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Abstract

We employ extreme value theory to identify stock price crashes, featuring low-probability 
events that produce large, firm-specific negative outliers in the conditional distribution. 
Traditional methods employ approximations under Gaussian assumptions and central 
moments. This is inherently imprecise and susceptible to misspecifications, especially 
for tail events. We instead propose new definitions and measures for crash risk based 
on conditional extremal quantiles (CEQ) of idiosyncratic stock returns. CEQ provide 
information on quantile specific impact of covariates, and shed light on prior empirical 
puzzles and shortcomings in identifying crashes. Additionally, to capture the magni­
tude of crashes, we provide an expected shortfall analysis of the losses due to crash. 
Our findings have important implications for a burgeoning literature in financial eco­
nomics that relies on traditional approximations.

Keywords: Stock price crashes; Extremal quantiles; Extreme value theory; Quan­
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1 Introduction

A burgeoning body of literature in financial economics has examined firm-specific stock 

price crashes, defined as low-probability events that produce a large and negative outlier 

in the conditional distribution of idiosyncratic returns.1 These studies predominantly use 

the traditional method under (implicit or explicit) Gaussian assumptions, and rely on central 

moments of conditional distributions to define stock price crashes. In this paper, we advocate 

an alternative approach to define crash measures based on conditional extremal quantiles 

(CEQ) of idiosyncratic returns. Estimating the conditional quantiles of a response variable 

given a set of covariates, quantile regression analysis is a useful tool for tail events. The pro­

posed methodology allows firm or industry specific covariate effects, which may be different 

in the central and tail regions of the conditional distribution of idiosyncratic returns. As 

such, our approach departs from the existing literature by challenging the common practice 

of defining firm-specific stock price crashes as extreme tail events, identified with dichoto­

mous distance measures defined as A-standard-deviations below the mean of idiosyncratic 

returns.

1 Some notable examples, inter alia, are: Chen, Hong, and Stein (2001); Jin and Myers (2006); Hutton, 
Marcus, and Tehranian (2009); Kim, Li, and Zhang (2011); Callen and Fang (2015); Andreou, Antoniou, 
Horton, and Louca (2016); Kim, Wang, and Zhang (2016); Andreou, Louca, and Petrou (2017); Chang, 
Chen, and Zolotoy (2017); Ertugrul, Lei, Qiu, and Wan (2017); Cheng, Li, and Zhang (2020); Li and Zeng 
(2019).

We employ the inference tools of Chernozhukov and Fernandez-Val (2011) for extremal 

conditional quantile models. It is widely recognized that left-tail events are rare and chal­

lenging to predict accurately. In comparison to regular quantile regression, extremal quantile 

regression has been demonstrated to be a superior method for capturing extreme tail events 

such as crashes, as highlighted by Chernozhukov and Fernandez-Val (2011).

It is worth noting that the CEQ model does not impose strong assumptions on the distri­

bution function of the underlying error term. Unlike the traditional method, the CEQ model 

estimates allow for data-dependent and quantile-specific effects. This flexibility enables the 

model to effectively capture nonlinearities in the data, as demonstrated by Chernozhukov 
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and Fernandez-Val (2011). This provides a heterogeneous model for the conditional proba­

bility of stock price crashes. In other words, the CEQ model takes into account covariates 

that exhibit different quantile-specific effects on crashes, for different industries and firm 

types. This feature allows for a more nuanced and comprehensive understanding of the 

factors influencing the occurrence and severity of stock price crashes.

In our empirical application, we investigate idiosyncratic weekly returns as data depen­

dent deviations from market and/or industry returns, for the period 2000 to 2019, covering 

common stocks traded on NYSE, AMEX and NASDAQ. We perform a data driven idiosyn­

cratic “excess return” analysis. The projected dynamic and other time series market and 

industry effects is accounted for and removed to define idiosyncratic returns (see Section 2 

for further elaboration).

We provide a comparative analysis between the proposed CEQ method and its Gaussian 

counterpart. Assuming a Gaussian distribution of weekly returns, we would expect to see 

0.1% of sample firms crashing in any given week based on a 3.09-standard-deviation definition 

of crash, as in Hutton et al. (2009). This corresponds to a theoretical crash probability of 

1 - (1 - 0.001)52 = 5.07% over the course of a year. Andreou, Lambertides, and Magidou 

(2022) find that between 1950 and 2019 the empirical frequency of idiosyncratic stock price 

crashes for US-listed firms has steadily increased from 5.5% to an astonishing 27%. The huge 

disparity between the empirical vs. theoretical thresholds is what Andreou et al. (2022) coin 

as the stock price crash risk puzzle, and call for more research to rationalize it.

We find that the occurrence of stock price crashes is more prevalent than would be 

expected under a Gaussian (or implicitly Gaussian) assumption for idiosyncratic returns. 

In our sample of 62,657 firm-year observations, we identify 12,456 firm-year observations 

or 20.28% of the total sample as crashes based on the widely used 3.09-standard-deviation 

definition as introduced by Hutton et al. (2009). As previously documented by Andreou 

et al. (2022), we observe that the percentage of stock price crashes has risen over the last 

decade based on this definition, which is consistent with the notion that factors such as 
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exploding firm specific leverage cause returns to deviate from a normal distribution.

Kelly and Jiang (2014) argue that a single process governs tail risk fluctuations for all 

assets. Building on this notion, we adopt a similar approach by pooling firm-year data at 

the industry level. We annually estimate the CEQ of pooled weekly idiosyncratic returns, 

conditioning on a comprehensive set of covariates commonly employed in specifications for 

negative skewness (Chen et al., 2001). Focusing on the 0.1th quantile, we classify a firm as 

experiencing a stock price crash in a given year if, during that year, at least one weekly return 

falls below the estimated CEQ. In other words, a stock price crash is defined as a return 

that is unexpected - an extreme event - conditional of stock/firm specific characteristics. 

Surprisingly, our findings reveal that the number of firm-year crashes identified by CEQ 

estimate is significantly lower. Specifically, we identify only 6,447 firm-year observations or 

10.48% of the total sample as crashes.

In addition to examining the frequency of crashes, we also estimate their magnitude 

through an expected shortfall analysis. Acting as a proxy for the losses, the expected shortfall 

analysis allows us to evaluate the monetary impact of the miss-estimation. Interestingly, we 

find that the CEQ losses are much larger and significant compared to the ones estimated 

using under the Gaussian approach.

One of the key assumptions behind CEQ regression is that the covariates can impact the 

extremal quantiles and the central quantiles very differently (Chernozhukov, 2005). Chen 

et al. (2001)- under Gaussian assumption-find that firms that experience larger increases 

in turnover relative to trend, are predicted to have larger negative skewness, with the effect 

of turnover being statistically and economically significant. Interestingly, using CEQ to 

estimate extreme risk reveals a different story. We find that the detrended level of turnover 

has a significant negative coefficient on the lower tail confirming the findings of Jiang, Wu, 

Zhou, and Zhu (2020), that higher turnover implies a lower crash probability. This indicates 

that the traditional method may not accurately capture information of the extreme left-tail 

events, as it is based on a sample that, likely, does not include observations of these events.
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In connection with the above, we also support previous evidence that methods relying on 

the extreme value theory provide more accurate tails approximations than the Gaussian one. 

