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ABSTRACT: To reconstruct past environmental changes, a range of indirect or proxy approaches can be applied to
Quaternary archives. Here, we review the complementary and novel insights that have been provided by the analysis
of chemical fossils (biomarkers). Biomarkers have a biological source that can be highly specific (e.g. produced by a
small group of organisms) or more general. We show that biomarkers are able to quantify key climate variables
(particularly water and air temperature) and can provide qualitative evidence for changes in hydrology, vegetation,
human–environment interactions and biogeochemical cycling. In many settings, biomarker proxies provide the
opportunity to simultaneously reconstruct multiple climate or environmental variables, alongside complementary
and long‐established approaches to palaeoenvironmental reconstruction. Multi‐proxy studies have provided rich sets
of data to explore both the drivers and impacts of palaeoenvironmental change. As new biomarker proxies continue
to be developed and refined, there is further potential to answer emerging questions for Quaternary science and
environmental change. © 2023 The Authors Journal of Quaternary Science Published by John Wiley & Sons Ltd
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Introduction
To reconstruct past environmental and climate changes,
indirect physical, chemical or biological signals of environ-
mental variables (‘proxies’) are recovered from a range of
archives (e.g. marine and lake sediments, ice cores,
speleothems, peatlands). Biomarker proxies are molecular
or chemical fossils with a biological origin (Eglinton and
Calvin, 1967), which can be recovered, analysed and
identified from palaeoenvironmental archives (Peters
et al., 2005). Biomarkers have emerged as valuable parts
of the Quaternary science toolkit, due to both quantitative
and qualitative insights into past environmental changes and
because multiple biomarkers (and thus multiple environ-
mental signals) are simultaneously recovered from single
samples.
Biomarkers can either be very specific in terms of their

environmental signal or biological source (e.g. individual
highly branched isoprenoids indicative of sea‐ice diatoms),
or be more general indicators (e.g. mixtures of n‐alkanes
derived from higher plants) (Figure 1). A key strength of
biomarker analysis is that biomarkers from multiple settings
can be found in a single sediment sequence, since terrestrial
biomarkers (from bedrock, soils or plants) may be trans-
ported by wind, rivers or ice into lakes, wetlands, caves
or marine environments, allowing both the transport process
and changes in different environments to be explored (e.g.
Jaffé et al., 2001; Ngugi et al., 2017; Müller et al., 2018).
Biomarker transport can also be a disadvantage: advection
or bioturbation may influence how biomarkers are incorpo-

rated into the sediments and can even lead to age‐offsets
between different proxies (e.g. Ohkouchi et al., 2002). As
organic molecules, biomarkers are subject to degradation
processes during transport and deposition (e.g. Madureira
et al., 1997; Wakeham et al., 1997; Thomas et al., 2001).
However, different classes of organic compounds have
varying rates of degradation (Arndt et al., 2013). Some of the
most widely applied biomarkers are those which are
relatively resistant to alteration (e.g. plant waxes), or where
(rapid) transformation of lipids or pigments found in living
biomass leaves behind a recognizable chemical signal so
that the source organisms or formation processes can be
determined (e.g. Harris et al., 1996; Pitcher et al., 2009).
Biomarkers may be particularly useful in environments
where other proxies (e.g. plant macrofossils) are degraded
but their chemical remains can be found (e.g. Ronkainen
et al., 2015).
A valuable property of biomarkers is that they can be

isolated from the original archive so that isotope analysis
can be undertaken on individual components of organic
matter with a known origin. This ‘compound‐specific
isotope analysis’ (CSIA) contrasts with the analysis of bulk
samples, where changing isotope ratios could reflect varying
contributions of different organic sources through time or
space, as well as environmental controls over the contribut-
ing isotopic signals (e.g. Holtvoeth et al., 2019; McClymont
et al., 2022). By knowing the origin of the biomarker, the
relative impact of biological and environmental controls on
stable isotope ratios can be determined (Sachse et al., 2012;
Holtvoeth et al., 2019). CSIA has enabled, for example,
separation of the contributions of C3 and C4 plants and
isolation of hydrological controls over plant wax deuterium/
hydrogen isotopes (see ‘Reconstructing vegetation and
hydrological change using compound‐specific stable
isotope analysis’).
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Our aim in this review is to provide an accessible
introduction to the wide range of biomarker applications in
Quaternary science. Detailed reviews are also available on
both biomarker synthesis and proxy development in marine
sediments (Rosell‐Melé, McClymont, 2007), lake sediments
(Castañeda and Schouten, 2011), peatlands (Naafs
et al., 2019), speleothems (Blyth et al., 2016; Meckler
et al., 2021) and geoarchaeology (Dubois and Jacob, 2016).
Here, we explore a range of studies that have applied
biomarker proxies and outline the novel and complementary
contributions biomarkers have made to palaeoenvironmental
reconstructions across a wide range of geographical regions,
timescales and environments. The review was conducted
using methodical keyword literature searches of the Web of
Science and Google Scholar databases. The searches
returned thousands of results; therefore, the scope of this
review precludes citations of all relevant studies. To address
our aim of providing an accessible overview of biomarkers
and their applications for all Quaternary scientists, we have
prioritized the inclusion of initial foundation studies along-
side a diversity of examples that span different timescales,
sedimentary archives, geographical locations and topics of
Quaternary science. Since some biomarker proxies have
been applied to multiple archives but reconstruct similar
environmental variables (e.g. temperature, salinity), the
review is structured according to those variables or research
questions, and archive‐ or proxy‐specific considerations are
provided. Finally, we reflect on recent developments in
biomarker research and consider their future potential in
Quaternary science.

Introduction to biomarkers: analysis
and functions
An overview of biomarker laboratory methods

Biomarkers used in Quaternary studies include water‐
insoluble lipids, photosynthetic pigments and macromolecules
including lignin. Biomarkers are often present in very low
(trace) concentrations in environmental samples (milligrams or
nanograms per gram of material) and may be components
of a complex matrix of organic and minerogenic materials.
Isolating the biomarkers of interest requires methods that
maximize recovery and minimize contamination. As multiple
biomarkers are recovered simultaneously, a diverse range of
environmental signals can be attained from a single sample.
Lipids and pigments are extracted from environmental or

archaeological samples by using a range of organic solvents
and approaches, tailored to the chemical properties of the
compound(s) of interest. Ultra‐sonication, microwave or
accelerated solvent extraction methods are most commonly
used but may have different efficiencies depending on sample
size and composition (e.g. Kornilova and Rosell‐Melé, 2003;
Nichols, 2010; Kehelpannala et al., 2020; Manley et al., 2020).
Lipid biomarkers are commonly extracted with dichloro-
methane and methanol in a ratio aligned with the expected
polarity of the target marker, whereas pigments are typically
extracted using acetone (e.g. Chen et al., 2001) or a mixture of
acetone, methanol and water (Leavitt and Hodgson, 2001).
Pigment extractions can include soaking overnight at low
temperatures (e.g. 20 °C) to minimize degradation (Jeffrey
et al., 1997).

© 2023 The Authors Journal of Quaternary Science Published by John Wiley & Sons Ltd J. Quaternary Sci., 1–34 (2023)

Figure 1. Using biomarkers to trace a wide range of environmental processes. Examples include biomarkers of climate change (e.g. temperature,
precipitation, sea ice), ecosystem change (e.g. vegetation cover, productivity dynamics and fire regimes), biogeochemical cycling (e.g. methane
production), sediment transport (e.g. soil residence time and land–ocean interactions), and human–environment interactions (e.g. presence of
humans and animals and agricultural activity). Biomarkers can be transported between terrestrial ecosystems and to marine environments by rivers,
surface water run‐off, erosional processes, wind and melting ice. Abbreviations: IP25 (Ice Proxy with 25 carbon atoms), IPSO25 (Ice Proxy Southern
Ocean with 25 carbon atoms), isoGDGT (isoprenoidal glycerol dialkyl tetraether), brGDGT (branched glycerol dialkyl tetraether), BHPs
(bacteriohopanepolyols). [Color figure can be viewed at wileyonlinelibrary.com]
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Care is needed, because organic solvents will also extract
unwanted compounds and add them to the extract, particularly
plasticizers but also oils from the skin/hair of researchers handling
the materials (e.g. Blyth et al., 2006). As a result, subsampling
cores or materials using metal spatulas, storing samples and
extracts in glass jars or high‐quality (low contaminant) bags, and
using foil to separate samples from plastic bags or lids are effective
strategies for minimizing contamination, alongside using labora-
tory personal protective equipment (e.g. Nichols, 2010). Inclusion
of blanks during sample processing allows for contamination to be
detected, monitored and isolated (Blyth et al., 2016). Water can
also interfere with lipid extraction efficiency and subsequent clean‐
up steps, and encourages oxidative degradation; the best approach
is to freeze‐dry samples (McClymont et al., 2007; Nichols, 2010).
A common approach in palaeoenvironmental research is

to recover multiple lipid biomarkers in a single extraction
procedure to generate an ‘extract’ (Kornilova and Rosell‐
Melé, 2003; Nichols, 2010). The extract may then be
separated into classes of compounds according to their
chemistry (e.g. polarity, pH) to isolate the target biomarkers
or to remove interfering compounds (Nichols, 2010). Biomar-
kers are then analysed using liquid (LC) or gas chromatography
(GC), whereby a prepared sample is introduced to a capillary
column and transferred to a detector by a flow of liquid or gas
(Peters et al. 2005). Non‐extractable material (e.g. lignins) can
be introduced by pyrolysis, whereby high temperatures are
used to split the large, refractory, molecules into diagnostic
fragments (White et al., 2004). The capillary column (usually
0.20–0.25 mm internal diameter) is coated with an internal
film called the stationary phase, the chemistry of which
determines how compounds are retained and released
according to their chemical properties as they travel through
the column. The result is a chromatogram of individual
compounds separated by their chemical interaction with the
column (Figure 2).
Biomarker identification usually involves the separated

individual compounds being transferred directly to a mass

spectrometer (LC‐MS, GC‐MS), which ionizes and fragments
them into characteristic patterns (Peters et al., 2005). Semi‐
quantitative analysis can be achieved by adding internal
standards of known mass during the extraction steps, or a
calibration curve will be derived using external standards of
varying concentrations to enable absolute quantification (e.g.
McGowan, 2013). However, some analysis remains qualitative
where internal standards are not feasible (e.g. McClymont
et al., 2011). Ratios between different compounds may be
more appropriate for characterizing changing biomarker
distributions; for several biomarkers these ratios are defined
as indices which are specifically linked to, or calibrated
against, environmental variables (Tables 1 and 2).
Finally, the separation of organic matter also allows for

CSIA. Not all samples or compounds are suitable: individual
biomarkers need to meet higher detection limits than for GC or
LC, and there needs to be excellent baseline separation
between peaks. For compound‐specific 14C analysis, GC or LC
techniques can be used to separate and then collect individual
compounds or classes of compounds for subsequent analysis
(Eglinton et al., 1996; Yamane et al., 2014; Sun et al., 2020).

Biological functions of biomarkers

In this section we have selected examples to introduce the
biological function of biomarkers and the mechanistic
principles behind their palaeoenvironmental proxy applica-
tions. The biological function of biomarkers varies between
different classes of compounds (Peters et al., 2005;
Bianchi and Canuel, 2011; Killops and Killops, 2013). Most
lipid biomarkers used within Quaternary research can be
classified as leaf wax or cell membrane lipids. Leaf wax lipids,
such as n‐alkanoic acids and n‐alkanes, are synthesized by
vegetation to act as waterproof protective barriers against the
external environment and to control evaporative water loss
and gas exchange (Eglinton and Hamilton, 1967; Post‐
Beittenmiller, 1996; Jetter et al., 2006). The chain length of

© 2023 The Authors Journal of Quaternary Science Published by John Wiley & Sons Ltd J. Quaternary Sci., 1–34 (2023)

Figure 2. Two examples of biomarker distributions containing mixtures of aquatic and vascular plants. Analysis is by chromatography, whereby
individual compounds are separated according to their size and chemical structures. The sample is injected at time zero, and the size of the peak
corresponds to the abundance of that molecule in the sample. (a) Gas chromatogram of the apolar compounds recovered from a lake or marine
sediment sample, showing a mixture of aquatic and vascular plant inputs; (b) gas chromatogram of the polar compounds recovered from a peatland
sample, showing a mixture of vascular plant inputs.
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leaf wax molecules varies between different plant species and
hydrological conditions: aquatic (terrestrial) species are
characterized by shorter (longer) chain lengths since they are
adapted to wetter (drier) conditions (Cranwell et al., 1987;
Ficken et al., 2000; Schefuß et al., 2003; Table 2). Biochemical
responses to environmental conditions can occur at fine
scales, which should be considered during interpretation of
the sedimentary record. For example, n‐alkane chain lengths
(Ronkainen et al., 2013) or concentrations (Huang et al., 2011)
have been shown to differ between the leaves and roots of
wetland species (Ronkainen et al., 2013; Andersson

et al., 2011), and both humidity and the timing of leaf growth
can impact n‐alkane distributions even within single plants
(e.g. Sachse et al., 2010; Eley and Hren, 2018). There is also
evidence for loss and transformation of some n‐alkyl compo-
nents within soils, although the dominant chain lengths tend to
be maintained with depth (Thomas et al., 2001).
Cell membrane lipids are synthesized by a range of

organisms including fungi, algae, plants and animals
(such as sterols, e.g. Volkman, 1986), archaea (including
isoprenoidal glycerol dialkyl glycerol tetraethers [isoGDGTs],
e.g. Nishihara and Koga, 1987, Sinninghe Damsté et al., 2000)

© 2023 The Authors Journal of Quaternary Science Published by John Wiley & Sons Ltd J. Quaternary Sci., 1–34 (2023)

Table 2. Examples of lipid ratios and compounds used to identify differences in vegetation source and environmental conditions.

