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Abstract
Background: In those receiving chemotherapy, renal and hepatic dysfunction 
can increase the risk of toxicity and should therefore be monitored. We aimed 
to develop a machine learning model to identify those patients that need closer 
monitoring, enabling a safer and more efficient service.
Methods: We used retrospective data from a large academic hospital, for patients 
treated with chemotherapy for breast cancer, colorectal cancer and diffuse- large 
B- cell lymphoma, to train and validate a Multi- Layer Perceptrons (MLP) model 
to predict the outcomes of unacceptable rises in bilirubin or creatinine. To assess 
the performance of the model, validation was performed using patient data from 
a separate, independent hospital using the same variables. Using this dataset, we 
evaluated the sensitivity and specificity of the model.
Results: 1214 patients in total were identified. The training set had almost per-
fect sensitivity and specificity of >0.95; the area under the curve (AUC) was 0.99 
(95% CI 0.98– 1.00) for creatinine and 0.97 (95% CI: 0.95– 0.99) for bilirubin. The 
validation set had good sensitivity (creatinine: 0.60, 95% CI: 0.55– 0.64, bilirubin: 
0.54, 95% CI: 0.52– 0.56), and specificity (creatinine 0.98, 95% CI: 0.96– 0.99, bili-
rubin 0.90, 95% CI: 0.87– 0.94) and area under the curve (creatinine: 0.76, 95% CI: 
0.70, 0.82, bilirubin 0.72, 95% CI: 0.68– 0.76).
Conclusions: We have demonstrated that a MLP model can be used to reduce 
the number of blood tests required for some patients at low risk of organ dysfunc-
tion, whilst improving safety for others at high risk.

K E Y W O R D S

chemotherapy, hepatic, machine learning, renal, treatment- dose

www.wileyonlinelibrary.com/journal/cam4
mailto:
https://orcid.org/0000-0002-6669-9411
https://www.twitter.com/PinkieChambers
https://orcid.org/0000-0002-1191-8170
https://orcid.org/0000-0001-8942-355X
http://creativecommons.org/licenses/by/4.0/
mailto:p.chambers@ucl.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcam4.6418&domain=pdf&date_stamp=2023-08-23


2 |   CHAMBERS et al.

1  |  INTRODUCTION

Despite advances in targeted and immune therapies, 
cytotoxic chemotherapy remains the gold standard, 
first line treatment for many common cancers includ-
ing breast cancer, colorectal cancer and diffuse large 
B- cell lymphoma (DLBCL).1 These anticancer agents 
are characterised by a narrow therapeutic index and 
large interindividual pharmacokinetic variability. This 
means that small changes in plasma concentration, 
consequent to organ function impairment, may lead to 
unacceptable toxicity.2 A systematic review published 
by Krens and colleagues3 suggested dose adjustments 
when initiating chemotherapy treatment for patients 
with pre- existing renal or hepatic impairment. This 
guidance did not, however, advise on subsequent cycle 
dosing. Furthermore, clinical evidence for the guidance 
was modest.

Routine clinical practice is to assess kidney and 
liver function prior to each treatment cycle4; however, 
the value of this process with respect to detecting sig-
nificant changes that necessitate chemotherapy dose 
modifications is uncertain. Where patients are very 
unlikely to experience significant changes in renal and 
hepatic function during chemotherapy, monitoring at 
every cycle may be unnecessary, and for many patients 
involves increased waiting times and unnecessary blood 
tests.5 With the use of chemotherapy increasing,6 there 
is a need to rationalise the amount of tests that are con-
ducted for patients. Accurate stratification of patients, in 
order to conduct blood tests only for those that are likely 
to experience deterioration in renal and hepatic function 
during chemotherapy, would have benefits both in terms 
of patient experience and reducing the cost of delivering 
care.

