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1 Introduction

Q-lumps are spinning topological soliton solutions of the O(3) σ-model with an easy axis
anisotropy in 2-dimensional space [1]. This theory has no static soliton solutions, but there
are stationary Q-lump solutions in which an internal phase rotates at a constant angular
frequency, given by the mass parameter of the theory. Q-lumps can have any size and they
satisfy first-order Bogomolny equations that are solved explicitly in terms of based rational
maps. For each positive integer N , this gives a 4N -dimensional moduli space of stationary
Q-lumps with topological charge N . This reflects the fact that there are no forces between
stationary Q-lumps, with the parameters of moduli space being interpreted as a position,
size and internal phase for each Q-lump, in the asymptotic region in which they are all
well-separated. However, for N = 1 all Q-lumps have infinite energy, because the field
decays too slowly for the energy integral to converge. For N > 1 the dimension of the
moduli space of finite energy stationary Q-lumps is reduced to 4N − 2, due to a constraint
that may be viewed in the asymptotic region as imposing conditions that relate some of the
parameters of the constituent Q-lumps to each other.

Q-lump scattering has previously been studied only in the charge two sector [1] by
applying the moduli space approximation [2], where dynamics is restricted to the moduli
space of finite energy stationary solutions, equipped with a metric and a potential induced
from the field theory Lagrangian. This allowed the investigation of the scattering of a pair
of unit charge Q-lumps, but the Q-lumps are restricted to have equal sizes and are phase
locked with an internal relative phase of π. Nonetheless, a rich structure was found for
Q-lump scattering in the charge two sector, with features in common with both topological
solitons in σ-models [3] and Q-balls [4], but with aspects not found in either of these soliton
systems. In the present paper, higher charge scattering is investigated using the moduli
space approximation on families of 4-dimensional submanifolds of finite energy stationary
Q-lumps, obtained by imposing cyclic symmetries. This allows the first study of Q-lump
scattering with relative phases that are not locked at π, and also includes examples where
Q-lumps have different sizes.
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Field theory simulations have never been performed for Q-lump scattering. This
situation is remedied here, where field theory computations are shown to be in good
agreement with the results of moduli space dynamics. Field theory simulations are then
applied to higher charge scattering, where the moduli space approach would be cumbersome
due to the reasonably large dimensions of the moduli spaces involved. In particular, the
scattering of a pair of charge two Q-lumps is found to yield exotic dynamics in the charge
four sector. Finally, field theory simulations are applied to the scattering of Q-lumps where
the moduli space approximation is not applicable, because the fields have infinite energy. A
pair of unit charge Q-lumps with different sizes, or a relative phase not locked at π, being
prototypical examples. It is found that the dynamics is similar to the finite energy case,
indicating that considerations of finite energy are not particularly relevant in the study of
local Q-lump dynamics.

2 Q-lumps

The theory of interest for Q-lumps is the relativistic O(3) σ-model in (2+1)-dimensions,
modified by the addition of a symmetry breaking mass term [1]. The field φ = (φ1, φ2, φ3)
is a 3-component unit vector with the Lagrangian density

L = 1
2∂µφ · ∂

µφ− m2

2 (φ2
1 + φ2

2), (2.1)

where the index µ ∈ {0, 1, 2} runs over the time and space coordinates. The mass term
in (2.1) is also familiar as an easy axis anisotropy term from the continuum description of a
ferromagnet, although the dynamics in that case is different, being first-order in time rather
than the second-order relativistic system considered here. The positive constant m, giving
the mass of the φ1 and φ2 fields, is taken to be m = 1

20 , but this value is not particularly
significant as different values of m can be related by a rescaling of the spacetime coordinates.

The required boundary condition is φ→ (0, 0, 1) as x2 + y2 →∞, thereby providing a
compactification of space from R2 to S2 by the addition of the point at infinity. At any
given time, φ is therefore a map between two-spheres and has an associated integer-valued
topological charge due to the homotopy group formula π2(S2) = Z. This topological charge,
N , can be calculated as the degree of the mapping and is given by the integral

N = − 1
4π

∫
φ · (∂xφ× ∂yφ) dxdy. (2.2)

It is helpful to introduce the CP1 formulation of the model by using stereographic
projection to define the Riemann sphere coordinate W = (φ1 + iφ2)/(1 + φ3). In this
formulation the Lagrangian density (2.1) becomes

L = 2
(1 + |W |2)2 (∂µW∂µW −m2|W |2), (2.3)

with a variation that yields the nonlinear field equation

(1 + |W |2)∂µ∂µW − 2W∂µW∂µW +m2W (1− |W |2) = 0. (2.4)
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It is easy to check that stationary solutions of (2.4) can be obtained by solving the first-order
Bogomolny equations

∂yW = ±i∂xW, and ∂tW = ±imW, (2.5)

where the signs in the above can be chosen independently, but both are taken to be positive
in the following.