Our empirical findings show that the coefficients and their respective 90% confidence intervals 

(CIs) are more unstable at the tails. We find that, into the tails, Gaussian approximate CIs 

are often narrower than extremal CIs, especially for values of the quantile index less than 

0.08. These findings reveal that there is additional significant estimation uncertainty into 

the lower tails of returns.

Lastly, in a separate application, we confirm the results of Andreou et al. (2022) who 

highlight that the exceedingly high and rising (over time) frequency of crashes cannot be 

adequately explained by either financial reporting opacity or overinvestment, identified in 

earlier literature as the two main channels of crash risk (Hutton et al., 2009; Kim et al., 2011; 

Callen and Fang, 2015; Andreou et al., 2016; Kim et al., 2016; Andreou et al., 2017). Yet, us­

ing the CEQ crash estimates we reach two interesting results. First, the frequency of crashes 

remains relatively constant across years, and does not present the difficult-to-rationalize 

upward trending behavior that fuels the stock price crash risk puzzle. Second, within a 

pooled cross-sectional regression setting, we find that both opacity and overinvestment are 

positive and statistically related to the one-year-ahead stock price crashes. This evidence 

is well-aligned with the agency models of Jin and Myers (2006) and Benmelech, Kandel, 

and Veronesi (2010) that theorize opacity and overinvestment as the channels that managers 

strategically exploit to camouflage bad news. Our results might offer some explanations to 

help explaining the empirical evidence in Andreou et al. (2022) who, with a similar regres­

sion analysis, find that both opacity and overinvestment are statistically nonsignificant. In 

this vein, we suggest that Andreou et al. (2022) reach statistically nonsignificant results be­

cause, the traditional approach they use for estimating crashes, is possibly generating several 

“false-positive” occurrences.

Our findings align with the understanding that a stock price crash entails the likelihood of 

observing a substantial negative outlier specific to the distribution of equity returns. To the 

4



best of our knowledge, this study is the first one to investigate the benefits of a non-Gaussian 

quantile approach to examine stock price crashes in a cross-sectional context.

Our study also contributes to the existing literature on the relationship between crash risk 

and its determinants, an area of research that, as aforementioned, has garnered considerable 

attention and continues to thrive in recent years (see, for instance, footnote 1). As a main 

contribution, we offer a novel method that can be explored by future studies to estimate stock 

price crashes, thereby extending the toolkit available to researchers in this field. Additionally, 

our empirical findings provide valuable evidence that could contribute, to some extent, to 

the rationalization of the stock price crash risk puzzle documented by Andreou et al. (2022).

Finally, while we do not directly test the hypothesis that tail risk explains differences 

in expected returns across stocks, our results offer insights that can contribute to this line 

of inquiry. The recent empirical asset pricing literature has placed significant emphasis 

on exploring the connections between left tail risk and the cross-section of expected stock 

returns, highlighting the relevance of our research in this domain (see subsection 2.3 for 

related literature).

The remainder of the paper is organized as follows. Section 2 presents the methodology 

for estimating the newly introduced CEQ crash measure, along with a discussion of the 

conventional crash risk measures commonly employed in the literature. Additionally, this 

section provides an overview of the relevant literature related to our study. In Section 3, we 

present the empirical application of our methodology. Section 4 further extends the empirical 

analysis by examining the opacity and overinvestment channels. Finally, Section 5 concludes 

the paper, summarizing the key findings and highlighting the contributions of our research.

2 Measuring stock price crashes

2.1 The conditional extremal quantiles method

Chernozhukov (2005) extends the extreme value theory to develop extreme quantile re­
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gression models for the tails of conditional distributions, and broaden the properties of the 

Koenker and Bassett Jr (1978) quantile regression estimator. Chernozhukov and Fernandez- 

Val (2011) made use of self-normalized quantile regression statistics to develop feasible and 

practical inferential methods for the quantile regression of Chernozhukov (2005), when the 

quantile index is either low (close to zero), or high (close to one). Many important appli­

cations of quantile regression involve the study of extremal phenomena (for a review see 

Chernozhukov, Fernandez-Val, and Kaji, 2016). In financial economics, a prominent exam­

ple of the use of CEQ is the conditional value-at-risk analysis (Chernozhukov and Umantsev, 

2001; Chernozhukov and Du, 2006; Chernozhukov and Fernandez-Val, 2011).

We now provide the conditional extremal quantile regression crash measure (CEQ - 

CRASH). The Appendix reviews some basics for CEQ and briefly presents the estimation 

and inference results of Chernozhukov and Fernandez-Val (2011), which we employ and rely 

upon in this paper.

Let Y be a real random response variable of interest with a continuous distribution 

function FY (y) = Pr[Y < y]. A t-quantile of Y is QY (t) = inf {y : FY (y) > t} for some t G 

(0, 1). Let X be a d-dimensional vector of covariates related to Y (typically transformations 

of original regressors, including a constant), and FY(y|x) = Pr[Y < y|X = x] denote the 

conditional distribution function of Y given X = x. The conditional t -quantile of Y given 

X = x is then QY(t|x) = inf {y : FY (y|x) > t} for some t G (0, 1).

The conditional quantile function QY(t|x) is called the t -quantile regression function, 

and can be used to measure the effect of covariates on outcomes, both at the center and at 

the upper and lower tails of the outcome distribution. Whenever the probability index t is 

either close to zero or close to one, then it is called the conditional extremal t -quantile.

The most common model for QY (t |x) is the linear model:

QY (t | x) = x0^ (t) for all t G (0, n] and some n G (0,1], (1)

and for every x in the support of X .
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Let (Y, X) be a sample of size T . The estimator of the conditional quantile function is:

QY(t|x) = x Kt), (2)

where the t-quantile estimator of ^ (t) solves:

T

Kt) G arg min X Pt (Yt - X'^), (3)

p tR ' * 
t=1

where Pt (u) = (t - 1 (u < 0)) u is the asymmetric absolute deviation function of Fox and 

Rubin (1964). The median case was introduced by De Laplace (1818) and the general 

quantile formulation by Koenker and Bassett Jr (1978).

The sampling conditions (C3) and (C4) of Chernozhukov and Fernandez-Val (2011) hold 

(see the Appendix). Thus, the sequence {(Yt, Xt)}tT=1 is assumed to be either independent 

and identically distributed (i.i.d.), or stationary and weakly-dependent with extreme events 

satisfying a non-clustering condition.2

2 The non-clustering condition is of the Meyer (1973) type and states that the probability of two extreme 
events co-occurring at nearby dates is much lower than the probability of just one extreme event. This 
assumption is convenient because it leads to limit distributions of extremal quantile regression estimators as 
if independent sampling had taken place. The plausibility of the non-clustering assumption is an empirical 
matter.

Moreover, assuming that the regularity condition (C1) of Chernozhukov and Fernandez- 

Val (2011) holds, covariates may impact the extremal quantiles and the central quantiles 

very differently as well as covariates may have a differential impact across various extremal 

quantiles. The stronger condition (C2) of Chernozhukov and Fernandez-Val (2011) imposes 

the existence and Pareto-type behavior of the conditional quantile density function enabling 

inference.

We examine the extremal quantiles of the cross section of “excess firm specific” returns 

distribution within each year. Our notion of excess returns is embodied in Eq. (6) below. 