Ratio or biomarker Representation Interpretation Example reference(s)

Average chain length (ACL) Weighted average indication of plant
input (n‐alkanes)

Higher values represent more higher plant
inputs, which can be driven by higher
temperatures and/or drier conditions

Poynter et al. (1989),
Schefuß et al. (2003),
Zhou et al. (2010)

Carbon Preference Index (CPI) n‐Alkanes with odd over even
carbon atom preference, which
reflects source material, maturity

level and/or contamination

Higher values can indicate reduced
decomposition (e.g. fresher material,
colder/drier conditions), lower values
can also be driven by petroleum or

microbial inputs

Bray and Evans (1961),
Zhou et al. (2010)

P(aqueous):, (C23+C25)/
(C23+C25+C29+C31) n‐alkanes

Hydrological: submerged vascular
compared withterrestrial species

Higher values indicate relatively more
submerged plant input and wetter

conditions

Ficken et al. (2000)

P(wax):, (C27+C29+C31)/
(C23+C25+C27+, C29+C31)
n‐alkanes

Hydrological: emerged species
compared with total vegetation

Higher values indicated more vascular
plant inputs and drier conditions

Zheng et al. (2007)

C23/C31 n‐alkanes Sphagnum vs higher plants Higher values indicate relatively more
Sphagnum input and wetter conditions

Bingham et al. (2010)

C23/C29 n‐alkanes (peatlands) Sphagnum vs non‐Sphagnum plants Higher values indicate relatively more
Sphagnum input and wetter conditions

Nichols et al. (2006)

C29/C33 n‐alkanes (palaeosols) Deciduous trees vs grasses and herbs Trigui et al. (2019)
C27/C31 n‐alkanes (stalagmites) Grass:tree Xie et al. (2003), Blyth

et al. (2007)
5‐n‐alkylresorcinols Presence of sedges Avsejs et al. (2002),

McClymont et al.
(2008a)

4‐Isopropenylphenol (peatlands) Analytical product of Sphagnum
acid, specific to Sphagnum

Higher abundance reflects more
Sphagnum

Boon et al. (1986),
McClymont
et al. (2011)

Sterols Range of markers depending on
vegetation type

E.g. lupeol, obtusifoliol, gramisterol from
sedge roots in fens

Ronkainen et al. (2013)

Triterpenoids Range of markers depending on
vegetation type

E.g. taraxerol as an indicator of mangroves
in tidal sediments or Ericaceae in

peatlands, millacin as an indicator of
millet

Versteegh et al. (2004),
Jacob et al.

(2008a, 2008b),
Pancost et al. (2002)

Ketones Range of markers depending on
vegetation type

E.g. palmitone as an indicator of Colocasia
esculenta (taro)

Krentscher et al. (2019)

Lignin phenols Terrigenous inputs from vascular
parts of plants

Identify vegetation type and extent,
disentangling non‐woody woody
angiosperms and gymnosperm

vegetation. Cannot provide species‐level
identification. Requires combination
with pollen or macrofossil analysis if
species‐level information needed

Hedges et al. (1982),
Orem et al. (1997),
Tareq et al. (2011)

Polycyclic aromatic
hydrocarbons (PAHs)

Incomplete combustion of organic
matter

Proxy for vegetation burning. Some
alkylated PAHs are also formed during
thermal maturation and petrogenic

processes, but ratios have been applied
to distinguish between (non)pyrogenic
sources and identify vegetation type

Ramdahl (1983),
Reviewed by Karp

et al. (2020), including
ratio details

Levoglucosan and other
monosaccharide anhydride
(MA) compounds

Pyrolysis of carbohydrates such as
from vegetation

Wildfire intensity indicator. Ratios of MA
indicate the vegetation type involved in

the burn and burn conditions.
Sometimes only detectable in low
abundance. Can be challenging to
disentangle local from regional fire

histories

Simoneit et al. (1999),
Reviewed by Bhattarai

et al. (2019)
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and eubacteria (such as hopanoids, e.g. Innes et al. 1997;
Ourisson et al. 1979). Membrane lipids are structural
components of cells that provide a stable controlled environ-
ment for biogeochemical reactions. Cell membrane lipids
regulate the fluidity (or permeability) of the cell membrane by
altering structural features such as chain lengths, the place-
ment of unsaturated (double) bonds and cyclic rings (Peters
et al., 2005; Bianchi and Canuel; 2011; Killops and Kill-
ops, 2013; Figure 3). For example, temperature changes are
expressed by the number and position of methyl groups of
branched GDGTs (brGDGTs; Weijers et al., 2007) and the
number of cyclopentane moieties of isoGDGTs (De Rosa
et al., 1980) (Figure 3; see next section).
The primary functions of some lipids remain unknown or poorly

understood. For example, alkenones, synthesized by phytoplank-
ton (Theroux et al., 2010), were originally considered to be
fluidity‐influencing membrane lipids (e.g. Brassell et al., 1986);
however, more recent studies have demonstrated that they more
probably contribute to energy storage and regulate properties such
as melting point and therefore ease of lipid catabolism (e.g. Epstein
et al., 2001; Bakku et al., 2018). Regardless of their specific
function, differences in alkenone chain lengths and the degree of
unsaturation (number of double bonds) can be used to reconstruct
palaeotemperature (e.g. Brassell et al., 1986; Figure 3; see ‘Ocean
and lake temperature reconstructions’). Some other types of
biomarkers of interest to Quaternary scientists are transformation
products that reflect environmental processes. For example, some
polyaromatic hydrocarbons (PAHs) and monosaccharide anhy-
drides (MAs) are produced during combustion of organic matter
and can therefore be used to reconstruct fire histories (see
‘Biomarkers of burning and agricultural activity as indirect
indicators of human activity’).
Pigments can be relatively general biomarkers of photosynthetic

processes (e.g. chlorophyll a/b/c and ββ‐carotene are general
productivity markers) or highly specific (e.g. alloxanthin is only
found in cryptophytes; reviewed by McGowan, 2007). Pigment
functions also vary: chlorophylls are active sites of photosynthesis,
providing energy for the cell, whereas carotenoids can also help
absorb light for photosynthesis (Jeffrey et al., 1997) or help protect
cells from ultraviolet (UV) exposure (e.g. scytonemin; McGo-
wan, 2007). The stability of pigments is dependent on specific
chemistry, the environment and presence of photoprotection
(Leavitt, 1993; Cuddington and Leavitt, 1999). Some pigments are
susceptible to oxidative or UV degradation, and even in
environments with good preservation there can be as much as
95% degradation in the water column before sedimentation
(McGowan, 2007). Pigment analysis is thus often most effective in
environments where preservation is facilitated by, for example,
anoxic or low light conditions (e.g. Hodgson et al., 2005). Where
degradation allows characteristic fragments of the original pigment
to be identified, valuable information can be recovered. For
example, chlorins represent the preserved central ring structure of
the original chlorophyll and are frequently selected as marine
productivity biomarkers over glacial–interglacial timescales (Harris
et al., 1996) (see ‘Reconstructing biological productivity in lakes
and the oceans’).

Quantifying amplitudes and rates of past
temperature change
Air, water and soil temperatures are important for detailing climate
system response to radiative forcing, including global climate
sensitivity (Masson‐Delmotte et al., 2021). Temperatures trace heat
transfers through ocean/atmosphere circulation systems and can
be informative of local conditions which may influence ecosys-
tems. Quantification of past temperature change has been a key

achievement for biomarker proxies and continues to be a frontier
of biomarker proxy development. Here, we first outline insights
gained from marine and lacustrine settings, before discussing
emerging terrestrial records from soils, peats and speleothems.

Ocean and lake temperature reconstructions

An early biomarker proxy success was the recognition that
some aquatic organisms change their cell membrane chem-
istry in response to water temperature, and that these signals
were detectable in sediments (Brassell et al., 1986; Figure 3).
Multiple biomarker temperature proxies have subsequently
been developed (Table 1). Biomarker temperature indices
describe distributions of lipids produced by selected photo-
synthesizing haptophyte algae (alkenone‐derived UK

37′ and
UK

38Me′ indices; Prahl and Wakeham, 1987; Novak et al.,
2022), ammonia‐oxidizing Thaumarchaeota (isoGDGT‐
derived TEX86 index; Schouten et al., 2022), eustigmatophyte
algae (long‐chain alkyl diol‐derived LDI; Rampen et al., 2012)
and bacteria (hydroxy fatty acid‐derived RAN13 index and
brGDGT‐derived MBT′5Me index; De Jonge et al., 2014; Yang
et al., 2020). As each proxy has different source organisms and
controls (Table 1), there is potential to generate detailed water
temperature reconstructions which might include seasonality
or temperature profiles with water depth. Both the UK

37′ and
TEX86 proxies have reconstructed temperatures through the
Quaternary and beyond (e.g. Herbert et al., 2010); more
recently developed proxies have tended to focus on the
Holocene or the last glacial cycle (e.g. Powers et al., 2005;
Warnock et al., 2018; Yang et al., 2020).
Biomarker water temperature proxies are calibrated using field

sampling, laboratory culture experiments and sediment core‐tops
(Table 1). The accuracy and precision of the temperature proxies
vary, especially at the upper and lower ends of the calibrations or
close to detection limits, and not all proxies are found in all
settings. Many of the proxies are calibrated to mean annual surface
water temperature (Table 1), but if the producers have preferred
seasons or water depths, a seasonal or subsurface temperature
signal may be reconstructed (D'Andrea et al., 2005, 2011;
Jaeschke et al., 2017; Tierney and Tingley, 2018; Inglis and
Tierney, 2020; Theroux et al., 2020; Spencer‐Jones et al., 2021).
Although marine biomarkers have global calibrations (Table 1),
there can also be local controls over the biomarker–temperature
relationship in all aquatic settings (e.g. salinity, sea/lake ice cover,
lake size). In some settings a regional temperature calibration may
be more appropriate (Table 1) (e.g. Bendle et al., 2005; De Jonge
et al., 2014; D'Andrea et al., 2016; Loomis et al., 2014; Longo
et al., 2016; De Bar et al., 2020; Sinninghe Damsté et al., 2022;
Yao et al., 2022).
A key impact of marine sea surface temperature (SST)

biomarker proxies has been the generation of quantitative
data to calculate amplitudes and rates of change, climate
response to changing CO2, and to facilitate data–model
comparisons (e.g. Brassell et al., 1986; MARGO Project
Members, 2005; Martrat et al., 2007; Schmittner et al., 2011;
Capron et al., 2017; Tierney et al., 2020). Relatively strong
mid‐ and high‐latitude SST responses to glacial–interglacial
cycles have been demonstrated (Martrat et al., 2007;
Naafs et al., 2013), but tropical cooling has also been
reconstructed during glacials (MARGO Project Mem-
bers, 2005; Herbert et al., 2010; McClymont et al., 2013).
UK

37′ records have shown that there are regional and
temporal differences in the amplitudes of interglacial
warming (MARGO Project Members, 2005; Past
Interglacials Working Group of PAGES, 2016) and that
early ocean cooling preceded the evolution of 100‐ka
glacial–interglacial cycles during the mid‐Pleistocene

© 2023 The Authors Journal of Quaternary Science Published by John Wiley & Sons Ltd J. Quaternary Sci., 1–34 (2023)
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transition (McClymont et al., 2013). Recent calibration of
the UK

38Me′ index shows potential to extend the upper linear
calibration limit of the UK

37′ proxy to ~30 °C (Novak et al.,
2022), reducing the reconstructed uncertainties at high SSTs
(Table 1) and enabling improved reconstructions of inter-

glacial warmth and glacial–interglacial variability in the low
latitudes.
Differences in absolute SSTs from UK

37′ and TEX86 or LDI
reconstructions from the same sediment sequences have
revealed circulation changes on a range of timescales

© 2023 The Authors Journal of Quaternary Science Published by John Wiley & Sons Ltd J. Quaternary Sci., 1–34 (2023)

FIGURE 3 Continued.
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(Figure 4). In the first TEX86 reconstruction spanning the last
deglaciation from the South China Sea, SSTs aligned well with
millennial‐scale variability in Hulu Cave stalagmite δ18O, but
exceeded and had a different trend to the UK

37′ SSTs, which
may in part be explained by different seasons of production
(Shintani et al., 2011). In low‐latitude upwelling systems,
higher UK

37′ (surface) and lower TEX86 (subsurface) tempera-
tures have enabled reconstructions of varying upwelling
intensity spanning millennial to million‐year timescales (e.g.
McClymont et al., 2012; De Bar et al., 2018; Petrick
et al., 2018; Erdem et al., 2021). Glacial–interglacial migra-
tions in the latitude of the Subtropical Front in the southern
hemisphere have been determined by combining UK

37′ and
TEX86 data (Cartagena‐Sierra et al., 2021), and seasonally
driven offsets between UK

37′, TEX86 and LDI temperatures
identified variable Leeuwin Current strength offshore south‐
east Australia over the last ~135 ka (Lopes dos Santos
et al., 2013a). Although less widely applied, the LDI has
isolated Baltic Sea cooling related to the 8.2‐ka event,
followed by a Holocene Thermal Maximum, and late
Holocene cooling with sea‐ice expansion (Warnock
et al., 2018). On much shorter timescales, an ‘Atlantification’
of waters in the Fram Strait through the 20th century was
detected using UK

37′ and TEX86 (Tesi et al., 2021; Figure 4).
Here, a multi‐biomarker approach, with 5–10‐year resolution,
enabled interactions between sea ice, ocean mixing and heat
transfer to be better determined than by using the short
instrumental record alone.
Lake temperature reconstructions provide valuable climate

indicators for continental climate change. Early TEX86 records
generated new constraints on temperature change in Africa: an
~2 °C increase in Lake Malawi surface water temperature
occurred during the last ~100 years which exceeded variability
in the preceding ~600 years (Powers et al., 2005); coherence
between Lake Victoria warming/cooling and rainfall occurred
over the last ~14 000 years (Berke et al., 2012a); and both long‐
term and abrupt temperature changes in Lake Tanganyika were
linked to Indian Ocean SSTs across the last deglaciation (Tierney
et al., 2008). However, local or regional influences over the
biomarker–temperature relationships include lake size and
depth (for TEX86; Sinninghe Damsté et al., 2022), salinity or
alkalinity (for MBT′5Me and alkenones; Pearson et al., 2008; De
Jonge et al., 2014; Song et al., 2016; Plancq et al., 2018),
nutrient availability (Toney et al., 2010), and inputs of soils
containing the same compounds (e.g. Loomis et al., 2012; De
Jonge et al., 2015; Russell et al., 2018). GDGT inputs from
methanogens and other archaea can also complicate TEX86
reconstructions: at Lake Challa (Africa) reliable temperature
reconstructions using lacustrine GDGTs were only possible
between 25 and 13 ka, but not in the Holocene section
(Sinninghe Damsté et al., 2012).
The brGDGT proxy MBT′5Me (de Jonge et al., 2014) has been

used to reconstruct millennial‐ and centennial‐scale variations

in lake temperature, which align with stadial and interstadial
events in the Iberian Peninsula (Rodrigo‐Gámiz et al., 2022).
Although local conditions prevented application of the MBT′5Me

index to an Icelandic lake, the combined analysis of brGDGT
distributions and UK

37′ data enabled quantification of tempera-
ture change through the Holocene which could be directly
compared to reconstructed and modelled ice cap change
(Harning et al., 2020). Having quantified early Holocene
warmth, the loss of the local ice cap by ~2050 CE was predicted
(Harning et al., 2020). A challenge for brGDGT reconstructions
is that the calibration uncertainties (up to ~5 °C; Table 1) are
of similar magnitude to some reconstructed Quaternary
temperature changes. The application of MBT′5Me can be

