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Abstract— Ambient backscatter communication enables low-
cost low-rate wireless interconnections for Internet of Things
(IoT) applications. In this work, new signal detectors for different
cases of ambient backscatter communications are derived. Specif-
ically, both coherent and partially coherent detectors are obtained
for Gaussian ambient signals and phase shift keying (PSK)
ambient signals. Maximum likelihood detection method and
improved energy detection method (including energy detection
and magnitude detection as special cases) are adopted. Numerical
results show that the energy detection method has the best
performance when the ambient signals are Gaussian, while the
magnitude detection method has the best performance when the
ambient signals are PSK modulated. Both are comparable to the
optimum maximum likelihood detection. Numerical results also
show that the improved energy detection method is very flexible
and that detectors for PSK ambient signals are slightly better
than those for Gaussian ambient signals.

Index Terms— Ambient backscatter communications, maxi-
mum likelihood, signal detection.

I. INTRODUCTION

Backscatter communication has been widely used in radio
frequency identification (RFID) systems, where the tag reader
sends a radio frequency (RF) signal to a remote tag and
the remote tag responds by modulating and reflecting the
received signal to deliver the information [1]. To further reduce
the cost of the system, ambient backscatter communication
(AmBC) has also been proposed, where the remote tag reflects
an ambient RF signal instead of a dedicated signal from
the tag reader [2]. The AmBC systems provides a useful
enabling technology for Internet of Things (IoT), because most
IoT applications are restricted by energy and cost for large-
scale deployment, while AmBC has low cost and low energy
consumption to become a perfect match with IoT. For example,
in logistics and warehouse management, the tags attached to
inventories can use AmBC to send information to the reader
for tracking [2]. In smart homes, the WiFi router can collect
sensing information from tags located indoor for automatic
adjustment of temperature and lights etc. [3]. In healthcare,
AmBC can be used in implants where WiFi signals act as
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RF sources [4]. In environmental monitoring, AmBC tags
can be used to monitor humidity, water quality, poisonous
gas to detect anomalies [5]. Due to its importance, a lot of
works have been conducted to build efficient AmBC systems,
including [6] - [10]. For example, in [11], the ambient pilot
symbols used in existing systems for orthogonal frequency
division multiplexing (OFDM) were applied in backscatter
communication. Two modulation schemes and an optimal
maximum likelihood detector were proposed. In [12], the
capacity of legacy and backscatter channels was analyzed for
different receivers and it was shown that the interference from
backscatter can be turned into a form of multipath diversity for
the legacy system, while the backscatter system can achieve
satisfactory date rates over short distances. In [13], a cloud
radio access network was considered where the performance
of the secondary backscatter node was evaluated consider-
ing training-based channel estimation, practical modulation
constraints and imperfect direct-link interference suppression.
Based on this, its transmission rate was optimized. In [14],
spatial modulation and spatial multiple access were applied to
AmBC. A modified maximum likelihood detector and multi-
user sparse Bayesian learning based detector were proposed
to detect the backscattered signal. A comprehensive survey on
different aspects of AmBC is provided in [15].

In the design of an efficient AmBC system, the signal
detector is a key component. Hence, much research effort
has been spent on signal detector designs for AmBC. To
name a few, in [16] - [18], assuming Gaussian ambient
signals, differential encoding was applied to the transmitted
signal and then Gaussian approximation was used to derive
the maximum likelihood (ML) detectors. In [19] and [20],
both coherent detectors and energy detectors were proposed
for AmBC, where the ambient RF signal is assumed to be
either Gaussian or phase shift keying (PSK) modulated. In
[21], the tag signal was first encoded using the Manchester
coding and then the corresponding ML detector was proposed
for both Gaussian and PSK ambient signals. Reference [22]
proposed ML and energy detectors for non-coherent detection,
where the ambient signal was also assumed Gaussian and
differential encoding was used, similar to [16] - [18]. In [23],
ternary coded signals were used, where the tag has three
states, and a maximum a posteriori detector was proposed
to detect these signals, again for Gaussian ambient sources.
Reference [24] proposed constellation learning based detection
by inserting two known labels into the data frame. In [25],
a new covariance-based detector was proposed for AmBC,
while in [26], the optimal non-coherent detector for AmBC
that does not require any channel knowledge was proposed
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and analyzed. More works on non-coherent detection can be
found in [27] - [33]. References [27]- [29] derived a new
receiver for a first-order autoregressive channel and its bit error
rate was analyzed. Reference [30] analyzed the performance
of Manchester encoded symbol detection and showed its
performance gain over the on-off keying. Reference [31] used
a modified expectation maximization method to cluster signals
from multiple tags and then a mapping between the clusters
and the transmitted symbols to recover signals without channel
state information. Reference [32] extended binary modulation
to M-ary modulation, while reference [33] proposed a sample
covariance matrix distance based rule to detect backscatter
symbols using time correlation in OFDM. In [34] and [35], the
performances of AmBC in terms of capacity, outage and bit
error rate (BER) were analyzed for ML and energy detectors
using Gaussian approximation when the ambient signal is PSK
modulated. References [36] - [38] studied the energy detection
for AmBC systems using OFDM signals by taking advantage
of the special structure of multi-carrier systems. References
[39] - [42] investigated signal detection for AmBC systems
using multiple antennas. In [43], the optimal detector for on-
off keying was proposed and an energy detector was used as
a benchmark, for multi-antenna systems. Reference [44] also
studied a multi-antenna AmBC system but the tag was used
as a passive relay to help the detection of the signal from the
RF source instead of the signal from the tag.

All the aforementioned works have provided very useful
guidance on the designs of AmBC systems. However, there
are several important issues that require further investigation.

• Most existing detectors have assumed the Gaussian am-
bient signals. References [19] and [21] assumed PSK
ambient signals but they used the energy detector directly
without deriving the optimal detector. Thus, it is of great
interest to derive new detectors for PSK ambient signals.

• The detectors in [16] - [25] require the channel state in-
formation of all three links in AmBC, while the detectors
in [26] does not require any channel state information. In
practice, channel state information may be available in
some links but not available in other links. For example,
the channel between the ambient RF source and the reader
may be estimated at the reader blindly or by using pilots,
while this might be difficult for the channel between the
ambient RF source and the tag or the channel between the
tag and the reader due to the limited processing capability
at the tag. Thus, in addition to the case when all channel
state information is available, it is useful to derive new
detectors for the case when only partial information is
available for partially coherent detection.