In the topological charge N sector there is a 4N -dimensional moduli space MN of
stationary solutions of the Bogomolny equations (2.5), called Q-lumps [1], given by

W = αN−1z
N−1 + · · ·+ α1z + α0

zN + βN−1zN−1 + · · ·+ β1z + β0
eimt, (2.6)

where z = x+ iy. The complex constants αi, βi, for i = 0, . . . , N − 1, are coordinates on
MN , and are subject only to the constraint that the numerator and the denominator in
the based rational map that appears in (2.6) have no common roots. The rational map is
based because the degree of the numerator is less than the degree of the denominator, due
to the boundary condition that φ→ (0, 0, 1) as x2 + y2 →∞, which requires that W → 0
as |z| → ∞.

The energy

E =
∫ 2

(1 + |W |2)2 (|∂tW |2 + |∂xW |2 + |∂yW |2 +m2|W |2) dxdy, (2.7)

of the Q-lump solution (2.6) is infinite if αN−1 6= 0, because the field does not decay
sufficiently rapidly for the integral to converge. In particular, this means that there are no
finite energy Q-lumps with N = 1. For N > 1 there is a (4N − 2)-dimensional moduli space
M̃N of finite energy stationary Q-lumps given by setting αN−1 = 0. This reflects the fact
that there are no forces between the stationary Q-lumps given by these solutions, although
there are some constraints relating the parameters of the individual Q-lump constituents.

3 Moduli space dynamics

The dynamics of Q-lumps can be investigated by applying the moduli space approximation [2]
that is a cornerstone in the study of topological soliton dynamics, having been applied to
investigate the dynamics of a wide variety of soliton systems. A slightly unusual feature in
the application to Q-lumps is that the dynamics is restricted to motion on a moduli space
of stationary soliton solutions, whereas the typical application is to approximate soliton
evolution via restricting the motion to a moduli space of static soliton solutions. However,
the basic principle remains the same and is implemented as follows.

Let qi, for i = 1, . . . , 4N − 2, be real coordinates on the moduli space M̃N , given by
the real and imaginary parts of α0, . . . , αN−2, β0, . . . , βN−1 that appear in (2.6). Allowing
these coordinates to be time-dependent, q(t), it is convenient to absorb the overall factor
eimt for the stationary solutions into the time dependence of the moduli space coordinates.
Explicitly, W is approximated by the restricted form

W (z; q(t)) = (q2N−3 + iq2N−2)zN−2 + · · ·+ (q3 + iq4)z + q1 + iq2
zN + (q4N−3 + iq4N−2)zN−1 + · · ·+ (q2N+1 + iq2N+2)z + q2N−1 + iq2N

.

(3.1)
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Substituting this form into the Lagrangian density (2.3) and performing the integration
over space yields the Lagrangian

L = gij q̇iq̇j − V − 4πN, (3.2)

where q̇i = dqi/dt and the metric is

gij(q) =
∫ 1

(1 + |W |2)2

(
∂W

∂qi

∂W

∂qj
+ ∂W

∂qj

∂W

∂qi

)
dxdy, (3.3)

with the potential

V (q) = 2m2
∫ |W |2

(1 + |W |2)2 dxdy. (3.4)

The equations of motion that follow from (3.2) are

2gkiq̈i +
(

2∂gki
∂qj
− ∂gij
∂qk

)
q̇iq̇j + ∂V

∂qk
= 0, (3.5)

where geodesic motion is modified by the force due to the potential.
As there are no finite energy Q-lumps with N = 1, the simplest case to consider is N = 2,

where motion takes place on the 6-dimensional manifold M̃2, with the associated field

W = q1 + iq2
z2 + (q5 + iq6)z + q3 + iq4

. (3.6)

The centre of mass may be fixed at the origin by setting q5 = q6 = 0, to yield a 4-dimensional
submanifold M̃0

2 of M̃2, with coordinates q1, q2, q3, q4. The moduli space dynamics on the
manifold M̃0

2 was studied some time ago in great detail by Leese [1]. The remainder of this
section provides a brief review of this work, to set the scene for the following sections where
new results are presented.

For N = 2 the integrals required to calculate the metric (3.3) and the potential (3.4)
can be evaluated in terms of elliptic integrals, although this will not be exploited here as
the integrals will be computed numerically, in order to use the same methods that will
be applied later for higher charges. The ordinary differential equations in (3.5) are solved
numerically using a variable stepsize Runge-Kutta method, with the initial conditions
provided as follows. Setting

q1 = 2Λ(A cos Θ−B sin Θ), q2 = 2Λ(A sin Θ +B cos Θ), q3 = B2 −A2, q4 = −2AB,
(3.7)

allows the field (3.6) to be rewritten as

W =
( Λ
z −A− iB

− Λ
z +A+ iB

)
eiΘ, (3.8)

providing an interpretation of the parameters in terms of a pair of well-separated unit
charge Q-lumps with equal size Λ and positions in the (x, y)-plane given by (A,B) and
(−A,−B), valid for A2 + B2 � Λ2. Note that the pair of Q-lumps have a relative phase
angle of π, because of the minus sign between the two terms in (3.8). The fact that both
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Figure 1. Moduli space dynamics for N = 2 for times t ∈ [0, 120] using the parameters λ = 1, a =
−10, v = 0.2 with (a) b = 0; (b) b = 3; (c) b = −3.