© 2023 The Authors Journal of Quaternary Science Published by John Wiley & Sons Ltd J. Quaternary Sci., 1–34 (2023)

Figure 3. A selection of palaeotemperature biomarkers, detailing the different chemical properties that can be used to identify specific markers and
their relationships to biological and environmental variables. (a) TEX86 (TetraEther indeX of tetraethers consisting of 86 carbon atoms) temperature
proxy is calculated using the relative distributions of isoGDGTs (iso‐GDGT‐1, iso‐GDGT‐2 and iso‐GDGT‐3) and the crenarchaeol regioisomer
(Schouten et al., 2002). Blue circles highlight the number of cyclopentane moieties, and the yellow circle highlights the presence of a cyclohexane
ring. (b) MBT′5Me (Methylation of Branched Tetraethers using the 5‐methyl isomers) temperature proxy in soils is calculated using the relative
distributions of 5‐methyl brGDGT (de Jonge et al., 2014). Blue circles highlight the presence and number of cyclopentane moieties and green circles
highlight the presence and number of methyl groups in the α and/or ω‐5 position. (c) UK

37′ temperature proxy in freshwater and marine
environments is calculated using the relative distributions of the di‐ and tri‐unsaturated alkenone distributions (Prahl and Wakeham, 1987). The
chain lengths of the two alkenones are the same (C37 = 37 carbon atoms), but the number of double bonds increases from two to three (highlighted
by red circles). (d) LDI (long chain diol index) temperature proxy in freshwater and marine environments is calculated using the relative distributions
of C28 and C30 1,13‐ and C30 1,15‐alykl diol distributions (Rampen et al., 2012; 2014). Compounds vary in terms of chain lengths (C28 = 28 carbons
atoms and C30 = 30 carbons atoms) and the location of the midchain alcohol group (C13 or C15; highlighted by the orange circles). (e) RAN15
temperature proxy in soils is calculated using the ratio of anteiso to normal 3‐hydroxy C15 fatty acid (Wang et al., 2021a). Green circle highlights the
methyl‐substituent located on the antepenultimate carbon atom. [Color figure can be viewed at wileyonlinelibrary.com]

a

b

c

Figure 4. Biomarker insights into changes in late Holocene sea ice
and expansion of Atlantic waters (‘Atlantification’) from reconstructed
sea surface temperatures (SST) in the Fram Strait, the largest gateway to
the Arctic Ocean (data from Tesi et al., 2021). Surface water and
subsurface water temperature reconstructions are reconstructed from
the same sediment core using two different biomarker proxies (UK

37
and TEX86 respectively) and compared with historical records of sea
ice persistence. (a) UK

37‐derived SST (standard error is shown by grey
vertical lines); (b) TEXL

86‐derived water temperatures (standard error is
shown by grey vertical lines); and (c) historical records of sea ice
presence at Icelandic coasts (weeks/year) (Lamb, 1977). [Color figure
can be viewed at wileyonlinelibrary.com]
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complex since the full range of specific bacterial sources
of brGDGTs is unknown: community sequencing of laboratory
cultures, environmental samples, and micro‐ and mesocosm
studies have identified Acidobacteria as brGDGT producers;
however, they currently do not account for the full distributions
of brGDGTs found in sedimentary samples (e.g. Weijers et al.,
2010; Sinninghe Damsté et al., 2011, 2018; Martinez‐Sosa and
Tierney, 2019; De Jonge et al., 2021; Halamka et al., 2023).
The uncertainty surrounding the producer organisms (and

whether they have changed through time), as well as limited
high‐latitude samples in global calibrations (Blaga et al., 2010;
De Jonge et al., 2014; Naafs et al., 2017), has complicated the
interpretation of Greenland lake data which did not align with
other biomarker or macrofossil proxies (Kusch et al., 2019). In
the high latitudes of the southern hemisphere, accounting for
distinct brGDGT distributions at low temperatures enabled the
production of a regional brGDGT calibration with reduced
uncertainties; in turn, millennial‐scale temperature changes
were identified in an Antarctic lake core spanning the last
~4000 years (Foster et al., 2016). In East Africa, a regional MBT
′5Me calibration also reduced temperature reconstruction errors
to <2.5 °C (Russell et al., 2018). Regional calibrations may
therefore need to be considered where strong environmental
impacts on lipid synthesis could occur.
Identification of key alkenone producers in North American,

Greenland and Alaska lakes, with a preferred spring signal (e.g.
D'Andrea, Huang, 2005; Toney et al., 2010; Wang et al.,
2021a), offers the potential to quantify seasonal lake tempera-
ture change in the northern high latitudes. Centennial‐scale
late Holocene winter–spring lake temperature changes have
been quantified in Iceland, showing a strong influence from
SSTs (Richter et al., 2021). Holocene lake temperature changes
linked to ice shelf configuration were reconstructed in north‐
east Greenland (Smith et al., 2023). With the recent develop-
ment and calibration of the 3‐hydroxy‐fatty acid ratios in lakes
(Table 1; e.g. Wang et al., 2021a) there is also the potential for
new bacteria‐derived temperature proxies to be generated, but
downcore applications are not yet available.
In aquatic settings where there are inputs of organic

matter from the continents, and where the same biomarkers
are found onshore, it is important to assess and correct (or
remove) temperature data which may incorporate a mixture
of both marine and terrestrial inputs, since the two
environments have different biomarker–temperature cali-
brations (e.g. De Jonge et al., 2015; Russell et al., 2018;
Martínez‐Sosa et al., 2021). For example, samples with high
inputs of terrestrial brGDGTs can be flagged and removed
using the BIT index (branched and isoprenoid tetraether
index; Table 3 and Hopmans et al., 2004), whereas two
separate calibrations may be applied if there is sedimento-
logical evidence for a switch from marine to lake environ-
ments (Smith et al., 2023). Where a separation between
aquatic and terrestrial lipids can be achieved, it is possible
to generate terrestrial temperature records using lake/
marine sediments (e.g. Blaga et al., 2010; Watson
et al., 2018; see subsection below).
Finally, on Quaternary timescales, there is potential for

evolution to alter the biomarker–temperature relationship.
Although the marine UK

37′–SST relationship appears robust to
evolutionary events in alkenone producers (McClymont
et al., 2005), a long‐term (million year) warming in TEX86 at
Lake El'gygytgyn in the Russian Arctic was influenced by
archaeal community changes as landscape evolution influ-
enced biogeochemical cycling (Daniels et al., 2021). On
shorter timescales, alkenone temperature indices in saline
lakes can be impacted by shifts between the dominant
haptophytes (Yao et al., 2022). For example, salinity‐driven

changes in the haptophyte assemblage in Lake Van, Turkey,
are suggested to have complicated the UK

37′–temperature
reconstructions for the oldest part of the record (~100–270 ka)
(Randlett et al., 2014).

Temperatures reconstructed from soils, peats and
speleothems

The calibration of biomarker proxies for continental tempera-
tures using soils, peats and speleothems has been more
challenging than for aquatic settings and remains an active
area of development (e.g. Weijers et al., 2007; Naafs et al., 2017;
Meckler et al., 2021). Quantified temperature data can provide
a valuable backdrop to understand the rich environmental
information recovered from the same archives (e.g. vegetation
and hydrological change, human activity; see ‘Reconstructing
vegetation and hydrological change’ and ‘Sedimentary records
of humans and animals in Quaternary landscapes’).
The (acido)bacteria‐produced brGDGTs, found in soils, peats

and speleothems, have been explored as temperature proxies
given their promise in aquatic settings (‘Ocean and lake
temperature reconstructions’ above). The uncertainties in the
brGDGT temperature calibrations for peat (~4.7 °C, Naafs
et al., 2017) and soils (~4.8 °C, De Jonge et al., 2014;
Yamamoto et al., 2016) make it difficult to reconstruct low‐
amplitude and potentially brief Holocene temperature fluctua-
tions. In the low latitudes, regional calibrations have been
developed which have lower uncertainties (Pérez‐Angel
et al., 2020), and loess/palaeosol sequences have required
careful interpretation given unusual brGDGT distributions in
semi‐arid settings (Yang et al., 2014). Conversion of soil or peat
temperatures to overlying air temperatures has also been
challenging where there are differences between the two
(Dearing Crampton‐Flood et al., 2020). Nevertheless, in the
Great Lakes region (North America) brGDGT‐inferred soil/air
temperatures from a lake core aligned with pollen‐based
temperature reconstructions associated with the
Bølling–Allerød (B‐A) warming, Younger Dryas cooling and
Holocene warming (Watson et al., 2018). Importantly, the
brGDGT analysis was able to advance understanding beyond
pollen‐based interpretations by showing that the multi‐
centennial lag in warming compared to Northern Hemisphere
temperature syntheses was due to the effects of continentality
and regional influences of ice‐sheet extent rather than a delayed
vegetation response (Watson et al., 2018). Where soil‐derived
biomarkers have been transported to different depositional
settings, there can be complexity in the signature if the source
regions have changed over time: shifting sediment provenance
of brGDGT distributions recovered offshore of the Amazon
basin over the last deglaciation impacted the reconstructed
absolute air temperature time‐series, due to the increasing
influence of colder, higher‐elevation inputs from the Andes into
the Holocene (Bendle et al., 2010).
In Asia, both isoGDGTs (TEX86) and brGDGTs have been

used in peat, loess and speleothems to explore the drivers and
impacts of shifts in the summer monsoon. In peats, the
combination of proxies for temperature and hydrology can be
effective in considering their different drivers and the potential
for (a)synchrony (e.g. Peterse et al., 2014; Wang et al., 2017). A
130 000‐year loess–palaeosol sequence yielded high‐resolution
brGDGT temperature reconstructions: local insolation was the
main driver of temperature change, but temperatures led
brGDGT‐inferred precipitation changes with a lag length which
was linked to the intensity of northern hemisphere glaciation
(Peterse et al., 2014). Rapid brGDGT temperature changes
across the Younger Dryas and ~3.2 ka in Southeast China
occurred synchronously with pollen assemblage changes over

© 2023 The Authors Journal of Quaternary Science Published by John Wiley & Sons Ltd J. Quaternary Sci., 1–34 (2023)

BIOMARKER PROXY REVIEW 9

 10991417, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jqs.3559 by D

urham
 U

niversity - U
niversity, W

iley O
nline L

ibrary on [30/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



© 2023 The Authors Journal of Quaternary Science Published by John Wiley & Sons Ltd J. Quaternary Sci., 1–34 (2023)

Ta
bl
e
3.

O
ve

rv
ie
w

of
th
e
ke

y
pr
ox

ie
s
fo
r
pa

la
eo

‐p
ro
du

ct
iv
ity

an
d
bi
og

eo
ch

em
ic
al

cy
cl
in
g
an

d
se
di
m
en

t
tr
an

sp
or
t.

Pr
ox

y
So

ur
ce

En
vi
ro
nm

en
ta
l
si
gn

al
C
on

si
de

ra
tio

ns
Ex

am
pl
e
re
fe
re
nc

e(
s)

B
ra
nc

he
d
vs

is
op

re
no

id
al

te
tr
ae

th
er

(B
IT
)

in
de

x
fr
om

G
D
G
Ts

A
rc
ha

ea
in

so
ils

(b
rG

D
G
Ts
)a

nd
aq

ua
tic

se
tti
ng

s
(is
oG

D
G
Ts
)

In
di
ca

to
r
of

so
il
in
pu

ts
to

aq
ua

tic
sy
st
em

s
So

m
e
in

si
tu

w
at
er

co
lu
m
n
pr
od

uc
tio

n
of

br
an

ch
ed

G
D
G
Ts

ha
s
be

en
id
en

tif
ie
d,

co
m
pl
ic
at
in
g
in
te
rp
re
ta
tio

ns
H
op

m
an

s
et

al
.
(2
00

4)
,

B
ec

ht
el

et
al
.
(2
01

0)
,
Fi
et
z

et
al
.
(2
01

2)
Te

rr
es
tr
ia
l
to

aq
ua

tic
ra
tio

(T
A
R
)

n‐
A
lk
an

es
fr
om

hi
gh

er
pl
an

ts
(lo

ng
ch

ai
ns
)
an

d
al
ga

e
(s
ho

rt
ch

ai
ns
)

In
di
ca

to
r
of

pl
an

t
or

so
il
in
pu

ts
to

aq
ua

tic
sy
st
em

s
A
s
w
el
l
as

pl
an

t
in
pu

ts
,
so
ils

an
d
se
di
m
en

ta
ry

ro
ck

s
m
ay

al
so

tr
an

sp
or
t
lo
ng

‐c
ha

in
n‐
al
ka

ne
s;

m
ul
tip

le
po

te
nt
ia
l

pa
th
w
ay

s

C
ra
nw

el
l
(1
97

3)
,
M
ül
le
r

et
al
.
(2
01

4)
,
Sa

nc
he

z‐
M
on

te
s
et

al
.
(2
02

0)
A
lk
en

on
es

K
et
on

es
(a
lk
en

on
es
)
sy
nt
he

si
ze

d
by

ha
pt
op

hy
te

al
ga

e
H
ap

to
ph

yt
e
al
ga

e
pr
od

uc
tiv

ity
si
gn

al
R
ec

en
t
su
gg

es
tio

ns
th
at

al
ke

no
ne

ab
un

da
nc

e
m
ay

lin
k

di
re
ct
ly

to
to
ta
lp

ri
m
ar
y
pr
od

uc
tiv

ity
,s
ea

ic
e
(%

C
3
7
:4
)o

r
sa
lin

ity
(%

C
3
7
:4
)

Pe
tr
ic
k
et

al
.
(2
01

8)
,

C
ar
ta
ge

na
‐S
ie
rr
a
et

al
.

