computation of T0’s proceeds as follows. First we need to generate an arbitrary
primitive embedding of TS ≡ [a b c] into E8. This is achieved by picking a random primitive
vector t1 ∈ E8 with norm t21 = 2a and then another random primitive vector t2 ∈ E8 with
norm t22 = 2c and t1 · t2 = b; primitivity can be checked by computing the vectors in the
dual of the lattice generated by t1,2 and determining that none lie inside E8 except those in
the original lattice (more precisely one needs only to check this for vectors with even norm.)

Next we look for a set of six linearly independent vectors in E8 orthogonal to t1 and t2,
which generically generate a sublattice T̃0 of T0. In practice, we construct T̃0 by looking for
vectors orthogonal to TS with the smallest possible norm, starting with roots, and then
progressively looking for vectors with greater norm if required. All overlattices of T̃0 can
then be constructed by appropriately replacing some of its generators with vectors in the
dual lattice T̃ ∗

0 . The lattice T0 corresponds to the case in which the resulting overlattice is
embedded in E8 and its determinant is equal to det(TS) = 4ac− b2.

Out of the complete lists of T0’s for each TS , we have picked those shown in table 2,
where they are represented using Dynkin diagrams and generalizations thereof explained in
the caption. For example, for the lattice

[
4 0 4

]
we chose

T0 =



2 −1
−1 2 +1 −1

+1 4 −1
−1 4 −1

−1 −1 2 −1
−1 2


≃ , (3.1)

which exhibits the most complicated structure arising with Nflux ≤ 24. Indeed, out of the
34 lattices in this class, 11 are root lattices, 14 have one vector with norm 4, six have two
vectors with norm 4, one has one vector with norm 6 and two have two vectors with norm
6; only the one shown above requires a positive inner product. As we will see, the problem
of studying frame lattices associated to each TS is well under control for all but the cases
in which the T0 has two vectors with norm 6. For these exceptional cases we are able to
obtain a comprehensive amount of data, but cannot guarantee an exhaustive count of the
possible frame lattices. Since we are particularly interested in the question of whether or
not there exist frame lattices with no roots, which requires exhaustivity, we will employ a
complementary algorithm designed to answer this specific question.

We have also computed eight T0’s corresponding to the possible TS ’s admitting 25 ≤
Nflux ≤ 30 in order to study how non-Abelian symmetry enhancement behaves above the
tadpole bound but still close to it. As is easily seen from table 2, some of these lattices
take on more complicated forms and we treat them in a similar way to the two exceptional
lattices mentioned above.

3.2 Finding and examining embeddings of T0 intoNI

Continuing with the Kneser-Nishiyama method, we now have to embed the T0’s in table 2
into all the possible Niemeier lattices NI . A necessary condition for this embedding to exist
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1 0 1 1 1 1 2 0 1 2 0 2 2 1 1 2 1 2

2 2 2 3 0 1 3 0 2 3 0 3 3 1 1 3 1 2

3 2 2 3 3 3 4 0 1 4 0 2 4 0 4 4 1 1

4 2 2 4 4 4 5 0 1 5 0 5 5 1 1 5 5 5

6 0 1 6 0 2 6 0 3 6 0 6 6 1 1 ≃ 3 1 2 6 2 2

6 3 3 6 6 6 7 7 7 8 8 8 ∗ 7 1 1 ∗ ∗ 9 9 9 ∗

∗ 7 0 1 ∗ ∗ 7 0 7 ∗ ∗ 8 4 4 ∗ ∗ 4 2 4 ∗ ∗ 8 2 2 ∗ ∗ 10 10 10 ∗

Table 2. (Generalized) Dynkin diagrams representing the Gram matrices of the T0 lattices for the
K3 surfaces S1 (denoted by [a b c]) appearing in solutions with Nflux ≤ 30. Asterisks ∗TS∗ denote
Nflux ≥ 25 (cf. table 3). We use custom conventions when there are vectors with norm larger than 2:
(i) vectors with norm 4 and 6 are respectively represented by black-filled circles and squares, and (ii)
the number of links always denotes the inner product of two vectors, i.e. one line corresponds to −1
and two lines to −2. For

[
4 0 4

]
the crossing line denotes a positive inner product +1.

is that the root sublattice (T0)root of T0 is a sublattice of the root sublattice (NI)root of NI .
It is clear that this condition can only be satisfied for the Leech lattice Nω if (T0)root = ∅,
which is not true for any T0 we have obtained such that the tadpole bound is satisfied.

3.2.1 Algorithm 1: minimum non-Abelian gauge group rank

In general, there are many inequivalent primitive embeddings of T0 into any of the NI , all
of which in principle we have to consider in order to obtain the possible frame lattices W .
These embeddings and their associated W ’s can be obtained as follows:

1. We construct all possible embeddings of (T0)root into (NI)root such that the generators
of the former correspond to a subset of the generators of the latter, where we take as
generators a set of simple roots for the ADE root systems. In other words, we take
the Dynkin diagram of (T0)root to be embedded into the Dynkin diagram of (NI)root
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(up to automorphisms of NI). By virtue of Propositions 3 and 4 of appendix A.5, this
procedure is exhaustive, i.e. it gives every possible embedding of (T0)root into NI , all
of which are guaranteed to be primitive.

2. It is always the case that T0 is obtained by extending the generating set {vi} of
(T0)root by r − 6 vectors with norm > 2, with r the rank of (T0)root. In particular,
(T0)root = T0 for r = 6. For r ≤ 5, the extra generators are chosen from a previously
generated list containing all the vectors in NI with the desired norms, such that their
products with {vi} correspond to the Gram matrix of T0. Primitivity of the resulting
embedding is then checked.

3. For every embedding of T0 obtained we compute its orthogonal complement W in NI .
This is done in the same way as how T0 is obtained as the orthogonal complement of
TS in E8, as described above.

In practice we are not interested in recording the exact data defining every possible
frame lattice W . What we care about is “how much” non-Abelian gauge symmetry is
realized for each fibration of a given K3, which can be quantified e.g. as the rank of Wroot; in
particular we care about the overall minimum of this value. For each embedding of T0 into
NI in the above algorithm we may restrict therefore to a computation of this rank, which
can be done by finding any maximal set of linearly independent roots of NI orthogonal to
T0 — its number of elements is just the rank of Wroot.

We have carried out this scan exhaustively for every T0 in table 2 appearing in solutions
with Nflux ≤ 24, except for those corresponding to TS = [7 7 7] , [8 8 8], for which our results
are partial at this stage and yield upper bounds on the minimal rank of root sublattices
(see below for an alternative treatment). The reason for this is that for larger norms, the
number of vectors in a given lattice (in this case the NI) generically increases, and the
number of pairs of such vectors even more so. This presents a purely technical problem,
as computational times and memory requirements get out of control. The cases we have
examined exhaustively using the method just outlined have at most two vectors with norm 4
or one with norm 6. The values of the minimal rank of the associated Wroot’s are presented
in table 3, together with the aforementioned upper bounds for the exceptional cases.