It may be interpreted as a “partialing out”, first step, that is a projection operator. It 

purges the expected (contemporaneous and recent) market and industry return effects which 
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embody common market and dynamic effects. The next step is a quantile regression of 

the latter idiosyncratic residuals on further firm-specific components and controls. In other 

words, the conditional extremal t-quantile regression estimates from Eqs. (2) and (3), with 

t close to zero, are of interest. A stock price crash is then defined as a return that is an 

unexpected, extreme event, conditional on stock/firm specific characteristics.

In particular, we follow Kelly and Jiang (2014) who argue that a single process governs tail 

risk fluctuations for all assets and pool the data per Fama and French (1997) 12 industries 

basis.3 We then use these pooled idiosyncratic weekly returns to estimate industry-year 

coefficients using Eq. (3) and focusing on the 0.1th quantile. This is a linear index model 

with quantile-specific coefficients, allowing a great deal of heterogeneity. Naturally, firms 

3 Due to data limitation issues we cannot perform our analysis on a per-firm basis. However, we performed 
also the analysis by (a) pooling per-year-industry and (b) pooling data per-year and then take the average 
over all years. We find that our findings are not sensitive to the way we split the data. All robustness checks 
are available upon request.

belonging to different industries will have different coefficients, as does the same firm in 

different years.

Once we have the estimated coefficients ^(t) for each industry and year by solving Eq. 

(3), we may estimate the industry specific threshold QY (t |x) using Eq. (2). As for the 

vector of covariates this includes the following control variables: stock return volatility, 

stock returns, stock detrended turnover, firm size, and market-to-book ratio; these are the 

control variables described in Chen et al. (2001). More explanation on the data and the 

variables is given in the next section.

The last step includes the identification of crashes. We define CEQ - C RAS Hj,t as the 

likelihood of an idiosyncratic, extreme left-tail event measured with a binary variable set 

equal to one if, within fiscal year t, the firm j experiences at least one “crash week”, i.e., a 

large and negative idiosyncratic return that falls below the 0.1% industry specific threshold 
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estimate QY(t|x) from Eq. (2), and zero otherwise. Specifically,

I
11 if Ew G {1,2, ...,n} : Rjw < QY (t |x)

CEQ - CRASHj,t = ,

I 0, otherwise
(4)

where Rj,w are the idiosyncratic weekly returns as estimated in Eq. (5) below, and w =

1, 2, . . . , n are the weeks within a fiscal year t.

2.2 The traditional method

Jin and Myers (2006) define a stock price crash as a large and negative outlier in a firm’s 

residual stock return that occurs, at most, once in 100 periods. An extensive literature 

in financial economics posits a price crash as the incidence of an extreme left-tail event in 

the distribution of idiosyncratic returns (see, for example, footnote 1). In replicating the 

traditional way, we follow Hutton et al. (2009) and Andreou et al. (2022) and compute 

moment-based crashes as A-standard-deviations below the mean of idiosyncratic returns.

Let again w = 1, 2, . . . , n be the weeks within a fiscal year t. The idiosyncratic return, 

Rj,w , for firm j in week w is defined as:

Rj,W ln(1 + €j,w ), (5)

where ej,w is a residual return coming from an index model regression as defined by Eq. 

(6). These returns are log-transformed so as to treat for potential positive skewness in raw 

returns and enable us to symmetrically identify extreme left- vs. right-tail events.

Specifically, tjw is estimated as the excess return from an expanded market and industry 

regression, as follows:

i=+2

rj,w = aj + ^2 ^i,jrMKT,w+i

i=+2

+ YijrIND,w+i + ^j, (6)
i=-2 i=-2
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where rj,w is firm j0s stock return, rMKT,w is the CRSP value-weighted market index return, 

and rIND,w is the Fama and French (1997) value-weighted 48-industry index return in week w. 

We include up to two lead and lag weekly return terms for the market and industry indices, 

to control for booms and busts that might happen around the week of interest allowing us 

to measure the firm’s idiosyncratic return with higher precision. To preclude look-ahead 

bias that accounts for the effect of earnings release when the subsequent crash risk measures 

are matched with financial statements data, Eq. (6) is estimated over the 52-week window 

ending 13 weeks after the fiscal year-end.4

4 Excess return is typically computed as deviation from a given risk free return. Here, idiosyncratic 
weekly return is computed as deviation from a statistically determined, stable, weekly market and industry 
return. An interpretation is that we are removing a linear projection expected value of market and/or 
industry returns. This is a partialling out of returns that accounts for the expected value of market and 
common industry factors, before a quantile regression is conducted on other conditioning covariates. An 
alternative approach would be a single step estimation of quantiles, controlling for quantile effects of market 
and industry weekly returns. Another approach may first estimate the conditional distribution of weekly 
returns, controlling for all desired covariates simultaneously, by a method such as distribution regressions.

We measure C RAS Hj,t with a binary variable set equal to one if within fiscal year t the 

firm j experiences at least one “crash week”, i.e., a large negative idiosyncratic return that 

falls more than A standard deviations below its mean return, and zero otherwise. Specifically,

{
1 if Ew G {1, 2,..., n} : Rjw < Uj t — A * ait

, , , , (7)
0, otherwise

where Uj,t and aj,t are, respectively, the mean and standard deviation of the idiosyncratic 

returns over the weeks that fall within fiscal year t.

Following Hutton et al. (2009), A is set equal to 3.09 to generate a frequency of 0.1% 

extreme left-tail events as per the normal distribution. Although, the CRASH measure 

appears to align well with the theoretical concept of a crash that is an idiosyncratic, large 

negative outlier in the distribution of returns, as we show in the empirical application section, 

the average percentage of crashes has steadily increased and it is much more prevalent than 

would be expected under a Gaussian (or implicitly Gaussian) assumption for firm-specific 
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returns.

On the other hand, the continuous measure of crash risk introduced by Chen et al. (2001) 

aims to capture the negative asymmetry of a firm’s stock return distribution, indicating 

stocks that are merely more “crash prone”, i.e., subject to a more left-skewed distribution. 

Specifically, the negative coefficient of skewness (NCSKEW) for each firm-year is calculated 

as the negative value of the ratio of the third moment of idiosyncratic weekly returns to the 

standard deviation of idiosyncratic weekly returns raised to the third power. Since Chen et al. 

(2001) seminal study there has been an increasing interest among researchers to understand 

the factors that drive negative skewness in stock returns induced by stock price crashes.5

5 Examples of such papers include Hutton et al. (2009); Kim et al. (2011); Callen and Fang (2015); Andreou 
et al. (2016); Kim et al. (2016); Andreou et al. (2017); Chang et al. (2017); Ertugrul et al. (2017); Kim, 
Wang, and Zhang (2019); Li and Zeng (2019); Andreou et al. (2022).

However, negative asymmetry in returns may arise due to several less extreme negative 

returns (i.e., negative returns of moderate size), something that does not necessarily comply 

with the notion that stock price crash risk represents the likelihood of extreme negative id­

iosyncratic return outliers (Andreou, Andreou, and Lambertides, 2021). In fact, in our data 

we notice several cases where skewness is negative (indicating that this stock is prone to a 

crash) without any extreme firm-specific left-tail outcomes. In a similar vein, NCSKEW 

often turns positive despite occurrence of a crash, noted upon a closer examination. What 

happens, in practice, is that a firm (within a year) experiences both a “crash” and a “jump” 

week, which in turn implies that skewness may be positively driven by the “jump” compo­

nent, despite the occurrence of a large extreme negative return.

