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A B S T R A C T   

Submarine landslides are a geohazard encountered frequently in both shallow and deep waters. Catastrophic 
landslides are often related to strain-softening and shear band propagation (SBP). Limit equilibrium methods 
cannot capture this mechanism. The existing SBP theoretical methods treat slope failure as a progressive process 
of SBP, however, based on the shallow SBP approximation which is only valid when the length of the initial shear 
band is much larger than its depth. In this paper, catastrophic propagation of a deep-seated shear band is 
investigated via finite element analyses to understand and quantify the SBP at different conditions. The shallow 
SBP approximation is tested in a parametric study in terms of the relative depth of shear band and soil properties. 
An empirical correction equation is introduced to account for non-shallow SBP by modifying the existing failure 
criteria. The empirical solution is compared well with the FE results and can be implemented to assess submarine 
slope stability. The influences of different strain-softening relationships and inertia effects are discussed as well. 
As an example, the historical Storegga Slide offshore Norway is revisited, and the critical condition for its 
catastrophic failure is quantified using the proposed criterion.   

1. Introduction 

Submarine landslides frequently occur in both shallow and deep 
waters, threatening the safety of on-bottom infrastructures such as 
subsea production systems, pipelines, and cables (Hill et al., 2015; Lin 
et al., 2010). Compared with their subaerial counterparts, submarine 
landslides are typically characterized by lower slope angles, much larger 
sliding mass volumes, and longer runout distances (Masson et al., 2006; 
Akinci and Sawyer, 2016). A notable example is the second Storegga 
Slide, which occurred about 8200 years ago on the Norwegian conti
nental slope with an inclination < 2◦, involving 3000 km3 of debris that 
ran out for over 800 km (Kvalstad et al., 2005a; Vanneste et al., 2014). 
To evaluate the potential hazards of submarine landslides, it is crucial to 
comprehend their triggering mechanisms and to accordingly quantify 
slope failure. 

The limit equilibrium method, which assumes that the soils along the 
potential slip surface reach the failure state simultaneously, is arguably 
the most popular approach used in slope stability analyses (Duncan, 
1996). This assumption is plausible for relatively steep slopes (Kaya 
et al., 2016). However, for submarine slides with inclinations < 10◦, a 

more realistic mechanism is that the failure is initiated over a limited 
length of the weak layer, forming an initial shear band which then 
propagates into the adjacent intact soils until a catastrophic failure oc
curs (Micallef et al., 2007). The shear band propagation (SBP) is highly 
dependent on the strain-softening behavior of marine sediments, where 
the intact soil is remolded due to shearing (L’Heureux et al., 2012; 
Leynaud et al., 2017), causing the spontaneous growth of shear band 
under existing gravity forces. A number of theoretical (Locat et al., 2011; 
Palmer and Rice, 1973; Quinn et al., 2011) and numerical (Chen et al., 
2021; Dey et al., 2015; Quinn et al., 2012; Troncone et al., 2022, 2023) 
analyses have been conducted to account for the progressive failures of 
gentle slopes. Compared to the limit equilibrium method, these methods 
establish a more conservative and appropriate basis for slope stability 
assessments. 

The SBPs for a particular type of initiation history have been inves
tigated in Dey et al. (2016), Germanovich et al. (2016) and Stoecklin 
et al. (2017) among others, where an initial fully softened zone with 
length l0, termed pre-softened zone, is wished in place in an elasto- 
plastic weak layer, as illustrated in Fig. 1. This initiation scenario can 
be caused by factors such as earthquakes (Liu et al., 2022; Strasser et al., 
2007), salt diapirism (Kovacevic et al., 2012), toe erosion (Wang et al., 
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2021), hydrate decomposition (Sultan et al., 2004) and fluid migration 
(Elger et al., 2018; Lafuerza et al., 2012). As the driving force (e.g. by 
self-weight or seismic load) exceeds the resistance inside the pre- 
softened zone, the shear band propagates into the process zone with 
length ω. Depending on the magnitude of the driving force, the propa
gation becomes limited (progressive SBP) or evolved into a landslide 
(catastrophic SBP). A number of analytical failure criteria have thus 
been developed to account for quasi-static conditions (Puzrin et al., 
2004, Zhang et al., 2015), inertia effects (Germanovich et al., 2016; 
Zhang et al., 2016), curvilinear slopes (Puzrin et al., 2015) and three- 
dimensional slopes (Zhang and Puzrin 2022). However, these SBP 
methods are valid only when the thickness of the sliding layer h is 
remarkably smaller than the total length of the initial shear band l = l0 +

2ω (see Fig. 1), i.e. h ≪ l. Based on the shallow SBP approximation, the 
response of sliding layer is simplified as a one-dimensional problem, 
where the displacement along the depth is assumed to be uniform, 
guaranteeing that the solutions of most existing analytical criteria are 
available. However, before applying these criteria, one should check the 
consistency between the results obtained and the shallow SBP 
approximation. 

For the submarine landslide with a deep slip surface, such as the 
Storegga Slide with h > 200 m, the assumption of shallow SBP may not 
be satisfied. In non-shallow cases, the actual displacement distributions 
within the sliding layer may differ from the shallow approximation, 
leading to a divergence between the physical and existing analytical 
failure criteria. Therefore, further investigation is required to interpret 
the failure criteria with a non-shallow slip surface, thereby enabling 
more reliable slope stability assessments. 

Parallel to the above studies with an elasto-plastic slip surface, in a 
similar vein, the growth of slip-weakening rupture has been investigated 
within the framework of linear elastic fracture mechanics. It has been 
found that the concentration of shear stress or elevated pore pressure on 
fault can trigger rupture propagation and consequently a landslide 
(Uenishi and Rice, 2003; Garagash and Germanovich, 2012). The effects 
of the aspect ratio of crack length and depth were explored in a similar 
fashion in Bažant et al. (2003) and Viesca and Rice (2012). Although 
failure criteria with a non-shallow slip surface were established for linear 
elastic materials, such as rocks, dry snow or hard clays, these studies may 
not be suitable for sands or normally consolidated clays which exhibit 
intrinsically non-elastic behavior and are common in marine sediments. 