Q-lumps have the same size, and their relative phase is locked at π, is a consequence of the
finite energy constraint in this case. The scattering of a pair of Q-lumps, with an initial
motion parallel to the x-axis, can therefore be studied using the initial conditions

Θ(0) = 0, Θ̇(0) =m, Λ(0) =λ, Λ̇(0) = 0, A(0) = a, Ȧ(0) = v, B(0) = b, Ḃ(0) = 0,
(3.9)

where λ is the initial common size, ±(a, b) are the initial positions and v is the initial
common speed of each Q-lump.

Without loss of generality, the initial size may be set to λ = 1. The initial separation
in the x-direction is fixed by choosing a = −10, so that the Q-lumps are reasonably
well-separated at the start of the motion. To present the resulting evolution, a variant of
the multiple exposure plotting technique introduced in [1] will be applied. This involves
plotting, in a single image, the curves given by the level set φ3 = 0 (or equivalently |W | = 1)
at equally spaced time intervals. The curves are coloured blue in the early stages of the
motion and transition to red as time increases.

Figure 1(a) displays a typical head-on scattering process (b = 0) with initial speed
v = 0.2. The Q-lump that begins at the left ends up at the top of the image, allowing
the identification of a scattering angle between the initial and final directions of motion
of around 2π/3. This agrees with the results found in [1], where the scattering angle as a
function of initial speed v is found to lie in the interval (π/2, π), with a value of around
2π/3 for a wide range of v. The scattering angle is a monotonically decreasing function
of v, tending towards π/2 in the fast scattering limit, where the interaction time is much
shorter than the period of the internal rotation. This is expected, as the traditional π/2
scattering of a range of topological solitons, including lumps in the pure σ-model, should be
recovered in this limit. The collision induces an oscillation of the size of the Q-lumps that
is clearly visible in the multiple exposure plot. The amplitude of this oscillation decreases if
the initial scattering speed v is decreased.

Scattering with a positive impact parameter b = 3 is displayed in figure 1(b). The results
for b > 0 are not surprising, with the scattering angle being a monotonically decreasing
function of b, tending to zero in the large b limit. Scattering is not symmetric under
the replacement b → −b, as illustrated in figure 1(c) by the example with b = −3. This
lack of symmetry is due to the fact that the internal phase rotation is anti-clockwise and
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therefore selects a preferred sign for comparison with the angular momentum generated by
the collision. The combination b→ −b together with m→ −m is required to generate a
symmetric scattering event. For b < 0 the scattering angle is a complicated function of both
b and v, with regions with a highly sensitive dependence, as the Q-lumps can orbit around
each other many times before they eventually escape, or merge to lose their individual
identities before separating [1].

4 Cyclic scattering

For N > 2 the study of generic finite energy Q-lump scattering would be rather cumbersome
using the moduli space approximation, because M̃N has dimension 4N − 2. Fixing a centre
of mass reduces the dimension to 4(N − 1), but this is still a little unwieldy. To avoid
this difficulty, in this section the dynamics on moduli space will be investigated on various
4-dimensional submanifolds of M̃N , obtained by imposing cyclic symmetries.

Rather than thinking of fixing the centre of mass to obtain the 4-dimensional submanfold
M̃0

2 of M̃2, an alternative point of view to obtain this submanifold is to impose the cyclic
C2 symmetry W (−z) = W (z), given by a spatial rotation around the origin by π. The fact
that both Q-lumps have the same size, and their relative phase is locked at π, is then a clear
consequence of the C2 symmetry that exchanges the pair of Q-lumps. The generalization to
study Q-lump scattering with charge N and cyclic CN symmetry is therefore rather natural.

