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Abstract—This paper addresses the challenge of providing
understandable explanations for machine learning classification
decisions. To do this, we introduce a dataset of expert-written tex-
tual explanations paired with numerical explanations, forming a
data-to-text generation task. We fine-tune BART and T5 language
models on this dataset to generate natural language explanations
by linearizing the information represented by explainable output
graphs. We find that the models can produce fluent and largely
accurate textual explanations. We experiment with various con-
figurations and see that an augmented dataset leads to a reduced
error rate. Additionally, we probe the numerical explanations
more directly by fine-tuning BART and T5 on a question-answer
task and achieved an accuracy of 91% with T5.

Index Terms—explainability, data-to-text, natural language
generation

I. INTRODUCTION

Despite the advantages of using machine learning (ML)
techniques to solve complex problems, there are particular
application areas, such as finance, health, and criminal justice,
that have been hesitant to adopt ML approaches [1]–[3]
with stakeholders concerned about the consequences a wrong
decision could have. For these areas in particular, the notion of
explainability is critical. Stakeholders not only want to know
what the model is predicting but also why. Understanding
the factors influencing an ML model’s prediction enables
actionable business choices, transparency, and confidence.
Furthermore, this aligns them with the recently proposed EU
Artificial Intelligence Act [4].

Simple predictive algorithms such as linear models, general-
ized additive models, and shallow decision trees are inherently
explainable since they are easy to understand, and sourcing the
reason for classification output decisions is simple [3], [5].
However, for complicated architectures such as deep neural
networks, it is challenging to trace which features were relied
upon most for making the decision [6], [7] as these black-box
models employ billions of parameters to make predictions,
making them difficult to troubleshoot and trust.

In recent years, there has been an effort to increase trans-
parency in the decision-making process of black-box models
used for predictions and incorporate eXplainable AI (XAI)
techniques. In a typical explainability pipeline, as shown in
Fig. 1 (left), a trained classifier will make a prediction. To
make a local-level explanation, the XAI technique will utilize

the prediction and the classifier to yield importance scores for
each input feature.

Four commonly used eXplainable AI (XAI) techniques
include Local Interpretable Model-Agnostic Explanations
(LIME) [8], SHapley Additive exPlanations (SHAP) [9], Inte-
grated Gradients (IG) [10], and Layer-wise Relevance Propa-
gation (LRP) [11]. Although distinct, these techniques all pro-
duce feature importance values that quantify the contribution
of each feature to the prediction.

Graphs and figures are commonly used to communicate
the contributions of each variable used to arrive at a given
prediction. For example, Fig. 3 shows a graph generated using
LIME to explain why a given “wine” was labeled as “high
quality”. These graphs produced by XAI techniques indicate
which features are positive (supporting the prediction output),
negative (contradicting the prediction output), and neutral
(having a negligible influence on the prediction decision).
However, for non-experts, it can be challenging to fully
understand these figures.

Large, pre-trained language models are trained on a vast
text corpus, giving them a broad generalized understanding of
language. Fine-tuning these models for specific tasks has been
shown to improve their task-specific understanding, even with
limited training data [12]–[14]. Two such language models are
T5 [15], and BART [16]. T5 is a multitask-trained transformer
model trained on several unsupervised and supervised NLP
tasks, such as classification, summarization, and translation.
BART [16] is a transformer-based denoising autoencoder
trained to reconstruct the original text from a corrupted input.

In this paper, we propose a new task: given a classifier
prediction and a subsequent local-level explanation, produce a
narrative that describes the explanation. The narrative should
be fluent and factually accurate to provide clarity to the end
user when provided alongside a figure. The task is designed to
be ambivalent to the choice of explainability technique. The
only requirement is that the classifier produces a probability
estimation across the classes and that the XAI technique
produces a score for each input feature.

To achieve this task, we consulted computer science experts
with knowledge of explainability to create a new dataset:
TEXtual Explanation Narratives (TEXEN). TEXEN comprises
local-level explainability outputs and written narratives that



Classifier
Prediction
low_quality:  0.0563
high_quality: 0.9437

Explainer

Feature Importance
vol. acidity 0.10
sulphates: 0.09
...

Explanation Processor

Textual Explanation Generator

Processed input
Predicted class is C2, value of 94.37%. Other classes and values are C1 5.63%.
The top features are [ F4, F6,..., and F7 ] with values of [ 0.10, 0.09,..., and 0.00 ]
Positive features are [ F4, F6,..., and F7 ]. Negative features are [ F8, F1,..., and
F6]. Lowest impact features are [ F3, F1,..., and F7 ] with values of [ 0.02,
-0.02,..., and 0.00 ].