Nomenclature 

a, b parameters related to the failure criteria in terms of length 
of pre-softened zone 

E, Eps, ν uniaxial and plane strain Young’s modulus, the Poisson’s 
ratio. 

Gs shear stiffness of shear band 
g, gacc gravity acceleration, accumulated gravity acceleration in 

FE analyses 
h, s thickness of sliding layer and weak layer 
k strength ratio of shear band 
l, l0, ω, L length of shear band, pre-softened and process zones, and 

slope model 
lu characteristic length of shear band 
l̂0, ĥ length and thickness normalized by lu 
O, x, y origin, horizontal and vertical coordinate 
St soil sensitivity 
t time 
z depth of soils 
ux, ux0 downslope displacement of sliding layer and ux at origin 
α correction factor 
β parameters related to process zone length 

γ shear strain 
Δ net changes of variables 
δ shear displacement of shear band, superscripted by ‘e’ and 

‘p’ for elastic and plastic component 
δp

r value of δp at residual state 
δp

95 value of δp to achieve 95% reduction in shear strength 
θ slope angle 
Λ characteristic depth parameter 
ρ, ρ’ saturated and submerged density 
σ′

v0 initial vertical effective stress 
σx normal stress of sliding layer 
σx,ux average value of σx, ux along the depth 
τ, τg mobilized and gravitational shear stress of shear band 
τg,cri critical value of τg to trigger catastrophic SBP 
τana

g,cri value of τg,cri obtained from analytical SBP failure criteria 
τ0 shear strength of initial fully softened zone 
τp, τr, τave peak and residual value of shear strength of shear band, 

average peak strength of sliding layer 
τ̂g, τ̂0, τ̂g,cri value of τg, τ0 and τg,cri normalized by τp 
ψ cut angle at the front and rear faces  

Fig. 1. Shallow shear band propagations caused by an initial fully softened zone with forces acting on a slice presented on top left.  
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This paper aims to interpret the SBPs under non-shallow conditions, 
where the shear band is treated as an elasto-plastic material. The evo
lutions within the shear band and the sliding layer, induced by an initial 
pre-softened zone, are investigated using the finite element (FE) 
method. The FE results under static conditions with the linear strain- 
softening response of shear band are compared with the existing 
analytical solutions, followed by the interpretation of the failure me
chanic and criterion under non-shallow conditions. An empirical but 
simple correction equation is proposed to predict the slope stability of 
non-shallow cases by modifying the existing analytical SBP criterion. 
Then, an example study is provided to illustrate the application of the 
proposed criterion. Finally, the effects of different strain-softening 
behavior of the shear band and the inertia of the sliding layer are 
investigated, respectively. 

2. Methodology 

2.1. Problem definition 

The problem of slope instability with SBP is idealized in Fig. 1, where 
a pre-softened zone of length l0 is formed within a weak layer of an 
infinite slope. The slope is inclined at an angle θ. The sliding layer, with 
thickness h, above the weak layer is simplified as linear elastic material 
since no failure is expected prior to the catastrophic SBP. The weak 
layer, with thickness s, is assumed to be elasto-plastic with a linear or 
exponential strain-softening response. A stiff base is set beneath the 
weak layer. Due to external triggering, the shear strength of the pre- 
softened zone is fully reduced to τ0, lower than the shear stress by 
gravity τg, forming the initial driving force. A process zone of length ω is 
thus mobilized gradually at each tip of the pre-softened zone, where the 
shear strengths are decreased from the peak value τp to the residual τr 
due to strain-softening. Note that τ0 in the pre-softened zone may differ 
from τr in the process zone depending on the weakening mechanism. 
Outside the pre-softened and process zones, the sediments within the 
weak layer remain intact and undergo elastic shearing. 

The shear stress within the process zone is limited by current shear 
strength, which is assumed to be compressed linearly to the peak, fol
lowed by linear or exponential degradation, as depicted in Fig. 2. In the 
elastic region, the shear stress τ is given by 

τ =
Gs

s
δe (1)  

where Gs is the shear stiffness of shear band, δe the elastic component of 
shear displacement δ. The shear displacement δ is related to the thick
ness of weak layer s and the shear strain γ by δ = γs. The response for 
linear degradation is given by 

τ = max[τp +(τr − τp)
δp

δp
r
, τr] (2)  

where δp
r the value of plastic shear displacement δp at residual. For 

exponential strength degradation, the shear stress is given by 

τ = max[τr +(τp − τr)e− 3δp/δp
95 , τr] (3)  

where δp
95 is the value of δp to achieve 95% reduction in shear strength. 

The peak strength of the weak layer τp is expressed as 

τp = kσ′
v0 (4)  

where k is the undrained shear strength ratio, σ′
v0 = ρ′gh the initial 

effective vertical stress on the shear band, ρ’ the submerged soil density 
and g = 9.8 m/s2 the gravitational acceleration. The residual shear 
strength is given by 

τr = τp/St (5)  

where St is soil sensitivity. 

2.2. Background of analytical SBP analyses 

Three approaches, linear elastic fracture mechanics, energy balance 
and process zone approaches, have been developed to derive analytical 
failure criteria based on the shallow SBP approximation. The former two 
approaches assume that the length of process zone ω is negligible, i.e. ω 
≪ h ≪ l, while the latter assumes that h ≪ ω < l. The framework of the 
process zone approach is introduced below, as the significance of pro
cess zone has been approved (Zhang et al. 2015). 

For convenience, the ‘net’ values of variables, represented by the 
symbol ‘Δ’, are considered in the analytical analyses with respect to the 
counterpart in the slope without any initial failure. The derivations of 
static and dynamic SBP criteria for this problem are similar, except that 
the latter accounts for the inertial effect. The static SBP criteria are 
applicable when the pre-softened zone is gradually formed with insig
nificant kinetic energy, whereas the dynamic SBP criteria take into ac
count the kinetic energy resulting from the rapid formation of the pre- 
softened zone. 