Let ωN = e2πi/N denote the N th root of unity and define Σj
N , for j = 0, . . . , N − 2, to

be the 4-dimensional submanifold of M̃N obtained by imposing the cyclic CN symmetry
W (ωNz) = ωjNW (z). The corresponding field is given by

W = zj(q1 + iq2)
zN + q3 + iq4

, (4.1)

where a convenient relabelling of the indices of q has been applied so that the coordinates
on this submanifold are q1, q2, q3, q4. Note that the submanifold Σ0

N contains the axially
symmetric Q-lump with charge N , given by W = (q1 + iq2)/zN , but this is not contained
in any of the other submanifolds, Σj

N with j > 0.
In the asymptotic region of well-separated unit charge Q-lumps, the field (4.1) may be

rewritten as

W = eiΘΛ
N−1∑
k=0

ω
(j+1)k
N

z − (A+ iB)ωkN
, (4.2)

revealing N unit charge Q-lumps of equal size Λ on the vertices of a regular N -gon, with
a frozen relative phase of 2(j + 1)π/N between neighbouring Q-lumps. The scattering
discussed in the previous section corresponds to the case N = 2, where there is only one
submanifold, Σ0

2, and the relative phase is frozen at π.
These submanifolds therefore allow the first studies of Q-lump dynamics where relative

phases are not frozen at π. The asymptotic formula (4.2) is a clear generalization of the
N = 2 formula (3.8), and the same initial conditions (3.9) can be used for the parameter
values. Figure 2(a) illustrates the scattering of three Q-lumps with C3 symmetry and
relative phases of 2π/3 between the Q-lumps, that is, dynamics on the submanifold Σ0

3.

– 6 –
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Figure 2. Moduli space dynamics for N = 3 with C3 symmetry for times t ∈ [0, 260] using
λ = 1, a = −10, b = 0, v = 0.1 on (a) Σ0

3; (b) Σ1
3.

Figure 3. Moduli space dynamics for N = 3 with C3 symmetry for times t ∈ [0, 130] using
λ = 1, a = −10, v = 0.2 on (a) Σ0

3 with b = 3; (b) Σ1
3 with b = 3; (c) Σ0

3 with b = −3; (d) Σ1
3

with b = −3.

The scattering angle lies in the interval (2π/3, π), and tends towards the lower limit of this
interval as the initial speed increases. This is the expected generalization of the scattering
on Σ0

2, for the following reason.
In the case of cyclic CN scattering of N lumps in the pure σ-model, the similar scattering

process results in lumps on the vertices of an outgoing regular N -gon that is the dual of
the incoming N -gon [5]. This has been termed π/N scattering, where the scattering angle
refers to the rotation of the polygon, because the lumps lose their individual identities
during the scattering process so a scattering angle for any individual lump is ill-defined.
However, in the case of Q-lumps, the individual Q-lumps remain distinct enough to define
the scattering angle of a single Q-lump, as earlier, and translating the polygon scattering
into this definition yields a scattering angle of π(N − 1)/N . Hence the expected lower limit
of 2π/3 in the above case of Σ0

3, where N = 3.
Figure 2(b) displays the equivalent scattering process to figure 2(a), with the same

parameter values, but now on the submanifold Σ1
3, so the only change is that the relative

phase between the Q-lumps is now 4π/3 rather than 2π/3. The change in relative phase has
reduced the scattering angle, which is now slightly less than 2π/3, and is therefore outside
the interval found for scattering on Σ0

3. There is also a slight reduction in the amplitude of
the size oscillations of the outgoing Q-lumps. Note that the configuration formed at the
point of closest approach is very different on Σ0

3 and Σ1
3, reflecting the fact that only the

former submanifold contains the axially symmetric charge three Q-lump.
Scatterings on the submanifolds Σ0

3 and Σ1
3, with both positive and negative impact

parameters, can be found in figure 3. These results show similar features to the charge two
case, with the scattering angle again reduced on Σ1

3 compared to Σ0
3.

– 7 –
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Figure 4. Moduli space dynamics for N = 4 with C4 symmetry for times t ∈ [0, 200] using
λ = 1, a = −10, b = 0, v = 0.1 on (a) Σ0

4; (b) Σ1
4; (c) Σ2

4.

Charge four scattering with C4 symmetry provides access to three different sets of
relative phases. Examples on the submanifolds Σ0

4,Σ1
4,Σ2

4 are displayed in figure 4, where
the same parameter values are used in each case. This provides further evidence that
increasing the relative phase between neighbouring Q-lumps reduces both the scattering
angle and the amplitude of the size oscillation of the outgoing Q-lumps.

So far, all the examples studied have involved Q-lumps that all have the same size.
It is possible to gain access to scattering events that involve Q-lumps with different sizes
by considering another family of 4-dimensional submanifolds, this time by imposing cyclic
CN−1 symmetry in the charge N sector. For N > 2, define the 4-dimensional submanifold,
ΞN , of M̃N by imposing the cyclic CN−1 symmetry W (ωN−1z) = ωN−2

N−1W (z). In this case
the field takes the form

W = q1 + iq2
zN + z(q3 + iq4) , (4.3)

that includes the axially symmetric Q-lump with charge N . In the asymptotic region of
well-separated Q-lumps, the field may be rewritten as

W = eiΘΛ
(1−N

z
+
N−2∑
k=0

1
z − (A+ iB)ωkN−1

)
, (4.4)

revealing N −1 unit charge Q-lumps with size Λ on the vertices of a regular (N −1)-gon and
a unit charge Q-lump at the origin with size (N − 1)Λ. All the Q-lumps on the (N − 1)-gon
have the same phase, but there is a phase difference of π between any of these Q-lumps and
the Q-lump at the origin.