Having these results at hand we may have expected from the tadpole conjecture that
as Nflux increases, the minimal rank of allowed gauge algebras should decrease. We have
plotted this relation in figure 1, which shows that such a trend is present in a very roughly
linear fashion (with large deviations at certain points whose Nflux admits only one or two
solutions). On the other hand, we do observe a much sharper decrease of this rank as the
determinant of TS increases. This data is plotted in figure 2.

We have also explored the non-Abelian gauge symmetries associated to the TS ’s
considered here and find it interesting that every possible simple ADE gauge algebra g is
realized up to the overall constraint rank(g) ≤ 18. One could have expected some nontrivial
restriction on the algebras which satisfy the tadpole bound; if there is one, it is more subtle
than simply disallowing certain ADE types. In appendix B we record samples of possible
gauge algebras for each elliptic K3 under consideration.
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3.2.2 Algorithm 2: existence of purely Abelian gauge group

To deal with the T0’s with two vectors of norm 6 we have employed an alternative algorithm
which determines only whether or not there exist corresponding frame lattices without roots.
Although it is more limited than the above algorithm, its scope of applicability is greater
and still answers the main question posed by the tadpole conjecture in this scenario.

This alternative algorithm takes as an input one of the embeddings of (T0)root con-
structed in step 1 of the previous algorithm and proceeds as follows:

1. Construct a list {α1, . . . , αn} with every positive root (using αi and −αi is redundant
in the following) in NI orthogonal to (T0)root and two lists V and W each with every
norm 6 vector in NI such that every pair (v, w) satisfying the condition to extend
(T0)root to T0 is in V ×W .

2. Separate V into two lists V ⊥
1 and V

∥
1 according to whether the elements of V are

orthogonal or not to α1. Similarly, separate W into W⊥
1 and W

∥
1 .

3. Construct three tuples (V ⊥
1 ,W

∥
1 ), (V

∥
1 ,W

⊥
1 ) and (V ∥

1 ,W
∥
1 ), which are the only ones

containing pairs of norm 6 vectors defining embeddings of T0 not orthogonal to α1.
In other words, we discard (V ⊥

1 ,W⊥
1 ) as it automatically leads to frame lattices with

at least two roots ±α1.

4. Perform steps 2 and 3 separately on these three tuples using orthogonality with
α2. Iterate until every tuple of the type (V ⊥,W⊥) has been discarded. If at some
iteration there remain no inputs for the next, there exists no frame lattice without
roots. Otherwise the algorithm must continue up to the n-th iteration, producing one
or more tuples. It is still possible that the pairs of norm 6 vectors in such tuples do not
properly extend (T0)root to T0, in which case the result is again negative. Otherwise
we do obtain explicitly one or more frame lattices without roots.

This algorithm must be applied for every embedding of (T0)root into every possible NI . If
for one of these one finds some W without roots, the algorithm stops.

Performing this algorithm for TS = [7 7 7] , [8 8 8] we see that for every embedding of
(T0)root it stops at some iteration, thus we conclude that there exists no corresponding W
without roots and the tadpole conjecture is verified.

3.3 Beyond the tadpole bound

Having seen that there exists no frame lattice without roots associated to a TS admitting
Nflux ≤ 24, it is natural to ask what is the minimum value of Nflux for which one does exist.

To this end we consider the TS ’s with the next three allowed values Nflux = 27, 28, 30;
their corresponding T0’s are the last eight shown in table 2. Four of these T0’s, corresponding
to TS = [7 1 1] , [7 0 1] , [7 0 7] , [4 2 4], have the simple form that is amenable to the
algorithm of section 3.2.1, allowing to find the minimum ranks of the root systems associated
to the frame lattices. These are respectively 14, 14, 6 and 11. The minimum values of Nflux
taken by the corresponding backgrounds are 27, 28, 30 and 28. However, these values of
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Nflux are also obtained using the four remaining TS ’s, and so these could push down the
minimum ranks as functions of Nflux. Indeed these other lattices have larger determinant
and from the trend in figure 2 we do expect this outcome.

We have subjected the lattices TS = [9 9 9] , [8 4 4] to the algorithm of section 3.2.2
and found that for these there are no frame lattices without roots, similarly to the cases
[7 7 7] and [8 8 8] studied previously. This settles the question of existance of such lattices
for Nflux ≤ 28 giving a negative answer; the relationship between symmetry enhancements
and the tadpole bound is not as fine tuned as we could have expected a priori. Instead
it turns out that a frame lattice without roots does exist for TS = [10 10 10], which we
construct explicitly in the following.

Consider the Leech lattice Nω generated by the row vectors


v1
...
v24

 =



8 4 4 4 4 4 4 2 4 4 4 2 4 2 2 2 4 2 2 2 0 0 0 −3
4 4 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 1 1 2 1 0 0 −1
4 2 4 2 2 2 2 2 2 2 2 2 2 1 2 1 2 2 1 1 1 0 0 −1
4 2 2 4 2 2 2 2 2 2 2 2 2 1 1 2 2 1 2 1 1 0 0 −1
4 2 2 2 4 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 1 0 0 −1
4 2 2 2 2 4 2 2 2 2 2 1 2 2 1 1 2 1 2 1 0 0 0 −1
4 2 2 2 2 2 4 2 2 2 2 1 2 1 2 1 2 1 1 2 0 0 0 −1
2 2 2 2 2 2 2 4 1 1 1 2 1 2 2 2 1 2 2 2 2 0 0 1
4 2 2 2 2 2 2 1 4 2 2 2 2 2 2 2 2 2 2 2 1 1 1 −1
4 2 2 2 2 2 2 1 2 4 2 2 2 2 1 1 2 2 1 1 0 1 0 −1
4 2 2 2 2 2 2 1 2 2 4 2 2 1 2 1 2 1 2 1 0 0 1 −1
2 2 2 2 1 1 1 2 2 2 2 4 1 2 2 2 1 2 2 2 2 1 1 1
4 2 2 2 2 2 2 1 2 2 2 1 4 2 2 2 2 1 1 1 1 1 1 −1
2 2 1 1 2 2 1 2 2 2 1 2 2 4 2 2 1 2 2 2 2 2 1 1
2 1 2 1 2 1 2 2 2 1 2 2 2 2 4 2 1 2 2 2 2 1 2 1
2 1 1 2 2 1 1 2 2 1 1 2 2 2 2 4 1 2 2 2 2 1 1 1
4 2 2 2 2 2 2 1 2 2 2 1 2 1 1 1 4 2 2 2 1 1 1 −1
2 1 2 1 2 1 1 2 2 2 1 2 1 2 2 2 2 4 2 2 2 2 1 1
2 1 1 2 2 2 1 2 2 1 2 2 1 2 2 2 2 2 4 2 2 1 2 1
2 2 1 1 2 1 2 2 2 1 1 2 1 2 2 2 2 2 2 4 2 1 1 1
0 1 1 1 1 0 0 2 1 0 0 2 1 2 2 2 1 2 2 2 4 2 2 2
0 0 0 0 0 0 0 0 1 1 0 1 1 2 1 1 1 2 1 1 2 4 2 2
0 0 0 0 0 0 0 0 1 0 1 1 1 1 2 1 1 1 2 1 2 2 4 2

−3 −1 −1 −1 −1 −1 −1 1 −1 −1 −1 1 −1 1 1 1 −1 1 1 1 2 2 2 4



.