(2
02

1)
,
R
aj
a
Sa

nc
he

z
an

d
R
os
el
l‐
M
el
e
(2
02

1)
,
W

an
g

et
al
.
(2
02

1b
)

A
rc
ha

eo
l

Pr
od

uc
ed

by
an

ae
ro
bi
c
ar
ch

ae
a

R
ed

ox
ch

an
ge

s
an

d
m
et
ha

no
ge

ns
is

Po
te
nt
ia
l
to

re
co

rd
m
ic
ro
bi
al

ac
tiv

ity
on

sh
or
e
de

pe
nd

in
g

on
so
ur
ce

an
d
tr
an

sp
or
t
pa

th
w
ay

Pa
nc

os
t
et

al
.
(2
01

1)

B
ac

te
ri
oh

op
an

ep
ol
yo

ls
(B
H
Ps
)

M
em

br
an

e
lip

id
s
pr
od

uc
ed

by
ba

ct
er
ia

M
ic
ro
bi
al

pr
oc

es
se
s
su
ch

as
m
et
ha

no
ge

ne
si
s

Po
te
nt
ia
l
to

re
co

rd
m
ic
ro
bi
al

ac
tiv

ity
on

sh
or
e
de

pe
nd

in
g

on
so
ur
ce

an
d
tr
an

sp
or
t
pa

th
w
ay

Ta
lb
ot

et
al
.
(2
00

3)
,
Ta

lb
ot

an
d
Fa

rr
im

on
d
(2
00

7)
C
hl
or
in
s

A
lg
al

pr
od

uc
tiv

ity
.

G
en

er
al

ph
yt
op

la
nk

to
n

pr
od

uc
tiv

ity
m
ar
ke

r
Fo

rm
ed

fr
om

de
gr
ad

at
io
n
of

ch
lo
ro
ph

yl
l
to

m
or
e
st
ab

le
te
tr
ap

yr
ro
lic

pi
gm

en
ts
.
Se

di
m
en

ta
ry

co
nc

en
tr
at
io
n

re
fle

ct
s
ov

er
al
l
ex

po
rt
to

se
af
lo
or

H
ar
ri
s
an

d
M
ax

w
el
l
(1
99

5)
,

Z
ha

o
et

al
.
(2
00

6)

C
hl
or
op

hy
ll
an

d
ca

ro
te
no

id
pi
gm

en
ts

M
ai
nl
y
aq

ua
tic

pr
od

uc
tiv

ity
,
so
m
e

in
pu

ts
fr
om

te
rr
es
tr
ia
l
pl
an

t
m
at
te
r

A
lg
al

pr
od

uc
tio

n
m
ar
ke

rs
.
U
se
d
to

in
te
rp
re
t
pr
od

uc
tiv

ity
in

co
m
bi
na

tio
n
w
ith

ot
he

r
m
ar
ke

rs

C
an

be
su
sc
ep

tib
le

to
de

gr
ad

at
io
n,

th
ou

gh
de

gr
ad

at
io
n

pr
od

uc
ts

ca
n
al
so

be
pr
od

uc
tiv

ity
m
ar
ke

rs
.
G
en

er
al
ly
,

be
tte

r
pr
es
er
ve

d
in

la
ke

s
th
an

oc
ea

n
se
di
m
en

ts
,
un

le
ss

ne
ar
‐s
ho

re
or

un
de

r
an

ox
ic

co
nd

iti
on

s

Le
av

itt
(1
99

3)
,
H
od

gs
on

et
al
.
(2
00

3)
,

M
cG

ow
an

(2
01

3)

H
ig
hl
y
br
an

ch
ed

is
op

re
no

id
s
(H

B
Is
)

Pr
od

uc
ed

by
se
le
ct
ed

di
at
om

s,
in
cl
ud

in
g
so
m
e
se
a‐
ic
e
as
so
ci
at
ed

sp
ec

ie
s.

A
rc
tic

:
IP

2
5
sy
nt
he

si
ze

d
by

H
as
le
a
sp
p.

So
ut
he

rn
O
ce

an
:I
PS

O
2
5

sy
nt
he

si
ze

d
by

th
e
se
a
ic
e
di
at
om

B
er
ke

le
ya

ad
el
en

si
s

G
en

er
al

in
di
ca

to
rs

of
se
le
ct
ed

di
at
om

pr
od

uc
tiv

ity
,
an

d
fo
r

sp
ri
ng

se
a
ic
e
w
ith

IP
(S
O
) 2
5

C
om

bi
na

tio
n
of

IP
(S
O
) 2
5
an

d
as
so
ci
at
ed

di
at
om

H
B
Is

or
st
er
ol
s
ca

n
be

us
ed

to
di
st
in
gu

is
h
be

tw
ee

n
pe

re
nn

ia
ls
ea

ic
e
(n
o
H
B
Is
)a

nd
op

en
w
at
er
s
[n
o
IP
(S
O
) 2
5
],
PI
P 2

5
:I
P 2

5
/

(IP
2
5
+

ph
yt
op

la
nk

to
n
m
ar
ke

r
×
c)
,
PI
PS

O
2
5
:
IP
SO

2
5
/

(IP
2
5
+

ph
yt
op

la
nk

to
n
m
ar
ke

r
×
c)

B
el
t
an

d
M
ul
le
r
(2
01

3)
,
B
el
t

et
al
.,
(2
01

5,
20

16
).

V
or
ra
th

et
al
.
(2
02

0)

is
oG

D
G
T‐
0

M
et
ha

no
ge

ns
ar
e
pr
ob

ab
ly

th
e

do
m
in
an

t
pr
od

uc
er
s
in

pe
at

M
ic
ro
bi
al

pr
oc

es
se
s
su
ch

as
m
et
ha

no
ge

ne
si
s

O
th
er

po
te
nt
ia
l
so
ur
ce

or
ga

ni
sm

s
m
ay

co
nf
la
te

th
e

m
et
ha

no
ge

ns
is

si
gn

al
B
as
ili
ko

et
al
.
(2
00

3)
,

Pa
nc

os
t
an

d
Si
nn

in
gh

e
D
am

st
é
(2
00

3)
Is
or
en

ie
ra
te
ne

A
lg
ae

w
hi
ch

ca
n
fix

un
de

r
lo
w
‐l
ig
ht

co
nd

iti
on

s
at

de
ep

w
at
er

de
pt
hs

Ph
ot
ic

zo
ne

an
ox

ia
,
gr
ee

n
su
lp
hu

r
ba

ct
er
ia

N
ee

ds
su
ita

bl
e
en

vi
ro
nm

en
t
fo
r
pr
es
er
va

tio
n

Si
nn

in
gh

e
D
am

st
é
et

al
.

(2
00

1)
,
M
al
lo
rq
uí

et
al
.
(2
00

5)
Sc

yt
on

em
in

Pr
ot
ec

tiv
e
ca

ro
te
no

id
pr
od

uc
tio

n
by

al
ga

e
to

av
oi
d
de

le
te
ri
ou

s
ef
fe
ct
s
of

ha
rm

fu
l
U
V

ra
di
at
io
n
(U

V
R
)

In
di
ca

to
r
of

hi
gh

U
V
R
re
ce

ip
t.

En
vi
ro
nm

en
ta
l
pr
es
su
re

fo
r
al
ga

e
to

pr
ot
ec

t
ce

lls
du

ri
ng

pr
od

uc
tio

n.

C
ha

lle
ng

in
g
to

de
co

up
le

U
V
R
lim

ita
tio

n
fr
om

ot
he

r
lim

iti
ng

fa
ct
or
s,

e.
g.

nu
tr
ie
nt

av
ai
la
bi
lit
y

H
od

gs
on

et
al
.
(2
00

5)

St
er
ol
s
(e
.g
.
di
no

st
er
ol
,
br
as
si
ca

st
er
ol
)

Pr
od

uc
ed

by
al
ga

e,
bu

t
al
so

pr
es
en

t
in

so
m
e
te
rr
es
tr
ia
l
m
at
er
ia
l

C
an

be
lin

ke
d
to

gr
ou

ps
of

pr
od

uc
er
s
(e
.g
.
di
no

st
er
ol

fo
r

di
no

fla
ge

lla
te
s)

C
an

be
de

gr
ad

ed
in

th
e
w
at
er

co
lu
m
n

Fa
hl

an
d
St
ei
n
(1
99

9)
,

N
ak

ak
un

i
et

al
.
(2
01

7)

C
om

po
un

d‐
sp
ec

ifi
c
st
ab

le
ca

rb
on

is
ot
op

es
δ1

3
C

on
in
di
vi
du

al
n‐
al
ka

ne
s,

n‐
al
ka

no
ls

an
d
n‐
al
ka

no
ic

ac
id
s

W
id
e
ra
ng

e
of

so
ur
ce

s
(T
ab

le
1)

B
io
m
ar
ke

r
sp
ec

ifi
c:

ch
an

ge
s
in

C
3

to
C
4
ve

ge
ta
tio

n;
ch

an
gi
ng

pr
od

uc
tiv

ity
or

pr
od

uc
er
s

C
an

be
ch

al
le
ng

in
g
to

in
te
rp
re
t
in

is
ol
at
io
n
du

e
to

pr
od

uc
er
‐s
pe

ci
fic

in
flu

en
ce

s
H
ua

ng
et

al
.
(2
00

6)
,
Ti
er
ne

y
et

al
.
(2
01

0)
,
M
cC

ly
m
on

t
et

al
.
(2
02

2)

c r
ep

re
se
nt

a
co

ns
ta
nt

(fi
xe

d
nu

m
be

r)
in

th
e
eq

ua
tio

n,
as

st
an

da
rd

m
at
he

m
at
ic
al

no
m
en

cl
at
ur
e.

10 JOURNAL OF QUATERNARY SCIENCE

 10991417, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jqs.3559 by D

urham
 U

niversity - U
niversity, W

iley O
nline L

ibrary on [30/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



the last ~30 000 years in a peat sequence, and also showed
asynchrony between temperature and precipitation proxies
during the last deglaciation (Wang et al., 2017). A 4 °C increase
in mean annual air temperature was recorded by speleothem‐
TEX86 over the last deglaciation: the warming pre‐dated Indian
Summer Monsoon strengthening but was closely aligned with
SST records (Huguet et al., 2018). A pattern of early Holocene
warmth followed by cooling towards the present day has been
recorded by brGDGTs in peats (NE China; Zheng et al., 2018)
and using the more recently developed fatty acid RAN15 index
in a Chinese speleothem (Wang et al., 2018; Table 1). Given the
challenges of recovering biomarkers from low organic carbon
archives, and concerns about the relative influence of cave
micro‐environments on each record (Blyth et al., 2016; Baker
et al., 2019), the recovery of both GDGTs and the C15 and
C17 fatty acids from speleothems shows huge potential for
generating new terrestrial records of cave or air temperature
(e.g. Li et al., 2011; Blyth et al., 2016; Baker et al., 2019). As
speleothems can also yield fatty acid, n‐alkanol and n‐alkan‐2‐
one distributions, interpreted to reflect changing soil micro‐
organism responses to Holocene climate change (Xie
et al., 2003; Kalpana et al., 2021), there is further potential to
consider ecosystem response to temperature change (see also
‘Reconstructing vegetation using biomarker distributions’),
especially as analytical developments reduce sample sizes
(e.g. Meckler et al., 2021).

Reconstructing vegetation and hydrological
change
Palaeovegetation and palaeohydrology records provide in-
sights into drivers of climate change that impact precipitation/
evaporation and terrestrial ecosystem response. Water avail-
ability is essential to the functioning of ecosystems and
societies; therefore, long‐term hydrological records also
provide essential context for understanding changes in habitat
and landcover, diets, agricultural practices, settlement dy-
namics and societal structures through the Quaternary.
Different vegetation types have characteristic biomarker
distributions and stable isotope ratios reflecting their biosyn-
thetic pathways and biological responses to environmental
conditions (Table 2, ‘Biological functions of biomarkers’).
When the biological source of the biomarkers is well
constrained, CSIA has enabled the varying biological and
environmental influences over δ13C and δ2H to be disen-
tangled. CSIA has thus emerged as a powerful tool for
reconstructing both past vegetation change and palaeohydrol-
ogy (Castañeda and Schouten, 2011; Diefendorf and Frei-
muth, 2017; Holvoeth et al., 2019; Inglis et al., 2022).