Post-Processor

Output (with true names)
'The case is labelled as "high quality" by the classifier, with the likelihood of this
being correct equal to 94.37%, suggesting that there is a slight chance of about
5.63% that this decision could be wrong. The above prediction by the classifier is
mainly based on the values of the features volatile acidity, sulphates, total sulfur
dioxide, and alcohol, which, according to ...

Numerical explanation pipeline Textual explanation pipeline

Input data

alcohol : 12.3
citric acid : 0
...
volatile acidity : 0.7

Output (with placeholders)
'The case is labeled as C2 by the classifier, with the likelihood of this being
correct equal to 94.37%, suggesting that there is a slight chance of about 5.63%
that this decision could be wrong. The above prediction by the classifier is mainly
based on the values of the features F4, F6, F10, and F9, which, according to ...

Fig. 1. A typical numerical explanation pipeline is on the left. The proposed, complimentary textual explanation pipeline is on the right. The predicted
probabilities and feature importance values are processed into a template, values in blue. The Textual Explanation Generator is trained with placeholders, the
Post-Processor replaces placeholders for actual names (in pink).

explain in plain text what the numerical explanations are show-
ing. After sifting for quality and factual accuracy, TEXEN
contains 496 explanation-text pairs.

In this paper, we fine-tune T5 and BART on this dataset
to generate automatic textual explanations. We also train on
an augmented version of TEXEN, using the same narratives
but reshuffled feature names to artificially increase the size
of the training set. Additionally, as a comparison, we train a
question-answer model to respond to questions more directly.
Our contributions through this work include:

• Introducing a new dataset1 for generating textual expla-
nations of a given classification decision. The textual
explanations are written by computer science experts
and checked manually to ensure that they appropriately
reflect the contribution of input features, as produced
by numerical explainability methods. To the best of our
knowledge, this study is the first of its kind to focus on
generating textual explanations via neural NLG.

• Experimentation and evaluation with state-of-the-art neu-
ral pre-trained language models demonstrate the opportu-
nities and challenges for future research on this structured
data-to-text generation task.

1https://github.com/jameswburton18/LocalLevelExplanations

II. RELATED WORKS

Structured data-to-text generation is an NLG task where
descriptive texts are generated in natural language, verbalizing
the information from source data such as graphs and tables
[17]–[19]. The ML algorithms and techniques employed for
generating text from structured data can be classified into two
main groups: pipelined and end-to-end techniques [20]–[22].
Earlier NLG works predominantly employed pipeline-based
techniques where the text generation process was divided
into different stages: content determination, text planning,
sentence planning, and surface realization modules [23], [24].
At the heart of pipeline techniques are the linguistic rules and
heuristics used to select and populate pre-defined templates
and schemas [17], [23], [25]. Pipeline techniques are defined
within a fixed structure, so although more straightforward,
they are less flexible and produce less diverse outputs than
generative techniques.

In recent years, end-to-end data-to-text generation has
gained a lot of attention, and this growing interest is driven
by recent advancements in deep neural networks [19], [20],
[26]. Another appeal of neural NLG is that texts are gen-
erated automatically from the data without needing hand-
crafted rules. Applications of deep neural NLG approaches
include table-to-text [13], [14], [19], [27], table-based question
answering [28]–[30], and graph-to-text generation [31], [32].

https://github.com/jameswburton18/LocalLevelExplanations


A significant challenge of deep neural approaches is that
they require a large amount of clean data to achieve higher
generation performance. Recent works [12], [13], [26], [33]
indicate that utilizing pre-trained language models such as
GPT [34], BERT [35], BART [16], and T5 [15] can further
improve text generation performance when solving NLG tasks
with a limited amount of data. Since these language models
are trained with text-to-text generation objectives, applications
to data-to-text require converting the structured data into flat-
string (linearization).

Our work is in line with previous work by [36], [37].
They developed ExpliClas, a rule-based NLG system for
generating multimodal (graphical and textual) explanations
for classifiers implemented with WEKA [38]. Unlike [36],
[37], our textual explanations are generated end-to-end with
neural NLG. Furthermore, the trained neural NLG models can
generate textual explanations based on the graphical visual-
ization produced by any arbitrary XAI technique. To the best
of our knowledge, there are no existing works exploring the
application of neural NLG for generating textual explanations
describing the intuition behind classification decisions.

III. LOCAL-LEVEL TEXTUAL EXPLANATIONS DATASET

A. Textual Explanation Narratives Dataset

TEXEN consists of pairs of explanations: one output of
a local-level explanation method, which we refer to as a
numerical explanation (an example is shown in Fig. 2), and
one textual narrative, which describes in plain text what the
numerical explanation is showing (such as in Fig. 4).