(3.2)
It can be checked that the vectors

v15 − v7, v1 − v2, v12 − v16, v1 − v3, v1 − v5, v11 (3.3)

generate a sublattice

T0 =



4 −1 0 −2 −2 0
−1 4 −1 2 2 2
0 −1 4 −1 1 1

−2 2 −1 4 2 2
−2 2 1 2 4 2
0 2 1 2 2 4


. (3.4)

This T0 is complementary to TS = [10 10 10], and since it is embedded into the Leech
lattice its orthogonal complement automatically has no roots. We also note that there is an
alternative T0 which takes a simpler form, recorded in table 2 in the last entry. It can be
seen that it admits an embedding into the Niemeier Nχ with (Nχ)root = 12A2 such that its
orthogonal complement has no roots.

Having shown that for Nflux = 30 there exists a frame lattice without roots, it becomes
unnecesary to study the remaining lattice TS = [8 2 2]. Our analysis is then complete; we
see that, although not exactly above the tadpole bound, not too far from it there do exist
backgrounds without non-Abelian gauge symmetries.
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TS Det Min rank Min tadpole
1 1 1 3 17 3
1 0 1 4 17 4
2 1 1 7 16 7
2 0 1 8 16 8
3 1 1 11 15 11
2 2 2 12 15 6
3 0 1 12 15 12
2 1 2 15 15 15
4 1 1 15 15 15
2 0 2 16 14 8
4 0 1 16 15 16
5 1 1 19 15 19
3 2 2 20 14 20
5 0 1 20 14 20
3 1 2 23 14 23
6 1 1 23 14 23
3 0 2 24 14 24
6 0 1 24 14 24
3 3 3 27 14 9
7 1 1 27 14 27
4 2 2 28 14 14

TS Det Min rank Min tadpole
7 0 1 28 14 28
4 0 2 32 13 16
3 0 3 36 13 12
6 2 2 44 12 22
4 4 4 48 12 12
6 0 2 48 12 24
4 2 4 60 11 30
8 2 2 60 ≤13 30
6 3 3 63 11 21
4 0 4 64 11 16
6 0 3 72 10 24
5 5 5 75 10 15
5 0 5 100 9 20
6 6 6 108 8 18
8 4 4 112 1 ≤ r ≤10 28
6 0 6 144 8 24
7 7 7 147 1 ≤ r ≤6 21
8 8 8 192 1 ≤ r ≤4 24
7 0 7 196 6 28
9 9 9 243 1≤ r ≤5 27

10 10 10 300 0 30

Table 3. Smallest rank for the Wroot for the attractive K3 surfaces with Nflux ≤ 30, labeled by TS .
We give higher bounds for the cases that we have not explored exhaustively.

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 300
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Figure 1. Values of the minimum rank of non-Abelian gauge algebras g realizable by backgrounds
with given Nflux. The squares represent upper bounds (cf. table 3). For all cases except at Nflux = 30
the rank of g is strictly larger than 0 (see also the discussion in section 3.2.2).
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Figure 2. Values of the minimum rank of non-Abelian gauge algebras g associated to elliptic K3s
ordered by the determinant of their transcendental lattice TS .

4 Conclusions

In this paper we have considered the set of F-Theory compactifications on K3 × K3 with
supersymmetric four-form fluxes of a particular simple form, given in (2.22). These lead
to attractive K3 surfaces with fully stabilised complex structure moduli. The list of all
solutions with fluxes below and slightly above the tadpole bound Nflux ≤ 24 is given in
table 1. We have shown explicitly that whenever the tadpole bound is satisfied, these vacua
always exhibit non-Abelian gauge symmetries. This implies that moduli stabilisation within
the tadpole bound happens at special points in the moduli space, in line with the tadpole
conjecture. Furthermore, in order not to have non-Abelian gauge algebra we need to go all
the way to Nflux = 30.

Our results were obtained by employing the Kneser-Nishiyama method, which allows
to find the frame lattice of the elliptic fibration by embedding into Niemeier lattices. By
this method we have scanned all the possible frame lattices of the elliptic K3s admitted by
fluxes within the tadpole bound, showing that they always contain roots. Once we relax
the tadpole bound, one can find F-theory flux solutions without non-abelian gauge groups.
As the rank of the gauge group including abelian factors is always 18 for the solutions we
consider, the associated K3 surfaces have a Mordell-Weil lattice of rank 18.

We saw that the algebras appearing at the vacua with Nflux ≤ 24 do not seem to be
constrained in any evident way; in particular every simple ADE factor up to rank 18 can
be found among the whole list. We have recorded some of these algebras in appendix B. It
would be interesting to see if a nontrivial constraint on the gauge algebras exists.

We have also shown with an explicit construction that for Nflux = 30 there exists a
vacuum with no non-Abelian gauge symmetry, in line with the intuition that such vacua
should exist not far above the tadpole bound.
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One natural extension of this work would involve considering more general fluxes
involving the (1, 1)-forms on each of the K3, namely fluxes of the form (2.20). Such generic
fluxes are much harder to analyse, as they are not expected to lead to attractive K3
surfaces. These flux solutions were actually considered as the original evidence for the
tadpole conjecture. Using evolutionary algorithms many M-theory flux configurations with
Nflux = 25 stabilising all moduli (Kähler and complex structure) at generic points in moduli
space were constructed, where none were found within the tadpole bound. It would be
interesting to see if any of these solutions can be lifted to F-theory.

There is an interesting link between our work and the theory of sphere packings which
allows to conjecture this result [40]. For an n-dimensional lattice sphere packing based on a
lattice L with shortest lattice vector of length v2 = λ, the centre density of the packing is

δL = λn/2

4
1√

det(L)
. (4.1)

The tightest known such packing for n = 18 comes from the lattice Λ18, which has λ = 4
and detL = 192 [41, 42]. The discriminant group of this lattice is Z5

2 ×Z6, so that it cannot
appear as a frame lattice of an attractive K3 surface. This is the tightest sublattice of the
Leech lattice and the tightest known lattice in 18 dimensions, but no proof of optimality has
been given. Note that 192 is exactly the highest determinant among the lattices appearing
within the tadpole bound. Hence finding a frame lattice without roots (so that the minimal
length vector is 4) would have given us a new record sphere packing in 18 dimensions.
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A Lattices

In this appendix we state and develop properties of lattices needed for our analysis. Refer-
ences for discriminants and primitive embeddings are [43, 44]. More background on ADE
root lattices, their discriminants and embeddings as well as the Niemeier lattices can be
found in [41, 45], see also [46, 47] for the present context.