According to the Newton’s second law, the equilibrium of an 
elementary sliding layer is given by 

h
∂Δσx

∂x
− Δτ = ρh

∂2Δux

∂t2 (6) 

where Δσx is the net average normal stress of the sliding layer; Δτ the 
net mobilized shear stress of the shear band; ρh∂2Δux/∂t2 the inertia 
term, which is ignored under the static conditions; ρ the saturated soil 
density; Δux net average normal displacement of the sliding layer; and t 
the time. For a shallow SBP with h ≪ l, the sliding layer response can be 
treated as a one-dimensional compression/extension problem, and the 
Δux of sliding layer is assumed to be identical to the shear displacement 
Δδ of shear band, so that Δσx can be given by 

Δσx = Eps
∂Δux

∂x
= Eps

∂Δδ
∂x

(7)  

Fig. 2. Strain-softening relationship of soil in the shear band.  
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where Eps = E/(1− ν2) is the Young’s modulus under plane strain con
ditions, E the uniaxial Young’s modulus and ν the Poisson’s ratio. 

By combining Eqs. (1)–(7), the distributions of Δτ and Δδ within the 
shear band can be solved. Therefore, the failure criteria can be deduced 
analytically based on the stress distribution within the shear band at the 
critical condition. For static conditions, the maximum resistance force is 
reached when the shear strength at the interface between the pre- 
softened and process zones is softened to τg. With any increase of 
driven force, the process zone would be further softened and generate 
additional driven force, causing the catastrophic SBP. 

For linear strain-softening soils in the shear band, the static failure 
criterion in terms of the length of pre-softened zone l0 is given by (Zhang 
et al., 2015) 

l0 > lcri =
2lu(τp − τg)

τg − τ0
(8)  

lu =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Epshδp
r /(τp − τr)

√

(9)  

where lu is the characteristic length of the shear band for linear degra
dation. For a given l0, rewriting Eq. (8), the gravitational shear stress τg 
at the critical condition for catastrophic SBP is given by 

τg,cri =
l0τ0 + 2luτp

l0 + 2lu
(10) 

The length of process zone ω is given by 

ω = luβarcsin(β) (11)  

β =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
(τp − τr)s

Gsδp
r

√

(12) 

The static failure criteria with exponential strength degradation 
response and the dynamic failure criteria are not detailed here, which 
can be found in Zhang et al. (2015, 2016). 

As highlighted above, the analytical expressions of failure criteria 
were based on the approximation of shallow SBP, i.e. Eq. (7). This 
approximation becomes gradually violated with the increase of relative 
depth h/l. Therefore, the FE analyses are conducted below to investigate 
the slopes with non-shallow SBPs. 

2.3. Finite element model 

Fig. 3 displays the planar slope model used in FE analyses. The slope 
is shaped as a long embankment with an overall length of L, to mimic 
part of an infinite slope. The front and rear faces of the model are cut at 
an angle of ψ to ensure that the failure occurs in the middle rather than 
at the sides of the weak layer. The sliding layer is set as a linear elastic 
material, while the stiff base is simplified as a rigid boundary. The 
stress–strain relationship in the weak layer is depicted in Fig. 2, identical 
to those used in the theoretical analyses. Since the strain-softening 
behavior of the weak layer is essentially governed by shear displace
ment δ = γs rather than shear strain γ, the mesh dependency is avoided in 
the FE analyses. 

The FE analyses with the implicit integration scheme are conducted 
using the commercial package Abaqus (Dassault Systèmes, 2014). The 
soil in the shear band undergoes limited but not extremely large de
formations prior to the catastrophic failure, and therefore, the simula
tions are based on finite strain formulations. The slope is discretized 
with four-node quadrilateral elements with full integration. A conver
gence analysis on the mesh size and layers of weak layer was conducted 
in trial calculations. It is found that the shear band only covers one layer 
of elements, and mesh sensitivity relevant to strain-softening can be 
avoided by using the stress-displacement response as discussed above. 
Therefore, a weak layer with a single layer of elements and element size 
s = 0.5 m was used in the study. A finer mesh is set above the weak layer 
with the minimum element size equal to the thickness of weak layer s. 
The overall length of the slope L is set to be >80 h, which ensures that 
the slope toes are sufficiently far from the central. 

The SBP studied here is caused by gravity loading. Flow charts for the 
static and dynamic FE analyses are shown in Fig. 4. For static FE ana
lyses, the gravity load of the slope is artificially increased to trigger the 
catastrophic SBP. The accumulated gravity acceleration of slope gacc is 
ramped up from 1.0 m/s2 with an increment of Δgacc = 0.01 m/s2. Note 
that under certain soil properties and pre-softened zone length, the 
critical acceleration for catastrophic SBP gacc may fall below the gravi
tational acceleration 9.8 m/s2, which indicates that the slope failure is 
deemed happen in reality. Otherwise, the slope stability factor can be 
assessed to ascertain the safety margin. The accumulated gravitational 
shear stress is calculated as 

τg = ρ′gacchsinθ (13) 

The strain softening is expected to develop at each end of the pre- 
softened zone by gradually increasing the gravity load. The critical 
condition for catastrophic SBP is identified as the soil strength at the 
interface between the pre-softened and process zones is softened to the 

Fig. 3. Slope model with the existence of a pre-softened zone in the FE analyses.  

Fig. 4. Flow chart of the static and dynamic FE analyses.  
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current τg, after which the slope failure occurs soon. For dynamic FE 
analyses, the pre-softened zone is set to form instantaneously, resulting 
in SBP under a given τg. For each case, dozens of FE simulations with 
various values of τg are conducted to determine the critical τg for cata
strophic SBP. It is worth noting again that the strength parameters are 
determined against the self-weight of soil with g = 9.8 m/s2 despite the 
artificial change of gravity loading. 