• The energy detector is widely used in AmBC. On the
other hand, it is well known that the improved energy
detector (IED) could outperform the conventional energy
detector by replacing the squaring operation in the en-
ergy detection with an arbitrary powering operation [45].
Moreover, the IED includes the energy and magnitude
detectors as special cases. Most existing works studied
the conventional energy detector but not the IED or the
magnitude detector. It is of great interest to examine how

these detectors perform in AmBC.
Motivated by the above observations, in this work, new

signal detectors for AmBC will be derived. Specifically, four
different cases will be considered: coherent detection assuming
Gaussian ambient signals, coherent detection assuming PSK
ambient signals, partial coherent detection assuming Gaussian
ambient signals, and partial coherent detection assuming PSK
ambient signals. For coherent detection, channel state informa-
tion of all links is required, while for partial coherent detection,
only channel state information of the source-to-reader link is
required, at the receiver. For each case, new detectors will be
obtained, including ML, IED, energy and magnitude detectors.

Numerical results show that the energy detector performs
the best when the ambient signal is Gaussian, while the
magnitude detector performs the best when the ambient signal
is PSK modulated, both of which are almost as good as the
corresponding ML detectors but with much lower complexity.
Numerical results also show that the IED is very general,
and that the change of its performance with the power value
depends on the case considered. Moreover, detectors assuming
PSK ambient signals are slightly better than those assuming
Gaussian ambient signals. The novelty and the contribution of
this work can be summarized as follows:

• Compared with existing works on coherent detection,
including [19] and [21], our IED and magnitude detectors
are new. Also, our ML and energy detectors for PSK
ambient signals are new. They have never been derived
before. In the derivation, the Gaussian approximation
method is used, similar to that in [19] and [21], but this is
a very general method that has been widely used in many
wireless techniques. These will be presented in Sections
III.A and III.B.

• Compared with existing works on noncoherent detection,
including [26], our IED detectors are new. Also, the case
with PSK ambient signals has not been studied in [26].
The ML method for Gaussian signals is similar to that
in [26] but assuming different channel knowledge leads
to totally different detectors. These will be presented in
Sections III.C and III.D.

• The ML method is used. When this becomes too chal-
lenging, moment-matching approximation is used. The
new detectors outperform the existing detectors in most
cases. They provide a comprehensive study of signal
detection for AmBC systems.

II. SYSTEM MODEL

Consider a single-carrier and single-antenna AmBC system,
similar to those in [16] - [25]. In this system, there are three
links: the source-to-tag (ST) link, the tag-to-reader (TR) link
and the source-to-reader (SR) link. The source radiates an
ambient RF signal s[n], where n = 1, 2, · · · , N index the
samples. This signal arrives at the reader via the SR link and
at the tag via the ST link. When the tag wants to send a
bit ’0’ to the reader, it will not reflect the received source
signal. When the tag wants to send a bit ’1’ to the reader,
it adjusts its impedance to reflect the received source signal
so that the reader will receive the reflected signal via the TR
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Fig. 1. System model considered.

link, in addition to the direct signal received from the SR link.
The system model is shown in Fig. 1. Practical applications
of this system include Internet of Things (IoT) sensors for
environment monitoring and RFID tags for inventory checking
and localization. Table I lists the notations frequently used in
the derivation later.

Thus, the received signal at the reader when bit ’0’ is sent
by the tag can be given by

y[n] = hsrs[n] + w[n] (1)

and the received signal at the reader when bit ’1’ is sent by
the tag can be given by

y[n] = hsrs[n] + ηhtrhsts[n] + w[n] (2)

where hsr is the channel coefficient of the SR link, htr is the
channel coefficient of the TR link, hst is the channel coeffi-
cient of the ST link, η is the constant reflection coefficient at
the tag, and w[n] is the additive white Gaussian noise (AWGN)
with w[n] ∼ CN (0, σ2

w). In Rayleigh fading channels, hsr, htr

and hst are complex Gaussian random variables with means
zero and variances σ2

sr, σ2
tr and σ2

st, respectively. The values
of σ2

sr, σ2
tr and σ2

st are determined by the path loss in the links,
which are assumed to follow a free-space path loss model in
this work. However, the results can be applied to any path loss
models, as the detectors only require values of σ2

sr, σ2
tr and

σ2
st, not the distances that determine the variances. In (1) and

(2), hsrs[n] is the direct signal from the ambient source, while
ηhtrhsts[n] is the reflected signal from the ambient source via
the tag. These two equations can be combined as

y[n] = hsrs[n] + ηhtrhsts[n]d+ w[n] (3)

where d is the data bit transmitted by the tag with d = 0 for
bit ’0’ and d = 1 for bit ’1’. The tag has a much lower data
rate than the ambient source so it is reasonable to assume that
d does not change within N samples of the source signal. The
above assumes on-off keying (OOK) for the remote tag. Other
modulation schemes, such as phase shift keying (PSK), may
also be used for the tag to improve performance. However,
the AmBC system and its signal detection will become more
complicated [46]. In most RFID applications, simplicity is
more important than performance to reduce the deployment
cost and thus, only OOK will be considered in the following.

Using y[n], n = 1, 2, · · · , N , the signal detector at the tag
reader needs to determine whether d = 0 or d = 1. For later
use, define the hypothesis that d = 0 as H0, the hypothesis
that d = 1 as H1, h0 = hsr, and h1 = hsr+ηhtrhst. Note that
this model applies to static AWGN channels or slow fading

TABLE I
LIST OF FREQUENTLY USED NOTATIONS

Symbol Definition
H0 Hypothesis for bit ’0’
H1 Hypothesis for bit ’1’
N Number of samples
s[n] The n-th sample of ambient RF signal
y[n] The n-th sample of received signal
hsr Channel coefficient of the SR link
htr Channel coefficient of the TR link
hst Channel coefficient of the ST link
η Reflection coefficient at the tag

w[n] The n-th sample of noise
σ2
sr Variance of hsr

σ2
tr Variance of htr

σ2
st Variance of hst

σ2
w Variance of noise w[n]
h0 Effective channel coefficient for bit ’0’
h1 Effective channel coefficient for bit ’1’
Ps Variance of ambient signal s[n]
p Order of IED
Pe Bit error rate
Γ(·) the Gamma function
G(·) Gaussian Q function
I0(·) zero-th order modified Bessel function of the first type

IN−1(·) (N-1)-th order modified Bessel function of the first type
L(·) the Laguerre polynomial

K2p(·) 2p-th order modified Bessel function of the second type
QN (·, ·) N-th order generalized Marcum Q function

U1 Decision variable of IED in case 1
µ10 Mean of U1 in H0

σ2
10 Variance of U1 in H0

µ11 Mean of U1 in H1

σ2
11 Variance of U1 in H1

T1IED Detection threshold of IED in case 1
Z1 Decision variable of ED in case 1
R1 Decision variable of MD in case 1

T1MDNak Detection threshold of MD in case 1
T2ML Detection threshold of ML in case 2
U2 Decision variable of IED in case 2
µ20 Mean of U2 in H0