First, to collect the numerical explanations, we trained a
selection of models on a selection of tasks. Ten different
model types were used, including Support Vector Machines,
Logistic Regression, Deep Neural Networks, and Random
Forests. Using random samples from the test sets, local-
level explanations were generated using four explainable AI
techniques: LIME, SHAP, IG, and LRP. These techniques
generated numerical scores for each input feature, indicating
their relative influence on the classification decision. However,
it is necessary to reiterate that these scores do not reflect the
accuracy of the classifier but rather provide insight into which
features were most important in the decision-making process.
Statistics on how the numerical explanations were collected
are in Table I.

To collect narratives, eight computer science experts were
shown a chart (as in Fig. 3) and asked to summarize it in
a single text box. These narratives are intended to describe
the prediction as a whole. However, in order to guide the
annotators, they were asked to provide textual explanations
that answered the following questions:

i Summarize the prediction made for the test case under
consideration along with the likelihood of the different
possible class labels.

ii Summarize the top features influencing the model’s
decision.

iii Summarize the features with moderate to low influence
on the model’s decision.

Predicted Label high quality

Prediction Probabilities
low quality: 5.63%
high quality: 94.37%

Attributions
Feature Name Importance Value
volatile acidity 0.10
sulphates 0.09
alcohol 0.07
total sulphur dioxide 0.05
residual sugar -0.04
fixed acidity 0.02
citric acid 0.02
chlorides -0.02
free sulphur dioxide -0.01
pH -0.01
density 0.00

Fig. 2. An example of a numerical explanation

Feature name Val
volatile acidity 0.0969394812

sulphates 0.0911348029

alcohol 0.0733620383

total sulphur dioxide 0.0519188387

residual sugar -0.0351906774

fixed acidity 0.0248738781

citric acid 0.0238264422

chlorides -0.022157631

free sulphur dioxide -0.0132990832

pH -0.0129784543

density 0.0040836917

low quality 0.05

high quality 0.94

Fig. 3. An example output graph from LIME, corresponding to Fig. 2

The wine is labelled as "high quality" by the classifier,
with the likelihood of this being correct equal to 94.37%,
suggesting that there is a slight chance of about 5.63% that
this decision could be wrong. The above prediction by the
classifier is mainly based on the values of the features
volatile acidity, sulphates, total sulfur dioxide, and alcohol,
which, according to the analysis performed, offer strong
positive support for the prediction. The other variables
with a positive influence on the decision are citric acid,
fixed acidity, and density, further cementing the belief in
the decision made here. The 5.63% likelihood of the "low
quality" can be blamed on the negative influence of
chlorides, residual sugar, free sulfur dioxide, and pH,
decreasing the likelihood of the "high quality" label
assigned to the wine under consideration. In summary, the
confidence level of 94.37% in the "high quality" label
assignment is mainly due to the strong positive influence
of sulphates, volatile acidity, and alcohol.

Textual Explanation

Fig. 4. An example of a textual explanation corresponding to Fig. 2



TABLE I
STATISTICS ON DATA USED FOR NUMERICAL EXPLANATION GENERATION

Property Value

Datasets used: 40
Models used 10
Records per dataset: Mean / S.D. 11.7 / 3.4
Records per model: Mean / S.D. 42.7 / 34.3
Input features per record: Mean / S.D. 18.7 / 15.0

iv Compare the features with positive contributions to those
with negative contributions resulting in the classification
decision.

We collected 700 textual explanations from the experts,
which were manually checked to ensure they correctly ar-
ticulated the information in the corresponding explanation
graph. A majority (469) were shown to accurately capture
the information and correctly answer the questions posed to
the annotators. Feature and class names were substituted for
placeholders and randomized to prevent train-test leakage. The
data was divided randomly into training, validation, and test
sets (328/47/94). Statistics about the dataset introduced are
summarized in Table II.

B. TEXEN-Augmented

We hypothesized that our limited training set might impede
model performance. We proposed a new augmented train-
ing set constructed from the original numerical explanation
narrative pairs and substituting it in a newly randomized
set of feature and class name placeholders. For each item
in the training set of TEXEN, the feature and class names
were re-randomized ten times so that the augmented dataset
contains 3421 records (train/validation/test split: 3280/47/94).
Validation and test sets do not undergo this augmentation
process such that the direct comparison between models can
occur.