The parameters used in the numerical studies, as listed in Table 1, 
were determined based on the soil properties reported in Kvalstad et al. 
(2005b) and Randolph et al. (2005). For marine clays, the typical range 
of soil sensitive St is 2 to 5, although can be as high as 10 (L’Heureux 
et al., 2012). The plastic shear displacement leading to the residual state 
of soils typically ranges from 0.05 to 0.8 m (Skempton 1985; Dey et al., 
2016). The base values of parameters are applied unless otherwise 
stated. 

3. Numerical results 

The critical condition for catastrophic SBPs under the static condi
tion is explored numerically with a linear strain-softening response of 
the shear band. For simplicity, only the response on the left side of the 
slope is presented, as the slope is symmetric to the centre of the pre- 
softened zone in terms of the shape. Displacements are defined to be 
positive in the downslope direction. 

3.1. Examination of the shallow SBP approximation 

As mentioned earlier, the shallow SBP approximation (h ≪ l) as
sumes that the net average normal displacement Δux within the sliding 
layer is identical to the net shear displacement across the shear band Δδ, 
which is key to deriving the analytical failure criteria. The distribution 
of net normal displacements Δux at the occurrence of the catastrophic 
SBP is investigated to examine this assumption. Since the length of 
process zone ω is unknown at the commencement of calculation, h/l0 is 
ranged between a typical shallow condition (h/l0 = 0.05) and a rela
tively deep one (h/l0 = 1) despite h being fixed at 50 m. 

The numerical net displacements Δux are normalized by the net 
normal displacement at the middle of the pre-softened zone Δux0. The 
value of Δux at the bottom of the sliding layer is consistent with the shear 
displacement Δδ at the shear band. As shown in Fig. 5a, for the weak 
layer buried shallowly, Δux is almost uniform along the depth, satisfying 

the assumption of the shallow SBP, although Δux above the process zone 
and elastic zone varies slightly along the depth. When h/l0 is increased to 
0.25, values of Δux at the top and bottom of the sliding layer are 
remarkably different from each other. At h/l0 = 1, large amplitudes of 
Δux appear around the bottom of the sliding layer, while Δux at the top 
are negligible. It is found that the distribution of Δux becomes divergent 
from the shallow SBP approximation gradually with the increase of h/l0. 
This is because any shear deformation ∂Δux/∂y within the sliding layer is 
ignored in the theoretical analysis. This is verified through a case with 
an enhanced stiffness ratio of E/τp = 10000, where the deformation 
pattern of the sliding layer becomes close to the assumption of no shear 
deformation as shown in Fig. 5d. Although Δux above the pre-softened 
zone is varied with depth, the profile above the process zone is almost 
uniform. Compared with Fig. 5c, the discrepancy between the FE results 
and the shallow approximation becomes significantly narrower. 

The process zone lengths ω are indicated in Fig. 5 as well. The ω is 
found to be influenced by h/l0 and the displacement pattern within the 
sliding layer, although ω is irrelevant with l0 in the analytical solution. 
As h/l0 increases, ω/h is decreased from 0.99 to 0.72, while the 
analytical values remain 2.06 by Eq. (11). Note that except for the hy
pothetical case with E/τp = 10000, none of the values of ω meet the 
requirement of the process zone approach (h ≪ ω < l) or other analytical 
approaches (ω ≪ h ≪ l). This further proves the limitation of the existing 
analytical SBP methods for the cases with a shear band buried deeply. 

The vertical distributions of Δux for the shallow and deep conditions 
are compared in Fig. 6 with three typical profiles: the middle of the pre- 
softened zone (x/h = 0), the interface between the pre-softened and 
process zones (x/h = -0.5 l0), and the interface between the process and 
elastic zones (x/h = − (0.5 l0 + ω)). For the shallow condition, the ver
tical displacement distribution is almost uniform along the depth, with 
the average net displacement Δux (average value of Δux along the depth) 
close to Δδ. For the deep condition, the variation of Δux along the depth 
is significant, resulting in Δux much smaller than Δδ at x/h = 0 and − 0.5 
l0, and larger than Δδ at x/h = − (0.5 l0 + ω). As a result, the stress Δσx 
calculated by Eq. (7) deviates from the physical conditions. 

To further interpret this discrepancy, the lateral distributions of 
displacements, Δux and Δδ, and the stress profiles, Δσx and Δτ, along the 
slope for the shallow (h/l0 = 0.05) and deep conditions (h/l0 = 1), are 
compared with the analytical solutions in Fig. 7. For the shallow con
dition, the distribution of Δux and Δδ are close to the analytical solution, 
especially within the pre-softened zone. A clear discrepancy is found in 
the shear stress profile as shown in Fig. 7e. This is because the analytical 
solution overestimates the length of process zone and underestimates 
the Δux above the elastic zone. In turn, for FE analyses, the shear stress 
within the process zone decreases faster due to a shorter process zone, 
reducing the mobilized resistance force, which is then compensated by 
the larger shear stress and hence additional resistance force mobilized 
within the elastic zone. This discrepancy in the stress profile shows little 
effect on the final failure criterion under the shallow condition, as the 
critical values of τg,cri to trigger catastrophic SBP for both analytical and 
FE results are 28.5 kPa. 

For deep conditions, the discrepancies of displacement and stress 
profiles between FE and analytical results become remarkable. 
Compared with the shallow displacement pattern, the pre-softened zone 
requires a larger Δδ to mobilize the sliding layer to move a similar Δux. 
Consequently, the soil in a deeper shear band is more prone to being 
softened and reaching the critical condition for catastrophic SBP. The 
key is the Δδ at the interface between the pre-softened and process 
zones, which controls whether the soil strength at the interface is soft
ened lower than current τg and hence provides the additional driven 
force. As shown in Fig. 7a and b, for the shallow condition, the analytical 
and FE values of Δδ at the interface are almost the same, while the FE 
value of Δδ at the interface are significantly larger than the analytical 
value for the non-shallow condition. The FE and analytical values of τg,cri 
corresponding to this critical condition are 52.5 and 56.6 kPa, respec
tively, representing an error of 7%. 