σ2
20 Variance of U2 in H0

µ21 Mean of U2 in H1

σ2
21 Variance of U2 in H1

T2IED Detection threshold of IED in case 2
Z2 Decision variable of ED in case 2
R2 Decision variable of MD in case 2

T2ED Detection threshold of ED in case 2
U3 Decision variable of IED in case 3
µ30 Mean of U3 in H0

σ2
30 Variance of U3 in H0

µ31 Mean of U3 in H1

σ2
31 Variance of U3 in H1

T3IED Detection threshold of IED in case 3
U4 Decision variable of IED in case 4
µ40 Mean of U4 in H0

σ2
40 Variance of U4 in H0

µ41 Mean of U4 in H1

σ2
41 Variance of U4 in H1

T4IED Detection threshold of IED in case 4
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channels when h0 and h1 do not change during the signal
detection. In the case of slow fading, the fading coefficients
will be decided in the same way as static AWGN channels.
For fast fading channels, the results in this paper will not be
applicable. Note also that this work assumes frequency-flat
fading, binary modulation at the tag and a single tag scenario,
as shown in (3). These assumptions may be different from or
more restrictive than those in [11] - [14] but they follow the
same model as that in [16] - [25], since the purpose of this
work is to extend the energy detectors derived in [19] and [21]
to the new optimal detectors and the detectors in [16] - [25]
to partially coherent detectors under similar scenarios. One
may extend our new detectors further to M-ary modulation
by using the method in [32], to multiple tags by using the
method in [31], and to frequency-selective fading channels by
using OFDM and the method in [47]. These extensions will
not be covered here but could be future works. Next, the new
detectors will be derived.

III. DERIVATION OF NEW DETECTORS

A. Coherent detection for Gaussian signals

We start with the case when all of hsr, htr and hst or both
h0 and h1 are known, and the ambient signal is Gaussian
distributed with s[n] ∼ CN (0, Ps). This case has been studied
in [19] and [21] for ML detection. The novelty here is the
newly derived IED and magnitude detectors using the same
channel knowledge.

1) ML detector: The ML detector in this case has been
derived as [19, eq. (8)], and its BER was also derived in
[19, eq. (13)] and [19, eq. (15)]. To avoid confusion, these
equations are not listed here and interested readers can refer
to [19].

2) IED: Next, we will derive the new IED, which includes
the energy detector and the magnitude detector as special
cases. Define U1 =

∑N
n=1 |y[n]|p in this case, where p is

an arbitrary real number. When p = 1, it gives the magnitude
detector, and when p = 2, it gives the energy detector.

In this case, since |y[n]| is Rayleigh distributed, U1 is a sum
of independent generalized Gamma random variables. Its PDF
does not have a closed-form expression. Thus, approximations
have to be used. We will use moment-matching. Using [48,
eq. (1-2-130)], the mean and variance of U1 can be derived as

E{U1|H0} = NΓ(1 +
p

2
)(|h0|2Ps + σ2

w)
p
2 (4a)

Var{U1|H0} = N [Γ(1+p)−Γ2(1+
p

2
)](|h0|2Ps+σ2

w)
p (4b)

E{U1|H1} = NΓ(1 +
p

2
)(|h1|2Ps + σ2

w)
p
2 (4c)

Var{U1|H1} = N [Γ(1+p)−Γ2(1+
p

2
)](|h1|2Ps+σ2

w)
p, (4d)

where Γ(·) is the Gamma function [49, eq.(8.310.1)].
Thus, if the Gaussian approximation is used, one has

f(U1|H0) ≈
1√

2πσ2
10

e
− (U1−µ10)2

2σ2
10 (5)

and

f(U1|H1) ≈
1√

2πσ2
11

e
− (U1−µ11)2

2σ2
11 (6)

with µ10 = E{U1|H0} given by (4a), σ2
10 = Var{U1|H0}

given by (4b), µ11 = E{U1|H1} given by (4c), and σ2
11 =

Var{U1|H1} given by (4d), by matching the mean and variance
of U1 with those of a Gaussian distribution. Thus, using (5)
and (6), the IED is derived as

H0

U1 ≷ T1IED, |h0|2 > |h1|2
H1

(7a)

H0

U1 ≶ T1IED, |h0|2 < |h1|2
H1

(7b)

where T1IED is the detection threshold determined by the
larger root of the second-order polynomial

(
1

2σ2
11

− 1

2σ2
10

)x2 + (
µ10

σ2
10

− µ11

σ2
11

)x+ ln
σ2
11

σ2
10

= 0, (8)

since µ2
10

2σ2
10

=
µ2
11

2σ2
11

. This gives T1IED = 1
2a1

(−b1 +√
b21 − 4a1c1), where a1 = 1

2σ2
11

− 1
2σ2

10
, b1 = µ10

σ2
10

− µ11

σ2
11

and c1 = ln
σ2
11

σ2
10

. The BER of the IED can be approximated
as

Pe ≈ 1

2

∫ T1IED

−∞
f(U1|H0)dR+

1

2

∫ ∞

T1IED

f(U1|H1)dR

=
1

2
[1−Q(

T1IED − µ10

σ10
) +Q(

T1IED − µ11

σ11
)] (9)

for |h0|2 > |h1|2 and

Pe ≈ 1

2

∫ ∞

T1IED

f(U1|H0)dR+
1

2

∫ T1IED

−∞
f(U1|H1)dR

=
1

2
[Q(

T1IED − µ10

σ10
) + 1−Q(

T1IED − µ11

σ11
)] (10)

for |h0|2 < |h1|2, where G(·) is the standard Gaussian Q
function [48, eq. (2-1-97)]. Note that the above detector is
similar to that proposed in [45], except that here it is used
for a AmBC signal with cascaded Gaussian random variables
while in [45] it was used for a pure Gaussian random signal.
Thus, the statistics of the decision variables are totally different
and the above derivation is new.

3) Energy detector: It can be shown that the energy de-
tector in this case is equivalent to the ML detector. Indeed,
the test statistic in the ML detector is actually the energy of
the received signal Z1 = ||y||2 =

∑N
n=1 |y[n]|2 [19, eq. (8)].