Aside from the feature and class placeholders, the narratives
will remain identical; the work does not attempt to rewrite the
narratives in a new way. In re-randomizing placeholders, we
loosen the dependency on learning spurious correlations and
encourage the model to learn the link between the features
and feature values in the input and the features mentioned in
the text.

IV. TEXTUAL EXPLANATION GENERATION

The purpose of the textual explanation generation task is to
add to an existing numerical explanation pipeline to clarify
a local numerical explanation shown as a graph. Here we
outline a typical numerical explanation pipeline (Fig. 1, left),
formally define the problem statement, and subsequently detail
the proposed textual explanation pipeline (Fig. 1, right).

A. Numerical explanation pipeline

A typical numerical explanation pipeline is shown on the left
of Fig. 1. A numerical explanation pipeline aims to explain
why a classifier made the decision it did for a particular

TABLE II
STATISTICS FOR THE LOCAL-LEVEL TEXTUAL EXPLANATION DATASET

Property Value

Size: Train / Validation / Test 328 / 47 / 94
Words per narrative: Mean / S.D. 188 / 47
Unique words 2466

input data record. In this work, we only consider explanation
methods that produce feature importance scores that can then
be shown as a graph. A numerical explanation pipeline consists
of the following:

1) Classifier: Given a test case, a trained classifier gener-
ates the classification output decision. This prediction is in the
form of class labels and their respective predicted probabilities.

2) Explainer: : The explainer’s task is to generate feature
importance scores for each input feature which explains the
classification decision of the particular test case, given a
trained classifier and the prediction decision. These feature
importance scores are then represented as a graph, the final
output of a typical local-level explanation. In this paper, the
explainability techniques used are LIME, SHAP, IG, and LRP.

B. Problem Definition

Given a numerical explanation, the task is to produce a
narrative that explains in text what the graph is showing.
Formally, a numerical explanation consists of the following:
m class names c = [c1, ..., cm], their associated class proba-
bilities p = [p1, ..., pm], n feature names f = [f1, ..., fn] and
their associated feature importance values v = [v1, ..., vn].
The n+ features with values vi ≥ 0 and the n− features with
values vj < 0 such that n+ + n− = n are formally defined
as f+ =

[
f+
i , ..., f+

n+

]
and f− =

[
f−
j , ..., f−

n−

]
, respectively,

where f+ and f− are subsets of f , such that f = f+ ∪ f−.

C. Textual Explanation pipeline

The proposed textual explanation pipeline has three compo-
nents:

• An Explanation Processor that converts a numerical ex-
planation into an input string with placeholder features
and class names

• A language model trained for text-to-text generation
• A post-processor to replace the placeholders with actual

feature and class names.
In this work, we have class names, probabilities, feature names
and feature importance values for each input. Therefore, in
order to use text-based language models, we must format this
structured data into an appropriate string template.

1) Explanation Processor: The input to the explanation
processor is a numerical explanation, as defined above. At
this stage c, p, f and v are reordered from highest absolute
value to lowest to match the presentation of the output graphs.
A set of class name placeholders C1, ..., Cm is shuffled and
substituted in for each item in c. We repeat this approach for
feature names, where each feature name in f is substituted for



a placeholder in the shuffled set of F1, ..., Fn. Substitution is
done so the model can transfer its learning from task to task;
furthermore, tokenized inputs will not have to be truncated
due to long feature names. This step is also crucial to prevent
the model from learning from tasks it has seen before.

Following [14], [33], [39], the final stage of the “Explainer
Processor” involves linearization of the data into a flat string:
p, v and the newly substituted c and f are formatted into
the template below. A cap, top n, set at min(n, 10) or
min(n, 20) during training, is used to limit the number of
top features passed into the model and positive and negative
features are subsets of the capped top features, such that
top n++top n− = top n; the lowest impact features are not
affected. Note that the top features and values are formatted
so that only the final value is preceded by “and”.

Predicted class is <c1>, value of <p1>. Other
classes and values are <c2> <p2> & ... &
<cm> <pm>. Top features are [<f1>, ..., and
<ftop n>], with values [<v1, ..., and <vtop n>].
Positive features are [<f+

i >, ..., and <f+
top n+>].

Negative features are [<f−
j >, ..., and f−

top n−>].
Lowest impact features are [<fn−4>, ..., and <fn>]
with values [<vn−4>, ..., and <vn>].

2) Textual Explanation Generator: The tokenized inputs
are passed into a pre-trained language model. We experiment
with both T5 [15] and BART [16]. These language models are
trained in a sequence-to-sequence fashion, using the collected
textual explanations (with placeholders substituted in) as ref-
erence texts. In training, this is the final stage. In testing, the
output (with placeholders) is passed to the Post-Processor.