Reconstructing vegetation using biomarker
distributions

Plant‐derived lipids were among the first to be characterized
(Eglinton and Hamilton, 1967), and remain among the most
frequently applied biomarker tools owing to their prevalence
in Quaternary sequences, their relative resilience to decay,
ease of analysis, and the diversity of environmental informa-
tion that they contain within their distributions and isotopic
compositions. Lignin‐derived compounds have also been
targeted as relatively well‐preserved plant remains (e.g.
Castañeda et al., 2009b; reviewed in Jex et al., 2014).
Biomarker vegetation reconstructions commonly use distribu-

tions of n‐alkyl compounds such as n‐alkanes, n‐alkanols,
n‐alkanoic acids and wax esters, but may also draw upon
sterols, phenols and more specific compounds (defined in

Table 2). Biomarker vegetation reconstructions are usually
made at the family rather than the species level, so the
taxonomic detail is lower than with other vegetation proxies
[pollen, plant macrofossils, and sedimentary ancient DNA
(sedaDNA)]. However, the relative resistance of n‐alkyl
compounds to decay has enabled vegetation reconstructions
in samples with low levels of macro‐ and micro‐fossil
preservation, particularly in wetlands (e.g. McClymont
et al., 2008a; Ronkainen et al., 2015). Biomarkers are also
considered less susceptible to the long‐range transport pro-
cesses that can complicate pollen analyses due to the
hydrodynamic properties of the leaves they are derived from
(Schwark et al., 2002).
Complexity is introduced where some plants produce n‐

alkane distributions that contain peaks in both longer and
shorter chain lengths. For example, some Sphagnum species
produce a dominant n‐alkane chain length of C23, but also
have elevated C31, which complicates the use of the C23/C31

ratio as a Sphagnum indicator (e.g. Andersson et al., 2011;
Bingham et al., 2010; Bush and McInerney, 2013; Table 2).
However, the presence of the sphagnum acid product 4‐
isopropenylphenol may offer a complementary assessment of
the relative Sphagnum inputs to peat cores (e.g. Boon
et al., 1986; McClymont et al., 2011). There may also be a
bias caused by variable n‐alkyl lipid production. For example,
some conifer groups (e.g. Pinaceae) produce significantly less
n‐alkanes than broadleaf species, whereas others (e.g.
Podocarpaceae) are similar (Diefendorf and Freimuth, 2017).
As such, in catchments where pollen analyses indicate conifers
as being the dominant vegetation type, biomarker interpreta-
tions should be part of a multi‐proxy assessment: in northern
Poland, this approach enabled subdecadal shifts in vegetation
during the last deglaciation to be determined in detail (Aichner
et al., 2018).
As different vegetation types have particular moisture

preferences, plant biomarkers have been used to assess
palaeohydrology by reconstructing the relative contributions
of different vegetation types to sedimentary archives including
lake sediments (e.g. Meyers, 2003; Castañeda et al., 2009b),
marine sediments (Castañeda et al., 2009a), peats (e.g. Pancost
et al., 2002; Ortiz et al., 2010; Zhou et al., 2010) and
palaeosols (e.g. Zhang et al., 2006) (Table 2). Concurrent
changes in the peatland C23/C29 n‐alkane ratio (Sphagnum/
vascular plants) and solar irradiance highlighted the sensitivity
of north‐east American hydroclimate to solar forcing, and its
amplification by the Arctic/North Atlantic Oscillation since the
mid‐Holocene (Nichols and Huang, 2012). A key area of
research has been the development of multiple records of
vegetation change linked to changes in the Asian monsoon.
Peatland aquatic/terrestrial vegetation reconstructions using n‐
alkanes identified Holocene intensification of the Indian
Summer Monsoon in the Garwhal Himalyas, and in turn,
regional heterogeneity in mid‐ to late Holocene monsoonal
conditions in the Indian sub‐continent (Bhattacharya
et al., 2021). Speleothem reconstructions of changing ecosys-
tem dynamics have also been generated using a diverse suite
of compounds, including n‐alkanes (e.g. Xie et al., 2003; Blyth
et al., 2007), sterols (e.g. Rousseau et al., 1995), fatty acids
(e.g. Wang et al., 2019a) and lignin phenols (e.g. Blyth and
Watson, 2009; Heidke et al., 2019). For example, in a Chinese
speleothem, ratios of long‐chain n‐alkanes and n‐alkan‐2‐ones
(from terrestrial vegetation) to shorter chain compounds (from
soil organisms) recorded vegetation changes during the Last
Glacial Maximum which could be linked to fluctuations in
North Atlantic SSTs during the last deglaciation (Xie
et al., 2003). However, biomarker distributions (and other
proxies) tend to be used as part of the evaluation of biological
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and/or environmental controls over compound‐specific stable
carbon and hydrogen isotope ratios, rather than in isolation
(e.g. Castañeda et al., 2009a, 2009b).

Reconstructing vegetation and hydrological
change using compound‐specific stable isotope
analysis

For higher plant biomarkers, stable carbon isotope analysis
(δ13C) of individual lipids provides a powerful tool to
reconstruct past vegetation changes, because different photo-
synthetic pathways can be distinguished by their impact on
plant tissue δ13C (Liu et al., 2022). Thus, n‐alkane δ13C from
trees and shrubs using the C3 (Calvin–Benson) pathway is on
average >10 ppm lower than in n‐alkane δ13C from plants
using the C4 (Hatch–Slack) pathway, which are mainly tropical
grasses (Castañeda et al., 2009a). A range of additional factors
impact fractionation which may need to be considered in
interpreting δ13C records, including moisture availability (for
C3 plants), ecological or physiological changes and past 13CO2

values (Diefendorf and Freimuth, 2016). A common nomen-
clature when presenting stable isotope ratios of individual
lipids is δ13Clipid, where ‘lipid’ is the chain length or the name
of the lipid which has been analysed.
The long‐term reliability of the leaf wax δ13C vegetation

proxy has been demonstrated through comparisons with
pollen records from the late Pleistocene (e.g. Tierney
et al., 2010; Huang et al., 2006). Mixing models have
successfully used δ13C differences to reconstruct shifts in the
relative abundance of C3 and C4 with the caveat that bias may
also be introduced by variable n‐alkyl lipid production
(‘Reconstructing vegetation using biomarker distributions’;
Garcin et al., 2014). In tropical Africa, δ13Clipid records have
reconstructed variable trees/shrubs (C3) and grasses (C4)
extending back to the early Pleistocene from both lake and
marine sediments (e.g. Castanẽda et al., 2007; Schefuß
et al., 2003). In Lake Challa, Africa, δ13C analysis of the C31

n‐alkane (δ13C31) reconstructed a vegetation transition from
C4‐dominated plants during the glacial period to a mix of C3/
C4 plants ~16.5 cal ka BP, which persisted during the Holocene
and reflected the combined influences of increasing atmo-
spheric CO2 concentrations and increasing monsoon rainfall
(Sinninghe Damsté et al., 2011). N‐alkane, n‐alkanol and
δ13C31 have recorded glacial–interglacial switches between
steppe vegetation (C3) and warm season grasses (C4) at the
Chinese loess plateau over the last 170 ka (Zhang et al., 2006).
In Olduvai Gorge, orbitally paced δ13C31 variations demon-
strated rapid and large shifts between closed C3 woodlands
and more open C4 grasslands ~1.9 Ma, challenging previous
reconstructions of relatively stable ecosystems in the early
Pleistocene (Magill et al., 2013). The ecosystem variations
were probably linked to SST oscillations and monsoon
strength, and provide a backdrop for the emergence and
dispersal of Homo (Magill et al., 2013), as also suggested for
more recent hominid migrations (e.g. Castañeda et al., 2009a).
By comparing n‐alkane flux and δ13C signals across multiple

glacial–interglacial timescales offshore of the Angola Basin, a
decoupling between enhanced dust deposition ~900 ka and
orbital variability in δ13C31 revealed the different impacts of
trade wind response to northern hemisphere ice‐sheet growth
(driving dust) and vegetation responses to regional SST
changes (Schefuß et al., 2003). Lignin phenol and n‐alkane
distributions alongside n‐alkane δ13C spanning the last 23 ka
in Lake Malawi reconstructed millennial‐scale variability in
vegetation linked to wet conditions in south‐east Africa, and a
dominance of higher plant signals in bulk δ13C was confirmed
(Castañeda et al., 2009b). However, caution is required where

there may be mixed aquatic/terrestrial or local/regional inputs
in the same archive: contributions of aquatic C27 and C29 n‐
alkanes to a lake sediment resulted in different δ13C variations
compared to the terrestrial leaf wax δ13C31 in the same core
(Liu et al., 2015); varying inputs of local and more widely
sourced leaf waxes to an estuarine sequence were identified by
different δ13C signals recorded depending upon the n‐alkane
chain length (Carr et al., 2015).
A powerful and direct proxy measurement of hydroclimate

comes from δ2H signatures of lipids derived from plants and
algae, which track the δ2H of their environmental water
sources (reviewed by Sachse et al., 2012). D/H fractionation of
meteoric water is influenced by temperature, precipitation
source and amount, elevation and distance from the ocean,
which results in a distinctive geographical pattern of lower
δ2Hprecipitation at increasing latitude (e.g. Craig and Gor-
don, 1965; Bowen and Revenaugh, 2003). Several environ-
mental and biological processes contribute to further D/H
fractionation between the source water and the lipids and can
complicate the interpretation of palaeohydrological δ2Hlipid

signatures (Sachse et al., 2012; Sessions, 2016; Huang and
Meyers, 2018): higher plant δ2Hlipid is influenced by factors
such as humidity, evapotranspiration rates, light, vegetation
assemblage and plant physiological differences (e.g. Smith and
Freeman, 2006; Hou et al., 2008; Liu and Yang, 2008; Yang
et al., 2009; Kahmen et al., 2013), whilst algal δ2Hlipid is
influenced by metabolic processes, growth rate and phase,
nutrients and temperature (e.g. Schouten et al., 2006; Sachse
and Sachs, 2008; Wolhow et al., 2009; Zhang et al., 2009).
Salinity also influences source water δ2H and D/H fractiona-
tion of both plant and algal lipids, facilitating the application of
δ2Hlipid as a palaeosalinity proxy (discussed in the next
section).
Palaeohydrological δ2Hlipid reconstructions developed

from terrestrial and marine sediment archives (e.g. Sauer
et al., 2001; Xie et al., 2000; Huang et al., 2004; Schefuß
et al., 2005) have provided insight into diverse aspects of
the Quaternary climate system and its impacts on palaeo-
hydrology. Applications have included reconstructions of
changes in the Inter‐Tropical Convergence Zone and El
Niño/Southern Oscillation (ENSO) (e.g. Atwood and
Sachs, 2014; Massa et al., 2021), the South Pacific
Convergence Zone (e.g. Maloney et al., 2022), the Southern
Annular Mode (e.g. van der Bilt et al., 2022), monsoonal
activity (e.g, Seki et al., 2009; Basu et al., 2019), seismic
activity (e.g. Norström et al., 2018), insolation forcing (e.g.
Lupien et al., 2022) and meltwater dynamics (e.g. Aichner
et al., 2022). By comparing terrestrial and aquatic n‐alkane
δ2H signatures, variations in evapotranspiration of lake
environments (e.g. Sachse et al., 2004, 2006), climate‐
driven lake level changes (e.g. Günther et al., 2016; Saini
et al., 2017; Aichner et al., 2019) and seasonality of
precipitation (e.g. Kjellman et al., 2020; Katrantsiotis
et al., 2021) have been determined. Another approach to
disentangling the impact of lake water evaporation from
precipitation changes is coupling δ2H and δ18O reconstruc-
tions, as demonstrated using δ2H of n‐alkanes and δ18O of
sugar biomarkers to develop a Lateglacial–Holocene pa-
laeohydrological reconstruction from Himalayan Nepal
(Hepp et al., 2015). Reconstructed palaeohydrology from
δ2Hlipid has also provided climatic contexts for human
evolution (as reviewed by Patalano et al., 2021) and human
settlements (e.g. Sharifi et al., 2015; Balascio et al., 2020).
Care is needed to disentangle changes in n‐alkane δ2H that

are driven by biological fractionation or vegetation change
rather than hydroclimate (e.g. Liu et al., 2006; Wang
et al., 2013; Griepentrog, et al., 2019). This can be effectively
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achieved by reconstructing vegetation change using pollen,
biomarker distributions, leaf wax δ13C or sedaDNA. At
Meerfelder Maar, western Europe, the influences of vegetation
change and hydroclimate were assessed using n‐alkane
distributions, pollen and n‐alkane δ2H, demonstrating that
cooler and wetter conditions were established ~2.8 ka BP (Rach
et al., 2017). Contrasting late Holocene δ2Hdinosterol hydro-
climate reconstructions from paired lakes in the western
tropical Pacific showcases the importance of multi‐site and
multi‐proxy data to distinguish between climate and other
limnological drivers of hydrological change (Maloney
et al., 2022). By combining n‐alkane and n‐acid distributions
with n‐alkane δ13C and δ2H, both vegetation (δ13C31 and
δ13C33) and precipitation (δ2HC29) were recorded and could be
separated (Wang et al., 2013). Under arid conditions in the
Qinling Mountains, China, a strong correlation between
altitude and δ2Hlipid (but not δ13Clipid) highlights the potential
to reconstruct and evaluate palaeoelevation and its interaction
with local hydroclimate (Liu, 2021). These studies demonstrate
both the complexity but also the valuable and detailed
environmental issue which can be recovered using CSIA.
Where temperature and hydroclimate reconstructions are

available from the same archive, the synchroneity or links
between both larger and smaller scale climate drivers can
be interrogated (e.g. Berke et al., 2014; Tierney et al., 2008;
Muñoz et al., 2020; Stockhecke et al., 2021). In Lake
Victoria, Africa, coherence between leaf wax δ2H hydro-
climate and GDGT‐inferred temperature records (‘Quanti-
fying amplitudes and rates of past temperature change’)
provided clear evidence for orbitally forced tropical climate
since the Late Pleistocene, and highlighted the role of
ENSO‐related teleconnections in shaping climatic events
such as the Younger Dryas (Figure 5) (Berke et al., 2012b).
In Lake Elsinore (California), abrupt changes recorded by
leaf wax δ2H in the Lateglacial (32–20 ka) were indepen-
dent of GDGT‐inferred temperature shifts and were attrib-
uted to changes in storm tracks (Feakins et al., 2019). In a
marine sediment core offshore Sumatra, leaf wax δ2H
challenged previous views of increased precipitation over
the Indo‐Pacific Warm Pool during the Last Glacial
Maximum, which was attributed to regional differences in
deglacial sea level and coastline configuration (Nieder-
meyer et al., 2014). In turn, new Holocene oscillations in
the Indian Ocean precipitation could be linked to rainfall in
East Africa via a ‘precipitation dipole’, rather than by ENSO
(Niedermeyer et al., 2014). These examples are important
for demonstrating that we can extend our understanding of
the Lateglacial climate instability beyond ice and ocean
dynamics, to include hydroclimate and atmospheric varia-
bility, especially in the low latitudes.

Reconstructing salinity using lake and marine
sediments
Palaeosalinity reconstructions in the oceans and in lakes may
provide an indication of changes in circulation (e.g. through
changing water masses or currents) or hydroclimate (e.g.
where enhanced freshwater inputs or increased evaporation
can lead to lake salinity changes). In estuarine or coastal
settings, salinity variations may also reflect changes in river
discharge or the relative contribution of marine and freshwater
as influenced by local changes in relative sea level. In this
section we outline both biomarker distributions and CSIA
which have detailed changes in salinity either in marine or
lacustrine settings.