Table 1 
Parameters for numerical analyses.  

Parameter Base 
value 

Parametric studies Unit 

Overall embankment length, L 80h – m 
Thickness of shear band, s 0.5 – m 
Slope angle, θ 5 – degrees 
End-slope angle, ψ 15 – degrees 
Poisson’s ratio, ν 0.495 –  
Rigidity index in softening layer, 

Gs/τp 

166.7 –  

Saturated (submerged) density 
of soil, ρ(ρ’) 

1700 
(700) 

– kg/m3 

Thickness of sliding material, h 50 10, 30, 50, 100 and 200 m 
Normalized length of pre- 

softened zone, l0/h 
1 0.33, 0.5, 1, 2, 4, 6, 8, 10, 

15, 20 and 40  
Strength ratio of pre-softened 

zone, τ0/τp 

0.33 0.1, 0.2, 0.33, 0.5 and 
0.67  

Average Young’s modulus ratio 
for sliding layer, E/τp 

250 150, 200, 250, 300 and 
400  

Undrained shear strength ratio, 
k 

0.2 0.15, 0.2, 0.25, 0.3 and 
0.35  

Sensitivity, St 3 1.5, 2, 3, 5 and 10  
Plastic shear displacement to 

residual,δp
r 

0.2 0.05, 0.1, 0.2, 0.4 and 0.8 m  
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Fig. 5. Distributions of normalized net displacement Δux at the critical condition for catastrophic propagations.  
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The four cases investigated above reveal the transition from the 
shallow to non-shallow displacement pattern. The analytical failure 
criteria based on the shallow SBP approximation are proved to over
estimate the slope stability under non-shallow SBP displacement pat
terns. To quantify this error, a correction factor, α, is proposed as 

α =
τg,cri

τana
g,cri

(14)  

where τg,cri is the numerical value of τg at the critical condition for 
catastrophic SBP, and τana

g,cri is the analytical value. For linear strength 
degradation rules under static conditions, the expression of τana

g,cri is given 
by Eq. (10). 

The transition of displacement pattern is highly related to the aspect 
ratio of the depth and length of the shear band, which consists of the pre- 
softened and process zones. In the subsequent analyses, the influences of 
the two zones on the correction factor are discussed respectively. 

3.2. The influence of the pre-softened zone 

Fig. 8a presents the correction factor α against h/l0, where h/l0 
ranges between 0.025 and 3 with h fixed at 50 m. The correction factor is 
close to unity for h/l0 < 0.067, and gradually decreased with increasing 
h/l0, followed by a minimal rise when h/l0 > 1. Therefore, one may set 
h/l0 = 0.067 as the threshold value for shallow and non-shallow SBP 
conditions. The analytical failure criterion overestimates the slope sta
bility when h/l0 > 0.067. The slight increase of α with h/l0 > 1 is due to 
that the τg,cri to trigger landslide is already very close to τp, resulting in a 
very small change of Δτ within the process zone. This compensates for 
the direct effect of the decrease in l0 on the α. 

The correction factor α is also affected by the reduced shear strength 
τ0 within the pre-softened zone, as shown in Fig. 8b. For cases with h/l0 
= 1, the α is increased linearly from 0.89 to 0.97 as τ0/τp ranging be
tween 0.1 and 0.67. Low values of τ0/τp could be met with an initiation 
history of accumulated excess pore pressure. As indicated in Fig. 7e and 
f, the stress profile of the shear band is limited between τ0 and τp. When 

Fig. 5. (continued). 
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the ratio τ0/τp is decreased, the change of Δτ within the process zone 
becomes more significant, facilitating the larger shear deformation 
within the sliding layer and then mobilizing the non-shallow pattern. 

3.3. The influence of the process zone 

The length and the stress profile of process zone depend on the 
average Young’s modulus E, thickness h of the sliding layer, the un
drained shear strength ratio k, soil sensitivity St and the plastic shear 
displacement to residual δp

r of the weak layer. Fig. 8 shows the effects of 
these parameters on the correction factor α and the process zone length 
ω with h/l0 = 1 taken as an example for non-shallow SBP. The param
eters used are listed in Table 1. 

The values of α and ω are sensitive to δp
r and h. As δp

r is increased from 
0.05 to 0.8 m, α is increased from 0.85 to 0.98 and ω/h from 0.25 to 
2.05. When h ranges from 10 to 200 m, α decreases from 0.98 to 0.85 and 

ω/h from 2.68 to 0.24. Despite h/l0 = 1, the error caused by shallow SBP 
approximation can be ignored when ω/h ≥ 2, corresponding to δp

r > 0.8 
m or h < 10 m. The values of α and ω are moderately sensitive to E/τp 
and St. For all cases, ω/h ≤ 1.5 and α ≤ 0.96. Although not presented in 
Fig. 9, the value of α remains constant with k changing from 0.15 to 
0.35, indicating that the magnitude of τp has no straightforward in
fluences on the displacement pattern when E/τp and St are fixed. 

It is evident from Fig. 9 that the parameters α and ω/h are not de- 
coupled, as α is influenced by the shear stress profile of the process 
zone. Hence, the characteristic length of shear band lu expressed by Eq. 
(9), a function of the above factors, is attempted to quantify their 
combined effects on α. As shown in Fig. 10, the influence of these factors 
on α can be represented well by h/lu as all the cases can be fitted with a 
unique curve. 