Figure 5 presents examples on the submanifolds Ξ3 and Ξ4. The larger Q-lump remains
at the origin, with a visible distortion of the axial symmetry to CN−1 symmetry, and its
size oscillation is synchronized with the oscillation of the smaller Q-lumps, as it must to
keep the ratio of the sizes equal to N − 1. A comparison of figure 5(b) and figure 2(a)
reveals that the presence of the central Q-lump increases the scattering angle and reduces
the amplitude of the oscillation in size.

As mentioned earlier, a general feature of Q-lump scattering is that an increase in the
speed of the incoming Q-lumps produces an increase in the amplitude of the size oscillation
of the outgoing Q-lumps. An interesting example to investigate the consequences of varying
the initial speed is to take the Σ0

4 scattering shown in figure 4(a) and vary the initial speed

– 8 –
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Figure 5. Moduli space dynamics with N − 1 unit charge Q-lumps scattering on a larger unit
charge Q-lump at the origin, using λ = 1, a = −10, b = 0, v = 0.1 for (a) N = 3 with C2 symmetry
on Ξ3; (b) N = 4 with C3 symmetry on Ξ4.

Figure 6. Moduli space dynamics for N = 4 with C4 symmetry on the submanifold Σ0
4 using

λ = 1, a = −10, b = 0, with (a) v = 0.05; (b) v = 0.2.

from v = 0.1. Reducing the initial speed to v = 0.05 results in the scattering presented in
figure 6(a), with a clear reduction in the amplitude of the size oscillation, as there is less
kinetic energy to transfer to this mode. A much more interesting phenomenon is found by
increasing the speed to v = 0.2, as displayed in figure 6(b). The scattering process is now
more complicated, making it a little difficult to decipher the information contained within
the multiple exposure plot. However, it is clear that the scattering is now qualitatively
different from the previous examples. An analysis of this scattering event will be presented
later, with a series of energy density plots from full field simulations being easier to interpret
than this single multiple exposure plot.

5 Field theory dynamics

The φ field formulation is used to perform full field simulations of Q-lump dynamics. The
field equation that follows from the variation of (2.1) is

∂µ∂
µφ + (∂µφ · ∂µφ)φ +m2φ3(φ3φ− e3) = 0, (5.1)

where e3 = (0, 0, 1). This nonlinear partial differential equation is solved numerically on a
square lattice consisting of 1501×1501 lattice points, with lattice spacings ∆x = ∆y = 0.04,
to give a spatial simulation region of [−30, 30]× [−30, 30]. Spatial derivatives are computed
using a fourth-order finite difference approximation and time evolution is performed using
a fourth-order Runge-Kutta scheme with a fixed timestep ∆t = 0.01.

– 9 –
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Figure 7. Energy density plots from field theory dynamics that reproduces the N = 2 scattering
on Σ0

2 shown in figure 1(a).

The boundary condition at the edge of the simulation lattice is taken to be compatible
with the internal rotation of a Q-lump, in either direction, by imposing the evolution
equation ∂t∂tW = −m2W . In terms of the φ field this becomes

∂t∂tφ1 − 2∂tφ1∂tφ3
1 + φ3

+ φ1

( |∂tφ|2
1 + φ3

+m2φ3

)
= 0 (5.2)

∂t∂tφ2 − 2∂tφ2∂tφ3
1 + φ3

+ φ2

( |∂tφ|2
1 + φ3

+m2φ3

)
= 0 (5.3)

∂t∂tφ3 − 2∂tφ3∂tφ3
1 + φ3

+ |∂tφ|2 −m2(1− φ2
3) = 0. (5.4)

To check the results of the moduli space approximation, the initial conditions for the
field theory simulations, φ|t=0 and ∂tφ|t=0, are taken to be the same as in the moduli space
dynamics. It is found that the examples presented in the previous sections are in excellent
agreement with the field theory simulations, thereby providing a good cross-check on both
methods. Representative examples are provided in figure 7, which reproduces the charge
two scattering on Σ0

2 found in figure 1(a), and figure 8, which reproduces the cyclic charge
four scattering on Σ1

4 from figure 4(b).
In these figures the energy density at various times is visualized using a heat map, with

the colour bar provided for values in the interval [0, 1] and values greater than one displayed
as white. For clarity, only the region [−20, 20] × [−20, 20] of the full simulation domain
[−30, 30]× [−30, 30] is shown. These two simulations are also available as short movies, see
the data files m01.mp4 and m02.mp4 in the supplementary material attached to this paper.
To aid comparison with the results from moduli space dynamics, these simulations are also
presented as multiple exposure plots, see figure 9(a) (to be compared with figure 1(a)) and
figure 9(b) (to be compared with figure 4(b)). This makes the excellent agreement obvious.