All in all, traditional crash risk measures as routinetely employed in prior studies seem 

to imply a misspecification. In this respect, our main contribution is to develop a tail risk 

measure as described in subsection 2.1, which we can subsequently employ to (properly) 

identify stock price crashes.
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2.3 Related literature

Studies have shown that stock prices are more susceptible to extreme negative movements 

than positive ones (French, Schwert, and Stambaugh, 1987; Campbell and Hamao, 1992; 

Bekaert and Wu, 2000). While extreme positive returns tend to benefit investors, extreme 

negative returns can be harmful for stock portfolios, especially for under-diversified retail 

individual investors (Barber and Odean, 2008; Andreou et al., 2021). There is still an ongoing 

question of how to measure return asymmetry empirically.

Using the third moment of daily idiosyncratic returns may not fully capture asymmetry. 

As noted by Meijer (2000) it does not consider situations where a return distribution may 

have zero skewness but further asymmetry, with a negative (or positive) fifth moment. Ghy- 

sels, Plazzi, and Valkanov (2016) propose a quantile-based measure of conditional skewness 

or asymmetry of asset returns. In fact, quantile-based measures of skewness have a long his­

tory, beginning with their introduction in the influential text by Bowley (1920). Jiang et al. 

(2020) propose two asymmetry measures based on the distribution function of the data that 

as they show offer additional insights beyond what can be deduced from the third central 

moment. In this respect, although not directly related, we are connected to the literature 

that seeks to develop asymmetry measures that go beyond skewness.

At the same time, the available evidence regarding the impact of skewness on stock 

returns is mixed and inconclusive (see Bali, Engle, and Murray, 2016, for an excellent survey). 

Research, such as Boyer, Mitton, and Vorkink (2010) and Bali and Murray (2013), have found 

a negative correlation between idiosyncratic skewness and firm characteristics such as size, 

book to market, and turnover. In contrast, Jiang et al. (2020) asymmetry measures are 

significantly linked to all firm characteristics, and the correlations are in the same direction 

as those between firm characteristics and skewness, with the exception of turnover. Kumar 

(2009) has found a similar correlation between the turnover ratio and the lottery-type stocks, 

which have much higher turnover ratios than other stocks.

Chernozhukov (2005) examines extreme quantile regression models for the tails of con­
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ditional distributions, and analyzes the properties of the Koenker and Bassett Jr (1978) 

quantile regression estimator. He argues that conventional asymptotic inference, based on 

the Gaussian limiting distributions, is not valid for extremal quantile regression and provides 

practical inferential methods when the quantile t G (0,1) is either very low (close to zero) or 

high (close to one). Chernozhukov and Fernandez-Val (2011) further show that the extreme 

value distribution provides a better approximation to the distribution of extremal sample 

quantiles than the normal distribution. Prominent applications of extremal quantile regres­

sion are for production frontiers, determinants of low infant birth weights, auction models 

and conditional value-at-risk (for a review see Chernozhukov et al., 2016).

A number of statistical tests have been developed to detect jumps in asset prices. Boswijk, 

Laeven, and Yang (2018) have developed and implemented testing procedures, to detect the 

presence of self-excitation in jumps. Their model shares a common feature with Bollerslev 

and Todorov (2014) in that the occurrence of price jumps, whether directly or through the 

volatility channel, exerts a positive feedback on the price jump intensity process. This, 

in turn, induces a higher conditional probability of future price jumps. Such (local and 

clustered) increases of tail risk constitute exactly the phenomenon of self-excitation in jumps. 

On the other hand, Corradi, Silvapulle, and Swanson (2018) provide a model-free jump test 

for the null hypothesis of zero jump intensity. Their test in contrast to Boswijk et al. (2018) 

detects jump self-excitation in the data generating process.

While these papers do not consider actual crash incidence, our study focuses on the 

empirical incidence of crash risk. However, we acknowledge that this literature is suggestive 

of the presence of temporal variation in the jump tail index. Moreover, Bollerslev and 

Todorov (2014) have demonstrated that the tail index parameter may be uniquely identified, 

and in turn estimated, from a cross-section of deep out-of-the-money short-maturity options 

at a given point in time without making any assumptions about the temporal variation in 

the overall jump intensity process. They achieve this by “pooling” the option data to recover 

an average of the tail shape parameters over the relevant time-intervals. Therefore, they rely 
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on the information in the cross-section of options for identifying the temporal variation in 

the jump tails.

Finally, our study has implications for the asset pricing literature as we are motivated by 

the need for a reliable measure of idiosyncratic tail risk over time, which is based on certain 

aspects of asset pricing theories. Specifically, Kelly and Jiang (2014) assume that extreme 

return events obey a power law, and that there is a different level of firm-specific tail risk 

across assets, but only a single process governs tail risk fluctuations for all assets. Using 

empirical analysis, they estimate the common time-varying component of return tails and 

demonstrate its significant predictive power for the aggregate market returns. Van Oordt 

and Zhou (2016) use extreme value theory to estimate tail betas to measure the sensitivity 

of stock return to market downturns and find no evidence of a premium associated with tail 

betas.

3 Empirical application

The data are drawn from the Center for Research in Security Prices (CRSP) for the 

period 2000 to 2019. We exclude financial service firms (SIC 6000-6999) and utilities (SIC 

4900-4999) because the financial characteristics in these industries are not the same as in 

other industries. Large data sets are crucial to the accuracy of extreme value estimates 

because only a small fraction of data is informative about the tail distribution.

Unless otherwise specified, residual weekly returns are estimated using the expanded 

index model in Eq. (6). Then, idiosyncratic weekly returns are computed as the natural 

logarithm of one plus the residual return, as in Eq. (5).6 The final sample with complete 

information for computing stock price crashes consists of 62,657 firm-year observations.

6 The quantile regressions are based on the 52 idiosyncratic weekly returns pooled over all stocks within 
a given industry, in a given year. We have repeated all computations using only the industry returns (no 
market returns) in the index model; the results are quite robust.

One of Chen et al. (2001) key forecasting variables is the recent deviation of turnover 

from its trend. It turns out that firms that experience larger increases in turnover relative to 
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trend experience more negative skewness; Dturnover denotes the detrended turnover which 

is the average monthly share turnover in a given stock, defined as shares traded divided by 

shares outstanding over the period. Chen et al. (2001) find that when past returns have 

been high, skewness is forecasted to become more negative, while stocks with low ratios of 

book value to market value are also forecasted to have more negative skewness. Following 

their arguments, in the context of a bubble model, high past returns or a low book-to-market 

value imply that the bubble has been building up for a long time, so that there is a larger 

drop when it pops and prices fall back to fundamentals. In this respect, we also include 

Returns, which are the cumulative returns on a given stock also measured over the fiscal 

year t, and M arket to Book calculated as the market to book value of equity at the end of 

fiscal year t. Chen et al. (2001) control for volatility to address the concern that skewness 

might be correlated with volatility (Campbell and Hamao, 1992). More specifically, our 

control variables include Sigma which is the standard deviation of a given stock’s weekly 

returns, measured over the fiscal year t. We also control for Size calculated as the logarithm 

of the firm’s stock market capitalization at the end of period t.

For the traditional crash risk measure we compute CRASH using Eq. (7) as well as 

N CSKEW for completeness purposes. For CEQ regression analysis we pool the data per 

Fama and French (1997) 12 industries basis to estimate industry-year coefficients using Eq. 