3.4. Empirical correction equation and its verification 

Figs. 8 and 10 demonstrate that the correction factor α exhibits a 
nearly linear relationship with h/l0, h/lu and τ0/τp, respectively, indi
cating that the error caused by the shallow SBP approximation may be 
corrected through a simple empirical equation. A characteristic depth 
parameter Λ is defined by combining the three factors as 

Λ =

(
1 − τ0/τp

)
h

l0 + 3lu
(15) 

Note that the analytical value of process zone length ω is around 1.4lu 
–1.5lu based on Eq. (11). Thus, the physical meaning of h/(l0 + 3lu) can 
be interpreted as the aspect ratio of the depth to the theoretical length of 
shear band, which includes the pre-softened zone and the process zones 
at the two ends. The correction factor α against Λ for the above cases is 
plotted in Fig. 11. A bilinear expression is observed: α is roughly equal to 
unity as Λ ≤ 0.04, and α is decreased linearly with Λ as Λ > 0.04: 
{

α = 1 Λ⩽0.04
α = 1 − 0.8(Λ − 0.04) 0.04 < Λ < 0.56 (16) 

The former condition, Λ ≤ 0.04, represents where the shallow SBP 
approximation is satisfied, while the latter indicates the correction 
under non-shallow SBP. The range of applicability of Eq. (16), 0 < Λ <
0.56, is determined subsequently. 

Three groups of tests were designed to examine the robustness of Eq. 
(16): (I) Λ < 0.56 and h/l0 ≤ 1; (II) Λ < 0.56 and h/l0 > 1; and (III) Λ >
0.56. Seven dominant factors investigated above are varied, as listed in 
Table 2. Group (I), consisting of the orthogonal combinations of com
mon parameter values with h/l0 ≤ 1, covers the vast majority of possible 
slope failure conditions. The predicted correction factors for group (I) 
are in good agreement with the FE results in Fig. 12, showing the good 
potential of Eq. (16) in slope assessment. The FE results deviate from the 
predicted results for group (II) with h/l0 > 1, however, Eq. (16) provides 
a lower bound of α. In addition, for submarine landslides with low 
inclination, it is reasonable to believe that catastrophic failures are 
rarely triggered by a very short pre-softening zone. To further explore 
the value of α when Λ continues to increase, a series of extreme slope 
failure conditions, which are virtually impossible to encounter in engi
neering practice, are presented in group (III). It is found that even the 
minimum value of α is>0.5 as shown in Table 2 and Fig. 12. Thus, α =
0.5 is suggested as the empirical solution when Λ > 0.56. 

A new dimensionless empirical failure criterion in terms of τg,cri is 
derived by combining Eqs. (10), (15) and (16), as 

τ̂g,cri = α l̂0 τ̂0 + 2
l̂0 + 2

(17)  

τ̂g,cri = τg,cri
/

τp, l̂0 = l0
/

lu, τ̂0 = τ0
/

τp (18) 

Substituting Eq. (16) into Eq. (17), the empirical failure criterion in 
terms of lcri can be given by 

Fig. 6. Vertical distributions of normalized net displacement Δux.  
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Fig. 7. Responses at the critical conditions for catastrophic SBPs at different relative depths.  
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Fig. 7. (continued). 
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Fig. 7. (continued). 
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

l̂cri =
2(1 − τ̂g)

τ̂g − τ̂0
Λ⩽0.04

l̂cri =
a +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

a2 + 4(τ̂g − τ̂0)b
√

2(τ̂g − τ̂0)
0.04 < Λ < 0.56

(19)  

l̂cri = lcri
/

lu, a = (3 − 0.8ĥ(1 − τ̂0))τ̂0 + 2 − 5τ̂g,

b = 6
(
1 − τ̂g

)
− 1.6ĥ(1 − τ̂0), ĥ = h

/
lu, τ̂g = τg

/
τp

(20) 

Note that a2 + 4(τ̂g − τ̂0)b < 0, where the solution of Eq. (19) is 
unavailable as the value under the square root is < 0, suggests a con
dition where the τ̂g value is so high that lcri approaches zero. Although 
the exact close form of failure criteria in terms of τg,cri and lcri are non- 
available, Eqs. (17) and (19) provide an empirical solution. 

4. Example application: The Storegga Slide 

A case study for a section of the Storegga Slide in the Ormen Lange 
field is conducted to illustrate the application of the empirical failure 
criterion. The initial instability of the Storegga Slide is believed to be 
triggered at the lower and steeper part of the slope by regional high 
excess pore pressure due to rapid deposition or hydrate decomposition, 
followed by subsequent progressive failure (Kvalstad et al., 2005a; 
Vanneste et al., 2014). Nowadays, excess pore pressure of 200 kPa is still 
measured at a soil depth of 200 m in a location close to the headwall of 
the Ormen Lange field (Strout and Tjelta, 2005). Here, the analysis of the 
Storegga Slide is simplified as a plane strain problem, as depicted in 
Fig. 13. 

Following the case study of Kvalstad et al. (2005a), slope geometry 
and soil parameters are determined below. The slope is simplified as a 
planar one with a weak layer at depth of 200 m. The slope inclination θ is 
2◦ measured from the reconstructed slope surface. The soil properties 
were determined based on the in-situ cone penetration tests and labo
ratory tests in Kvalstad et al. (2005b): the average submerged density is 
ρ’ = 900 kg/m3, the shear strength ratios of the sliding mass and the 
weak layer are k = 0.3 and 0.2, respectively, and the soil sensitivity St of 
the weak layer is 5. The plastic shear displacement δp

r to residual state is 
set to 0.2 m, which is typical for marine sensitive clays. The ratio of 
average plane strain Young’s modulus Eps of the sliding layer to its 
average shear strength is estimated as a typical value of 300. Linear 
strain-softening relationship of the shear band is adopted. Excess pore 
pressure Δu is assumed to be uniformly distributed along the entire slope 
except for the pre-softened zone. The shear strength of the pre-softened 
zone is fully reduced to τ0 lower than τg, which could be caused by 
hydrate dissociation or concentration of high excess pore pressure. The 
peak undrained shear strength of soil considering the reduction by 
excess pore pressure is estimated by (Kvalstad et al., 2005a) 

τp = k(1 − ru)ρ′gz (21) 

where ru = Δu/ρ’gz is the excess pore pressure ratio. To ensure the 
shear band is extendable along the weak layer, the shear stress by 
gravity at the weak layer should be larger than the residual strength (τg 
> τr = τp/St), so that ru is expected to be > 0.13 according to Eq. (21). 
The parameters used in the assessment of slope stability are summarized 
in Table 3. 