This is the only case in the work where the energy detector is
equivalent to the ML detector. For clarification, all the energy
detectors and ML detectors in the following sections refer to
different detectors and are not used interchangeably.
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4) Magnitude detector: Denote R1 =
∑N

n=1 |y[n]| as the
test statistic for the magnitude detector. As discussed before, it
is a special case of the IED when p = 1. Thus, one can derive
a magnitude detector using the Gaussian approximation by
letting p = 1 in the results for IED. Alternatively, one may
also use the Nakagami-m approximation. By letting p = 1 in
(4), one has the mean and variance of R1 as

E{R1|H0} = N

√
π

2

√
|h0|2Ps + σ2

w (11a)

Var{R1|H0} = N(1− π

4
)(|h0|2Ps + σ2

w) (11b)

E{R1|H1} = N

√
π

2

√
|h1|2Ps + σ2

w (11c)

Var{R1|H1} = N(1− π

4
)(|h1|2Ps + σ2

w). (11d)

If the Nakagami-m approximation is used, one has

f(R1|H0) ≈
2mm0

0 R2m0−1

Γ(m0)Ω
m0
0

e−
m0
Ω0

R2

(12)

and
f(R1|H1) ≈

2mm1
1 R2m1−1

Γ(m1)Ω
m1
1

e−
m1
Ω1

R2

(13)

with Ω0 = Var{R1|H0} + E2{R1|H0} = [N + π
4N(N −

1)][|h0|2Ps + σ2
w] and m0 is determined by Γ(m0+0.5)

Γ(m0)
√
m0

=

N
√

π/4√
N+N(N−1)π/4

from (11a) and (11b), Ω1 = Var{R1|H1}+

E2{R1|H1} = [N + π
4N(N − 1)][|h1|2Ps + σ2

w] and m1 is

determined by Γ(m1+0.5)
Γ(m1)

√
m1

=
N
√

π/4√
N+N(N−1)π/4

from (11c) and

(11d), by matching the first- and second-order moments of R1

with those of a Nakagami-m distribution. Thus, the magnitude
detector using the Nakagami approximation is derived from
(12) and (13) as

H0

R1 ≷ T1MDNak, |h0|2 > |h1|2
H1

(14a)

H0

R1 ≶ T1MDNak, |h0|2 < |h1|2
H1

(14b)

where

T1MDNak =

√
Ω0Ω1

Ω0 − Ω1
ln

Ω0

Ω1
. (15)

The BER of the magnitude detector using the Nakagami-m
approximation can be derived from (14) as

Pe ≈ 1

2Γ(m0)
[γ(m0,

m0T
2
1MDNak

Ω0
)

+Γ(m1,
m1T

2
1MDNak

Ω1
)] (16)

for |h0|2 > |h1|2 and

Pe ≈ 1

2Γ(m0)
[Γ(m0,

m0T
2
1MDNak

Ω0
)

+γ(m1,
m1T

2
1MDNak

Ω1
)] (17)

for |h0|2 < |h1|2, as m0 = m1.

B. Coherent detection for PSK ambient signals

In this case, all of hsr, htr and hst or both h0 and h1

are still known to perform coherent detection, but the ambient
signal is PSK modulated with s[n] =

√
Pse

jθn , where θn ∈
{0, 2π

M , · · · , 2π(M−1)
M } randomly chosen from a M-ary phase

shift keying (MPSK). PSK was also considered in [19] and
[21]. However, they used the energy detector directly without
further investigation. This work will extend their detectors to
the optimal detectors.

Since θn is unknown, one needs to remove the phase
information from the received signal as

|y[n]| = |hsr

√
Ps + ηhtrhst

√
Psd+ w′[n]| (18)

where w′[n] = w[n]e−jθn with w′[n] ∼ CN (0, σ2
w), as the

phase shift does not change the Gaussian distribution. Thus,
the detectors here using |y[n]| are only applicable to PSK. It
is not a general assumption for all signals. For example, for
quadrature amplitude modulation, its amplitude information
cannot be removed by squaring, which would lead to a mixture
of Rician with different variances for the sample distribution.

1) ML detector: From (18), the sample |y[n]| follows a
Rician distribution. Thus, the likelihood function or the joint
PDF of all samples in H0 and H1 can be derived as

f(y|H0) =

∏N
n=1 |y[n]|
(σ2

w/2)
N

e
−

∑N
n=1 |y[n]|2

σ2
w

−N|h0|2Ps
σ2
w

N∏
n=1

I0

(
|y[n]||h0

√
Ps|

σ2
w/2

)
(19)

and

f(y|H1) =

∏N
n=1 |y[n]|
(σ2

w/2)
N

e
−

∑N
n=1 |y[n]|2

σ2
w

−N|h1|2Ps
σ2
w

N∏
n=1

I0

(
|y[n]||h1

√
Ps|

σ2
w/2

)
(20)

where I0(·) is the zero-th order modified Bessel function of
the first type [49, eq. (8.406.1)]. By taking the log-likelihood
ratio of (19) to (20) and after some manipulations, one has the
ML detector in this case as

H0∑N
n=1 ln

I0

(
|y[n]||h0

√
Ps|

σ2
w/2

)
I0

(
|y[n]||h1

√
Ps|

σ2
w/2

) ≷ T2ML

H1

(21)

with

T2ML =
NPs

σ2
w

(|h0|2 − |h1|2). (22)

To the best of the author’s knowledge, this is a new detector
that has not been derived in the literature. Since ln I0(x) ≈ |x|
when x is large and ln I0(x) ≈ x2 when x is small, it actually
includes the magnitude detector and the energy detector as
special cases for large and small signal-to-noise ratios (SNRs),
respectively. Thus, it is possible to approximate the Bessel
function but the approximation will lead to other detectors.
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2) IED: Next, we will derive the IED using the Gaus-
sian approximation. For the IED, the test statistic is U2 =∑N

n=1 |y[n]|p, where |y[n]| is given by (18). This sum does
not have a closed-form expression for its PDF. Thus, we will
use approximations based on moment-matching again.

Using [48, eq. (2-1-146)], the mean and variance of U2 can
be derived as

E{U2|H0} = N(σ2
w)

p
2Γ(1 +

p

2
)L p

2
(−|h0|2Ps/σ

2
w) (23a)

Var{U2|H0} = Nσ2p
w [Γ(1 + p)Lp(−|h0|2Ps/σ

2
w)

−Γ2(1 +
p

2
)L2

1
2
(−|h0|2Ps/σ

2
w)] (23b)

E{U2|H1} = N(σ2
w)

p
2Γ(1 +

p

2
)L p

2
(−|h1|2Ps/σ

2
w) (23c)

Var{U2|H1} = Nσ2p
w [Γ(1 + p)Lp(−|h1|2Ps/σ

2
w)

−Γ2(1 +
p

2
)L2

1
2
(−|h1|2Ps/σ

2
w)] (23d)

where L(·) is the Laguerre polynomial with Lk(x) =
e−x

1F1(1 + k, 1;x) and 1F1(·, ·; ·) is the confluent hypergeo-
metric function [49, eq. (9.201)].