We will use the term lattice Λ to refer to a finitely generated free Abelian group together
with an integral bilinear form ·, i.e. for all l, l′ ∈ Λ, l · l′ ∈ Z. Here, free means that nl ̸= 0
for every l ̸= 0 and all n ∈ Z with n ̸= 0. This implies that as an Abelian group (i.e.
forgetting the bilinear form) Λ ∼= Zr. The integer r is called the rank of Λ. Choosing a
Z-basis {li} of Λ we can write the bilinear form as li · lj = Ωij . The matrix with components
Ωij is called the Gram matrix of the lattice. If the rank of the matrix Ω is r, the difference
l+ − l− between the number of positive (l+) and negative eigenvalues (l−) of Ω is called the
signature of Λ. A lattice is called even if l · l ∈ 2Z for all l ∈ Λ and odd otherwise.
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For a lattice Λ, Λ[k] denotes the lattice found by rescaling Ωij by k.
Given two lattices Λ and Ψ of equal rank for which Ψ ⊂ Λ, Λ is called an overlattice

of Ψ.

A.1 Dual lattice, discriminant forms, and overlattices

By tensoring with the rationals ΛQ := Λ⊗Q becomes a vector space, and the bilinear form
between lattice elements naturally extends to ΛQ. The dual lattice Λ∗ is the subset of ΛQ
that has an integral product with all elements of Λ:

Λ∗ = {ℓ ∈ ΛQ|ℓ · l ∈ Z ∀l ∈ Λ} . (A.1)

We can use the basis {li} to express elements of Λ∗ as well, but then the coefficients will
in general be rational rather than integer numbers. As l · l′ ∈ Z for all l, l′ ∈ Λ, it follows
that Λ ⊆ Λ∗.

As Λ ⊆ Λ∗ we can consider the quotient

GΛ := Λ∗/Λ , (A.2)

which is called the discriminant group of Λ. We denote the minimal number of generators
of GΛ by ℓ(GΛ). The orders of the generators of GΛ are equal to the diagonal entries of the
Smith normal form of Ωij which implies that ℓ(GΛ) ≤ rk Λ.

As Λ∗ is contained in ΛQ, we can extend the bilinear form to Λ∗ (where it ceases to be
integral in general) and hence to GΛ. For γ, γ′ ∈ GΛ we have that

qΛ(γ, γ′) = γ · γ′ mod 2Z , (A.3)

which is called the discriminant form of Λ.
When Λ∗ = Λ the lattice Λ is called self-dual or unimodular. This implies that

det(Ω) = ±1. A simple example of an even unimodular lattice is given by the hyperbolic
lattice U with inner form

U =
(
0 1
1 0

)
. (A.4)

This is the unique even unimodular lattice of signature (1, 1).

Theorem 1. An even and self-dual lattice of signature (p, q) exists if and only if
p − q = 0mod 8. If furthermore both p ̸= 0 and q ̸= 0, this lattice is unique (up to
isomorphism).

For even lattices of definite signature there is a unique self-dual lattice of rank eight,
the root lattice E8. For rank 16 there are two such lattices, E8 ⊕ E8 and D̃16, which is an
overlattice of D16. In dimension 24, there are 24 even self-dual lattices, which are called
the Niemeier lattices. We review their construction in appendix A.4.
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A.2 Primitive embeddings

For a sublattice M ⊂ Λ the embedding of M is called primitive if the quotient Λ/M is
free, i.e. is again a lattice. This implies that for every ℓ ∈ Λ such that ℓ /∈ M , it cannot
happen that there is an n ∈ Z, n ̸= 0, such that nℓ ∈ M , as this would imply that ℓ ̸= 0,
but nℓ = 0 in the quotient. Primitivity of an embedding is equivalent to M ∩ (Λ⊗Q) =M .
For non-primitive embeddings, the quotient Λ/M contains finite groups, which are called
the torsional subgroup tors(Λ/M).

Theorem 2. For an even lattice M of signature (m+,m−) there exists a primitive embedding
into an even self-dual lattice Λ of signature (l+, l−) if m± ≤ l± and rk(M) ≤ rk(Λ)/2.

Theorem 3. For an even lattice M of signature (m+,m−) there exists a unique primitive
embedding into an even self-dual lattice Λ of signature (l+, l−) if m± < l± and ℓ(GM ) ≤
rk(Λ)− rk(M)− 2.

For any embedding, we may consider the orthogonal complement

Λ⊥ = {ℓ ∈M |ℓ · l = 0 ∀ l ∈ Λ} . (A.5)

The orthogonal complement is automatically primitively embedded in M .

Theorem 4. In case both M and M⊥ are primitively embedded into an even unimodular
lattice Λ, it follows that GM

∼= GM⊥ and

q(M) = −q(M⊥) . (A.6)

The converse is also true: for any pair of even lattices M and N such that GM
∼= GN with

q(M) = −q(N) and which furthermore obey m+ + n+ −m− − n− = 0 mod 8 there exists
an even unimodular lattice Λ such that M and N are primitively embedded into Λ and
M = N⊥, N =M⊥ in Λ.

For a primitive sublattice Ψ of a lattice Λ we always have

Λ ⊇ Ψ⊕Ψ⊥ (A.7)

but the above is rarely an equality. An exception to this is when Ψ is self-dual:

Theorem 5. Let M be a self-dual lattice which is primitively embedded into a lattice Λ.
Then

Λ =M ⊕M⊥ (A.8)

A.3 Root lattices

For a lattice, we shall call those elements v with v2 = 2 roots.8 For any even lattice Λ,
Λroot ⊂ Λ is the sublattice generated by all roots of Λ. We can always write

Λroot = Γ1 ⊕ Γ2 ⊕ · · · (A.9)

where Γk ∈ {An, Dn, E6, E7, E8} is an ADE root lattice, the details of which are described
below. For the construction of Niemeier lattices we will need specific elements of the dual
lattice ‘glue vectors’) which are also defined below.

8These are the conventions natural in group theory. In geometry, we will encouter such lattices with a
relative minus sign in front of the inner form.
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An lattice:
An = {v ∈ Zn+1|

∑
vi = 0} . (A.10)

Roots αij are of the form vi = 1, vj = −1 and 0 else, and the dual lattice A∗
n contains An

together with multiples of

v[1] =
( 1
n+ 1 , · · · ,

1
n+ 1 ,−

n

n+ 1

)
. (A.11)

Clearly
∑

i(v[1])i = 0 and v[1] · αij = 0 or 1. As (n + 1)v[1] ∈ An it follows that
GAn = Zn+1 and

qAn = n+ n2

(n+ 1)2 = n

n+ 1 . (A.12)

The glue vectors we will need are defined as

v[i] =
(

i

n+ 1 , · · · ,
i

n+ 1 ,−
j

n+ 1 , · · · ,−
j

n+ 1

)
, (A.13)

where i+ j = n+1, 0 ≤ i ≤ n and the above expression has j components equal to i/(n+1)
and i components equal to −j/(n+ 1).

Dn lattice:
Dn = {v ∈ Zn|

∑
vi ∈ 2Z} . (A.14)

Roots αij± are of the form vi = 1, vj = ±1 and 0 else. The dual lattice D∗
n is generated by

the αij± together with

vd(a) =
(
(−1)a1 1

2 , (−1)a2 1
2 , · · · (−1)an

1
2

)
(A.15)

for arbitrary integers ai. These come in two parity types, those with an even number of −
signs and those with an odd number of − signs. Adding or subtracting appropriate roots of
Dn does not change this parity.