(3) and using the 0, 1th quantile estimates of Eq. (2), we estimate the CEQ - CRASH 

indicator as of Eq. (4).7

7 We estimate the conditional extreme quantile following in step the code as per the Koenker (2016) 
quantreg package, as well as the code from Chernozhukov and Du (2008) and Chernozhukov and Fernandez- 
Val (2011).

3.1 Identification of crashes

Table 1 presents yearly information about the incidence and magnitude of crashes when 

the traditional binary CRASH risk measure is used using Eq. (7).

Interestingly, consistent with Hutton et al. (2009) and Andreou et al. (2022), it seems 
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that crashes are more prevalent than would have been expected under normality of firm­

specific returns. In particular, the sample consists of 62,657 firm-year observations, of which 

12,456 firm-years or 20.28% are classified as crashes which is far above the 5.07% under the 

Gaussian assumption. Also, the average weekly return of crashes throughout the period of 

investigation is substantial and equals -23%. Both the prevalence and the magnitude of 

the crashes indicate that stock price crashes are events with adverse consequences for the 

shareholders of a firm.

[Insert Table 1, here]

The large disparity between the empirical vs. theoretical incidence of crashes, and more 

importantly the persistent upward trend in the crash occurrences is what Andreou et al. 

(2022) have coined as the “stock price crash risk puzzle”. Our main argument is that the 

empirical observation of the upsurge in crash frequencies is a consequence of inadequate 

definitions and measurement of crash risk. Below we show that our estimates could provide 

partly an answer to this puzzle, although other reasons should also be taken into account 

for such high crash propensity.

Table 2 presents the same yearly information about the incidence and magnitude of 

crashes but when the crash risk measure is the CEQ - CRASH . The response variable Y 

are the idiosyncratic weekly returns pooled over all stocks within a given industry, in a given 

year. The control variables are those described above (Chen et al., 2001) that have been 

proposed by literature as having a predictive power in explaining the occurrence of a stock 

price crash. In any case, we have performed various robustness checks on the inclusion of 

controls and the results remain the same.8

8 All robustness checks are available upon request.

Based on the 0.1th CEQ- CRASH estimate, 6,447 firm-years or 10.48% are classified as 

crashes. These findings are also in line with prior evidence showing that simple returns are 

not normally distributed and exhibit negative skewness (Harvey and Siddique, 2000; Chen 

et al., 2001). Although the number of firm-years classified as crashes are far less when using 
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the CEQ - CRASH measure, the average returns during crashes throughout the period of 

investigation is again substantial and equals -24%. These two observations suggest that our 

crash risk definition captures only the substantially negative events for firms’ stock prices.

[Insert Table 2, here]

Table 3 presents the same yearly information about the incidence and magnitude of 

crashes as in Table 1 but the threshold used is adjusted to be comparable with the one in 

Table 2. Hence, in Eq. (7) ^r and ur are the mean and standard deviation of the pooled per 

industry weekly idiosyncratic returns. Again crashes are more prevalent than would have 

been expected under normality of firm-specific returns. In particular, 18.87% are classified 

as crashes and the average weekly return of crashes throughout the period of investigation 

is more substantial and equals -27%.

We first note that under our approach, there is no regular pattern between the percentages 

of firm-year crashes and market crashes. This suggests that the quantile method takes better 

account of pertinent information in the tails and lead to more reliable results. Furthermore, 

the traditional notion of crash creates a known upward bias, i.e., the absolute magnitude of a 

return needed to qualify as a crash is smaller for larger firms (Hutton et al., 2009).9 This is an 

artifact of its functional definition, or approximation that associates crashes with volatility as 

measured by variance. Our quantile method corrects for this bias. The number of recorded 

crashes and their upward trend still support the notion of increasing incidence, beyond the 

theoretical expectations. But the inflated view of this is moderated by our improved concept 

and definitions.There is a generally objectionable aspect to associating more crashes to more 

volatile assets prices. While such price movements may visit tail areas, it can be argued 

that characterization of these events as “crashes” is dubious. A relatively stable asset that 

improbably crashes to very rare low levels is a more credible view of a “crash”.

9 Note that we have checked whether excluding firm-years with a stock price less than $1 at the end of the 
fiscal year artificially creates the upward-trending frequency of crashes observed and the number of crashes 
is fairly steady.

[Insert Table 3, here]
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3.2 Expected shortfall analysis

While both CEQ - CRASH and CRASH tells us about the frequency of crashes a serious 

risk analysis also investigates the magnitude of crashes. Classical risk management literature 

usually proxies the frequency and magnitude of crashes with two main indicators, the Value 

at Risk (VaR) and the Expected Shortfall (ES) (Jorion, 2007). The difference between these 

two risk measures lies in how they handle risk assessment. VaR primarily focuses on the 

frequency of losses, while CVaR complements VaR by incorporating the average magnitude of 

potential losses. Despite their user-friendly nature, both VaR and CVaR are not exempt from 

drawbacks. The VaR, due to its lack of coherence, penalizes diversification efforts (Artzner, 

Delbaen, Eber, and Heath, 1999). On the other hand, CVaR estimates, being non-elicitable, 

pose challenges for backtesting purposes (Gneiting, 2011). Due to these factors, the Basel 

Committee on Banking Supervision has published the consultative paper “Fundamental 

Review of the Trading Book”10, formally recommending financial institutions to employ 

CVaR as the measure for market risk, while utilizing VaR for back-testing purposes.

10 https://www.bis.org/publ/bcbs265.pdf

The necessity of conducting a expected shortfall analysis arises from the importance of 

understanding post-threshold outcomes, as similar frequencies of events may exhibit vastly 

different magnitudes, particularly in cases of heavy-tailed distributions. To quantify our 

ES measure, we focus solely on weeks characterized by market crashes, utilizing either the 

CRASH or the CEQ - CRASH metric. Our approach involves computing a dollar-based 

ES indicator, which captures the disparity between a firm’s market capitalization during 

the crash event week and its market capitalization in the preceding week. This resulting 

value represents our approximate estimation of ES, indicating the dollar value lost during 

the event.

Figure 1 showcases the ES values for both CEQ - CRASH (depicted in blue) and 

CRASH (depicted in red). The results demonstrate a notable discrepancy in both the fre­

quency and magnitude of crashes between the two indicators. While the CEQ - CRASH 

18

https://www.bis.org/publ/bcbs265.pdf


indicator exhibits a lower frequency of crashes, its ES values are considerably larger, par­

ticularly in recent years. These findings validate the existence of highly leptokurtic returns, 

which are more accurately captured by the CEQ - CRASH indicator in terms of both 

frequency and magnitude.

[Insert Figure 1, here]

3.3 Conditional extremal quantile estimates

Figure 2 plots the CEQ estimates along with 90% pointwise CIs. The solid lines represent 

the extremal CIs and the dashed lines the normal CIs. The extremal CIs are computed by 

the extremal subsampling method described in Chernozhukov et al. (2016). The normal CIs 

are based on the normal approximation with the standard errors computed with the method 

proposed by Powell (1991).

The coefficients of the figures are derived as described in the previous section. However, to 

enable a simple visualization across time and industries, we take the average of the coefficients 

as follows: first, we average the coefficients of a specific industry along the time axis; then, 

we take the average of the Fama and French 12 industries.