There is an opportunity to leverage machine learning 
(ML) to support this stratification of patients into high-  
and low- risk groups. In the United Kingdom, all hospi-
tals use Electronic Prescribing (EP) systems to prescribe 
cancer treatments. These systems used for prescribing 
contain information of drugs received, dosing and also 
demographic information, laboratory parameters and de-
tails of concurrent medication, providing comprehensive 
data for use in model development.7 Developed models 
could be employed to guide clinicians in providing in-
dividualised blood testing schedules for patients treated 
with chemotherapy, enabling safer treatment for those 
that are likely to suffer deterioration, and reduced tests 
for those unlikely to encounter changes. We therefore 
aimed to develop a model to predict the risk of an indi-
vidual patient experiencing grade changes for creatinine, 
a marker of kidney function, and bilirubin, a marker of 
liver function.

2  |  METHODS

This was a retrospective data study to develop and vali-
date a multilayer perceptrons (MLPs) model, and is re-
ported using the Transparent Reporting of a multivariable 
prediction model for Individual Prognosis Or Diagnosis' 
(TRIPOD) statement,8 a 22- item checklist that guides 
the reporting of the design, conduct, analysis and inter-
pretation of prediction modelling studies.9 We chose to 
develop a MLP model rather than a prognostic multivari-
able logistic regression model10 due to the multiple levels 
within our dataset, limiting the performance of statistical 
models.11 MLPs have been shown to outperform multi-
variable regression models in similar applications12 and 
so were chosen in order to maximise the performance of 
the model. Additionally, recent developments in the field 
of explainable machine learning would allow for clinical 
interpretation.

Data from one hospital were used in the development 
of the model, and another hospital to validate the model. 
Both hospitals were specialist cancer hospitals located in 
the United Kingdom.

2.1 | Inclusion and exclusion criteria

Patients' records were included if they were aged 18 or 
over. Patients were identified through the chemotherapy 
EP system at each site, and all data were extracted for the 
period 01 January 2013– 31 December 2018. We used the 
first chemotherapy treatment date derived from the EP 
data as the index date for entry to the cohort during the 
study period. Patients were then followed up until the 
administration of the sixth cycle of treatment. It should 
be noted that the sixth cycle was not necessarily the final 
chemotherapy cycle administered to the patient, but this 
timepoint was used for the end of follow- up period in this 
study.

Data were restricted to the following three tumour 
groups: breast, colorectal and diffuse large B- Cell lym-
phoma, identified using the ICD10 codes13 C50, C83, 
C19, C19, C20 and C21. In the case of breast cancer, we 
included only those patients with early- stage breast can-
cer (stages 1– 3). For colorectal cancers, we included all 
patients receiving their first treatments for any stage dis-
ease. Patients were only included if they received first- line 
treatment with the following regimens: epirubicin and  
cyclophosphamide (EC) only, or in combination with 
fluorouracil (FEC); docetaxel alone or with cyclophos-
phamide; irinotecan modified de Gramont (IRMDG); ox-
aliplatin modified de Gramont (FOLFOX); oxaliplatin and 
capecitabine (OXCAP); and rituximab, cyclophosphamide,  
vincristine and prednisolone (RCHOP).
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Patients were excluded from the dataset if they re-
ceived only one cycle of treatment. Additionally, patients 
were excluded where the second cycle of treatment was 
administered beyond a period of 60 days from the date of 
first treatment.

2.2 | Analysis

2.2.1 | Data variables

The outcome of interest was any deterioration in kidney 
or liver function. This was defined by grade change in cre-
atinine or bilirubin among patients included, at any cycle 
following cycle two. We chose bilirubin as an outcome 
measure rather than alanine aminotransferase (ALT), as 
increases in this marker are common with a number of 
chemotherapeutic agents and rarely cause clinical con-
cern or reflect dysfunction of the liver.14,15

The presence of grade changes was determined 
using the Common Terminology Criteria for Adverse 
Events (CTCAE) guidelines; however, we used a mod-
ified CTCAE toxicity boundary that reduced abnormal 
limits to reduce false negatives, which would inherently 
cause an increase in false positives (this adjustment is 
detailed in the Appendix S1). Post- cycle two was used 
as the outcome, as it is understood that many toxicities 
to treatment occur during the first cycle of chemother-
apy. Additionally, it is believed that it would not be clin-
ically acceptable to remove any blood test monitoring 
at cycle 2.