Thus, if one uses the Gaussian approximation, one has the
PDFs of U2 given by

f(U2|H0) ≈
1√

2πσ2
20

e
− (U2−µ20)2

2σ2
20 (24)

and

f(U2|H1) ≈
1√

2πσ2
21

e
− (U2−µ21)2

2σ2
21 (25)

with µ20 = E{U2|H0} from (23a), σ2
20 = Var{U2|H0} from

(23b), µ21 = E{U2|H1} from (23c), and σ2
21 = Var{U2|H1}

from (23d). Using (24) and (25), the IED is derived as

H0

U2 ≷ T2IED, |h0|2 > |h1|2
H1

(26a)

H0

U2 ≶ T2IED, |h0|2 < |h1|2
H1

(26b)

where T2IED is the larger root of the second-order polynomial

(
1

2σ2
21

− 1

2σ2
20

)x2+(
µ20

σ2
20

− µ21

σ2
21

)x+
µ2
21

2σ2
21

− µ2
20

2σ2
20

+ln
σ2
21

σ2
20

= 0

(27)
as T2IED = 1

2a2
(−b2 +

√
b22 − 4a2c2), a2 = 1

2σ2
21

− 1
2σ2

20
,

b2 = µ20

σ2
20

− µ21

σ2
21

and c2 =
µ2
21

2σ2
21

− µ2
20

2σ2
20

+ ln
σ2
21

σ2
20

. Similarly, the
BER can be approximated as

Pe ≈
1

2
[1−Q(

T2IED − µ20

σ20
) +Q(

T2IED − µ21

σ21
)] (28)

for |h0|2 > |h1|2 and

Pe ≈
1

2
[Q(

T2IED − µ20

σ20
) + 1−Q(

T2IED − µ21

σ21
)] (29)

for |h0|2 < |h1|2.

3) Energy detector: The energy detector could be obtained
by letting p = 2 in the results for IED using the Gaussian
approximation, which leads to the energy detector proposed
in [19] and [21]. However, better energy detection can also be
derived as follows.

For the energy detector, the test statistic is Z2 =∑N
n=1 |y[n]|2, where |y[n]| is given by (18). From (18), since

|y[n]| is a Rician random variable, Z2 follows a non-central χ2

distribution. Thus, the PDFs of Z2 in H0 and H1 are derived
as

f(Z2|H0) =
1

σ2
w

(
Z2

N |h0|2Ps

)N−1
2

e
−N|h0|2Ps+Z2

σ2
w

· IN−1

(√
Z2N |h0|2Ps

σ2
w/2

)
(30)

and

f(Z2|H1) =
1

σ2
w

(
Z2

N |h1|2Ps

)N−1
2

e
−N|h1|2Ps+Z2

σ2
w

· IN−1

(√
Z2N |h1|2Ps

σ2
w/2

)
(31)

respectively, where IN−1(·) is the (N − 1)-th order modified
Bessel function of the first type.

Then, by taking the log-likelihood ratio of f(Z2|H0) in (30)
to f(Z2|H1) in (31) and after some manipulations, one can
derive the optimum energy detector as

H0

ln IN−1

(
|h0|

√
NPsZ2

σ2
w/2

)
− ln IN−1

(
|h1|

√
NPsZ2

σ2
w/2

)
≷ C

H1

(32)
where C = (N − 1) ln |h0|

|h1| +
NPs

σ2
w
(|h0|2 − |h1|2). Solving the

inequality for Z2, (32) is equivalent to

H0

Z2 ≷ T2ED, |h0|2 > |h1|2
H1

(33a)

H0

Z2 ≶ T2ED, |h0|2 < |h1|2
H1

(33b)

where T2ED is the solution to the equation

ln IN−1

(√
xN |h0|2Ps

σ2
w/2

)
− ln IN−1

(√
xN |h1|2Ps

σ2
w/2

)

= (N − 1) ln
|h0|
|h1|

+
NPs

σ2
w

(|h0|2 − |h1|2). (34)

for x by equating (30) and (31). This equation is nonlinear
and the solution has no closed-form but can be obtained using
MATLAB or iteration. There is no good approximation to the
Bessel function IN−1(·). Also, using (30) and (31) in (33),
the BER of this energy detector is derived as

Pe =
1

2
[1−QN (

√
2NPs|h0|2/σ2

w,
√
2T2ED/σ2

w)

+QN (
√
2NPs|h1|2/σ2

w,
√
2T2ED/σ2

w)] (35)
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for |h0|2 > |h1|2 and

Pe =
1

2
[QN (

√
2NPs|h0|2/σ2

w,
√
2T2ED/σ2

w)

+1−QN (
√
2NPs|h1|2/σ2

w,
√
2T2ED/σ2

w)](36)

for |h0|2 < |h1|2, where QN (·, ·) is the N -th order generalized
Marcum Q function [48, eq. (2-1-122)].

4) Magnitude detector: For the magnitude detector, the test
statistic is R2 =

∑N
n=1 |y[n]|, where |y[n]| is given by (18).

Thus, it can be obtained by letting p = 1 in the IED using the
Gaussian approximation.

C. Partial coherent detection for Gaussian signals

In this case, the values of hsr or h0 are known but the
values of hst and htr or h1 are unknown. This is the case
when the tag reader is able to estimate the SR link by taking
advantage of known pilots from the ambient source but the
tag cannot perform such estimation or send any pilots due
to its limited capability. Then, partial coherent detection is
performed at the tag reader. In [26], none of hsr, hst and htr

was known so that non-coherent detection was used. Assume
that the ambient signal is Gaussian distributed with s[n] ∼
CN (0, Ps). Also, similar to [26], assume hst ∼ CN (0, σ2

st)
and htr ∼ CN (0, σ2

tr).
1) ML detector: Since h1 = hsr +ηhsthtr, conditioned on

hst, |h1|2 is non-central χ2 distributed with

f|h1|2(t|hst) =
1

η2|hst|2σ2
tr

e
− t+|hsr|2

η2|hst|2σ2
tr I0(

2
√
t|hsr|

η2|hst|2σ2
tr

).

(37)
Then, since |hst|2 is exponentially distributed, one has the
unconditional PDF of |h1|2 as

f|h1|2(t) =

∫ ∞

0

1

η2σ2
stσ

2
trx

e
− t+|hsr|2

η2σ2
trx

− x

σ2
st I0(

2
√
t|hsr|

η2σ2
trx

)dx

=
1

η2σ2
stσ

2
tr

E(
t+ |hsr|2

2
√
t|hsr|

,
2
√
t|hsr|

η2σ2
trσ

2
st

) (38)

where E(a, b) =
∫∞
0

I0(r)
r e−ar− b

r dr. Thus, the likelihood
function for H0 is the same as coherent detection but the
likelihood function for H1 becomes

f(y|H1) =

∫ ∞

0

e
− ||y||2

tPs+σ2
w E( t+|hsr|2

2
√
t|hsr|

, 2
√
t|hsr|

η2σ2
trσ

2
st
)

η2σ2
stσ

2
tr[π(tPs + σ2

w)]
N

dt. (39)

This integral cannot be solved so one has to use (39) directly
and the likelihood function for H0 in [19] to calculate the
likelihood ratio. The complexity of this detector is similar to
those in [26]. Next, we will derive the IED.