Sea‐surface salinity as an indicator of circulation or
sea‐level changes

During the early UK
37′‐SST calibration work (‘Ocean and lake

temperature reconstructions’), a potential salinity or polar water
mass influence over the abundance of the haptophyte algae
C37:4 alkenone was determined (Rosell‐Melé, 1998; Bendle
et al., 2005), noting that this alkenone is not part of the UK

37′
index (Table 1). Subsequently, high C37:4 values have been used
to track expansion of (sub)polar water masses in the Atlantic,
Pacific, and Southern Oceans across glacial–interglacial and
million‐year timescales (McClymont et al., 2008b; Martínez‐
Garcia et al., 2010). Elevated C37:4 alkenone abundances (low
salinity) have identified meltwater from Heinrich event icebergs
reaching the Iberian Peninsula (Martrat et al., 2007), and glacial
meltwater reaching the north‐east Pacific (Sánchez‐Montes
et al., 2020). Although not specific salinity markers, terrestrially
derived biomarkers in the iceberg‐rafted debris (IRD)‐rich
Heinrich layers (Madureira et al., 1997; Rosell‐Melé et al., 1997;
van der Meer, 2007) confirmed the release of IRD and
meltwater to the North Atlantic Ocean. Alternatively, large
inputs of heavily altered carotenoids to southern Greenland, in
the absence of IRD, suggested that an outburst flood occurred
during the last interglacial (Nicholl et al., 2012).
More direct records of sea‐surface salinity draw on the

impact of changing salinity on D/H fractionation in seawater
and during biosynthesis (e.g. Sauer et al., 2001; Englebrecht
and Sachs, 2005; Schouten et al., 2006). Cultured haptophyte
algae show that δ2Halkenone records salinity change (Engel-
brecht and Sachs, 2005; Schouten et al., 2006), and may even
be used to identify the source regions of alkenones transported
to sediment drift sites (Englebrecht and Sachs, 2005). An early
application in the eastern tropical Pacific used instrumental
records to show that δ2Halkenone fluctuations recorded rainfall
and river discharge in Columbia, and revealed reduced runoff
during the last glacial compared to the Holocene (Pahnke
et al., 2007). Combined δ2Halkenone and dinoflagellate cyst
analysis showed substantial freshening of the Black Sea over
the last ~3000 years, and refuted a hypothesis that salinity
changes were responsible for changes to the haptophyte
assemblage (van der Meer et al., 2008). In the south‐
east Atlantic, a decoupling of SST and salinity across
multiple deglaciations has been recognized, whereby salinity
(δ2Halkenone) increased earlier than ocean warming (UK

37′
index); both changes pre‐date the onset of deglaciation and
may even play a role in triggering or facilitating ocean
circulation change during glacial–interglacial transitions
(Kasper et al., 2014; Petrick et al., 2015). In the Mediterranean
Sea, δ2Halkenone confirmed a large drop in surface salinity at
the onset of a Last Interglacial sapropel, supporting the
hypothesis that these organic‐rich layers were the result of
precession‐driven monsoon rains disrupting the circulation
(van der Meer et al., 2007). As for leaf wax δ2H (‘Reconstruct-
ing vegetation and hydrological change using compound‐
specific stable isotope analysis’), care is needed to assess
whether salinity change is the primary signal being recorded
by sedimentary δ2Hlipid, since it could also be impacted
by factors including variations in growth rate (Wolhowe
et al., 2009) and the algal species/genera (Schouten et al., 2006;
van der Meer et al., 2008; Nelson and Sachs, 2014).
In coastal systems, salinity change can be a reflection of

relative sea‐level change. A fall in C37:4 abundance (increased
salinity) was used to identify relative sea‐level rise in a Scottish
isolation basin following the last deglaciation (Bendle
et al., 2009). The relative contribution of mangrove species
biomarkers (e.g. taraxerol) to intertidal sediments has also been
explored as an alternative indicator of sea‐level change
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(Versteegh et al., 2004; Koch et al., 2011), but local influences
on sedimentation patterns and biomarker degradation require
further investigation (He et al., 2018; Sefton, 2020). Both n‐
alkane and taraxerol δ2H in mangrove systems show potential
for isolating a biological response to changes in salinity (Ladd
and Sachs, 2015). A salinity impact on mangrove water‐use
efficiency was also indicated by n‐alkane δ13C in Australia
(Ladd and Sachs, 2013). A challenge in low‐latitude settings is
to isolate a sea‐level‐driven salinity change from a hydro-
climate impact on precipitation or seawater δ2H (e.g. Pahnke
et al., 2007; Tamalavage et al., 2020). However, by combining
pollen analysis with plant wax distributions and δ2H from a
mangrove system in the Bahamas, the time‐varying influences
of changes in vegetation assemblage and precipitation could
be disentangled for the Holocene (Tamalavage et al., 2020).
Multi‐proxy analyses thus show great potential for evaluating
the relative influences of vegetation change, hydroclimate and
sea‐level‐driven salinity variability in mangrove environments.

Lake salinity as an indicator of hydrological
change

As observed in the marine environment (subsection above),
high abundances of the haptophyte–algae C37:4 alkenone have
been recorded with low salinity in modern calibration studies
of saline lakes (Liu et al., 2008, 2011; Song et al., 2016; He
et al., 2020) and in comparisons between lake reconstructions
and instrumental data (He et al., 2013). Qualitative palaeosa-
linity reconstructions using C37:4 abundance in lake sediments
have reconstructed late Holocene moisture fluctuations on the
Northern Tibetan Plateau linked to solar irradiance (He
et al., 2013), and identified the transition between marine
and lake environments associated with ice‐shelf expansion in
north‐east Greenland (Smith et al., 2023). However, not all
lakes have recorded the C37:4 alkenone (e.g. Toney et al., 2010),
and seasonal biases in alkenone production may influence the
reconstructions (He et al., 2020). Combined analysis of
alkenone distributions and phylogenetic analysis in a suite of
saline Chinese lakes (Yao et al., 2022) indicates that C37:4

alkenone may reflect changing haptophyte groups rather than
salinity, since the detected groups occupied different ecologi-
cal niches. The presence of another salinity‐sensitive indicator,
the alkenone C38:3Me, was detected during times of haptophyte
assemblage changes consistent with fresher surface waters in a
Pleistocene record from Lake Van, Turkey (Randlett
et al., 2014). Palaeosalinity indices, such as the RIK37 (ratio
of isomeric ketones of C37 chain length) index (Longo
et al., 2016), capture salinity‐driven shifts in haptophyte
species composition and are reliable salinity proxies in
oligohaline environments (Longo et al., 2016).
Salinity is also reflected in lake water δ2H and the

biosynthesis of algal lipids: field calibration laboratory culture
studies have demonstrated that the salinity is inversely related
to the D/H fractionation of algal lipids (e.g. Sessions et al., 1999;
Schouten et al., 2006; Sachse and Sachs, 2008; Schwab and
Sachs, 2011; Ladd and Sachs, 2012; Nelson and Sachs, 2014;
Englebrecht and Sachs, 2015; see ‘Reconstructing vegetation

© 2023 The Authors Journal of Quaternary Science Published by John Wiley & Sons Ltd J. Quaternary Sci., 1–34 (2023)
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Figure 5. Terrestrial and marine biomarker reconstructions of
environmental change in east Africa since the late Pleistocene. (a,b)
Palaeoclimate reconstructions from Lake Victoria (Berke et al., 2012): (a)
TEX86 palaeotemperatures and (b) palaeoprecipitation record from ice
volume‐corrected δ2H of the C28 leaf wax fatty acid methyl ester (FAME)
with error bars (grey lines) representing the mean error of replicated
analyses for each sample. (c,d) Palaeoclimate reconstructions from Lake
Tanganyika (Tierney et al., 2008); (c) TEX86 palaeotemperatures and (d)
palaeoprecipitation record from ice volume‐corrected δ2H of the C28 leaf

wax FAME. (e–h) Palaeoclimate reconstructions from a marine sediment
core off the mouth of the Zambezi River (Schefuß et al., 2011): (e) BIT
(branched and isoprenoid tetraether) index representing soil organic
matter inputs; (f) palaeprecipitation record from δ2H of C31 alkane; (g)
TEX86 sea surface temperatures; and (h) insolation curves for
June–July–August (JJA) and December–January–February (DJF) for the
Northern (30°N) and Southern (30°S) Hemisphere (solid lines) and
March–April–May (MAM) insolation at the equator (dashed line). [Color
figure can be viewed at wileyonlinelibrary.com]
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and hydrological change using compound‐specific stable
isotope analysis’ for discussions of other controls on δ2Hlipids).
Mid‐Holocene changes to the Indian Summer Monsoon have
been detected using biomarker δ2H in a saline–alkaline lake in
the core ‘monsoon zone’ of central India (Sarkar et al., 2015):
more enriched δ2H in terrestrial leaf waxes and cyanobacteria,
alongside increased abundance of the biomarker tetrahymanol
(generated under saline conditions; Romero‐Viana et al., 2012)
reconstructed increased salinity and a lowering of lake levels
after 6 cal ka BP (Sarkar et al. 2015).
Archaeal GDGTs have also been used as palaeosalinity

indicators based on ratios of archaeol, a biomarker for
hypersaline archaea, and caldarchaeol, a cosmopolitan
isoGDGT that is produced across a range of salinity condi-
tions. The Archaeol and Caldarchaeol Ecometric (ACE) index
(Turich and Freeman, 2011) has since been used as a
qualitative lacustrine palaeosalinity proxy, showing that
salinity increased due to a reduced water balance during
periods of higher Lateglacial temperatures in southern Cali-
fornia (Feakins et al., 2019). However, a study of 55 lakes in
mid‐latitude Asia has identified a threshold response in the
ACE index, which suggests that it may only be effective in high
lake salinity ranges (60 000–100 000 mg L−1) (He et al., 2020).

Reconstructing changes in sea ice extent
Early identification of elevated concentrations (>5–10%) of the
abundant haptophyte algae C37:4 alkenone in high‐latitude
marine samples suggested that low temperatures and/or low
salinity in (sub)polar waters were important (see ‘Sea‐surface
salinity as an indicator of circulation or sea‐level changes’).
Subsequently, DNA analyses have demonstrated that high
C37:4 abundances can be more specifically linked to sea ice‐
associated haptophyte algae (Wang et al., 2021b). With further
testing, this new evidence offers the potential for both sea ice
and SST information to be simultaneously retrieved from
alkenone data in the high latitudes.
Two related sea‐ice biomarker proxies have been more

extensively developed: specific highly branched isoprenoids
(HBIs) usually synthesized in spring by particular ice‐
associated diatoms (see detailed review by Belt, 2018). In the
Arctic, the mono‐unsaturated alkene containing 25 carbon
atoms is used (‘IP25’, Belt et al., 2007) but this is not present in
the Southern Ocean. Instead, the di‐unsaturated HBI (‘IPSO25’)
is applied (Belt et al., 2016) (Table 3). Extensive evaluation of
the HBIs, especially IP25, against diatom proxy data gives
confidence in their ability to reconstruct sea‐ice changes
(Massé et al., 2008; Weckström et al., 2013). IPSO25 is a
relatively specific environmental indicator, reflecting the
tendency for its producer, Berkeleya adeliensis, to live in
platelet ice and the bottom layer of land‐fast ice (Belt
et al., 2016; Riaux‐Gobin et al., 2000), and thus shows a
strong signal of coastal production (Massé et al., 2011; Rontani
et al., 2019). However, since HBIs have also been determined
beyond the continental shelf edge, in the Scotia Sea (Collins
et al., 2013), further investigation is required to fully evaluate
the interpretation of IPSO25 beyond the coastal regions.
A challenge for both HBI proxies is how to interpret the sea

ice signal when IP25 or IPSO25 is absent. Absence could reflect
compound degradation within the sea ice, water column or
sediments (Belt, 2018), although recent work has confirmed
IP25 in pre‐Quaternary sediments (Knies et al., 2014; Clotten
et al., 2018). Alternatively, productivity by ice‐dwelling
diatoms may be minimal or absent under permanent sea ice
cover if photosynthesis is restricted (Belt, 2018). To address the
latter concern, the relative abundance of IP25 or IPSO25 can be

compared with open‐ocean productivity biomarkers (e.g. HBI
III or brassicasterol for diatoms, dinosterol for dinoflagellates).
Revised ‘PIP25' or ‘PIPSO25' indices have been proposed to
describe this ratio (Table 3): an absence of both the sea‐ice and
open‐ocean biomarkers yields a PIP(SO)25 value of zero
(‘perennial sea ice’), whereas open‐ocean only biomarkers
yield a PIP(SO)25 value of 1; values in between reflect seasonal
sea ice presence (Belt & Müller, 2013).
IP25 records have been important in assessing the role of sea

ice in past climate changes. Relatively short historical sea ice
records have been extended (Tesi et al., 2021). By filling in
intervals of sparse historical data, abrupt changes in sea ice
have been reconstructed for the last millennium (Massé et al.,
2008). Millennial‐scale fluctuations in spring sea‐ice cover
occurred to the north of Iceland during the Holocene and the
last glacial–interglacial cycle (e.g. Müller et al., 2009; Hoff
et al., 2016; Stein et al., 2017; Xiao et al., 2017; Sadatzki
et al., 2020), including contrasting sea‐ice conditions between
the early/mid‐ and late Younger Dryas close to northern
Norway (Cabedo‐Sanz et al. 2013). Regional differences
between the timing of expanded sea‐ice cover were proposed
to have contributed to millennial‐scale variability in deep‐
water formation across the deglaciation (Figure 6) (Xiao
et al., 2017). In the longer term, an increase in Bering Sea
sea‐ice cover and development of the seasonal advance and
retreat of the sea ice margin occurred alongside the mid‐
Pleistocene transition ~1 Ma, which might have been
important for influencing ice‐sheet growth and increased deep
ocean storage of carbon during glacial stages (Detlef
et al., 2018). The transition from the warm Pliocene epoch
into the Quaternary also saw an expansion of Arctic sea ice
alongside the intensification of northern hemisphere glaciation
~2.7 Ma (Knies et al., 2014; Clotten et al., 2018). Although
preservation over long timescales is promising, concerns have
also been raised about the inherent instability of HBIs,
meaning caution needs to be applied to interpretation of their
presence/absence (Sinninghe Damsté et al., 2007).
IPSO25 records have been integrated within several multi‐

proxy studies. Expanded seasonal sea ice cover occurred
during the last glacial stage in the Scotia Sea (Collins
et al., 2013), and millennial‐scale evolution of perennial and
seasonal sea ice was recorded over the last deglaciation in the
Amundsen Sea (Lamping et al., 2020). Multiple IPSO25 records
detail expansion and retreat of sea ice during the Holocene
(Barbara et al., 2010, 2016; Etourneau et al., 2013; Denis
et al., 2010; Tesi et al., 2020; Ashley et al., 2021; Johnson
et al., 2021). High‐resolution analyses of the last ~400 years
have shown that IPSO25 can identify trends and cyclicity in
seasonal and perennial sea ice cover, and links to ocean or
atmospheric forcings (e.g. Campagne et al., 2015; Barbara
et al., 2016; Vorrath et al., 2020). Differences in Holocene sea‐
ice histories between sites probably indicate the influence of
local and regional circulation systems (Lamping et al., 2020;
Vorrath et al., 2020), which are also expressed in the
instrumental record (e.g. Parkinson, 2019).