It is now time to return to the exotic scattering event presented at the end of the
previous section in figure 6(b), to investigate this process via full field simulations. The
resulting energy density plots are displayed in figure 10, for times that include and go
beyond the multiple exposure plot from moduli space dynamics that is shown in figure 6(b).
This simulation is also available as the movie m03.mp4 in the supplementary material
attached to this paper. Initially the scattering is similar to that found at lower speeds, but a
difference at this higher speed can already be seen at t = 74, where the expansion of the size
of the Q-lumps is comparable to their increase in separation. Q-lumps are well-separated if
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Figure 8. Energy density plots from field theory dynamics that reproduces the cyclic N = 4
scattering on Σ1

4 shown in figure 4(b).

Figure 9. Field theory simulations represented as multiple exposure plots for comparison with
moduli space dynamics, (a) compare with figure 1(a); (b) compare with figure 4(b).

their separation is large compared to their size, but if their size grows sufficiently rapidly
then they are not well-separated even as they move apart. This is the situation found at
t = 94, where the configuration resembles the ring of an axially symmetric charge four
Q-lump with a slight square perturbation, rather than four distinct Q-lumps. The ring
reaches a maximum size at t = 144 and then the size oscillation enters the phase of size
reduction that shrinks the ring, as the small distinct Q-lumps reappear at t = 238. The
Q-lumps now scatter again, in a similar manner to the early stage of the scattering, but this
time the size oscillation is not sufficient to prevent well-separated Q-lumps from emerging
and escaping. This exotic double scattering process is made possible at high speeds by a
sufficient transfer of kinetic energy into the size oscillation mode.

The scattering on Σ1
4, shown in figure 8 for v = 0.1, also transforms to a similar

complicated scattering if the initial speed is increased to v = 0.2, but such a transformation
is not found on the submanifold Σ2

4 at the same speed v = 0.2. This is consistent with
the results presented in figure 4 for v = 0.1, where the amplitude of the size oscillation
generated on Σ2

4 is much less than on Σ0
4 or Σ1

4. Clearly, relative phases play an important
role in the transfer of energy between different modes. The double scattering process, where
soliton kinetic energy is transferred to another mode and then back to soliton kinetic energy,
is reminiscent of the scattering of kinks and anti-kinks in some (1+1)-dimensional systems,
which leads to resonant scattering and a fractal structure in the dependence of the final
state on the initial collision speed [6]. It might be interesting to investigate whether similar
phenomena are possible in this (2+1)-dimensional soliton system.

Some scattering events in the charge four sector will now be considered, where the
initial conditions consist of a pair of well-separated axially symmetric charge two Q-lumps.
One of the differences in studying the scattering of a pair of charge two Q-lumps, rather
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Figure 10. Energy density plots from field theory dynamics associated with the cyclic charge four
scattering of Σ0

4, with an initial speed v = 0.2.

than a pair of charge one Q-lumps, is that the finite energy constraint now allows the pair
of Q-lumps to have different sizes and any value of the relative phase. Recall that a pair of
charge one Q-lumps must have equal size and be phase locked with a relative phase of π, in
order to have finite energy. In principle, this charge four scattering could be investigated
using moduli space dynamics, but the moduli space M̃4 is 14-dimensional, so even after
fixing the centre of mass, the motion on a 12-dimensional space is still a little cumbersome.
Therefore, the investigation will proceed via field theory simulations.

The initial conditions can be taken from the moduli space approximation, namely the
initial fields φ|t=0 and ∂tφ|t=0 are taken to agree with those obtained from the field

W =
(

λ2
1

(z − a− vt− ib)2 + eiχλ2
2

(z + a+ vt+ ib)2

)
eimt. (5.5)

This describes a pair of axially symmetric charge two Q-lumps at positions (x, y) = ±(a, b),
with initial sizes λ1 and λ2, and an initial relative phase χ. The Q-lumps are initially
moving parallel to the x-axis, in opposite directions, with equal speed v.

To compare with the earlier scattering of a pair of charge one Q-lumps, the first
simulations will consider equal sizes and a relative phase χ = π. An example of a head-on
scattering (b = 0) with λ1 = λ2 = 3, and parameters a = −10 and v = 0.1, is presented
in figure 11.
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Figure 11. Energy density plots from field theory dynamics for the scattering of a pair of charge
two Q-lumps with parameters λ1 = λ2 = 3, a = −10, b = 0, χ = π, v = 0.1.

Figure 12. Field theory simulations of the scattering of a pair of charge two Q-lumps with
λ1 = λ2 = 3, a = −10, χ = π, v = 0.1, (a) b = 0; (b) b = 5; (c) b = −4.