2) IED: For the IED, in order to use the Gaussian approx-
imation, we need to derive the mean and variance of U3 =∑N

n=1 |y[n]|p. From (4), one can calculate the unconditional
mean and variance in H0 and the conditional mean and
variance in H1 as

E{U3|H0} = N(|hsr|2Ps + σ2
w)

p
2Γ(1 +

p

2
) (40a)

Var{U3|H0} = N [Γ(1 + p)− Γ2(1 +
p

2
)](|hsr|2Ps + σ2

w)
p

(40b)

E{U3|H1, h1} = N(|h1|2Ps + σ2
w)

p
2Γ(1 +

p

2
) (40c)

≈ NΓ(1 +
p

2
)[(|h1|2Ps)

p
2 +

p

2
σ2
w(|h1|2Ps)

p
2−1]

Var{U3|H1, h1} = N [Γ(1 + p)− Γ2(1 +
p

2
)]

·(|h1|2Ps + σ2
w)

p ≈ N [Γ(1 + p)− Γ2(1 +
p

2
)]

·[(|h1|2Ps)
p + pσ2

w(|h1|2Ps)
p−1] (40d)

where the approximation in (40c) and (40d) is obtained by
using (1 + x)a ≈ 1 + ax when x is small. The PDF of |h1|2
is given in (38). Thus, the unconditional mean and variance
of U3 in H1 are

E{U3|H1} ≈ NΓ(1 +
p

2
)P

p
2−1
s [PsD1 +

p

2
σ2
wD2] (41a)

Var{U3|H1} ≈ N [Γ(1+p)−Γ2(1+
p

2
)]P p−1

s [PsD3+pσ2
wD4]

(41b)
where

D1 =

∫ ∞

0

βI0(r)

|hsr|2r

(
|hsr|2r
r + β

r

) p
2+1

Kp+2(
√
r2 + β)dr (42)

D2 =

∫ ∞

0

βI0(r)

|hsr|2r

(
|hsr|2r
r + β

r

) p
2

Kp(
√

r2 + β)dr (43)

D3 =

∫ ∞

0

βI0(r)

|hsr|2r

(
|hsr|2r
r + β

r

)p+1

K2p+2(
√
r2 + β)dr (44)

D4 =

∫ ∞

0

βI0(r)

|hsr|2r

(
|hsr|2r
r + β

r

)p

K2p(
√
r2 + β)dr. (45)

with β = 4|hsr|2
η2σ2

trσ
2
st

, K(·) being the modified Bessel function
of the second type [49, eq. (8.407)], and [49, eq. (3.478.4)]
being used to solve the integrations for (42) - (45). Otherwise,
they would contain a two-dimensional integral. Then, the IED
is derived as

H0

U3 ≷ T3IED, |h0|2 > |h1|2
H1

(46a)

H0

U3 ≶ T3IED, |h0|2 < |h1|2
H1

(46b)

where T3IED is the larger root of the second-order polynomial

(
1

2σ2
31

− 1

2σ2
30

)x2+(
µ30

σ2
30

− µ31

σ2
31

)x+
µ2
31

2σ2
31

− µ2
30

2σ2
30

+ln
σ2
31

σ2
30

= 0

(47)
as T3IED = 1

2a3
(−b3 +

√
b23 − 4a3c3), where a3 = 1

2σ2
31

−
1

2σ2
30

, b3 = µ30

σ2
30

− µ31

σ2
31

and c3 =
µ2
31

2σ2
31

− µ2
30

2σ2
30

+ln
σ2
31

σ2
30

and m30,
σ2
30, m31, σ2

31 are determined by (40a), (40b), (41a) and (41b),
respectively.

By letting p = 1 and p = 2 in the above results,
the magnitude detector and energy detector using Gaussian
approximation can be derived, respectively. These results are
not given here to make the paper compact.
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D. Partial coherent detection for PSK ambient signals

In the last case, hst and htr or h1 are still unknown to
perform partial coherent detection but the ambient signal is
PSK modulated with s[n] =

√
Pse

jθn , where θn is unknown.
Thus, one can use the absolute value of y[n] to remove the
phase information as in (18).

1) ML detector: The likelihood function in H0 is still given
by (19), as h0 = hsr is known. However, the likelihood
function in H1 is calculated by using (20) and (38) as

f(y|H1) =

∏N
n=1 |y[n]|
(σ2

w/2)
N

e
−

∑N
n=1 |y[n]|2

σ2
w

∫ ∞

0

e
−NPst

σ2
w (48)

N∏
n=1

I0

(
|y[n]|

√
Pst

σ2
w/2

) E( t+|hsr|2

2
√
t|hsr|

, 2
√
t|hsr|

η2σ2
trσ

2
st
)

η2σ2
stσ

2
tr

dt.

This integral is difficult to solve so one has to use (19) and
(48) to calculate the likelihood ratio directly for ML detection,
with similar complexity to those in [26] for non-coherent
detection. Next, we will derive the IED using the Gaussian
approximation.

2) IED: For the IED in this case, the mean and variance
of the test statistic U4 =

∑N
n=1 |y[n]|p can be derived as

E{U4|H0} = N(σ2
w)

p
2Γ(1 +

p

2
)L p

2
(−|hsr|2Ps/σ

2
w) (49a)

Var{U4|H0} = Nσ2p
w [Γ(1 + p)Lp(−|hsr|2Ps/σ

2
w)

−Γ2(1 +
p

2
)L2

1
2
(−|hsr|2Ps/σ

2
w)] (49b)

E{U4|H1} = N(σ2
w)

p
2Γ(1 +

p

2
)

∫ ∞

0

L p
2
(−tPs/σ

2
w)

η2σ2
stσ

2
tr

·E(
t+ |hsr|2

2
√
t|hsr|

,
2
√
t|hsr|

η2σ2
trσ

2
st

)dt (49c)

Var{U4|H1} =
Nσ2p

w

η2σ2
stσ

2
tr

[Γ(1 + p)

∫ ∞

0

Lp(−tPs/σ
2
w)

·E(
t+ |hsr|2

2
√
t|hsr|

,
2
√
t|hsr|

η2σ2
trσ

2
st

)dt

−Γ2(1 +
p

2
)

∫ ∞

0

L2
1
2
(−tPs/σ

2
w)

·E(
t+ |hsr|2

2
√
t|hsr|

,
2
√
t|hsr|

η2σ2
trσ

2
st

)dt] (49d)

by using (23) and (38). Similarly, the IED is derived as

H0

U4 ≷ T4IED, |h0|2 > |h1|2
H1

(50a)