Figure 2 shows that Size measured using market capitalization turns out positive and 

strongly significant in the left extreme, while it is negative and significant in the right ex­

treme. Market to Book is negative and significant in contrast to Chen et al. (2001) except 

for the right tail. Interestingly, we find that the detrended level of turnover (Dturnover) has 

a negative significant coefficient at the left tail, then becomes nonsignificant in the middle 

range, and then significantly positive at the right tail. It turns out Dturnover appears to 

have an impact (negative/positive) on extremal quantiles, whereas it has no effect on the 

typical quantiles. This is in contrast to the results of Chen et al. (2001), and highlights the 

importance of our methodology, whilst at the same time lends credence to the contribution 

of our paper in the crash risk literature. Sigma is negative significant and then positive 

significant at the two extremes, as expected. Finally, Stock Return (and its lagged values) 
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do not show any statistical significance, another piece of evidence in disagreement to the 

results reported in Chen et al. (2001) who find that return terms are always positive and 

strongly significant.

[Insert Figure 2, here]

Figure 3 plots the median bias-corrected QR estimates along with 90% pointwise CIs 

for the lower tail. The bias correction is also implemented using extremal subsampling 

with the same specifications (Chernozhukov and Fernandez-Val, 2011; Chernozhukov et al., 

2016). Due to the median bias-correction, the coefficient estimates are slightly different from 

Figure 2. As before, lagged returns have no impact on extreme risk. M arket to Book has a 

significant negative impact on left extremal quantiles. More surprisingly, the detrended level 

of turnover has negative and highly significant coefficients.

Comparing the CIs produced by the extremal inference and the normal inferences in 

Figure 2 show that they closely match in the central region, while it reveals that the normal 

CIs are often narrower than the extremal CIs in the tails. This discrepancy reveals that 

when the situation is extremal the normal CIs on the tails substantially underestimates the 

sampling variation and hence it might lead to a substantial undercoverage in the CIs. Figure 

2 reveals that differences between central and extremal inference occur only sufficiently far 

in the tails. In fact, as shown in Figure 3 normal CIs are indeed much more narrow than 

extremal CIs at t < 0.10 for stock returns, past stock returns and market to book. The 

discrepancies between extremal CIs and central CIs for the coefficient on Dturnover arise 

mostly when t < 0.05. This validates the use of extremal quantiles.

[Insert Figure 3, here]
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4 The effect of opacity and overinvestment on future 

stock price crashes

In the absence of appropriate monitoring, CEOs might undertake actions that maximize 

their own wealth to the detriment of shareholder welfare (e.g., Jin and Myers, 2006; Hutton 

et al., 2009; Kothari, Shu, and Wysocki, 2009; Bhagat and Bolton, 2013; Callen and Fang, 

2015; Andreou et al., 2016). In this vein, the breadth of the crash risk literature holds the 

view that the underlying reason that triggers stock price crashes is the hoarding of bad news 

mechanism, which is fueled by self-interested executives who strategically camouflage bad 

news via the financial reporting opacity and overinvestment channels. More specifically, the 

renowned agency model of Jin and Myers (2006) argues that information asymmetry between 

managers and shareholders, combined with investors’ incompletely secured property rights 

that result in lack of transparency, enables managers to accumulate bad news. Accordingly, 

the lack of transparency (i.e., opacity) increases, along with the amount of concealed nega­

tive information in accordance. However, the managers’ ability to conceal bad news is not 

unlimited. Therefore, when the hoarded bad news crosses a tipping point, negative informa­

tion comes out all at once. As a result, the accumulation of bad news leads to stock price 

crashes that suddenly spur in the market.

In the same agency spirit, the theory of Benmelech et al. (2010) draws motivation from 

the argument that CEOs, aiming to protect and/or increase the component of firm per­

formance which directly affects their financial rewards, exploit information asymmetries to 

manifest management’s self-interested behavior and persistently hide bad news by engaging 

in overinvestment. Particularly, when the growth rate of investment opportunities starts 

to decline, concerns about their personal wealth can incentivize CEOs to conceal adverse 

outcomes from shareholders. As a result, CEOs do not reveal the bad news to the investors 

in a timely fashion to retain their expectations and accordingly the level of stock price. 

According to this paradigm, CEOs are engaged in value-destroying investment decisions, 
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at least temporarily, until the revelation of the real growth rate of the firm’s investment 

opportunities, which triggers a stock price crash.

The theoretical explanations derived from the agency theory arguments, accentuate finan­

cial reporting opacity and overinvestment as the channels underpinning the relation between 

the hoarding of bad news and stock price crashes. These two channels enable managers to 

persistently camouflage bad news that has an adverse effect on their firm’s economic funda­

mentals, in the hope that subsequent events will turn in their favor to avoid experiencing 

the underlying negative consequences upon its public revelation to investors.

Following the above theoretical motivations, a large strand of studies venture to explain 

stock price crashes by identifying determinants consistent with the agency viewpoint. As­

sessing the literature, Andreou et al. (2022) conducted a qualitative meta-analysis of 94 

papers published since 2009 in prestigious finance, business and accounting journals and 

show the over-reliance of the extant literature on explanations rooted in the opacity and 

overinvestment channels as described by the agency theory. Admittedly the empirical re­

search has been very prolific in using opacity and overinvestment as the channels through 

of which managers strategically exploit to fuel the bad news mechanism. Notwithstanding, 

Andreou et al. (2022) argue about the inefficacy of opacity and overinvestment to rationalize 

the stock price crash risk phenomenon. Their investigation supports that both channels have 

attenuated in the past two decades for the average US-listed firm, whereas, in stark contrast, 

the frequency of stock price crashes has notably surged (as also shown in Table 3).

There are valid reasons to justify the attenuated role of the agency paradigm in explain­

ing stock price crashes in the US markets. For instance, investors have witnessed at the 

dawn of the new millennium an extensive list of corporations that collapsed due to manage­

rial misconduct, which resulted in policymakers increasing regulation on financial reporting 

and other business practices at publicly traded companies. Ergo, in the past two decades 

there has been an upsurge of corporate governance regulation, laws and exchange listing 

standards such as the Regulation Fair Disclosure in 2000, the Sarbanes-Oxley Act of 2002, 
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the Dodd-Frank Act of 2010, and the Corporate Governance Reform and Transparency Act 

of 2017 (Bhagat and Bolton, 2013; DeFond and Zhang, 2014). Accordingly, recent studies 

suggest that not only accrual-based earnings management experienced a significant decline 

after the passage of Sarbanes-Oxley Act (Cohen, Dey, and Lys, 2008), but that the new 

regulatory regime resulted in an improved corporate-governance system. It is also a fact 

that in the recent years public company boards have been facing an increasing demand for 

corporate governance effectiveness and quality. Investors-especially institutional investors 

and activists-continually exert pressure for constant development on governance trends.

Collectively, it is then natural to assume that the adoption of important regulation and 

laws in the last two decades have significantly contributed in the strengthening of corpo­

rate governance functions aiming to combat managerial opportunism and helped to protect 

shareholders’ welfare. The overall improvement in firms’ corporate governance should have 

limited the leeway for managers to persistently conceal negative information regarding their 

firms’ economic fundamentals to benefit themselves at the expense of shareholders through 

opacity and overinvestment. These developments could possibly explain to a great extent the 

evidence in Andreou et al. (2022) who report nonsignificant results for the crash-opacity and 

crash-overinvestment relations, especially in the post-Sarbanes-Oxley Act period. However, 

absence of evidence is not evidence of absence, thus we cannot rule out that more accurate 

measures of stock price crashes might reveal different results.