Two scenarios are considered: (a) the strength of the pre-softened 
zone τ0 is decreased to 0 corresponding to the most unfavorable condi
tion, while ru outside the pre-softened zone is varied; and (b) ru outside 
the pre-softened zone is maintained at 0.3, which might be a common 
value at the onset of the Storegga Slide, but explore the effect of τ0. The 
corresponding critical lengths lcri of pre-softened zone are derived based 
on the analytical and empirical failure criteria, i.e. Eqs. (8) and (19), 
respectively, as shown in Fig. 14. 

For scenario (a), the values of lcri at ru = 0.13 from Eqs. (8) and (19) 
are 845.5 and 715.7 m, respectively, indicating the giant Storegga Slide 
can be initiated with a rather limited pre-softened zone. Eq. (19) ac
counting for the deep buried shear band provides a more conservative 
estimate (about 18% shorter in terms of lcri) than Eq. (8). The value of lcri 
decreases with the increase of ru, and the relative difference between the 
lcri from the two criteria becomes more significant. When ru = 0.6, the 
analytical value of lcri is 274.1 m, compared with 106.5 m from the 
proposed criterion. 

For scenario (b), the values of lcri from Eqs. (8) and (19) when τ0/τp 
= 0 are 638.8 and 464.7 m, respectively. The values of lcri from both 
criteria increase exponentially with the increase of τ0/τp. Fig. 14b shows 
that the catastrophic SBP under non-shallow conditions is highly likely 
to occur at τ0/τp ≤ 0.22, where the criterion proposed in this study is 
more conservative for assessing the failure. 

Fig. 8. The influences of the pre-softened zone on the correction factor α.  
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Fig. 9. The influence of process zone properties on correction factor α and process zone length ω.  
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Fig. 9. (continued). 
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Note that the limit equilibrium analysis assumes that the failure of 
the entire slip surface occurs simultaneously, implying very low shear 
strength of soils along several to tens of kilometres for the Storegga Slide 
which is highly unlikely. In contrast, by considering the strain-softening, 
the proposed mechanism suggested that the Storegga Slide may be 
triggered by the shear band propagating from a much smaller initial 
failure zone (around half a kilometre) to the entire sliding surface. 
Maintaining simplicity for application, the proposed criterion presents a 
more reasonable failure mechanism. 

5. Discussions 

In the above sections, static FE analyses are conducted to explore the 
transition of displacement pattern between the shallow and non-shallow 
SBP conditions with a linear strain-softening response of the shear band. 
An empirical solution is proposed to access the slope stability for both 
shallow and non-shallow conditions. These studies are subsequently 

extended to account for SBPs against the different strain-softening re
lationships, and the inertia effect which considers the kinetic energy of 
the sliding layer due to the rapid formation of the pre-softened zone. 

5.1. The influence of strain-softening relationship 

The impact of the strain-softening relationship on the correction 
factor is investigated by adopting an exponential strength softening 
response of shear band, as shown in Fig. 2b. Note that the τana

g,cri should be 
calculated by the failure criterion for exponential strength softening 
response (Zhang et al., 2015). The base cases with h/l0 ranging from 
0.05 to 3 are re-analysed using the constitutive relationship of weak 
layer expressed by Eq. (3). The corresponding characteristic length of 
the shear band for exponential softening response is given by 

lu =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2Epshδp
95/3(τp − τr)

√

(22) 

The plastic shear displacement δp
95 to achieve 95% reduction in shear 

strength is set to 1.5 δp
r to ensure that the value of lu is the same as that of 

linear strength degradation response. 
Fig. 15a shows the comparison of the correction factor between the 

linear and exponential degradations. The α for exponential and linear 
degradations are close to each other when h/l0 < 1, while the former is 
lower when h/l0 ≥ 1, indicating a more pessimistic case. This is due to 
the strain-softening rate of exponential degradation being higher than 
that of linear degradation with h/l0 ≥ 1, resulting in a shorter process 
zone and less feasible shallow SBP approximation. For example, ω/h at 
h/l0 = 1 for exponential and linear degradations are 0.56 and 0.72, 
respectively. Due to a narrower process zone with the same lu, the 
characteristic depth parameter Λ for exponential degradation is justified 
by reducing the contribution of lu, as 

Λ =

(
1 − τ0/τp

)
h

l0 + 2lu
(23) 

Compared with the expression of Eq. (15), the value of Λ becomes 
larger under the same conditions, indicating a more significant deep 
displacement pattern. Without modifying the relationship of α and Λ by 
Eq. (16), the empirical correction equation is shown in Fig. 15b. 
Although α deviates from the correction equation as Λ ≥ 0.18, the simple 
correction equation remains conservative. 

5.2. the influence of the inertia effect 

The influence of the inertia effect on the correction factor is inves
tigated through dynamic FE analyses. The pre-softened zone is assumed 
to be formed instantaneously. Then, the kinetic energy of the sliding 
layer is accumulated initially and subsequently dissipated to promote 
the SBP, which results in further development of the process zone. The 
τana

g,cri to trigger the catastrophic SBP under dynamic conditions is 
calculated by the dynamic failure criteria in Zhang et al. (2016). Fig. 16 
shows the variation of α with h/l0 ranging from 0.05 to 3 under dynamic 
and static conditions. The correction factors under the static and dy
namic conditions are close to each other at h/l0 < 0.5, while the dynamic 
one becomes higher as h/l0 ≥ 0.5. This can be attributed to the addi
tional growth of the process zone in the dynamic analyses, which 
compensates for the error caused by the shallow SBP approximation. For 
simplification, Eq. (16) based on the static conditions can be applied to 
the dynamic conditions, providing a more conservative correction 
factor. 

Fig. 10. Relationship of normalized process zone properties h/lu and correction 
factor α. 