The energy density plots in figure 11, and the corresponding movie m04.mp4, show the
formation of a merged configuration at t = 84, followed by the fission into four distinct
Q-lumps. Two of the Q-lumps remain close to the origin, while the other two carry most of
the kinetic energy as they move away. This scattering is presented as a multiple exposure
plot in figure 12(a). The result of introducing a non-zero impact parameter, b, is presented
in figure 12(b) for b = 5, and in figure 12(c) for b = −4. This mirrors the behaviour
found earlier for scattering in the charge two sector. For the positive impact parameter
the Q-lumps are deflected away from each other, with the scattering producing very little
deformation to the Q-lumps. For the negative impact parameter the Q-lumps are attracted
towards each other and the scattering induces a more significant deformation of the Q-lumps,
but not enough to fission the charge two Q-lumps into individual charge one Q-lumps. The
deformation of the outgoing Q-lumps is more clearly visible in the energy density plots in
figure 13 and the associated movie m05.mp4.

The initial condition (5.5) with λ1 = λ2 and χ = π satisfies W (−z) = −W (z), and
hence all the scatterings investigated so far in the charge four sector display a cyclic C2
symmetry. If λ1 = λ2 and χ = 0, then again there is a C2 symmetry, but this time realized
as W (−z) = W (z). The result of changing the phase from π to zero can be illustrated by
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Figure 13. Energy density plots from field theory dynamics for the scattering of a pair of charge
two Q-lumps with parameters λ1 = λ2 = 3, a = −10, b = −4, χ = π, v = 0.1.

Figure 14. Field theory simulations of the scattering of a pair of charge two Q-lumps with
a = −10, v = 0.1 and remaining parameters, (a) λ1 = λ2 = 3, b = −4, χ = 0; (b) λ1 = λ2 = 3, b =
0, χ = π/2; (c) λ1 = 2, λ2 = 4, b = 0, χ = π.

repeating the simulation presented in figure 12(c) and figure 13, but with the new phase.
This produces the scattering displayed in figure 14(a) as a multiple exposure plot, and in
figure 15 as energy density heat maps, with m06.mp4 the corresponding movie. Comparing
figure 13 and figure 15 reveals that the change in phase makes a considerable difference to
the intermediate configuration that is formed, and subsequently to the outgoing Q-lumps.
The deformation to each charge two Q-lump is now much stronger, with the amplitude of
oscillation large enough that individual Q-lumps of different sizes are visible at some points
in the oscillation, although the perturbation is not strong enough to yield fission, in which
the Q-lumps would remain well-separated for all subsequent times.

The C2 symmetry in the charge four scattering can be broken either by changing the
initial relative phase so that χ /∈ {0, π}, or by choosing different initial sizes for the Q-lumps.
An example of the first possibility is presented in figure 14(b), where the relative phase is
taken to be χ = π/2, and the second possibility is realized in figure 14(c), where λ1 = 2
and λ2 = 4, with χ = π. These plots illustrate that, generically, a head-on collision results
in fission that produces individual Q-lumps with a variety of speeds, scattering angles
and sizes.

There is a general issue for Q-lumps, regarding the relevance of restricting dynamics to
only finite energy solutions, because of the following reasoning. Any stationary Q-lump
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Figure 15. Energy density plots from field theory dynamics for the scattering of a pair of charge
two Q-lumps with parameters λ1 = λ2 = 3, a = −10, b = −4, χ = 0, v = 0.1.

solution with infinite energy in the charge N sector can be associated with a finite energy
stationary Q-lump solution in the charge N + 1 sector, via the addition of an extra Q-lump
that can be placed arbitrarily far from any of the other existing Q-lumps. Explicitly, the
process may be represented by the formula

W = αN−1z
N−1 + · · ·+ α1z + α0

zN + βN−1zN−1 + · · ·+ β1z + β0
eimt − αN−1

z − µ
eimt, (5.6)

for a finite energy Q-lump with charge N + 1. Here µ is a positive real parameter, that can
be made arbitrarily large to move the extra Q-lump far from any of the existing Q-lumps
that are contained within the infinite energy solution given by just the first term of (5.6).
This shows that for any infinite energy stationary Q-lump solution S, and any choice of
a compact region Ω of the plane, there is a finite energy stationary Q-lump solution S̃
that approximates S in Ω to any desired level of accuracy. In terms of local dynamics, it
therefore seems difficult to argue that certain configurations must be ignored because they
have infinite energy when considered over the whole plane.

A concrete example of the above general idea is provided by perturbations of the axially
symmetric charge two Q-lump. Perturbed oscillating charge two Q-lumps appeared in
some of the charge four scattering events presented above. These configurations cannot be
studied within the moduli space approximation as isolated charge two Q-lumps, because
the relevant stationary solutions have infinite energy. However, they can be studied using
field theory simulations. Consider an initial condition taken from the field

W = λ2 + zεt

z2 eimt, (5.7)

where ε is a real parameter that induces a symmetry breaking perturbation of the axially
symmetric charge two Q-lump, without splitting it into a pair of charge one Q-lumps. The
resulting dynamics is shown as the energy density plots in figure 16, and as the movie
m07.mp4, for the example with parameter values λ = 3 and ε = 0.1. It can be seen that the
distorted configuration rotates and oscillates but does not separate into individual Q-lumps.