We perform logit regression analyses to examine the relation between opacity, overinvest­

ment and crash risk. The regression specifications are as follows:

Pr(Yj,t+1 = 1|x) = F(a + & Opacity^ + 02Overinvestmentj,t + yXj + FEyear + FEind) (8)

where Yj,t+1 is either CRASH or CEQ - CRASH measured in fiscal year t + 1, F is the 

logistic transformation, and all explanatory variables are measured in year t.11 Opacity 

11 For the needs of this analysis, following Andreou et al. (2022) we impose additional filtering rules, 
particularly, keeping common stocks (i.e., share codes 10 and 11) traded in NYSE, AMEX and NASDAQ, 
excluding firm-years with a stock price less than $1 at the end of the fiscal year and having fewer than 26 
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is calculated as the three-year moving sum of the absolute value of annual discretionary 

accruals, whereby discretionary accruals are estimated based on the modified Jones model 

(Dechow, Sloan, and Sweeney, 1995). Higher values of Opacity associate with firms that are 

more likely to be managing reported earnings to camouflage bad news. Overinvestment is 

calculated as the three-year moving sum of abnormal component of investment, whereby the 

expected levels of investment is estimated following the methodology in Richardson (2006). 

The vector X includes the following control variables: log(T otal assets) measuring the 

natural logarithm of total assets; F irm age calculated as the natural logarithm of the number 

of years that the firm is covered in the Compustat universe; Market to Book calculated as 

the market to book value of equity; Z score calculated as the fitted value using the updated 

coefficients of the model proposed by Altman; Return on equity calculated as the ratio 

of income before extraordinary items to book value of equity; and N cskew calculated as 

the negative of the third moment of idiosyncratic weekly returns within the fiscal year, 

divided by the associated standard deviation of firm-specific weekly returns raised to the 

third power-idiosyncratic weekly returns are estimated using Eqs (5) and (6). Finally, 

F Eyear feature year-fixed effects and F Eind industry-fixed effects where we use the Fama 

and French 12 industry classifications.

Table 4 shows summary statistics of the variables included in the logistic regression 

analysis. The mean value of CRASH is 0.211, suggesting that about 21% of these firm­

year observations experience at least one crash event. Similarly, the mean value of CEQ - 

CRASH is 0.094 suggesting that 9.4% of these firm-year observations experience at least 

one crash event under our modified crash measure. With respect to the two channels, the 

mean value (standard deviation) of Opacity is 0.231 (0.229) and the mean value (standard 

deviation) of Overinvestment is 0.020 (0.233). All variables have distribution characteristics 

very similar to those reported in Andreou et al. (2022) and previous literature.

[Insert Table 4, here]
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Table 5 reports the logistic regression results as per Eq. (8). The results in models 

(1)-(3) where the CRASH measure is employed are in accordance to the evidence reported 

in Andreou et al. (2022), whereby the coefficients of Opacity and Overinvestment are non­

significant. Interestingly, though, in models (4)-(6) where the CEQ - CRASH measure 

is employed both Opacity and Overinvestment turn out positive and statistically signif- 

icant.The evidence in models (4)-(6) is not conclusive that CEQ - CRASH is the best 

approach, but it is an indication that the traditional method of operationalizing CRASH 

is possibly generating many “false-positive” crashes which are disconnected from finance 

theories.

[Insert Table 5, here]

5 Conclusions

A variable coefficient conditional quantile model of tail risk demonstrates the value of 

more precise notions and counting of crashes, in terms of both frequency and magnitude. 

We find that this approach makes a difference, showing a smaller frequency of firm-specific 

crashes, and consequential magnitudes. Equipped with extremal inference, we venture far 

into the tails and study extremely low return quantiles. Some of our findings differ sharply 

from previous results for typical non-extremal quantiles. The traditional moment-based 

results and puzzles are shown to be artifacts of the approximations that presume (often 

implicitly) Gaussian distributions for stock returns. This is empirically unsupported. Our 

findings are robust to a set of alternative data analyses and modeling decisions, some dic­

tated by data limitations. The findings also shed light on the actual distribution of returns 

based on quantile estimation and rigorous inferential techniques. Our paper is the first, 

in the cross section setting, to examine the benefits of a non-Gaussian quantile approach, 

reaching findings that also apply to all other moment based approximations, with or without 

Gaussianity.
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The jump literature and similar, try to model existence of jumps, while other studied may 

try to explain why these jumps occur. Much of this literature is focused on time series aspects 

of returns. In contrast, we are characterizing the cross section elements of idiosyncratic 

returns, after removing of market and industry effects. This is more in the nature of a 

counting crashes, i.e.,the frequency of crashes that are firm specific. Since we are not trying 

to explain the time path of returns, idiosyncratic or otherwise, time series modeling issues are 

not central. Dynamic short-term effects are known to be separated-albeit related to-from 

long run, perhaps firm-specific managerial effects, which cross section studies identify. Ours 

is a cross sectional analysis, checked over many points in time. Of course, we acknowledge 

the importance of time series properties of variables.
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Appendix

A. Basics and notation

We review some basics on extremal conditional quantile regression using the notation of 

Chernozhukov and Fernandez-Val (2011).

Let a real random response variable of interest Y with a continuous distribution function 

FY (y) = Pr[Y < y]. A t-quantile of Y is QY (t) = inf {y : FY (y) > t} for some t G (0,1). 

Let X be a d-dimensional vector of covariates related to Y (typically transformations of 

original regressors, including a constant), and FY(y|x) = Pr[Y < y|X = x] denote the 

conditional distribution function of Y given X = x. The conditional t -quantile of Y given 

X = x is then QY(t|x) = inf {y : FY (y|x) > t} for some t G (0, 1).

The conditional quantile function QY(t|x) is called the t -quantile regression function 

and can be used to measure the effect of covariates on outcomes, both at the center and at 

the upper and lower tails of the outcome distribution. Whenever the probability index t is 

either close to zero or close to one then it is called the conditional extremal t -quantile.

The theory for extremal quantile regression assumes that the tails of the conditional 

distribution of the outcome variable have Pareto-type behavior, i.e. (lower) tails decay 

approximately as a power function (Gnedenko, 1943; deHaan, 1970).

Define a random variable U as U = Y, if the lower end-point of the support of Y is 

—to, and U = Y — QY (0), if the lower end-point of the support of Y is QY (0) > —to. The 

quantile function of U, denoted by QU then has lower end-point QU (0) = —to or QU (0) = 0.

Then, the assumption that the distribution function FU and its quantile function QU ex­

hibit Pareto-type behavior in the tails can be formally stated as the following two equivalent 

conditions:

Fu (u) ~ L (u) • u-1/^asu & Qu (0), (9)
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Qu (t) ~ L (t) • t ^ as t & 0, (10)

for some real number £ = 0, where L (u) is a nonparametric, slowly-varying function at 

QU (0), and L (t) is a nonparametric slowly-varying function at 0. The prime examples of 

slowly-functions are the constant function L (y) = L and the logarithmic function. The 

number £ is the so-called extreme value index. The extreme value index is very important 

since this generally controls the tail behavior of the distribution function. If £ < 0, the 

right-tail is short, i.e. the right endpoint is finite. This class is called the Weibull class and 

contains among others the uniform and reverse Burr CDFs. If £ > 0, the right-tail is heavy. 