3) Post-Processor: The function of the post-processor is
simply to reverse the placeholder substitution process. Using
regular expressions, class and feature name placeholders are
identified and mapped back to the original string values. This
stage is not active during training when the model requires
a consistent way of representing the data, but only during
inference when it is helpful to report the true names.

V. QUESTION-ANSWER TASK

Here we investigate question-answering using synthetically
generated numerical explanations by assigning random feature
attributions and class values to class and feature placeholders.
A training dataset of 27,000 records and a validation dataset
of 3,000 records are generated in this manner. The question-
answer pairs are created by randomly selecting a question from
a pool of 8 templates for each numerical explanation. The test
set consists of 469 records, using numerical explanations from
the TEXEN train, validation, and test sets combined. For the
test set, one question-answer pair is generated per numerical
explanation.

Numerical explanations are synthetically generated in the
following manner: Classes C1 and C2 have a random per-
centage probability (0.00%-100.00%) assigned to them, such
that probabilities p1+p2 = 1. top n is set as a random number
between 6-20, and then each of which is given a random

feature placeholder and a random feature attribution between
-0.50 and 0.50.

Predicted class is <c1>, value of <p1>. Other
classes and values are <c2> <p2> & ... &
<cm> <pm>. Top features are [<f1>, ..., and
<ftop n>], with values [<v1, ..., and <vtop n>].
Positive features are [<f+

i >, ..., and <f+
top n+>].

Negative features are [<f−
j >, ..., and f−

top n−>].
Lowest impact features are [<fn−4>, ..., and <fn>]
with values [<vn−4>, ..., and <vn>]. Answer the
following question: <Q>

The input string (above) is in the same format as in the
textual explanation generation task but with an additional
prompt and subsequent question, Q, which is selected at
random from the eight question templates below:

Questions:
1) What is the prediction for class X? Class X is

randomly chosen. The required answer is the predicted
class probability for class X.

2) What is the value of X? X is a random feature name
from the input. The answer is the value associated with
feature X.

3) Of the top X features, which are positive? X is a
random number between 2-5 inclusive. The task is to
return the subset of the X most influential features that
have a feature importance value greater than 0.

4) Of the top X features, which are negative? This
follows the same pattern as above, but for feature
importance values less than 0.

5) Of these features [ft list], which support the predic-
tion? ft list is a list of 2-5 features, chosen at random
from the input. The task is to return the subset of features
from ft list with a feature importance value greater than
0.

6) Of these features [ft list], which are against the
prediction? This follows the same pattern as above, but
for feature importance values less than 0.

7) Which features have an absolute value greater than
X? X is a random float between 0.30-0.45 inclusive. The
goal is to return a list of features with a value above X.

8) Which are the X least important features? X is a
random number between 2-5 inclusive. The task is to
return a list of the X features with the lowest feature
importance scores.

For questions 1 and 2, the answer is a single value, while
the answers to questions 3-8 are lists of features separated by
commas or blank if there is no correct answer.

VI. RESULTS

A. Textual Explanation Generation

We fine-tune T5-base and BART-base models on the
TEXEN and TEXEN-Augmented datasets. All experiments
are run until validation performance has not increased for
three epochs in a row. Once this limit has been reached, the
best model is chosen, as decided by the lowest loss on the



TABLE III
ERROR ANALYSIS OF BART GENERATED TEXTUAL EXPLANATIONS PER SENTENCE TYPE. LOWEST ERROR RATE IN BOLD.

Experiment Classification Top Unnamed Groups Named Groups Summary Total

Count Error Rate Count Error Rate Count Error Rate Count Error Rate Count Error Rate Count Error Rate

base-20 34 12% 29 14% 39 79% 17 53% 61 44% 180 42%
base-20-Aug 34 15% 30 3% 48 67% 39 41% 52 46% 203 38%
base-10 32 13% 30 13% 37 49% 25 52% 58 19% 182 27%
base-10-Aug 35 6% 30 10% 41 61% 29 62% 63 35% 198 35%
large-20 37 8% 32 22% 23 91% 42 43% 71 27% 205 33%
large-20-Aug 31 10% 29 7% 38 68% 21 33% 62 24% 181 29%
large-10 30 13% 34 15% 24 67% 31 42% 57 18% 176 27%
large-10-Aug 34 9% 29 14% 36 53% 30 40% 51 14% 180 25%

validation set. During inference, the neural generators generate
textual explanations via beam search with values for the beam
size, length penalty, and repetition penalty equal to 20, 1.6, and
1.5, respectively. Examples of generated narrations are shown
in Fig. 6 and Fig. 7.