H0

U4 ≶ T4IED, |h0|2 < |h1|2
H1

(50b)

where T4IED is the larger root of the second-order polynomial

(
1

2σ2
41

− 1

2σ2
40

)x2+(
µ40

σ2
40

− µ41

σ2
41

)x+
µ2
41

2σ2
41

− µ2
40

2σ2
40

+ln
σ2
41

σ2
40

= 0

(51)

0 2 4 6 8 10 12 14 16
 (dB)

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
0.22
0.24

A
ve

ra
ge

 b
it 

er
ro

r 
ra

te

N=40

 = 10 dB

ML, sim
ML, theo
Magnitude, GauApp, sim
Magnitude, GauApp, theo
Magnitude, NakApp, sim
Magnitude, NakApp, theo

N=20

Fig. 2. ML and magnitude detectors for coherent detection with Gaussian
ambient signals when N = 20, 40.

as T4IED = 1
2a4

(−b4 +
√

b24 − 4a4c4), where a4 = 1
2σ2

41
−

1
2σ2

40
, b4 = µ40

σ2
40

− µ41

σ2
41

and c4 =
µ2
41

2σ2
41

− µ2
40

2σ2
40

+ ln
σ2
41

σ2
40

and
m40, σ2

40, m41, σ2
41 are determined by (49a), (49b), (49c)

and (49d), respectively. For magnitude detection and energy
detection using the Gaussian approximation, one can set p = 1
and p = 2, respectively, in the above results.

Note that the coherent detectors in Sections III.A and III.B
require the channel state information of |h0|2 and |h1|2, while
the partial coherent detectors in Sections III.C and III.D
require the channel state information of |h0|2. Efficient ’semi-
blind’ estimators for |h0|2 and |h1|2 have been given in Section
IV of [19], where |h0|2 and |h1|2 were first estimated blindly
and then discriminated using training symbols. Alternatively,
moment-based estimators may be applied to the received signal
in (3) to estimate them blindly [50], [51]. For example, the
second-order and fourth-order moments of (3) can be calcu-
lated, based on which |h0|2 and |h1|2 can be estimated. One
may also let the tag send a series of ’0’ or stop transmission
to estimate |hsr|2 or |h0|2 at the tag reader for partial coherent
detection. Since the focus of this paper is on signal detection,
we assume that the channel state information is available
and will not discuss its estimation further. All detectors are
summarized in Algorithm 1.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, numerical examples are presented to show
the BER performances of the derived detectors. For conve-
nience, define γ = Ps

σ2
w

and β =
η2σ2

trσ
2
st

σ2
sr

to represent the
signal quality. The actual signal to noise ratio at the receiver
also depends on the channel gains. In the examples, we set
σ2
w = 1, σ2

tr = 1, σ2
st = 1, and η = 1 for illustration purposes

only, while Ps and σ2
sr change with γ and β, respectively.

Other values can also be used. For example, we can set η to
be less than 1, which is equivalent to reducing σ2

tr, σ2
st or

increasing σ2
sr. Only the ratio matters. We ran 104 trials. In

each trial, hsr, hst and htr are randomly generated as complex
Gaussian variates and the BER is averaged over the 104 trials.
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Algorithm 1 Backscatter signal detection algorithm.
Require: received signals y[n], (k = 1, ...,K)

1: Initialization: calculate
∑N

n=1 |y[n]|p,
∑N

n=1 |y[n]|2,∑N
n=1 |y[n]|

2: if coherent detection for Gaussian signals then
3: if maximum likelihood or energy detection then
4: Use [19, eq. (8)];
5: else if improved energy detection then
6: Calculate µ10, σ2

10, µ11, σ2
11 using (4a) - (4d);

7: Calculate T1IED using (8);
8: Perform the detection using (7).
9: else if magnitude detection then

10: Calculate m0, Ω0, m1, Ω1 using (11a) - (11d);
11: Calculate T1MDNak using (15);
12: Perform the detection using (14).
13: end if
14: else if coherent detection for PSK signals then
15: if maximum likelihood detection then
16: Calculate T2ML using (22);
17: Perform the detection using (21).
18: else if improved energy or magnitude detection then
19: Calculate µ20, σ2

20, µ21, σ2
21 using (23a) - (23d);

20: Calculate T2IED using (27);
21: Perform the detection using (26).
22: else if energy detection then
23: Calculate T2ED using (34);
24: Perform the detection using (33).
25: end if
26: else if partial coherent detection for Gaussian signals then
27: if improved energy, energy, or magnitude detection

then
28: Calculate µ30, σ2

30, µ31, σ2
31 using (40a), (40b), (41a),

(41b);
29: Calculate T3IED using (47);
30: Perform the detection using (46).
31: end if
32: else if partial coherent detection for PSK signals then
33: if improved energy, energy, or magnitude detection

then
34: Calculate µ40, σ2

40, µ41, σ2
41 using (49a) - (49d);

35: Calculate T3IED using (51);
36: Perform the detection using (50).
37: end if
38: end if

Figs. 2 and 3 show the case when coherent detection is
performed for Gaussian ambient signals, as derived in Section
III.A. In these figures, ’ML’ refers to the detector in [19,
eq. (8)] with theoretical BER in [19, eq. (13)] and [19, eq.
(15)] as benchmark, ’Magnitude, GauApp’ refers to the new
IED in (7) with theoretical approximate BER in (9) and (10)
when p = 1, ’Magnitude, NakApp’ refers to the approximate
magnitude detector in (14) with theoretical approximate BER
in (16) and (17). The energy detector is not shown, as it
is equivalent to the ML detector. First, one sees that the
BER reduces when N increases, as expected. Second, the ML
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Fig. 3. ML and magnitude detectors for coherent detection with Gaussian
ambient signals when β = 0 dB and N = 20.
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Fig. 4. ML, energy and magnitude detectors for coherent detection with
PSK ambient signals when N = 20, 40.

detector is slightly better than the magnitude detectors, while
the magnitude detector using the Gaussian approximation is
almost identical to that using the Nakagami-m approximation.
Finally, from Fig. 2, the theoretical BER agrees well with the
simulated values. This shows that the Gaussian and Nakagami-
m approximations are accurate in this case.