If n is odd, −vd(a) has the opposite parity to vd(a). Modulo Dn, there is hence a
single generator of D∗

n. As n is odd 2vd(a) /∈ Dn, but 4vd(a) ∈ Dn. Hence GAn = Z4 and

qDn = n

4 . (A.16)

If n is even, we have that 2vd(a) ∈ Dn for all a. The different parities of vd(a) are no
longer equivalent by inverting vd(a), so that GAn = Z2 × Z2 and

qDn =
(

n
4

n−2
4

n−2
4

n
4

)
, (A.17)

where we have chosen the generators v1 = (1
2

n) and v2 = (−1
2 ,

1
2

n−1).
The glue vectors we will need are defined as

v[1] = (1
2 ,

1
2 , · · · ,

1
2) ,

v[2] = (0, 0, · · · , 0, 1) ,
v[3] = (1

2 ,
1
2 , · · · ,

1
2 ,−

1
2) .

(A.18)
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E8 lattice:
E8 =

{
v ∈ Q8 |

∑
vi ∈ 2Z , vi ∈ Z∀i or vi ∈ Z+ 1

2∀i
}
. (A.19)

It is self-dual, i.e. E∗
8 = E8, so that the determinant of the inner form between generators

equals one.

E7 lattice:
E7 = {v ∈ E8 | v · (0, 0, 0, 0, 0, 0, 1,−1) = 0} . (A.20)

The dual lattice E∗
7 contains

v[1] =
(

1
4 ,

1
4 ,

1
4 ,

1
4 ,

1
4 ,

1
4 ,−

3
4 ,−

3
4

)
, (A.21)

and E∗
7/E7 = Z2. The generator of the quotient obeys v[1] · v[1] = 3/2.

E6 lattice:

E6 =
{
v ∈ E8 | v · (1, 0, 0, 0, 0, 0, 0, 1) = v · (1

2 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2) = 0

}
. (A.22)

The dual lattice E∗
6 contains the non-zero elements

v[1] =
(
0,−2

3 ,−
2
3 ,

1
3 ,

1
3 ,

1
3 ,

1
3 , 0
)
,

v[2] =
(
0, 2

3 ,
2
3 ,−

1
3 ,−

1
3 ,−

1
3 ,−

1
3 , 0
)
= −v[1] ,

(A.23)

and E∗
6/E6 = Z3. The generator of the quotient obeys v[1] · v[1] = 4/3.

For every root lattice, we can choose a Z basis composed of roots, such that the inner
form Ωij between them can be read off from the Dynkin diagram of the associated Lie
algebra: every node corresponds to a basis element, and two basis elements have inner form
−1 if the two associated nodes are joined by a line. For the ADE lattices described above
these diagrams are depicted as follows:

An Dn

E6 E7 E8

For a specific choice of a Z basis composed of roots, the roots contained in this basis are
called simple roots.

For any pair of root lattices, the existence of a primitive embedding of one into the
other can be inferred from their Dynkin diagrams alone [45, 46]:

Theorem 6. Up to automorphism, every primitive embedding between root lattices is given
by an appropriate identification of simple roots.

To see this consider some primitively embedded root lattice L into another root lattice
M . Primitivity implies that L is defined as the intersection of M with some linear space of
dimension equal to the rank of L, hence the simple roots of L can be taken as simple roots
of M . For explicit classifications of such embeddings see [46].
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A.4 The Niemeier lattices

For rank 24 there are 24 even self-dual lattices of definite signature, which are called
the Niemeier lattices NI . Following [41], we will denote them by the 24 letters of the
Greek alphabet. All of the NI except for the Leech lattice ω (which has no roots) can be
constructed by starting with a direct sum of root lattices and adding in glue vectors. In
table 4, we have collected the root sublattices of the NI and the glue vectors. For

(NI)root = Γ1 ⊕ Γ2 ⊕ · · · (A.24)

the glue vectors can be written as

vk = (v[ak], v[bk], . . . ) (A.25)

where v[ak] ∈ Γ∗
1, v[bk] ∈ Γ∗

2, · · · and so on. Using the notation introduced above, we will
abbreviate this as [a1b1 · · · ]. We will use the notation [(a1b1c1)] to indicated that all cyclic
permutations of glue vectors are used.

A.5 Embeddings into Niemeier lattices

Here, we will state some necessary conditions for embeddings of lattices T0 of rank 6 into
a lattice N of higher dimension. The application we have in mind is when N is one of
the Niemeier lattices. The simplifications we are interested in involve studying the root
sublattice (T0)root of T0, which must be embedded into the root sublattice Nroot of N .

Proposition 1. An even overlattice of a root lattice of rank < 8 is again a root lattice.

Proof. A root lattice L has an even overlattice if there exists an element in its dual lattice
L∗ not in L and with even norm. It can be checked by inspection that for rank less than
8, all such elements have norm 2 and so are roots; e.g. A4

1 ⊂ D4. For rank 8 the latice A8
1

has even overlattice given by the sum of fundamental weights of each A1, which is a vector
with norm 4.

Proposition 2. Let Λ ⊂M ⊂ N and assume that Λ is not primitively embedded into M .
Then Λ is also not primitively embedded into N .

Proof. As Λ is not primitively embedded into M there is an m ∈M such that m /∈ Λ but
km ∈ Λ for k ̸= 1. As M is inside N we again have m ∈ N , m /∈ Λ but km ∈ Λ, so that Λ
is also not primitively embedded in N .

A consequence of this is that if T0 is a root lattice primitively embedded into one of the
Niemeier lattices NI , it must necessarily be primitively embedded into (NI)root. However,
not all of the lattice T0 we are interested in are of this type. We can formulate a stronger
statement for lattices of low rank however:

Proposition 3. Let T be a lattice of rank < 8 that is primitively embedded into a lattice
N . Then Troot is primitively embedded into Nroot.
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I (NI)root glue vectors
α D24 [1]
β D16 ⊕ E8 [10]
γ E3

8 —
δ A24 [5]
ϵ D2

12 [(12)]
ζ A17 ⊕ E7 [31]
η D10 ⊕ E2

7 [110], [301]
θ A15 ⊕D9 [21]
ι D3

8 [(122)]
κ A2

12 [15]
λ A11 ⊕D7 ⊕ E6 [111]
µ E4

6 [1(012)]
ν A2

9 ⊕D6 [240], [501], [053]
ξ D4

6 even permutations of [0123]
o A3

8 [(114)]
π A2

7 ⊕D2
5 [1112], [1721]

ρ A4
6 [1(216)]

σ A4
5 ⊕D4 [2(024)0], [33001], [30302], [30033]

τ D6
4 [111111], [0(02332)]

υ A6
4 [1(01441)]

ϕ A8
3 [3(2001011)]

χ A12
2 [2(11211122212)]

ψ A24
1 [1(00000101001100110101111)]

ω – –

Table 4. The Niemeier lattices NI .