1) Automatic Evaluation: The quality of the output textual
explanations is assessed using automatic metrics METEOR
[40], BLEU [41], and BLEURT [15]. The BLEU and ME-
TEOR scores are employed to measure the surface-level
similarity of the reference texts and the machine-generated
text. On the other hand, the BLEURT score is a semantic
equivalence-based metric that indicates how well the machine-
produced text communicates the meaning of the reference text
[15]. As a baseline for comparison, we translate the input into
a fixed template style, similar to the model input but with
values removed and set top n as min(n, 3):

Predicted class is <c1>, value of <p1>. Other
classes and values are <c2> <p2> & ... &
<cm> <pm>. Top features are [<f1>, ..., and
<ftop n>]. Positive features are [<f+

i >, ..., and
<f+

top n+>]. Negative features are [<f−
j >, ..., and

f−
top n−>]. Lowest impact features are [<fn−4>, ...,

and <fn>].

The evaluation scores achieved by the models are shown
in Table IV. We report the BLEU, BLEURT, and METEOR
scores achieved on the test set. Compared to the baseline, all
models show a significantly improved performance in all three
reported metrics.

2) Error Analysis: We also conduct an error analysis on 30
records from the test set, generating narratives for each of our
experiments and counting errors. Due to time constraints, we
choose to focus on BART. Referring to Table V, (base / large)
refers to BART-base or BART-large, (10 / 20) refers to top n
and Aug refers to the use of TEXEN-Augmented, as opposed
to TEXEN. We sifted through each sentence of each narration,
classifying them as either:

• Classification: Talking about the predicted class proba-
bility

• Top features: Mentioning the most influential features
• Named groups: Referring to positive, negative, moder-

ately influential or least influential features

• Unnamed groups: Typically of the form “among these...”
or “all the remaining features...”

• Summary: General statements summarizing the decision
If the sentence contained an error or did not make sense, then
a one was tallied for that sentence, else zero. Table V, for
each of the sentence types, shows, for each model, how many
times each sentence appeared and the proportion of sentences
of that type that contained an error across the 30 analyzed
narrations. Analyzing the results, the model is more consistent

TABLE IV
EVALUATION OF TEXTUAL EXPLANATION GENERATION PERFORMANCE OF

THE NEURAL MODELS. AVG. RANK REFERS TO THE MEAN IN-COLUMN
RANK. BEST IN-COLUMN SCORES ARE IN BOLD.

Experiment BLEU BLEURT METEOR Avg. Rank

BART

base-20 0.16 -0.25 0.36 6.7
base-20-Aug 0.17 -0.23 0.36 5.0
base-10 0.15 -0.19 0.34 8.0
base-10-Aug 0.16 -0.23 0.36 6.3
large-20 0.14 -0.28 0.37 9.3
large-20-Aug 0.15 -0.27 0.35 10.7
large-10 0.14 -0.25 0.34 12.7
large-10-Aug 0.14 -0.26 0.35 10.3

T5

base-20 0.16 -0.22 0.34 8.7
base-20-Aug 0.17 -0.27 0.35 6.3
base-10 0.17 -0.31 0.35 9.0
base-10-Aug 0.17 -0.28 0.35 8.3
large-20 0.17 -0.17 0.34 7.7
large-20-Aug 0.18 -0.37 0.34 9.7
large-10 0.18 -0.22 0.34 5.3
large-10-Aug 0.17 -0.34 0.34 11.3

Baseline 0.05 -0.80 0.19 17.0

at producing error-free sentences of certain types than others.
“Classification”, and “Top features” sentences are usually in a
more consistent style in the collected narratives, which could
be why the models were more successful at generating them.
Using top n of 10, rather than 20, tended to decrease the error
rate, particularly in “Unnamed groups”, which the models
found difficult. As shown in Fig. 6 and Fig. 7, the Textual
Explanation Generators struggled with specific phrases that
grouped or excluded previously mentioned features and made
a claim about the said group.

For all models except base-10, training on TEXEN-
Augmented caused a lower error rate, demonstrating that
providing more training data with re-randomized placeholders



TABLE V
QUESTION ANSWER RESULTS

Question Accuracy

BART-base T5-base

Value of class X? 94% 100%
Value of feature X? 87% 99%
Of top X, which are positive? 59% 85%
Of top X, which are negative? 76% 97%
Of ft list, which support? 62% 90%
Of ft list, which are against? 82% 92%
Which features are >X? 73% 87%
X least important features? 39% 73%

Total 73% 91%

allows the model to learn the input-narrative relationship more
effectively and make fewer false claims. Using BART-large
also yielded a lower error rate, most notably in “Summary”
sentences where the generated narrative will tend to make
broader statements without mentioning specific features, in-
stead describing general patterns.