Figs. 4 and 5 show the case when coherent detection is
performed for PSK ambient signals, as derived in Section
III.B. In this case, ’ML’ refers to the detector in (21), ’Energy’
refers to the detector in (33) with theoretical BER in (35) and
(36), ’Magnitude, GauApp’ refers to the detector in (26) with
theoretical approximate BER in (28) and (29) when p = 1.
Again, the BER performance improves when N increases.
However, the improvement is not as large as that in Figs.
2 and 3. Comparing different detectors, one also sees that
the magnitude detector has almost the same performance
as the ML detector, both of which outperform the energy
detector. Their performance gap increases when N increases.
Finally, from Fig. 4, the theoretical results match well with the
simulation results, showing the accuracy of the approximations
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Fig. 5. ML, energy and magnitude detectors for coherent detection with
PSK ambient signals when β = 0 dB and N = 20.
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Fig. 6. Comparison of IED for coherent detection with Gaussian and PSK
ambient signals.

in (28) and (29).
Fig. 6 compares the IED for coherent detection with Gaus-

sian and PSK ambient signals at different p. The case when
p = 1 corresponds to the magnitude of the received signal. The
case when p = 2 corresponds to the energy of the received
signal. Other values of p correspond to different nonlinear
distortion of the received signal. From part (a) of Fig. 6,
one sees that the performance of IED first improves when
p increases from 0.5 to 2 and then degrades when p increases
further from 2 to 3. This confirms that the energy detector is
optimum for Gaussian signals. Also, from part (b) of Fig. 6,
the performance of IED monotonically degrades as p increases
from 1 to 3, while p = 0.5 gives the worst performance
where the BER increases with γ. This confirms that the
magnitude detector has the best performance for PSK ambient
signals. Comparing part (a) with part (b), one notices that the
IED behaves differently for different assumptions of ambient
signals and that the IED assuming PSK ambient signals is
slightly better than that assuming Gaussian signals. Note that
the value of p could be negative but this is not considered
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Fig. 7. Energy and magnitude detectors for partial coherent detection with
Gaussian ambient signals when N = 20, 40.
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Fig. 8. Energy and magnitude detectors for partial coherent detection with
Gaussian ambient signals when β = 0 dB.

here for two reasons. First, the calculation of negative order is
complicated in hardware implementation. For low-cost low-
power IoT applications, this may not be desirable. Second,
the samples |y[n]| could be close to zero due to the noise, in
which case the detector may not be stable.

Figs. 7 and 8 show the case when partial coherent detection
is performed for Gaussian ambient signals, as derived in Sec-
tion III.C. In these figures, ’Energy, GauApp’ and ’Magnitude,
GauApp’ refer to the detector in (46) when p = 2 and
p = 1, respectively. Since the ML detector has much higher
complexity, it is not shown. Comparing the detectors, one sees
that the energy detector outperforms the magnitude detector in
all the conditions considered in this case, and the performance
gain increases with N . Also, in Fig. 8, the BER increases when
γ increases from 14 dB to 16 dB. This is probably caused by
the Gaussian approximation and the approximation used in
(40d), whose errors increase when β is small.

Figs. 9 and 10 show the case when partial coherent detection
is performed for PSK ambient signals, as derived in Section
III.D. In these figures, ’Energy, GauApp’ and ’Magnitude,
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Fig. 9. Energy and magnitude detectors for partial coherent detection with
PSK ambient signals when N = 20, 40.
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Fig. 10. Energy and magnitude detectors for partial coherent detection
with PSK ambient signals when β = 0dB.

GauApp’ refer to the detector in (50) when p = 2 and p = 1,
respectively. The ML detector has much higher complexity and
therefore, is not shown. Similar to all the other three cases,
the BER performance improves when N increases. Comparing
the two detectors, one sees that the energy detector is better
when the SNR is small, while the magnitude detector is better
when the SNR is large.

Fig. 11 compares the IED for partially coherent detection
with Gaussian and PSK ambient signals at different values of
p. From part (a) of Fig. 11, the BER of the IED for Gaussian
signals improves when p increases from 0.5 to 2 and then de-
grades when p further increases from 2 to 3, implying that the
energy detector is the best option for Gaussian signals. From
part (b) of Fig. 11, for small SNRs, all the IED with p smaller
or equal to 2 have similar performances, while for large
SNRs, the smaller p is, the better the BER performance will
be. The magnitude detector has the best overall performance
among all values of p examined for PSK ambient signals.
These observations agree with those for coherent detectors and
confirm that the energy detector is the best in the presence of
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Fig. 11. Comparison of IED for partially coherent detection with Gaussian
and PSK ambient signals.
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Fig. 12. Comparison of proposed detectors with existing detectors when
β = 10 dB and N = 40.

Gaussian source, while the magnitude detector is the best in
the presence of PSK ambient source, for both coherent and
partially coherent detection. Thus, in practice, p = 1 should
be chosen for PSK ambient signals and p = 2 should be chosen
for Gaussian ambient signals.

Fig. 12 compares the proposed detectors with existing
detectors. In particular, for Gaussian ambient signals, the ML
detector for coherent detection in [19, eq. (8)], the proposed
ED detector for partial coherent detection in (46) with p = 2,
and the existing noncoherent detectors using direct and indirect
approaches in [26] are compared. One sees that the ML
detector performs the best, followed by the ED detector in
(46) and the noncoherent detectors in [26]. This is expected,
as more channel knowledge often leads to better detection. For
PSK signals, the proposed ML detector for coherent detection
in (21), the proposed magnitude detector for partial coherent
detection in (26) with p = 1, and the existing energy detector
for coherent detection in [19] are compared. Again, ML
detector performs the best, followed by the energy detector and
the magnitude detector. Also, in this case, channel knowledge
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is more important than detector design, as the two coherent
detectors with full knowledge of h0 and h1 have similar
performance, while the partial coherent magnitude detector
with knowledge of only h0 is the worst.

V. CONCLUSION

Four different cases of AmBC have been studied, assuming
full and partial channel knowledge for Gaussian and PSK
ambient signals, respectively. For the coherent detection with
Gaussian and PSK ambient signals, the exact ML and ED
detectors have been obtained, while moment-matching and
Gaussian approximations have been used to derive the IED and
MD detectors. For the partial coherent detection with Gaussian
and PSK ambient signals, the ML detectors do not have closed-
form expressions and are of similar complexity to those in
[26], while the IED, ED and MD detectors have been obtained
using moment-matching and Gaussian approximations again in
closed-form. The performances of these detectors have been
analyzed and compared. Numerical results have shown that,
for the coherent detection with Gaussian ambient signals, the
ML and ED detectors are the best and equivalent to each
other, while the MD detector is slightly worse and the IED
detector is optimum when p = 2 as the ED detector. For
the coherent detection with PSK ambient signals, the ML and
MD detectors are the best, while the ED detector considerably
under-performs them and the IED detector is optimum when
p = 1 as the MD detector. For the partial coherent detection
with Gaussian ambient signals, the ED detector outperforms
the MD detector, and the IED detector is optimum when p = 2
as the ED detector. For the partial coherent detection with PSK
ambient signals, the MD detector is overall better than the ED
detector, while the IED detector is better for smaller p. The
IED detector is very flexible, as it includes the best detectors
in most cases as a special case. Numerical results have also
shown that the coherent detection is always better than the
corresponding partial coherent detection, and that detectors
for PSK ambient signals are slightly better than those for
Gaussian ambient signals, under the same conditions. Future
works include the extension of these detectors to frequency-
selective channels, multiple tags, multiple antennas and M-ary
modulation schemes.
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