Tracing biological productivity
and biogeochemical cycling
Biomarker proxies implicitly record the flux of organic matter
between different reservoirs of the Earth system. In this section,
we outline biomarkers which have been used qualitatively to
explore biogeochemical cycles in more detail by either
detecting specific environmental conditions (e.g. biomarkers
for methanogenic or methanotrophic micro‐organisms) or for
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tracing changes in productivity and degradation (e.g. fluxes of
biomarkers linked to specific producers).

Reconstructing biological productivity in lakes
and the oceans

The source‐specific nature of biomarkers allows for groups of
producers to be traced in sedimentary systems, and to assess
whether their productivity has changed in the past (Tables 2
and 3). When comparing the relative abundances of productivity
markers, it is important to assess the potential impacts of
bioturbation, remineralization and degradation of organic
matter; these can be rapid and effective in oxic settings and
could bias the target productivity signal (e.g. Leavitt, 1993; Arndt
et al., 2013; Jessen et al., 2017). Intact pigments are particularly
vulnerable to oxidation, UV radiation and associated processes
of degradation, and usually have very low preservation in
marine sequences (Reuss et al., 2005; McGowan, 2013). Better
preservation may be recorded in lake sediments, but still more
successfully with anoxic water columns, or with minimal sinking
depths and benthic algae coverage (Leavitt, 1993; Hodgson
et al., 2005; McGowan, 2013).
Pigment analysis has detected lake productivity oscillations

in central Italy linked to warm–cold oscillations in the North
Atlantic between ~15.0 and 28.0 cal ka BP (Chondrogianni
et al., 2004), and changes in lake level linked to the onset of
the African Humid Period in Ethiopia (Loakes et al., 2018). In
East Antarctica, recolonization and succession of marine flora
has been determined as the ice sheet and sea ice interacted
through the Holocene (Hodgson et al., 2003). A distinctive
pigment is isorenieratene (Table 3), a carotenoid pigment
synthesized by green sulphur bacteria, making it a biomarker
for a relatively uncommon but specific environment: photic
zone euxinia (both anoxic and sulphidic) (Sinninghe Damsté
et al., 2001). Isorenieratene has been instrumental in
demonstrating that euxinic conditions developed during the
Last Interglacial in the Mediterranean Sea associated with the
formation of sapropels (Marino et al., 2007). Significantly, the
co‐recorded proxy data illustrated the role of increased runoff
in altering Mediterranean circulation (see ‘Sea‐surface salinity
as an indicator of circulation or sea‐level changes’) (Marino
et al., 2007).
It is more common to find pigment degradation products in

marine sediments, often alongside lipid biomarkers for other
producers or degradation pathways (Table 3). Chlorophyll
degradation products, chlorins (‘Biological functions of bio-
markers’), have been used to reconstruct export production,
i.e. the organic matter which is removed from the surface
ocean and stored longer term in the deep ocean or sediments
(e.g. Petrick et al., 2018). Chlorins, alkenones, sterols and diols
have reconstructed intensification or shifts in export produc-
tion across multiple glacial–interglacial cycles linked to
coastal upwelling systems (Petrick et al., 2018), highly
productive oceanographic fronts (Cartagena‐Sierra et al., 2021),
sea‐ice extent (Fahl and Stein, 1999) and changing nutrient
inputs (e.g. Martínez‐Garcia et al., 2011; Sánchez‐Montes
et al., 2022). In the Subantarctic Atlantic Ocean, a consistent
pattern of elevated higher plant n‐alkanes during glacial
intervals aligned closely with dust peaks in Antarctic ice cores
(Martínez‐Garcia et al., 2009). In turn, lower SSTs and higher
primary productivity (both reconstructed from alkenones)
demonstrated close connections between ocean and atmo-
sphere circulation, nutrient supply and potential glacial‐stage
CO2 drawdown by the ocean through the Quaternary
(Martínez‐Garcia et al., 2011). A recent global‐scale analysis
of seafloor sediments flags the potential that alkenone
concentrations may be dominated by primary productivity,

and thus provide a potentially quantitative reconstruction of
production over Quaternary timescales (Raja and Rosell‐
Melé, 2021).

Reconstructing sediment, organic matter
and nutrient cycling

The presence of terrestrial biomarkers in marine sediments can
enable an assessment of the links between ocean circulation
and environmental change onshore as detailed above, but may
also give insights into the transport pathways of terrestrial
organic material and identify important connections between
nutrient cycles and productivity alongside palaeohydrology.
For example, flood events have been identified in estuarine
sediments by increases to the C31/C17 n‐alkane ratio
(Meyers, 2003), which were consistent with historical records
of the Minjiang River, China, since the 1800s CE (Wang
et al., 2014). A ‘terrestrial to aquatic organic matter n‐alkane
ratio’ (TAR, Table 3) has been used to record both dust and
glacier‐derived sediment inputs to the North Atlantic and Gulf
of Alaska across multiple glacial–interglacial cycles (Naafs
et al., 2012; Lang et al., 2014; Müller et al., 2018) with
potential impacts on marine productivity (Müller et al., 2018;
Sánchez‐Montes et al., 2020). Biomarker fingerprinting of
sediments eroded by the circum‐Atlantic ice sheets has added
to this detail, and determined the asynchroneity of IRD or
meltwater release between different ice sheets (e.g. Stein
et al., 2009; Rosell‐Melé et al., 2011; Naafs et al., 2013; Hefter
et al., 2017).
As well as tracing these land–ocean and land–lake transfers

of organic matter, and describing or quantifying lake/ocean
export productivity (subsection above), biomarkers can be
used to trace biogeochemical cycling in two ways: (i) the
presence of biomarkers generated under specific environmen-
tal conditions, e.g. anoxic settings; or (ii) the presence of
diagenetic products of the original biosynthesized molecule,
where the environmental controls on diagenesis are known.
Although used to qualitatively describe organic matter forma-
tion, transport and reworking, there is emerging potential to
consider biomarker concentrations or transformations as a way
to quantify carbon burial and biogeochemical interactions
including nutrient and oxygen availability.
In peatlands, biomarker tracers of biogeochemical cycling

have been explored, due to the close links between peat water
table depth, oxygen availability and the associated generation
of greenhouse gases. For example, elevated concentrations of
the anaerobic archaea‐produced archaeol reflect rising water
tables in peat sequences (Pancost et al., 2011) or enhanced
methanogenesis during warm periods of the late Pleistocene
and Holocene in Siberian permafrost (Bischoff et al., 2013).
Methanogens are also probably the main source of isoGDGT‐0
in peats (Basiliko et al., 2003, Pancost and Sinninghe
Damsté, 2003); by comparing iso‐GDGT‐0 and archaeol
accumulation rates in a 16‐kyr‐old peat sequence from Hani,
China, the long‐term link between elevated levels of metha-
nogenesis, high temperatures and high summer insolation was
demonstrated (Zheng et al., 2019).
Biohopanoids are largely biomarkers of aerobic bacteria

(Rohmer et al., 1992; Talbot et al., 2016), and include
relatively simple C30 hopanoids (e.g. diploptene), or more
complex versions with additional side chains (bacteriohopa-
nepolyols or BHPs; reviewed by Kusch and Rush, 2022). BHPs
have a wide range of sources including methanotrophs,
heterotrophs and phototrophs (reviewed by Talbot et al. 2016;
Inglis et al., 2018; Kusch and Rush, 2022). Quaternary
applications of BHPs in the Congo fan have demonstrated
the correlation between elevated aerobic methane oxidation
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in the wetlands onshore and late Quaternary interglacial
climates (Talbot et al., 2014) as well as a longer term shift ~1
Ma (Spencer‐Jones et al., 2017). Variations in archaeol
and diploptene δ13C values suggested links between the
strength of the Asian monsoon and fluctuations in atmo-
spheric methane concentrations (Zheng et al., 2014). Low
δ13Cdiploptene have also traced the presence and small‐scale
spatial heterogeneity of methane‐oxidizing bacteria (MOB),
and therefore methane oxidation, in Alaskan thermokarst
lakes (Davies et al., 2016).
Long‐term insights into the nitrogen cycle have been

developed using the bacteriohopanetetrol stereoisomer (BHT‐
x), a tracer of anaerobic oxidation of ammonium (anammox)
(Rush et al., 2014). For example, BHT‐x demonstrated the link
between higher temperatures and the intensification of oxygen
deficiency zones in the Late Pleistocene in the Gulf of Alaska
(Zindorf et al., 2020). Their study indicated that, unlike redox‐
sensitive trace metals, BHT‐x is not impacted by dilution

effects of high sedimentation rates. Ammonium oxidation has
also been reconstructed using ratios of isoGDGT [2]/[3],
indicating the presence of the archaea Thaumarchaeota: in the
South China Sea, interglacials were shown to be characterized
by concurrent increases in ammonium oxidation and
δ15N‐inferred N2 fixation (Dong et al., 2019).
Transformation of the original biosynthesized compounds

into recognizable products, under specific redox conditions,
has also allowed changes in aerobic/anaerobic conditions to
be traced in a range of environments. Interlinked changes to
pH and water table explained the presence and down‐core
variations of an unusual hopanoid (the C31 17α,21β(H)‐
homohopane) in Holocene peats, which is usually only found
in thermally mature organic matter (Pancost et al., 2003;
McClymont et al., 2008a; Inglis et al., 2018). Transformation of
sterols into stanols at the interface between oxic and anoxic
conditions (Wakeham, 1989; Naafs et al., 2019) has also been
used to qualitatively assess Holocene changes in peat redox

© 2023 The Authors Journal of Quaternary Science Published by John Wiley & Sons Ltd J. Quaternary Sci., 1–34 (2023)
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Figure 6. Schematic illustration of biomarker‐ (IP25) inferred changes in spring/summer sea ice extent (white shadings) between (a) the Bølling/
Allerød, (b) Younger Dryas and (c) Early Holocene (adapted from Xiao et al., 2017; see the original figure for the detailed map key). Atlantic Water
advection is represented by red arrows and cold Polar waters from the Arctic Ocean are represented by blue arrows. (d,e) Examples of the IP25
records used to develop the sea ice maps in a–c. (d) Most northerly IP25 record of sea ice presence (Yermak Plateau, denoted in purple; Müller
et al., 2009) and (e) most southerly IP25 record of sea ice presence (north of Iceland, denoted in green; Xiao et al., 2017) included in the schematic
maps. [Color figure can be viewed at wileyonlinelibrary.com]
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conditions and water table depth (Naafs et al., 2019). In a
marine sediment core, the different resistance to oxygenation
of a plant wax n‐alcohol and n‐alkane was exploited to
identify bottom current strength and thus duration of organic
matter exposure to oxygenated waters across multiple
millennial‐scale and glacial–interglacial cycles (Martrat
et al., 2007).
To assess the impacts of biogeochemical cycles on atmo-

spheric CO2, the δ13Calkenone biomarker proxy showed early
promise, drawing on the fractionation of stable carbon
isotopes during haptophyte photosynthesis (Bidigare et al.,
1997). However, recent work has demonstrated that CO2

uptake by haptophytes is different at low CO2 concentrations
(Badger et al., 2019), indicating the need for careful
interpretation of alkenone‐based CO2 reconstructions during
the Quaternary.

Sedimentary records of humans and animals
in Quaternary landscapes
Lipid biomarker analyses of sedimentary archives are increas-
ingly used to characterize the presence, activities and impacts
of humans and animals in the landscape, either as independent
reconstructions or as complementary evidence in support of
archaeological and palaeoecological anthropogenic recon-
structions. Biomarkers also offer an alternative approach when
levels of preservation are low or where archaeological
excavation is not possible due to time, financial or logistical
constraints (discussed in Brown et al., 2022). Biomarkers in
archaeological remains contain a wealth of information about
the origin of artefacts and deposits and their associated use
(reviewed by Evershed, 2008); however, here we focus on
sedimentary biomarker proxies that provide both direct and
indirect evidence for the presence and environmental impacts
of human and animals. For more information, we direct
readers to the dedicated review of anthropic biomarkers in
sediment archives (Dubois and Jacob, 2016).