B. Question Answering

We train BART-base and T5-base models on the Question-
Answer dataset and report the per-question accuracy in Table
V. Analyzing the results, we can see that the models found
some questions more straightforward: questions 1 and 2, which
asked for a single class and feature value, scored the highest,
perhaps because only a single figure was required instead of
a list. For questions that need a list of numbers as an answer,
if the generation matched the string exactly, then it was given
a one, else zero. T5 scored especially highly, with an average
accuracy of 91%. Examples are shown in Fig. 5

VII. DISCUSSION

As demonstrated by these two tasks, our models are
able to provide extra clarity to assist in machine learning
interpretability. While further comparisons could strengthen
our conclusions, our principal aim is to introduce the task
and methodology. We recognize that some may consider the
dataset small; however, the difficulty of collecting quality
narrations meant it was very costly and time-consuming to
generate. As a result, this dataset represents the largest possible
dataset we had the means to collect, and we are pleased to
make it publicly available to benefit other researchers in the
field.

Our question-answer task was designed to cover the infor-
mation held in numerical explanations; however, we acknowl-
edge that the current set of questions may not cover all pos-
sible scenarios. Nevertheless, by using synthetic explanations,
our dataset generation process allows for easy adaptation to
encompass a new or expanded set of questions to suit specific
needs.

VIII. CONCLUSION

In this work, we introduced a new NLG dataset of
numerical-textual explanation pairs and trained T5 and BART

Q: Of the top 4 features, which are
positive?
A: F5, F8, F1
T5 Pred: F5, F8, F1
BART Pred: F5, F8, C1
Q: Of the top 5 features, which are
negative?
A: F4, F11
T5 Pred: F4, F11
BART Pred: F4, F11
Q: Which features have an absolute
value greater than 0.38?
A: 
T5 Pred: 
BART Pred: 
Q: Which are the 2 least influential
features?
A: F8, F11
T5 Pred: F8, F11
BART Pred: F8, F11
Q: What is the value of F5?
A: 0.01
T5 Pred: 0.01
BART Pred: 0.01
Q: Of the top 5 features, which are
positive?
A: F16, F19, F12, F17
T5 Pred: F16, F19, E12, C17
BART Pred: F16, F19, C12, f17

Q: Of these features [F1, F8, F10,
F3], which support the prediction?
A: F1, F10, F3
T5 Pred: F1, F10, F3
BART Pred: F1, F10, C3
Q: Of the top 4 features, which are
positive?
A: F8, F1, F7
T5 Pred: F8, F1, F7
BART Pred: F8, F1, C7
Q: What is the value of F3?
A: -0.05
T5 Pred: -0.05
BART Pred: -0.05
Q: What is the value of F17?
A: 0.01
T5 Pred: 0.01
BART Pred: 0.02
Q: Of the top 2 features, which are
negative?
A: F7
T5 Pred: F7
BART Pred: [blank]
Q: Of these features [F4, F20, F30],
which are against the prediction?
A: F20
T5 Pred: F20
BART Pred: F20

Fig. 5. Example of questions, reference answers and predictions from both
models. Errors are in red.

to describe the output of feature importance-based explainers.
When paired with the explainability graph, we aim to give
users a better understanding of what the explanation means
and, therefore, a better understanding of a given prediction
decision. Automatic evaluation metrics show evidence of flu-
ent explanations and error analysis yield reduced error rates
when using TEXEN-Augmented. We also trained question-
answer models for more structured answers and find T5-base
gives us an overall accuracy of 91%. In the future, we plan to
explore and utilize multi-modal modelling strategies, such as
image captioning approaches, to directly use the explanation
graphs without the linearization steps.
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large-10: For the case under consideration, the model predicts class "Leave" with a probability of 57.83%,
implying that there is only a 42.17% chance that "Stay" could be the correct label. The above prediction decision is
mainly based on the values of OverTime, NumCompaniesWorked, and RelationshipSatisfaction which are shown
to have very strong positive attributions, increasing the odds in favour of labelling the given case as "Leave". On the
contrary, all the remaining features such as MaritalStatus, Department, or Age negatively contribute to the
decision made here. In terms of the direction of influence of each input feature, it can be concluded that the joint
positive attribution outweighs the contributions of negative features hence the confidence level associated with the
predicted label for this case.

large-10-aug: The classifier is 57.83% certain that "Leave" is the correct label for the case under consideration,
implying that there is a 42.17% chance that it could be "Stay" instead. The classification decision above is mainly
based on the influence of features such as OverTime, NumCompaniesWorked, and RelationshipSatisfaction.
Among these top influential features, only MaritalStatus has a negative impact, swinging the verdict in favour of
any of the other labels. Other positive features with moderate influence include Education, EducationField, or
BusinessTravel. However, considering the direction of effect of each input feature, it can be concluded that they are
irrelevant to the prediction made here since their respective attributions are very close to zero. In simple terms, we
can conclude that the model is not 100.0% confident in the assigned label given its level of certainty.