The predictors incorporated into the development 
model are routinely recorded in EP systems: baseline, 
cycle 1 and cycle 2 blood results, patient demographics, 
comorbidities and details of treatment, including the 
proportion of doses received compared to the calculated 
standard dose. The same collection of blood results was 
used across all cycles: Absolute neutrophil count (ANC), 
haemoglobin level (HB), creatinine level, alanine amino-
transferase (ALT) level and bilirubin level. These labo-
ratory variables are standardly available for the majority 
of patients commencing chemotherapy, and have been 
identified as important predictors in other studies where 
toxicity outcomes have been assessed.16,17 Demographic 
information included patient's age on commencing treat-
ment, gender, cancer type, ethnicity, height and weight. 
Treatment information used were regimen received and 
relative dose intensity.

Day 1 (the date of the start of the 1st cycle) was used 
as the index date, and each blood test date was ordered 
in relation to number of days from the index date. Base-
line results were any results that either preceded the index 
date by 7 days, or were taken within 72 hours following 

the index date. If there was more than one baseline value 
available, we used the value closest to the index date.

Drug regimens included were categorised by cycle 
length, a standard time interval for a particular regimen. 
By using the standard cycle length of either 14 or 21 days, 
we were able to determine if treatment administration 
had been delayed.

2.2.2 | Missing data

We made the decision to exclude any patient with miss-
ing values at cycles 1, 2 and 3 and report the numbers 
excluded.

2.2.3 | Machine learning models

Data from Hospital 1 were used as a training cohort, to 
predict deterioration of one grade or greater in creatinine 
and bilirubin following cycle 2 of chemotherapy. In deep 
learning, a set of training data is passed through multiple 
‘layers’ of a model; these layers are composed of simple 
non- linear operations with the representation produced 
by one layer being fed into the next layer, which in turn 
transforms the data into an abstract representation.18

We used multilayer perceptrons (MLPs) as the model 
of choice. MLPs consist of an input layer (the predictors) 
followed by one or more fully- connected ‘hidden’ layers 
(‘neurons’) that are composed of regressions.19 The train-
ing data were randomly split to perform an internal val-
idation to reduce any overfitting. We used an 80%, 10%, 
10% split for the training, test and validation, respectively, 
using stratified sampling to ensure each set was represen-
tative of the whole population. All data were first nor-
malised to ensure that the magnitude of each feature did 
not affect the MLPs outcome. Ten- fold cross validation was 
utilised to evaluate the performance of the trained models.  
This technique provided a less- biased, less- optimistic 
evaluation of a model20 than just using a simple train/test 
dataset split.

The output of the trained models was the patient's pre-
dicted creatinine/bilirubin value. These predicted values 
were then used to place patients into one of two groups: 
the patient is predicted a grade change (as defined by the 
CTCAE guidance), or the patient's bilirubin/creatinine 
grade is predicted to remain stable. These groups are 
defined in Table S1, with the boundaries for each group 
being derived from CTCAE guidelines.3 Importantly, the 
grade boundaries defined were set slightly lower than 
those in the original CTCAE guidance. This was by design 
to ensure that any patients with predicted creatinine/bili-
rubin values close to the CTCAE grade boundaries would 
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be classified as potentially experiencing a grade change. 
This would purposefully increase the number of false pos-
itive (FP) classifications, and reduce the number of false 
negatives (FN). From a clinical perspective, a larger num-
ber of FPs is preferable to a large number of FNs, as any 
FP will still receive blood tests at every cycle whereas a FN 
patient will not, thereby provide safety- netting.

As part of the training process, several sets of hyperpa-
rameters were chosen— these are values that optimise the 
way in which the MLP models are trained. For example, 
the number of layers in the MLPs must be selected pre-
training, as must the size of these layers. Hyperparame-
ters for the Adam optimiser are optimised,21 which will 
affect the rate at which model parameters are updated. 
Our MLPs all consisted of four layers: an input layer, two 
hidden layers and one output layer, and use the ReLU 
(Rectified Linear Unit) activation function to provide non- 
linearity (see also Figure S2). To reduce overfitting, drop-
out is used after both the first and third layers. Dropout is 
a deep learning regularisation technique that aims to im-
prove model generalisation and reduce overfitting, by sim-
ulating several different architectures with a single model 
through randomly ‘dropping out’ (removing) neurons in a 
network with a certain probability.22 The dropout proba-
bilities in our networks, p1 and p2, are two additional hy-
perparameters that were chosen pretraining.