Fig. 11. The correction factor α against the characteristic depth parameter Λ.  
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6. Conclusions 

Shear band propagation (SBP) methods are a promising tool to 
evaluate the progressive failure of submarine slopes. To obtain the 
analytical solution of failure criteria, the shallow SBP approximation, 
which assumes that the averaged displacement distribution of sliding 
layer along the depth is identical to the shear displacement of shear 
band, has been commonly adopted in the previous theoretical SBP 

analyses. However, this assumption is only valid when the length of 
initial shear band is much larger than its depth. In this study, finite 
element analyses are conducted to understand and quantify the errors 
induced by the shallow SBP approximation under non-shallow condi
tions. A simple empirical correction equation is proposed based on the 
finite element numerical investigation. The main conclusions of this 
study are summarized as follows. 

Table 2 
Orthogonal tests designed.  

Group h/l0 k E/τp St δp
r (m) τ0/τp h (m) Λ α by 

Eq. (16) 
α by FE 

I 1  0.15 150 10  0.05  0.1 200  0.528  0.61  0.66 
1  0.2 150 1.5  0.8  0.33 10  0.031  1.00  1.00 
1  0.35 250 10  0.2  0.1 50  0.195  0.88  0.87 
1  0.15 150 10  0.1  0.1 200  0.451  0.67  0.68 
1  0.2 250 10  0.05  0.33 200  0.351  0.75  0.80 
1  0.35 400 3  0.05  0.33 200  0.287  0.80  0.82 
0.25  0.15 150 10  0.05  0.1 200  0.192  0.88  0.91 
0.25  0.2 250 3  0.2  0.33 50  0.082  0.97  0.97 
0.25  0.35 150 3  0.8  0.1 10  0.049  0.99  1.00 
0.25  0.35 250 1.5  0.05  0.67 200  0.060  0.98  0.98 
0.1  0.15 250 10  0.05  0.33 10  0.049  0.99  0.99 
0.1  0.15 400 3  0.2  0.33 200  0.053  0.99  0.99 
0.1  0.2 150 3  0.05  0.67 50  0.028  1.00  1.00 
0.1  0.35 400 10  0.8  0.1 200  0.062  0.98  0.99 

II 3  0.2 250 5  0.2  0.2 500  0.515  0.62  0.75 
3  0.15 250 3  0.2  0.33 50  0.147  0.91  0.94 
2  0.2 150 3  0.05  0.33 200  0.508  0.63  0.77 
2  0.2 150 10  0.05  0.33 200  0.557  0.59  0.80 
2  0.2 250 5  0.2  0.2 500  0.465  0.66  0.67 

III 10  0.15 150 10  0.05  0.1 500  1.650  − 0.29  0.53 
5  0.15 150 10  0.05  0.1 500  1.394  − 0.08  0.52 
3  0.15 150 10  0.05  0.1 500  1.156  0.11  0.54 
2  0.15 150 10  0.05  0.1 500  0.952  0.27  0.57 
1  0.15 150 10  0.05  0.1 500  0.623  0.53  0.66  

Fig. 12. Verification of the empirical correction equation by orthogonal tests.  
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(1) The shallow SBP approximation is reasonable when a slip surface 
is seated shallowly relative to the initial shear band length. For a 
deep slip surface, however, the lateral deformation of sliding 
layer is concentrated near the shear band and turns small as the 
soil depth becomes shallower. The existing analytical criteria 
based on shallow SBP approximation may significantly over
estimate the slope stability under non-shallow conditions.  

(2) A characteristic depth parameter, determined by the length and 
the strength ratio of initial fully softened zone, the thickness of 
sliding layer and soil properties, is proposed through Eq. (15) to 
distinguish between the shallow and non-shallow SBP conditions 
with a threshold value of 0.04. A bilinear empirical expression, 
Eq. (16), with a correction factor as a function of characteristic 
depth parameter is proposed to quantify the catastrophic SBP for 
both shallow and non-shallow conditions.  

(3) The exponential softening response of shear band enlarges the 
error caused by the shallow SBP approximation compared with 
the linear strain-softening response, while the dynamic inertia, 
associated with the relatively rapid formation of an initial shear 
band, reduces this error.  

(4) A case study of the Storegga Slide suggests the initial failure is 
likely triggered under the non-shallow SBP condition. The critical 
length of the initial fully softened zone for the giant failure could 
be as small as around half a kilometer with a basal shear surface 
at depth of 250 m. 

It should be noted that, in most cases, the plane-strain (2D) analytical 
criterion for catastrophic shear band propagation along a deep-seated 
weak layer is conservative compared to the 3D scenario as the out-of- 
plane dimension of the pre-softened zone is assumed infinity. Howev
er, the shear band propagation is restrained to single direction and 
multi-directional propagation of shear band may induce additional 
driving forces under certain conditions as discussed in Zhang et al. 
(2022) for shallow SBP. It is therefore necessary to extend the study to 
investigate multi-directional SBP within a deep-seated weak layer. 

Fig. 13. Seismic profile of a section of the Storegga Slide which simplified as a planar slope in the analysis (modified from Kvalstad et al., 2005a).  

Table 3 
Historical study of the Storegga slide.  

Parameters the Storegga Slide 

Slope angle θ 2◦

Thickness of sliding layer h 200 m 
Peak shear strength of weak layer τp 360(1 − ru) kPa 
Average plane strain Young’s modulus of sliding layer 

Eps 

81(1 − ru) MPa 

Gravitational shear stress τg 62.8 kPa 
Characteristic length of shear band lu 106 m 
Characteristic depth parameter Λ 0.17–0.39 for scenario 

(a) 
0–0.21 for scenario (b)  

Fig. 14. Comparison of the analytical and empirical failure criteria in terms of 
critical pre-softened zone length. 

Z. Zhu et al.                                                                                                                                                                                                                                      



Computers and Geotechnics 163 (2023) 105751

18

Fig. 15. The influence of different strength degradations.  
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