Proof. To see this, let us assume that the embedding of T into N is primitive, but the
embedding of Troot into Nroot is not. Then there exists a m ∈ Nroot which is not in Troot
but km ∈ Troot for k ̸= 1. We can hence form an overlattice T ′

root of Troot which contains m
as well. As we have seen in Proposition 1, T ′

root must again be a root lattice. As km ∈ Troot
and m ∈ N , and furthermore T is primitively embedded in N , it follows that m ∈ T as
well; otherwise (T ⊗Q) ∩N ̸= T . But this implies that T ′

root ⊂ T , which is a contradiction
as we assumed that Troot is the root sublattice of T and not Troot.

As we are interested in lattice T0 of rank 6, every primitive embedding of T0 into any
one of the Niemeier lattice hence implies a primitive embedding of (T0)root into (NI)root.

Proposition 4. Let Troot be a root lattice and NI be a Niemeier lattice. Modulo auto-
morphism, primitive embeddings of Troot into NI are uniquely specified by an appropriate
identification of the simple roots of Troot and (NI)root.

Proof. As stated above, primitive embeddings between root lattice are uniquely given by
such an identification of simple roots, hence the same holds for primitive embeddings of
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Troot into (NI)root. In other words for any primitive embedding we can use automorphisms
of (NI)root to achieve such a description. As the automorphism group of a Niemeier lattice
NI contains the automorphism group of its root sublattice (NI)root [41], we can use the
same automorphism to bring any primitive embedding of Troot into NI into such a form.

B Examples of Wroot

In this appendix we record a list of possible root sublattices of frame lattices for K3 surfaces
with given transcendental lattice TS studied in this paper; see tables 5 and 6. We give up
to 20 examples for each TS , with at least one representative for each possible rank. The
case [6 1 1] is not included as it is exactly equivalent to [3 1 2] (cf. table 2). These examples
do not nearly exhaust every possibility and are recorded here for illustrative purposes. In
table 7 we give the full number of such lattices we have found in our exploration using the
Kneser-Nishiyama method, organized into the allowed ranks. We do not claim exhaustivity
of this exploration and so each number must be interpretted strictly as a lower bound.

In the data below it is reflected that, as mentioned in the text, every simple ADE
algebra of rank ≤ 18 is allowed within the tadpole bound Nflux ≤ 24. Note that we do not
claim that these simple algebras appear in an isolated manner, i.e. as gr ⊕ u18−r

1 . The point
is that at least at the level of ADE types, there is no forbidden Kodaira singularity in the
elliptic fibrations under consideration.