Reference: 'The test case or example under consideration is labelled as "Leave" with a modest level of confidence because the probability that "Stay" is the correct label is
approximately 42.17%. The input features with the highest influence on the prediction above are OverTime, NumCompaniesWorked, RelationshipSatisfaction, MaritalStatus,
YearsSinceLastPromotion, and Department, and those with moderate contributions are Age, Education, EducationField, BusinessTravel, JobLevel, JobInvolvement, and
WorkLifeBalance. The influence of MonthlyRate, YearsAtCompany, Gender, PerformanceRating, JobRole, TrainingTimesLastYear, and EnvironmentSatisfaction can be
described as moderately low. However, not all the features are considered by the classifier to arrive at the decision made for the given case. Irrelevant features include
YearsWithCurrManager, DailyRate, YearsInCurrentRole, and TotalWorkingYears. The positive features driving the prediction in favour of the predicted label are OverTime,
NumCompaniesWorked, RelationshipSatisfaction, YearsSinceLastPromotion, Education, JobLevel, and EnvironmentSatisfaction. Overall, the majority of the influential
features have negative attributions that decrease the probability that "Leave" is the correct label, explaining the uncertainty associated with the prediction decision made by the
classifier.'

Fig. 6. Example of generated textual explanations and reference narration. The numerical explanation is shown here graphically on the left. The numerical
explanation has feature and class names randomized and is fit into a template, as described in Section IV-C1. Top right and center show the output of two
trained textual explainers, the difference being that large-10-aug has been trained on TEXEN-Augmented and large-10 trained on TEXEN. At the bottom, the
reference text is shown. This is the narrative that was collected when the annotator was provided with the graph in this figure. Features, classes and values
are in bold. Errors are in red.

large-10:  For the case under consideration, the model predicted "Basic" with 99.30% certainty, implying that
there is only a 0.70% chance that "Luxury" could be the correct label. The prediction decision above is mainly
based on the influence of the following features: isNewBuilt, hasYard, and hasPool which are shown to have
very strong positive attributions, increasing the odds of labelling the given case as "Basic". On the contrary, all
the remaining features such as hasStormProtector, made, or hasGuestRoom negatively contribute to the
prediction made here. All in all, it is valid to conclude that the classifier is very certain about the assigned label
considering the degree of impact of each input feature.

large-10-aug: The classifier is 99.30% certain that the correct label for this case is "Basic", implying that there
is only a 0.70% chance that "Luxury" could be the true label. The classification decision above is mainly based
on the influence of features such as isNewBuilt, hasYard, and hasPool. On the other hand, some of the least
relevant features are shown to have negative attributions, shifting the verdict in the opposite direction. These
negative features include floors, cityCode,and basement. However, considering the predicted likelihoods across
the classes, it can be concluded that all the remaining features positively contribute to the prediction made here.
As a matter of fact, the top positive features increasing the odds in favour of labelling the given case as "Basic".
In contrast, those with moderate contributions contradicting the model's decision regarding the appropriate label
are price, or cityPartRange. To put it concisely, when you take into account the very high degree of certainty
associated with the assigned label, one has to look at the attribution analysis to understand why the confidence
level is quite high.

Reference: Considering the values of the input features, the classifier generates the label "Basic" with close to 100% confidence, since the prediction probability of "Luxury" is
only 0.70%. The above classification judgement is mainly due to the influence of the features isNewBuilt, hasPool, and hasYard mainly because the classifier places more
emphasis on their values than the remaining ones. Among these top features, hasYard is the one exhibiting negative influence, shifting the prediction decision towards the least
probable class, "Luxury" and away from "Basic". Conversely, isNewBuilt and hasPool are referred to as positive features since they increase the odds of the assigned "Basic"
label instead of "Luxury". Finally, unlike all the aforementioned, the values of attic, cityPartRange, garage, and hasStorageRoom have little impact on the classification output
decision made here.

Fig. 7. Another example of generated textual explanations and reference narration. Same format as in Fig. 6.
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