– 15 –



J
H
E
P
0
6
(
2
0
2
3
)
1
6
2

Figure 16. Energy density plots from field theory dynamics for a perturbed charge two Q-lump
with parameters λ = 3 and ε = 0.1.

Figure 17. Field theory simulations of the scattering of a pair of charge one Q-lumps with
λ1 = λ2 = 1, a = −10, v = 0.1, χ = 0 and (a) b = 0; (b) b = 3; (c) b = −3.

Note the similarity between the deformed Q-lump at t = 40 in figure 16 and the pair of
deformed Q-lumps in figure 15 at t = 184. This confirms that field theory simulations
are useful in studying Q-lump dynamics, even when the moduli space approximation is
not applicable because the field configuration has infinite energy when extended to the
full plane.

Once the constraint of finite energy is removed, there are more possibilities for Q-lump
scattering, particularly in the charge two sector. The relative phase can be unfrozen from
χ = π, and the pair of Q-lumps can be given different initial sizes. The appropriate initial
condition is taken from the field

W =
(

λ1
z − a− vt− ib

+ eiχλ2
z + a+ vt+ ib

)
eimt. (5.8)

The field theory simulations presented in figure 17 illustrate how the previous scattering
with χ = π, for example as shown in figure 1, is modified by changing the phase to χ = 0.
The other parameters are taken to be λ1 = λ2 = 1, a = −10, v = 0.1, with three different
values for the impact parameter b. The head-on collision (b = 0) in figure 17(a) shows a
scattering angle less than π/2, in contrast to the χ = π scattering, where the scattering
angle always lies in the interval (π/2, π). As the initial speed decreases, the scattering
angle increases, and is close to π/2 for v = 0.05, for example. A positive impact parameter,
figure 17(b) with b = 3, shows repulsion, and a negative impact parameter figure 17(c)
with b = −3, reveals attraction. This agrees with the previous χ = π situation, although
these forces now have less influence as the interaction is minimal. Otherwise, as expected
from the arguments given above, there is little within these results to indicate a significant
difference between finite and infinite energy dynamics at the local level.
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Figure 18. Field theory simulations of the scattering of a pair of charge one Q-lumps with
λ1 = 1, λ2 = 3, a = −10, b = 0, v = 0.2 and (a) χ = π; (b) χ = π/2; (c) χ = 0.

Finally, figure 18 presents some examples of the head-on scattering of unit charge
Q-lumps, where the pair of Q-lumps have different initial sizes. The parameter values for
these simulations are λ1 = 1, λ2 = 3, a = −10, b = 0, v = 0.2, with three different values of
the initial relative phase χ = π, π/2, 0. This provides a clear illustration of the significance
of the initial phase in determining the outcome of the scattering, with dramatic changes in
the scattering angles, sizes, and amplitudes of size oscillations, as χ is varied.

6 Conclusion

The moduli space approximation has been used to study Q-lump scattering, extending
previous studies in the charge two sector to higher charges by imposing cyclic symmetries
that restrict the motion to a 4-dimensional manifold. Field theory simulations of Q-lump
scattering have been performed for the first time, with results that show an excellent
agreement with moduli space dynamics. A range of exotic scattering events have been
presented that include Q-lump fission and double scattering phenomena. Field theory
simulations have also been applied to situations where the moduli space approximation is
not applicable, revealing that considerations of finite energy are not particularly relevant in
the study of local Q-lump dynamics.

There are several directions in which this work could be extended. For example, the
spatial plane could be replaced by a compact manifold, such as a torus, as a natural way
to unfreeze the moduli that are fixed in the planar case by finite energy considerations.
Q-lumps can also be generalized to systems in which the target space is a Kähler manifold
with a continuous isometry that has at least one fixed point [7]. It might be interesting to
investigate Q-lump dynamics in such systems, to see if any new features appear.

Dyonic instantons provide gauge theory analogues of Q-lumps in (4+1)-dimensions,
where moduli space dynamics has been applied to study scattering in the charge two
sector [8, 9]. Higher charge investigations could be performed by imposing symmetries, as
in the present paper for Q-lumps, and perhaps field theory simulations are just about in
reach with current computing capabilities.

Finally, the study of spinning topological solitons in modified σ-models is of general
interest. In particular, spinning Skyrmions in (3+1)-dimensions can be regarded as approxi-
mations to nucleons with quantized spin, so the classical scattering of spinning Skyrmions
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is relevant to the study of nucleon-nucleon scattering [10–13]. Q-lumps provide a simple
lower-dimensional analogue of this situation, so a detailed understanding of their dynamics
may provide some insight into the more complicated Skyrmion system.
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
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