– 29 –



J
H
E
P
0
8
(
2
0
2
3
)
1
3
4

TS Sample of algebras
1, 0, 1 A11E6, A3A15, D3

6, D6D12, D18, D4E2
7 , A2

1E2
8 , A2

9, A1A17, A2
1D2

8, A2
1D16, A1D10E7, D10E8

1, 1, 1 A17, D10E7, A11D7, A2D16, E3
6 , A2E2

8

2, 0, 1 A7A9, A9D7, A5A7D5, A1D2
8, A2

1A9E6, A2
1D8E7, A1A3A2

7, A1D7D10, A1A3D14, A1A3E2
7

A1A15, A17, A1D4D2
6, A1D6D10, A5E2

6 , A1E2
8 , A1A3D6D8, A1D5D12, A1D17, A3E7E8

2, 0, 2 A2
7, A3A7D5, A2

1A2
5D4, A2

1A7D7, A9E7, A11D6, D17, A1A3D6E7, A4
1A2

7, D5D13

A15, A16, A2
5D6, D2

8, A1A3A13, A2
1A3D2

6, A7D4E6, A6
3, A2

1A2
3D10, A1A3D7E7

2, 1, 1 D2
8, A5A12, A17, A2A9D6, D5D12, D17, A4D7E6, D10E7, D9E8, A3

6

A1A2
8, A2

1A15, A7D2
5, A8D9, A1D16, A11E6, A10E7, A3E2

7 , A1E2
8

2, 1, 2 A1A2
7, A7D2

4, A1D2
7, A2

3D2
5, A4D5D7, A5D11, A2

2A5A8, A1A11D5, D17, A2
2A14

A15, A10D5, A3A8D5, A5D5D6, A8D8, A1D8E7, A2
4A9, D5D12, A2A8E7, A2A9E7

2, 2, 2 A11D4, A2
1A2

7, A4A7D5, D16, E2
8 , A3

1A14, A12D5, D4D5D8, A11E6, A3
1A5D10

A8D7, D4
4, D2

8, A2
2E2

6 , A2
1A6A9, A2

1A15, A2
1A3D2

6, D5D12, A3
1D7E7, D4E6E8

3, 0, 1 A9E6, A2
8, A3A13, A16, A2A15, A3A2

5D4, A1D2
8, A2

1A11D5, A2
1A2D14, A1A2D8E7

A2A6A8, A7A9, A1A15, A7D9, A17, A1D4D2
6, A2

1D8E7, A2D6D10, A1A5E2
6 , A1A2E7E8

3, 0, 2 A2
4A6, A1A13, A2

1A2
4A5, A2

5D5, A2
1A2A2

6, A3
1D7E6, A2

1D7D8, A1A9E7, A3A3
5, A1A2D5D10

A2
7, A4A6D4, A11D4, A2A8D5, A5D4D7, E2

8 , D7D10, A1A3D6E7, A1A2A15, A11E7

3, 0, 3 A2A2
3A5, A3A2

5, A3A5A6, A3A4A7, A1A2
5D4, A2

1A3D4D6, D7D9, A1A11D5, A2
1A3A5E7, A2

1A2
5D6

A1A2A2
5, A7E6, A2A2

6, A1A5A8, A5D2
5, D2

8, E2
8 , A1A2D6D8, A4

2A2
5, A2A2

5E6

3, 1, 1 A15, A2
6D4, A5D5D6, A2D2

7, A1D9E6, A1A4A5A7, A1A11D5, A6D11, A1D16, A2E7E8

A1A7A8, A1A10D5, A9D7, D6D10, A1D8E7, A17, A2A7D8, A1A2D14, D10E7, A10E8

3, 1, 2 A3A5A6, A6A8, A1A4A2
5, A1A2A6D6, A1D7E7, A3

1A13, A2D5D9, A1A2E6E7, D17, D9E8

A2
7, A1A2

3A2
4, A15, A2

1A7E6, A1A3A2
6, A1A10D5, A1A5D10, A17, A1A2A8E6, A1E2

8

3, 2, 2 A2
7, A3A2

6, A2
5D5, A2D7E6, A4

4, D6D10, A1A11D5, A1A2D6D8, A11E6, A4E2
7

A5A9, A1A2
5D4, A1A7D7, A2

2A3
4, A2

1A2
7, A2

1E2
7 , A2

1A3D2
6, A1A2D14, A2

1A4D12, A4D6E8

3, 3, 3 A3
3A5, A14, D2

4E6, A3A2
6, A2

3A9, A9D7, A4D5E7, A1A11D5, A2A4D11, A2
2A8E6

A3A5A6, A2
5D4, A1A2

3A2
4, A2

1A6A7, A1A2
2A5D5, A6D10, E2

8 , A2A7D8, A1A2D14, A2A8E8

4, 0, 1 A3
5, A4A6D5, A10D5, A9E6, A1A7A8, A1A7D2

4, A3E6E7, A2
1A2

3A5D4, A1D4D12, A2
1D8E7

A1A2
7, A2A8D5, A1D2

7, A1A2A6A7, A3A13, A4A6E6, A1A4A12, A3
1D6D8, D4D6E7, A1A7D2

5

4, 0, 2 A3A2
5, A1A2A4A7, A3A11, A2

4A7, A4
1A7D4, A2

8, A1A5D4D6, A1A3A13, A3D5D9, A2
1A7D9

A2A6D5, A1A2
2A9, A2

1E2
6 , A1A6A8, A4

1D5D6, A7D4D5, A2
1A2

4E6, A2
1A3D5D7, D17, A1A3A7E7

4, 0, 4 A4
2A3, A1A5D5, A2

1A2
3D4, A1A2A10, A2

1D5D6, A1A2A4A7, A1A2A3A4A5, A1A2
7, D4D2

6, A2
1A3A7D5

A3A2
4, A8

1A2
2, D2

6, A2
1A2

3D5, A4
2A2

3, A4
1D2

5, A1A3A5A6, A3A7D6, A9E7, A7D2
5

4, 1, 1 A6A9, A3D2
6, A2A14, A2A4D2

5, A9E7, A2
1E2

7 , A7D2
5, A4D13, A1A2

2E2
6 , A1E2

8

A15, A7A9, A16, A1A8D7, A2D7E7, A17, A2A5D10, A1D16, D10E7, A4E6E8

A2
1A3A4A5, A1A5A8, A1A7D6, A1A2A2

6, A11D4, A1A2
4A7, A4A12, A1A3D12, A1D16, A4D5E8

4, 2, 2 A1A3A2
5, A3A4A7, A2

1E2
6 , A2

1A6A7, A1A3A5D6, A3A5A8, A3
1A9D4, A10E6, A1D6D10, D10E7

A2
1A2

6, A2
1A5A7, A3

2A3
3, A1A2A3A9, A3D5D7, A2

1A2A3A5D4, A3A4D9, A3
1D6D8, A11E6, D4D5E8

4, 2, 4 A1A2A2
4, A2

1A5D4, A3
1A3

3, A3
3A4, A4

1A3A6, A3
1A5A6, A5

1A3A7, A3
1A2

2A9, A4
1A2

3A7, A4D8E6

A1A4A6, A3
2A2

3, A2
1A2A2

4, A3
1A2A3A5, A2

1A2A2
3A4, A1A2A4A7, A2

3A4D5, A10E6, A2
1A2A5D8, A2

1A4A5E7

4, 4, 4 A6
2, A2

2D2
4, A1A2A3A7, A2

1A3A4D4, A2
4A6, A3A5E6, A3D5D7, A1A7D2

4, A1A9D6, A1A2
3D2

5

A3
4, E2

6 , A3
3D4, A3A5D5, A1A2

3A7, A2
1A5D2

4, A2
1A3A4E6, A1A3

3D6, A4
1A2

3A7, A7D2
5

5, 0, 1 A8D6, A6A9, A3D2
6, A4D5E6, A1A15, A3D5D8, A2

1D8E6, A1D2
8, A1D8E8, A1E2

8

A4A5A6, A2
2A7D4, A2A6D7, A7A9, A4A7D5, A2

1D5D9, A3
1A3A5D6, A1D16, A2

1E7E8, A1A9D8

5, 0, 5 A2
1A2

2A3, A4
1A2A4, A3

1A2
2A4, A6

2, A1A3A4A5, A2
1A2A3A7, A1A3D11, A3

1A6D7, A1A9E7, A2
1A4

4

A2
2A2

3, A2
1A2

4, A11, A8
1D4, A3

3D4, A1A4D4D5, A4D11, A4
1D12, A1A4D5E7, A2

1A2
4E8

Table 5. Some examples of root systems of gauge algebras appearing for K3 surfaces with
transcendental lattice TS .
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J
H
E
P
0
8
(
2
0
2
3
)
1
3
4