Faecal biomarkers as direct sedimentary indicators
of human and animals

Faecal steroid biomarkers (5β‐stanols, bile acids), which are
produced in the digestive tracts of mammals and deposited via
excrement into the environment, present an opportunity to
directly identify both animals and humans from sedimentary
archives (reviewed by Bull et al., 2002). These compounds are
well preserved within sedimentary archives over Holocene
timescales (e.g. Simpson et al., 1998; D'Anjou et al., 2012;
White et al., 2019; Schroeter et al., 2020; Brown et al., 2021).
Different species produce different diagnostic distributions of
faecal steroids due to differences in diets, digestive processes
and gut bacteria (e.g. Leeming et al., 1996). Steroid ratios have
therefore been used to distinguish between source organisms
in investigations of modern faeces and archaeological deposits
(e.g. Prost et al., 2017; Zocatelli et al., 2017; Shillito
et al., 2020; Kemp et al., 2022), including through multivariate
statistical analysis (Harrault et al., 2019). The presence of 5β‐
stanols is not conclusive evidence of faecal deposition, since
small amounts can be produced through the reduction of
cholesterol in sedimentary environments (e.g. Gaskell and
Eglinton, 1975; Bethell et al., 1994), but the application of
sterol ratios and the tandem analysis of sterols and bile acids
can be used to confirm faecal input and improve faecal source
assignment (e.g. Prost et al., 2017). Identification of faecal
sources is improved by characterizing steroid distributions of
local reference dung to correct for within‐species variability of

sterol threshold values (Larson et al., 2022) and reference soils
to account for in situ sterol transformation (e.g. Bull et al., 2002;
Birk et al., 2012).
Interactions between seabirds and their environment have

been particularly effective using faecal steroids as indicators of
nearby colonies (reviewed by Duda et al., 2021). The changing
impacts of penguin colonies and vegetation types (e.g. mosses
vs lichens) on the West Antarctic Peninsula over the last 2400
years have been assessed from lake sediments (Wang
et al., 2007). Local declines of northern common eider
(Somateria mollissima borealis) populations in Arctic Canada
and Greenland have been linked to changes in sea‐ice
concentrations during the Little Ice Age (Hargan et al., 2019),
and Holocene little auk (Alle alle) population changes have
been linked to the availability and stability of open waters
(polynyas) in the sea ice (Ribeiro et al., 2021).
New insights into the presence and impacts of humans in

past landscapes have occurred where faecal steroids have
refined the timings of human arrival and settlement activities in
locations such as northern Norway (D'Anjou et al., 2012), the
North Atlantic Faroe Islands (Curtin et al., 2021), the Azores
Archipelago (Raposeiro et al., 2021), the Pacific Cook Islands
(Sear et al., 2020) and New Zealand (Argiriadis et al., 2018).
Faecal steroids have also reconstructed the presence of
humans and/or livestock (e.g. White et al., 2018; Vachula
et al., 2019; McWethy et al., 2020; Elliott Arnold et al., 2021;
Keenan et al., 2021; Ortiz et al., 2022), characterized long‐
term animal husbandry practices and land use (e.g. Mackay
et al., 2020; Schroeter et al., 2020; Birk et al., 2021), and the
diets of extinct species (e.g. van Geel et al., 2008; Sistiaga
et al., 2014). Comprehensive modern characterization of east
African megafauna also illustrates the potential for faecal sterol
applications to inform conservation palaeobiology (Kemp
et al., 2022).
Robust sedimentary faecal biomarker identifications of

human presence in past landscapes are developed in
combination with other sedimentary markers of anthropogenic
activity such as pollen, charcoal, fire‐derived lipid biomarkers
(e.g. D'Anjou et al., 2012; Battistel et al., 2016; Section 8.2)
and/or domesticated mammal sedaDNA (e.g. Brown
et al., 2022), and are integrated with the existing historical
and/or archaeologyical context. Current uncertainties asso-
ciated with within‐species variability of steroid distributions,
contributions from environmentally transformed 5β‐stanols,
and steroid transportation, storage, secondary deposition and
degradation processes (e.g. Birk et al., 2021; Keenan
et al., 2021; Davies et al., 2022; Lawson et al., 2022) present
a range of opportunities for further analysis to refine steroid
identification of faecal sources and enhance their applications
as anthropogenic and mammalian tracers in Quaternary
science.

Biomarkers of burning and agricultural activity as
indirect indicators of human activity

Pyrogenic biomarkers can enhance understanding of fire
histories since their signatures and concentrations record
information on the fuel type and conditions during the fire
such as burn intensity and moisture content, as demonstrated
through modern burning experiments (e.g. Oros and Simo-
neit, 2001; Karp et al., 2020) and palaeo‐comparisons with
macro‐ and micro‐charcoal (e.g. Elias et al., 2001; Schreuder
et al., 2019a).
PAHs are produced during the incomplete combustion of

biomass (reviewed by Richter and Howard (2000) and Lima
et al. (2005)). PAH compound distributions represent combus-
tion conditions, vegetation fuel type and transport pathways

© 2023 The Authors Journal of Quaternary Science Published by John Wiley & Sons Ltd J. Quaternary Sci., 1–34 (2023)

18 JOURNAL OF QUATERNARY SCIENCE

 10991417, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jqs.3559 by D

urham
 U

niversity - U
niversity, W

iley O
nline L

ibrary on [30/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



(Karp et al., 2020) and can be used to distinguish between
local and regional burning events (e.g. Vachula et al., 2022).
Many PAHs can be atmospherically transported across
thousands of kilometres, although some compounds, such as
benzo[a]pyrene, have lower modelled half‐life transport
distances of ca. 500 km (Halsall et al., 2001). PAHs are
produced by a wide range of burn temperatures (ca. 200–700
°C; Lu et al., 2009), but higher concentrations are produced
under high‐intensity burning temperatures of 400–500 °C and
during the combustion of woody rather than grassy vegetation
(Karp et al., 2020). Palaeo‐PAH records may therefore be
biased towards wildfires and sensitive to changes in fuel type
and/or fire regime. Whilst PAHs can be released from
petrogenic sources (e.g. Wakeham et al., 1980), pyrogenic
inputs can be identified using relative distributions of PAHs
(e.g. Stogiannidis and Laane, 2015) or through comparisons
with other fire proxies (e.g. Ruan et al., 2020; Tan et al., 2020).
Long‐term records of PAH fire histories have tracked human
settlement and activity in the late Holocene in northern
Norway (D'Anjou et al., 2012), East Africa (Battistel et al., 2016)
and New Zealand (Argiriadis et al., 2018) and characterized
the advent of hominin pyrotechnology in the Middle Palaeo-
lithic (Brittingham et al., 2019). PAHs from lake sediments
have also tracked industrial emissions such as combustion of
coal (e.g. Meyers, 2003) and other fossil fuels (e.g. Guo
et al., 2022); anthropogenic pollution contributions must be
considered if using PAHs to reconstruct fire histories over the
industrial period.
Levoglucosan and its isomers (mannosan and galactosan) are

monosaccharide anhydride (MA) compounds that are specific
palaeo‐fire proxies (reviewed by Simoneit, 2002 and Bhattarai
et al., 2019) since they are exclusively formed during the
combustion of cellulose (Simoneit et al., 1999) at burn
temperatures of ca. 150–350 °C (e.g. Kuo et al., 2008). MAs
can travel hundreds to thousands of kilometres transported by
wind and rivers (e.g. Mochida et al., 2010; Zennaro et al., 2014).
Ratios of levoglucosan, mannosan and galactosan can reveal
the type of biomass involved in burning events (e.g. Fabbri
et al., 2009; Kirchgeorg et al., 2014) and combustion conditions
(e.g. Kuo et al., 2011). Lake sediment comparisons of
macroscopic charcoal and MAs from the Mayan Lowlands,
Guatemala, demonstrated the advances of combining these fire
proxies to enhance understanding of palaeo‐fire regimes at
different spatial scales (Schüpbach et al., 2015). Offshore
levoglucosan records have confirmed vegetation changes
associated with the late Quaternary megafaunal extinction in
south‐eastern Australia (Lopes dos Santos et al., 2013b) and
demonstrated increased burning linked to vegetation change
and human settlement in sub‐Saharan north‐west Africa 60–50
ka (Schreuder et al., 2019b). MA records from ice cores have
been successfully applied to track post‐Last Glacial Maximum
and Holocene fire intensity and burning type at regional to
semi‐hemispheric scales (e.g. Zennaro et al., 2014; Battistel
et al., 2018; Segato et al., 2021; Chen et al., 2022).
Combustion‐derived derivatives of lignin phenols, monosac-
charide molecules and diterpenoids are also major components
of smoke particulate matter and can be detected in sediment
archives (Oros and Simoneit, 2001).
Evidence of crop cultivation and processing can characterize

the timings of human presence and the types of activities taking
place in past landscapes. Although not every cultivar has known
specific lipid biomarkers, millacin is a marker of the introduced
broomcorn millet in well‐defined botanical settings (e.g. Jacob
et al., 2008a, 2008b; Bossard et al., 2013). Fluxes of millacin
detected in lake sediments have, for example, traced the
introduction, intensification and failure of millet cultivation
since the Bronze Age in the French Alps, and comparisons with

contemporary palaeohydrological reconstructions have demon-
strated climatically driven downturns in millet cultivation in the
Hallstatt period (Jacob et al., 2008a). Other cultivar biomarkers
include cannabinol, a marker of hemp that can be used to
identify processing activities (retting) from sediment archives
(e.g. Lavrieux et al., 2013; Schmidt et al., 2020; Rull et al., 2022),
and palmitone, a marker of Colocasia esculenta Schott (taro)
(e.g. Krentcher et al., 2019).

Conclusions and future outlook
Biomarkers have emerged as valuable parts of the Quaternary
science toolkit, due to both quantitative and qualitative
insights into past environmental changes, and because multi-
ple biomarkers (and thus multiple environmental signals) can
be recovered from single samples. Analytical developments
and improved understanding of the processes underpinning
the wide range of biomarker proxies outlined here have also
led to data that have been both novel and complementary to
more established Quaternary science approaches.
The major impacts of biomarker analyses have so far come

from the quantification of temperature changes, and detailed
assessments of the interactions between vegetation change and
hydroclimate. The results are important in spanning a wide
range of timescales, from annual/decadal through to the long‐
term evolution of Quaternary climates at glacial–interglacial
and longer timescales. In considering future climate projec-
tions, both the quantitative and the qualitative insights gained
from biomarker reconstructions have enabled data–model
comparison and data–model assimilation to be undertaken
across a wide range of timescales, including the pre‐
Quaternary (Tierney et al., 2020; Masson‐Delmotte
et al., 2021). In addition to providing valuable palaeoclimatic
insights, biomarkers are increasingly being used to directly
identify human impacts on the environment both pre‐dating
and through the Industrial era, thereby providing essential
long‐term context to advance our understanding of the
resilience of ecosystems and societies.
Continued efforts to better constrain quantitative calibra-

tions of temperature, salinity, sea ice and precipitation will
further enhance our biomarker reconstructions. Community‐
wide collaborations have been important for advancing our
understanding and application of palaeoenvironmental proxies
and their uncertainties (e.g. Schouten et al., 2013 for TEX86;
Belt et al., 2014 for IP25); similar approaches could assist with
advancing our understanding of more recently developed or
more qualitative biomarker proxies (e.g. anthropogenic mar-
kers). With the increasing application of (seda)DNA ap-
proaches to identify and understand the biomarker producers
(e.g. Wang et al., 2019b; Theroux et al., 2020), more nuanced
interpretations of past temperature or other environmental
changes are also likely to result from reduced uncertainty
estimates and through advances in our understanding of
signals related to key producers and their potentially varied
responses to factors including seasonality and nutrient avail-
ability. There is therefore the potential to add to the rich
environmental information provided by both biomarkers and
other geochemical and palaeoecological proxies, with new
assessments of biogeochemical cycling, sea ice evolution
and human–environment interactions, as well as new data on
how that organic matter has been preserved, recycled and
transported through palaeoenvironments.
In this review, we have outlined some of the many, diverse

ways in which biomarkers have advanced understanding of
Quaternary environments. The biomarker toolkit is continually
evolving, aided by advances in instrument capabilities which are
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presenting new opportunities to analyse smaller sample sizes
and a greater diversity of Quaternary archives. For example,
improvements in detection limits facilitated by high‐resolution
mass spectrometry present opportunities to expand the suite of
palaeoenvironmental proxies that can be analysed from a single
sample, and extend applications where sample sizes are limited
and/or biomarker concentrations may be low (e.g. varved
sediments, ice cores and/or highly resolved sedimentary
records). In turn, untargeted analysis of environmental mass
spectrometry spectral data, such as hierarchical clustering (e.g.
Bale et al., 2021) and the application of information theory and
molecular networking (e.g. Ding et al., 2021), yields highly
detailed molecular information, with the potential to provide
unprecedented levels of information about environmental
contributions as well the identification of as yet unknown
biomarkers, which may prove to be of ecological and
environmental significance. In addition, there is great potential
to expand compound‐specific analyses, which have already
yielded detailed insights into past hydroclimate, productivity and
CO2, by extending the range of biomarkers that can be analysed.
A rapidly advancing area of biomarker research is radiocarbon
analysis of individual lipids, or groups of lipids, which has
already demonstrated that different pools of organic matter are
being (re)worked and transported through river systems today
(e.g. Galy & Eglinton, 2011; Eglinton et al., 2021; Feng
et al., 2013) and have been in the past (Bliedtner et al., 2020).
Biomarker radiocarbon analysis shows great potential to not only
enhance our understandings of Quaternary sedimentary envir-
onments and processes, but also to improve chronological
controls through compound‐specific radiocarbon analysis.
Biomarkers have therefore made a wealth of contributions to
Quaternary science, and the continued advances in this field of
research offer many opportunities to extend our understandings
of Earth systems in the past, present and future.

Acknowledgments. We thank Chris Orton for drafting Figs 1 and 3,
Tommaso Tesi for access to data to generate Fig. 4, and Melissa Berke
and George Swann for reflections on earlier manuscript drafts. We
thank the Leverhulme Trust (RL‐2019‐23) and European Research
Council (ANTSIE, grant no. 864637) for funding support.

Funding. Funding support has been provided by the Leverhulme
Trust (Research Leadership Award 2019‐023, E.L.M., T.D.J., C.P.) and
the European Research Council H2020 (ANTSIE, grant no. 864637,
E.L.M., M.S., E.M.H., Y.C.).

Conflict of interest statement—E.L.M. declares member-
ship of the Journal of Quaternary Science Editorial Board. No
other conflicts of interest are declared by the
authors.

Data availability statement

Only published data and materials are referred to in this paper.

Ethics approval statement. No ethical approvals were requested
as this paper reviews existing published data.

Patient consent statement. Not applicable.

Permission to reproduce material from other sources. We have
applied to the publisher for permission to present the maps we
adapted in Fig. 5.

Abbreviations. ACE index, Archaeol and Caldarchaeol Ecometric
index; B‐A, Bølling–Allerød; BHPs, bacteriohopanepolyols; BHT‐x,
bacteriohopanetetrol stereoisomer; BIT index, ratio describing relative
abundance of isoGDGTs and brGDGTs; brGDGTS, branched glycerol

dialkyl glycerol tetraethers; CSIA, compound‐specific stable isotope
analysis; D/H, deuterium/hydrogen; ENSO, El Niño/Southern Oscilla-
tion; GC, gas chromatography; GDGT, glycerol dialkyl glycerol
tetraethers; HBI, highly branched isoprenoid; IP25, ice proxy with 25
carbon atoms; IPSO25, ice proxy for the Southern Ocean with 25
carbon atoms; isoGDGTs, isoprenoidal glycerol dialkyl glycerol
tetraethers; ITCZ, Inter‐Tropical Convergence Zone; LC, liquid
chromatography; LDI, ratio describing relative abundance of 1,13‐
and 1,15‐long‐chain diols; MAs, monosaccharide anhydrides; MBT
′5Me index, ratio describing relative abundance of brGDGTs with
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