A description of hyperparameters for the training pro-
cess and a diagrammatic representation of the MLP model 
is provided in Appendix S1.

The two models trained, using data from hospital 1, were 
then validated on data from hospital 2. We did not retrain 
or fine- tune the two models using data from hospital 2.  
The entire dataset from hospital 2 was treated as a valida-
tion dataset, evaluating the performance of the model in 
a heterogenous population, thereby testing the generalis-
ability of the model. Hospital 2 data were normalised and 
then passed through developed models.

We only analysed patients that had complete data 
needed for our analysis.

2.2.4 | Validation metrics

The metrics to quantitively evaluate performance of mod-
els on the test and validation datasets were as follows23; 
Area Under the Receiver Operating Characteristic curve 
(AUROC), a common metric used to evaluate binary clas-
sifiers. The ROC curve is a plot of the false positive rate 
versus true positive rate at different predictive thresh-
olds, with AUROC being calculated as the area under this 
curve. This gives an idea of the predictive performance 
of the models and is typically used when a classifier is 
trained on imbalanced classes, as it is a better indicator 

of performance than accuracy (which will be biased if the 
model is always predicting the majority class). Similarly, 
the F1 score is defined as the harmonic mean of precision 
and recall: (‘precision’ × ‘recall’)/(‘precision’ + ‘recall’).

The F1 score is also used in place of simple model  
accuracy when the classes are imbalanced. Sensitivity  
describes the proportion of true positives (TP). Specific-
ity is the proportion of true negatives (TN). In our appli-
cation, a high sensitivity value was more important than 
specificity, as a high proportion of false negatives could 
compromise patient safety.

Positive predictive value (PPV) and negative predic-
tive value (NPV) can be seen as versions of sensitivity and 
specificity that take disease prevalence into account.24 
PPV (NPV respectively) is the probability that, given a 
positive (negative) result the patient will (not) experi-
ence deterioration. Due to the extremely low prevalence 
of creatinine/bilirubin deterioration, we can expect PPV 
to be small due to the increased number of false positives 
(FP)— indeed, this is further exacerbated by our model fa-
vouring FPs over false negatives (FN). False negative rate 
(FNR) is a simple metric defined as the overall proportion 
of FNs. This is a particularly useful evaluation metric for 
our model due to the importance of keeping the number 
of FNs as low as possible. Cohen's Kappa25 is a metric that 
measures the agreement between two and more judges (in 
this case, our models and the ground truth). It is defined as 
κ = (p_o- p_e)/ (1- p_e) where p_0 is the relative observed 
agreement between judges and p_e is the probability of 
chance agreement. Although like a simple agreement per-
centage calculation, Cohen's Kappa takes the probability 
of chance agreement into account.

Finally, to evaluate the potential clinical value of our 
final model, we performed a net- benefit analysis.26 The 
most basic interpretation of the decision curve produced 
by a net- benefit analysis is that the model with the highest 
net benefit at a particular threshold has the highest clini-
cal value. In this analysis, three scenarios were compared: 
selecting all patients for the intervention (treat all, i.e. all 
patients receive blood tests), selecting no patients (treat 
none, i.e. no patients receive blood tests) and selecting pa-
tients using the predictive model. The x- axis depicts the 
threshold probability, which is chosen by the decision- 
maker. The y- axis depicts the net benefit of each strategy, 
which is expressed in terms of the value of true positives.26

3  |  RESULTS

Following the defined inclusion/exclusion criteria for this 
study, a total of 999 (hospital 1) and 530 (hospital 2) patient 
records were extracted from EP systems. Some of these pa-
tients had missing data, and with such a small sample size 
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techniques such as imputation were not appropriate, so 
we included only patients whose records held no missing 
values for any of our covariates or targets. As shown in 
Figure S1, this resulted in a total of 684 (hospital 1) and 
530 (hospital 2) patients meeting the inclusion criteria and 
being included in the study.