TS Sample of algebras
5, 1, 1 A3

5, A2
1A8D5, A10D5, A1D2

7, A2
2A2

4D4, A2
5E6, A2E2

7 , A3A5A9, A3A14, A2D7E8

A2
4A7, A1A9D5, A1A5D4D5, A2

1A4A10, A1A4A6D5, A2A8E6, A2
4A9, A2

3A11, D10E7, A18

5, 5, 5 A5
2, A5

1A2
3, A1A2A2

4, A3
2A2

3, A4
1A3

2A3, A2
1A2A4D5, A3

2D2
4, A1A2A2

3D6, E2
8 , A4A5E8

A3
2D4, A2A3

3, A2
1A2

2A2
3, A2

1A3
2A4, A3

1A3A7, A2
1A4A8, A1A4

2D6, A1A2
2A5E6, A4E6E7, A4A5A9

6, 0, 1 A2
1A5A7, A2A7D5, A1A2

5D4, A2A7D6, A3A4A9, A2
1A4A5D5, A1D15, A1D2

8, A2
1E7E8, D5E6E7

A4A5D5, A1A2A3A5D4, A4A5D6, A3
1D2

6, A1A15, A1A3D12, A17, A1D7D9, A2
1A3A5D8, A5D5E8

6, 0, 2 A4
3, A2

6, A2
1A4A7, A2

1A2
6, A2

1D2
6, A3A8D4, A6

1A3A7, A2
1A5A9, A2

1A3D12, A1A3A5D9

A2
1A2

5, A2
3A7, A3

3D4, A1A6A7, A3
1A3

4, A2
2A5E6, A2

1A6A8, A2
1D5D10, A3D6E8, D5D7E6

6, 0, 3 A2A2
4, A3

1A2A2
3, A4

1A4
2, A3

2A2
3, A2

1A2
2A7, A2

2A4A6, A1A2A3A4D5, A2
1A4

2A6, D5D6E6, A2
2A3A5E6

A5
1A2

3, A3
1D2

4, A1A4
2A3, A3

1A2A2
4, A1A2A3A7, A8D6, A3

1A2
3D6, A5A11, A2

2E6E7, A2A3E6E7

6, 0, 6 A4
2, A1A2A6, A5

1A5, A1A4A6, A2
1A4E6, A2A6D5, A3

1A2
3A5, A1A2A3A9, A2

1A2
2A2

3A4, A2A3E2
6

A2
4, A1A4D4, A2

1A4D4, A5E6, A2
1D4E6, A1A7D5, A4A6D4, D4D5D6, A2D7E7, A2

3E2
6

6, 2, 2 A4
3, A2A3A2

4, A2A3A4D4, A1A2
4A5, A1A2A5D6, A3A3

4, A2A3D2
5, A2

1A3A11, A3D13, A2
1A3A5E7

A2
1A2

5, A2A3A8, A2
1A2A5D4, A6

1D2
4, A2

1D2
6, A2

1A3A5D5, A1A7D7, A2
1A9D5, A2

1A15, D9E8

6, 3, 3 A2
1A3

3, A3
1D2

4, A1A2A3
3, A2

1A4
2A3, A1A12, A1D6D7, A3A7D5, A8

2, A2
2E6E7, A1A2

2A13

A2
2A7, A3

2A2
3, A1A2A4D5, A3

1A2A8, A1A3A6D4, A2A4D8, A8D7, A1A5A10, A2E7E8, A2
2A6E8

6, 6, 6 A4
2, A3

1A3
2, A1A3

2A3, A2
1A3

3, A5
1A2A5, A9

1D4, A3
1A2A4A5, A1A3A4A7, A12D4, A2

1A2A3A2
5

D2
4, A1A2

4, A2
1A2

2A4, A2
1A4D5, A1D5D6, A2A5D6, A2

1A3A4A5, A1A7D7, A1A2
5D5, A2A2

5D5

7, 0, 1 A1A2A5A6, A4A6D4, A1A2
4D5, A3

5, A2
5D5, A1A2A5A8, A3

1A9D4, A2A7E7, A2
1D7D8, A1D16

A2
7, A1A5D2

4, A2
1A2

4A5, A3
1A3A5D4, A1A5D4D5, A5A11, A2

1D4D10, A1A4A2
6, A2

1D5D10, A1D8E8

7, 0, 7 A6
1, A2

1A2A3, A6
1A2, A7

1A2, A10
1 , A2

1A3
3, A4

1A4
2, A2

2A3
3, A2

1A2
2A2

4, A5
3

A2
1A2

2, A2
2A3, A4

1A2
2, A5

1A4, A7
1A3, A1A2

3A4, A2
1A2A2

4, A3
2A3A4, A1A2A3A2

4, A3
1D13

7, 1, 1 A2A3A4A5, A1A8D5, A8E6, A1A4A5D5, A6D9, A2A3A5A6, A2A4A5D5, A1D7E8, A2A5D10, A1A8E8

A4A2
5, D4D2

5, A4A5A6, A2
1A7D6, A3A6E6, A1A2A9D4, A1A2A5D8, A3A7D7, A1A2

2E2
6 , A1E2

8

7, 7, 7 A3
2, A2

1A3
2, A2

1A2A5, A1A3
3, A5

1A2D4, A1A2
2A3D4, A5

1A2
4, D7E7, A2

1A2D11, A2
2D12

A6
1A2, A4

1A5, A5
1A2A3, A5

1A2A4, A3
2A2

3, A5
2A3, A4

1A2
5, A3

3A6, A4A2
6, A2

1A2A13

A2
1A3A4A5, A1A3A10, D2

7, A2A4D4D5, A4D4D7, A2
2A3A9, A1A2A3D10, A1D8E7, A1A2A14, A4D5E8

8, 8, 8 A2
2, A3

2, A5
1A2, A3

1A2A3, A3
1A2D4, A2

2A2
3, A2A3

3, A1A2A3A6, A1A2A2
5, A2

1A3
3D4

A4
1A2, A7

1, A4
2, A1A2

4, A1A3
2A3, A9

1A2, A1A2
2A3A4, A1A3

2A2
3, A3

2A2
4, A1A15

9, 9, 9 A3
1A2, A3

1A3, A5
1A2, A8

1, A3
1A2

3, A7
1A3, A4

1A2
2A3, A2

2A3A5, A3
2A3A4, A3

1A2A2
5

A1A2
2, A2D4, A1A3

2, A2
1A3

2, A2A3D4, A2
3D4, A1A2A3A5, A6

1A2D4, A2
4A6, A8

2

10, 10, 10 A4
1, A3

1A2, A1A2A3, A2
1A2A3, A1A2A5, A3

1A6, A1A2
2E6, A5

1A2A6, A2
1A2

4A5, A3
1A2A4E8

A5
1, A6

1, A4
1A3, A2

4, A3
2A3, A6

1A2
2, A2

6, A1A5E8, A1A2A4A9, A3
1A2A4A9

Table 6. Continuation of table 5.
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TS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1, 0, 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 12
1, 1, 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 4
2, 0, 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 13 11
2, 0, 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 30 17 9
2, 1, 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 17 1
2, 1, 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 24 20 2
2, 2, 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 7 16 2
3, 0, 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 15 16 6
3, 0, 2 0 0 0 0 0 0 0 0 0 0 0 0 0 10 33 61 52 12
3, 0, 3 0 0 0 0 0 0 0 0 0 0 0 0 4 41 15 30 18 9
3, 1, 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 9 18 1
3, 1, 2 0 0 0 0 0 0 0 0 0 0 0 0 0 3 50 65 19 0
3, 2, 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2 25 20 22 3
3, 3, 3 0 0 0 0 0 0 0 0 0 0 0 0 0 10 39 20 12 2
4, 0, 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 30 36 1
4, 0, 2 0 0 0 0 0 0 0 0 0 0 0 0 2 30 48 53 19 2
4, 0, 4 0 0 0 0 0 0 0 0 0 0 3 39 74 124 103 69 3 0
4, 1, 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 28 9 1
4, 2, 2 0 0 0 0 0 0 0 0 0 0 0 0 0 19 47 65 35 0
4, 2, 4 0 0 0 0 0 0 0 0 0 0 3 30 92 138 158 101 37 2
4, 4, 4 0 0 0 0 0 0 0 0 0 0 0 5 18 48 51 41 4 0
5, 0, 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 16 23 23 1
5, 0, 5 0 0 0 0 0 0 0 0 1 22 58 115 163 260 219 128 17 3
5, 1, 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 63 23 1
5, 5, 5 0 0 0 0 0 0 0 0 0 2 13 55 107 159 113 50 9 1
6, 0, 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3 35 26 20 3
6, 0, 2 0 0 0 0 0 0 0 0 0 0 0 5 43 92 122 105 49 3
6, 0, 3 0 0 0 0 0 0 0 0 0 1 11 50 120 138 99 68 27 3
6, 0, 6 0 0 0 0 0 0 0 8 20 48 82 141 182 237 209 145 33 9
6, 1, 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3 50 65 19 0
6, 2, 2 0 0 0 0 0 0 0 0 0 0 0 2 28 77 53 44 19 0
6, 3, 3 0 0 0 0 0 0 0 0 0 0 5 25 92 143 85 43 20 3
6, 6, 6 0 0 0 0 0 0 0 2 5 19 52 109 150 178 150 88 24 0
7, 0, 1 0 0 0 0 0 0 0 0 0 0 0 0 0 21 67 66 35 0
7, 0, 7 0 0 0 0 0 2 8 15 18 21 24 25 19 10 2 6 0 0
7, 1, 1 0 0 0 0 0 0 0 0 0 0 0 0 0 13 80 65 12 0
7, 7, 7 0 0 0 0 0 1 0 11 25 38 53 66 70 65 26 13 1 0
8, 8, 8 0 0 0 1 0 3 6 18 28 40 56 71 77 57 20 7 0 0
9, 9, 9 0 0 0 0 2 7 7 17 28 40 46 60 58 29 3 1 0 0

10, 10, 10 0 0 0 1 3 7 11 26 40 72 112 167 224 282 201 95 12 1

Table 7. Numbers of root lattices found for a given TS with a certain rank. We have not aimed at
exhaustivity and every entry must be interpreted strictly as a lower bound.
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