Table 1 describes the characteristics for the populations 
of patients treated at the two hospitals. In total, 1214 pa-
tients were included, of which 530 were in the validation 
cohort. In total 184 (15%) patients experienced a one- grade 
or greater change following cycle 2 of treatment; changes 
in creatinine were seen by 3% (n = 38) of the whole popu-
lation, and 12% (n = 146) for bilirubin.

Model performance metrics are detailed in Table 2 and 
shown in Figures S6 and S7 which depict the validation 
results. In patients where false negatives arose, we found 
that these grade 1 changes in creatinine and bilirubin did 
not result in future dose reductions, delays or omissions of 
dosing at cycles 3 and 4.

The Area Under Receiver Operator Characteris-
tic curve (AUROC) showed excellent discrimination in 
both the training dataset (hospital 1) and the validation 
dataset (hospital 2). The AUROC continues to be high in 

validation (hospital 2), with values of 0.76 (95% CI 0.70– 
0.82) and 0.72 (95% CI 0.70– 0.74) for creatinine and bil-
irubin, respectively. Figure  1 illustrates the ROC curves 
for both creatinine and bilirubin, across each of the 10 
cross validation folds used during training on the hospital 
1 training data. Differences in ethnicities were seen upon 
comparison of hospital 1 and 2 data, which may account 
for differences in model performance. Differences in eth-
nicities between the two datasets are shown in Figure S4. 
However, on undertaking a visualisation and error analy-
sis detailed in full methodology (Appendix S1), we found 
no differences in model performance between the three 
cancer types investigated.

We note that the model performs less effectively for 
bilirubin than it does for creatinine. There is also a more 
significant drop between the two hospitals for bilirubin 
than there is for creatinine; this is particularly evident 
when inspecting the PPV and Cohen's Kappa values. 
However, these values are calculated using the num-
ber of true positives, which, due to the extremely small 
number of patients with adverse bilirubin values, are 
extremely sensitive to false negatives. This is a known 
issue with the PPV metric, which is extremely sensitive 

Parameter Hospital 1 Hospital 2

Number of patients (N) 684 530

Age Median: 55; Range: (18– 88) Median: 60; Range: (18– 88)

Gender Female: 478 (70%) Female: 337 (64%)

Male: 206 (30%) Male: 193 (36%)

Tumour type Breast: 268 (39%) Breast: 212 (40%)

DLBCL: 182 (27%) DLBCL: 67 (13%)

Colorectal: 234 (34%) Colorectal: 251 (47%)

Regimen received FEC: 79 (12%) FEC: 141 (27%)

T- FEC: 189 (28%) T- FEC: 71 (13%)

RCHOP: 182 (27%) RCHOP: 67 (13%)

FOLFOXIRI: 1 (0.1%) FOLFOXIRI: 0 (0%)

IRMDG: 26 (3.5%) IRMDG: 67 (13%)

OXCAP: 25 (3.4%) OXCAP: 72 (13%)

FOLFOX: 175 (26%) FOLFOX: 112 (21%)

Mean creatinine 65.36 69.96

Mean bilirubin 6.90 6.64

Patients with any 
deterioration at cycle 3 
(creatinine)

27 (4%) 11 (2%)

Patients with any 
deterioration at cycle 3 
(bilirubin)

77 (11%) 69 (13%)

Abbreviations: DLBCL, diffuse large B- cell lymphoma; EC, epirubicin and cyclophosphamide; FEC, 
fluorouracil, epirubicin and cyclophosphamide; Folfoxiri, fluorouracil, irinotecan, oxaliplatin; FOLFOX, 
Oxaliplatin modified de gramont; IRMDG, irinotecan modified de gramont; R- CHOP, rituximab, 
cyclophosphamide, doxorubicin and prednisolone.

T A B L E  1  Baseline characteristics 
from two hospitals.
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to the prevalence of the disease, and as such all eval-
uation metrics should be considered when evaluating 
model performance. NPV has remained high in both the 
training and validation sets due to the low volume of 
false negatives.

Net Benefit27 curves for the models are shown in  
Figure 2. Net benefit is a method used for evaluating pre-
dictive models by exploring the clinical applicability of the 
model/decision approach. Decision curve analysis sug-
gested that for the creatinine model, predicted probability 

cut- offs greater than 0.2 provided greater net benefit than 
the competing extremes of monitoring in all patients or in 
none. However, at probability cut- offs lower than 0.2, the 
no monitoring, or ‘treat- none’ strategy, is superior. In the 
case of bilirubin, our model performs better than the ex-
tremes across all probability thresholds. This implies that 
both creatinine and bilirubin models added benefit to the 
clinical process irrespective of threshold probability used, 
as both our models significantly improves the current sta-
tus quo of monitor all (‘treat all’ strategy).

T A B L E  2  Deep learning model performance mean metrics (95% CI).

Hospital 1 Hospital 2

Performance Metric Creatinine Bilirubin Creatinine Bilirubin

AUROC 0.99 (0.98, 1) 0.97 (0.95, 0.99) 0.76 (0.70, 0.82) 0.72 (0.68, 0.76)

F1 Score 0.99 (0.98, 1) 0.66 (0.65, 0.67) 0.59 (0.54, 0.64) 0.24 (0.14, 0.33)

Sensitivity 0.99 (0.98, 1) 0.99 (0.98, 0.99) 0.60 (0.55, 0.64) 0.54 (0.52, 0.56)

Specificity 0.99 (0.98, 1) 0.91 (0.89, 0.93) 0.98 (0.96, 0.99) 0.90 (0.87, 0.94)

PPV 0.99 (0.98, 1) 0.5 (0.5, 0.5) 0.59 (0.47, 0.71) 0.24 (0.23, 0.25)

NPV 0.99 (0.98, 1) 0.99 (0.99, 0.99) 0.99 (0.98, 1) 0.92 (0.91, 0.94)

Cohen's Kappa 0.99 (0.98, 1) 0.65 (0.60, 0.69) 0.57 (0.5, 0.64) 0.20 (0.10, 0.31)

FNR 0.01 (0, 0.02) 0.00 (0.00, 0.00) 0.31 (0.27, 0.36) 0.37 (0.28, 0.45)

Abbreviations: AUROC, area under receiver operator characteristic curve; FNR, false negative rate; NPV, negative predictive power; PPV, positive predictive 
power.

F I G U R E  1  Receiver operating characteristic (ROC) curves and associated area under the ROC curves (AUROC) for each of the 10 cross 
validation folds on creatinine (left) and bilirubin (right). To allow for the ROC curves to be computed, the output (i.e. predicted creatinine/
bilirubin values) of each model is first normalised. The true positive rate (TPR) and false positive rate (FPR) is then calculated when using 
different thresholds of the predicted value to classify patients as experiencing a grade change. For example, a threshold of 0.5 would result 
in any patient with a (normalised) predicted creatinine/bilirubin value greater than 0.5 to be predicted as undergoing a grade change. The 
dashed red line shows the ROC curve for a theoretical model that is no better than randomly guessing the outcome.
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4  |  DISCUSSION

In this study involving 1214 patients receiving chemother-
apy for three different cancer types, we found the occur-
rence of one- grade change in creatinine and bilirubin to 
be 4% and 12%, respectively. This finding strengthens our 
justification for the use of a model to guide stratification 
of these assessments of organ function in patients being 
treated with chemotherapy, and to reduce blood tests 
for most patients identified as having a low risk of organ 
dysfunction.

We have demonstrated the strong predictive perfor-
mance of our model. Through validation using an inde-
pendent dataset, we proved good performance with an 
AUROC of 0.76 (95% CI: 0.70, 0.82) for creatinine and 0.72 
(95% CI: 0.68, 0.76) for bilirubin. Importantly, the NPV (re-
flecting rates of false negative results) remained high in 
both training and validation data.

Future application of this model in clinical practice 
would be dependent on the rate of false negatives. For in-
stance, if the model predicts that there will be no deterio-
ration in creatinine or bilirubin, but deterioration in either 
parameter subsequently occurs, then patient safety would 
in this case be compromised. In both datasets, however, 
the model demonstrated low false negative rates. Further-
more, all false negatives were one grade change only, and 
did not have any impact on subsequent cycle dosing for 
two further cycles, meaning there was no clinical impact 
on the patient.

Reducing the occurrence of false negatives was in-
tentional, and was achieved through adjustments to the 
original CTCAE grade boundaries to account for small 
errors made by the predictive model (this is reported in 
Table S1). These adjustments are the reason for a lower F1 
score and positive predictive values (PPV) of the models. 

This was also reflected in the high NPV for the data from 
both hospitals. False negatives could have been reduced 
further through penalties for missing grade changes; how-
ever, we believed this was clinically unnecessary.

When we commenced this work, we were limited by the 
sparsity of literature that quantified the percentage of pa-
tients that were likely to have an occurrence of the events 
of interest. From our data, we have now determined these 
values. The small proportion of patients that encounter 
the outcomes of interest is the biggest limitation to this 
work, with further validation work being required before 
our model can be used in clinical practice. The number of 
events will be used to calculate sample size for a further 
validation study, countering the effects of overfitting.28

We found that model performance reduced slightly in 
validation. This may be an effect of differences in ethnicity, 
rather than overfitting of the model. Strategies to improve 
the performance can be included in validation, whereby 
new data are simulated using the data from any underrep-
resented groups, fine- tuning the model using new data for 
external validation. Reassuringly, we found no differences 
between cancer types and model performance, meaning 
that the model is able to adapt to differences in cancer and 
treatment regimens. In our future validation work we will 
test our model in different cancers and treatments to pro-
vide wider benefits.

Our model predicted renal and hepatic function test 
grade changes with great accuracy, despite lacking ge-
netic sequencing data, cancer- specific biomarkers or any 
detailed information about cancers beyond routinely col-
lected EP data.16 This finding was consistent with another 
published model used to predict chemotherapy deaths 
following chemotherapy treatment.16 The strong perfor-
mance of the model underlines the fact that common 
clinical data elements contained within an EP system 

F I G U R E  2  Net Benefit curves for bilirubin (left) and creatinine (right) prediction models at cycle 3. The model net benefit is calculated 
over the mean of all models produced during 10- fold cross validation, as is normal procedure for ML models.17
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could be used as ‘signals’ for predicting outcomes. These 
signals could also represent clinician behaviours. In our 
developed model, signals such as prescribing granulocyte 
colony stimulating factors and reducing cycle 1 doses for 
patients could indicate that the clinician felt concerned 
about the patient upon initiation of chemotherapy.

As all the data required to make these predictions is 
routinely recorded,7 the model could be feasibly embedded 
into an EP system to stratify patients into those that require 
monitoring for renal and hepatic function and those that 
do not. The model would not require manual input from 
clinicians, and should allow any clinician to override rec-
ommendations from the model. Our validation study is 
planned as prospective and across any first- line cancer 
treatment, analysing patient visits saved, economic costs 
and the impact on the environment. In planning our next 
study, we have found that there is an educational need from 
the clinical community, to understand and trust the output 
of these models and to enable rapid implementation in clin-
ical practice. We also understand the need for feature selec-
tion to allow for the proposed techniques to be applied to 
settings where not all required data is collected. Whilst the 
current number of variables used by the model is still quite 
small by modern machine learning standards, it would be 
prudent to reduce this to the minimal set needed via a va-
riety of feature selection methods. In this work we chose 
not to apply such techniques due to sample size constraints 
for training and possible bias of features such as ethnicity, 
cancer type and treatment type present in this data.

There is an urgent need to use algorithmic predictions 
such as this, to stratify patients to manage the growing 
numbers of patients that will receive cancer treatment. 
Early identification of patients could support better safety 
netting for patients, whilst negating the need for testing 
in others. There are many other patient groups in other 
disease specialities that are similar to the chemotherapy 
population, where advances in technology can support 
stratification of patients to improve safety and patient 
experience.

In conclusion, whilst we found that the occurrence of 
renal and hepatic deterioration in patients receiving che-
motherapy is uncommon, the opportunity exists for the 
incorporation of ML models into EP systems to improve 
the safety- netting of some patients, and to reduce the bur-
den of blood tests for others.
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