Examples in this class (Frechet class) are the Pareto, Burr, Student’s and other. If £ = 0, 

the right-tail is of an exponential type, and the right endpoint can then be either finite or 

infinite. This class (Gumbel class) encompasses the exponential, normal, log-normal, gamma 

and classical Weibull CDFs.

B. Inference

Let the conditional quantile function of Y given X = x given by the linear model:

QY (t | x) = x0 > (t ), for all t G (0, n], and somen G (0,1], (11)

and for every x in the support of X . This linear model is computationally convenient and it 

has good approximation properties with varying quantile effects.

Let (Y, X) a sample of size T. Then, the t-quantile estimator of QY (t |x) and ^ (t) solves:

QY(t|x) = x (3(t),

T

P(t) G arg min X Pt (Y - Xtf), 
pER ( *
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where pT (u) = (t — 1 (u < 0)) u is the asymmetric absolute deviation function of Fox 

and Rubin (1964). The median case was introduced by De Laplace (1818) and the general 

quantile formulation by Koenker and Bassett Jr (1978).

The analysis of the properties of the estimators of extremal quantiles relies on extreme 

value theory which uses sequences of quantile indexes {tt}^=1 that change with the sample 

size T. A sequence of quantile index and sample size pairs {tt, T}^=1 is said to be an extreme 

order sequence if tt & 0 and ttT ^ k G (0, to) as T ^ to; an intermediate order sequence 

if tt & 0 and ttT ^ to as T ^ to; and a central order sequence if tt is fixed as T ^ to. 

The extreme order sequence leads to an extreme value law in large samples, whereas the 

intermediate and central sequences lead to normal laws. The extreme value law provides a 

better approximation to the extremal quantile regression estimators.

Given the basics of the previous section, the main assumption for inference is that the 

response variable Y is conditioned on a varying parameter linear index X^e, with Pareto- 

type tails as formally stated in conditions (C1) and (C2) of Chernozhukov and Fernandez-Val 

(2011). This allows covariates to impact the extremal quantiles and the central quantiles 

very differently as well as it allows for a differential impact of covariates across various 

extremal quantiles. This implies conditional heteroskedasticity that is common in economic 

applications.

Moreover, the sampling conditions of Chernozhukov and Fernandez-Val (2011) hold. 

Specifically, data are either i.i.d. or stationary and weakly dependent with extreme events 

satisfying a non-clustering condition. In particular, the sequence {(Yt, Xt)}tT=1 is assumed 

to form a stationary, strongly mixing process with geometric mixing rate that satisfies the 

condition that curbs clustering of extreme events.12 . This assumption leads to limit distri­

butions as if independent sampling had taken place. The assumption (C3) of Chernozhukov 

and Fernandez-Val (2011) about compactness of X, non-generacy and non-lattice also holds.

12 The non-clustering condition is of the Meyer (1973) type and states that the probability of two extreme 
events co-occurring at nearby dates is much lower than the probability of just one extreme event. For 
example, it assumes that a large market crash is not likely to be immediately followed by another large 
crash.
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Given the above assumptions the canonically -normalized QR statistic is given by:

ZT (kT) := AT ^/b (tT ) - ^ (tT )J for AT := 1/QU(1/T).

This is generally infeasible for inference because it depends on the unknown canonical 

normalization constant AT . This constant can only be estimated consistently under strong 

parametric assumptions and an additional estimation procedure.

The self-normalized QR statistic is given by:

ZT (kT) := AT \ P (tT) - ^ (tT) ) for AT :=
v^kT

XTP (mTT) — P (tt)

Twhere XT = T-1 t=1 Xt and m is a real number such that k(m - 1) > dx for any integer 

k > 1 and kT = ttT ^ k, as T ^ to. This is always feasible because it uses a normalization 

that only depends on the data.

Chernozhukov and Fernandez-Val (2011) show that for kT ^ k > 0, as T ^ to.

ZT (kT) ^d -Z^ (k)

where for x = 1 if £ < 0 and x = —1 if C > 0,

Z^ (k) := x • arg min
^

—kE [X]' z + X {x/z — x (V — k-) x:y}+

where {Xt, Xt,...} is an i.i.d. sequence with distribution FX ;{r1, r2,...} := {E1, E1 + E2,...}; 

(E1 , E2 , ...) is an i.i.d sequence of standard exponential variables that is independent of

{Xt, Xt, ...} ;and {y}+ := max {0, y}. Furthermore,

ZT (kT) ^d Z^ (k) :=
_________________ VkZ^ (k)_________________

E [X] Zz^x, (mk) — Z^ (k) J + x • (mA — 1) k-^
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o o
Consider general linear functions of the coefficient vector ^(t), ^0^(t); for some nonzero

J / TTT>r7„ 1 1 J 1 J 1 ’ J ’ e i f r7 C 1 \ 1 / I r7 / 1 \vector ^ G Rdx, based on the extreme value approximations of ^Z^ (k) and ^Z^ (k).

Chernozhukov and Fernandez-Val (2011) construct asymptotically median-unbiased estima­

tors and a (1 — a) % confidence interval for ^'P(t). Computation of the critical values of 

the limit extreme value distributions can be achieved through an analytical computation 

which requires a consistent estimation of £ based on a regression analogue of the Pickands 

or Hill estimator and of the scale parameter. In practice, it is convenient to compute the 

quantiles of the extreme value distributions using simulation or resampling methods, instead 

of an analytical method. Subsampling has the advantage that it does not require the estima­

tion of £, and is consistent under general assumptions of Chernozhukov and Fernandez-Val 

(2011). The extremal bootstrap although again needs to consistently estimate £ and y, it 

is computationally less demanding than the analytical inference procedure (Chernozhukov 

et al., 2016).
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Figures

Figure 1. Expected shortfall
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Figure 2. Conditional extremal quantile estimates.
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Figure 3. Conditional extremal quantile estimates for the lower tails
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Tables

Table 1. Yearly incidence and magnitude of stock price crashes under CRASH
Entries report yearly information about the incidence and magnitude of crashes. The crash risk 
measure is a binary variable that equals 1 when firm experiences at least one crash week during 
the fiscal year, and zero otherwise. A crash week is identified when the firm-specific weekly return 
is 3.09 standard deviations below the average firm-specific weekly returns for the entire fiscal year 
where 3.09 is chosen to generate a frequency of 0.1% in the normal distribution.

Year Number of 
observations

Number of 
crashes

Percentage of 
crashes

Average 
returns during 

crashes

Standard 
deviation of 

returns during 
crashes

Mean Ncskew 
during crashes

2000 4,706 710 15.09 -0.34 0.16 0.11

2001 4,161 647 15.56 -0.28 0.15 0.16

2002 3,785 729 19.26 -0.29 0.15 0.13

2003 3,542 564 15.92 -0.20 0.11 0.23

2004 3,533 730 20.67 -0.22 0.13 0.42

2005 3,449 700 20.29 -0.21 0.11 0.51

2006 3,359 654 19.47 -0.21 0.13 0.42

2007 3,310 667 20.15 -0.25 0.13 0.41

2008 3,115 638 20.18 -0.28 0.16 -0.05

2009 2,924 451 15.42 -0.21 0.14 0.13

2010 2,820 489 17.34 -0.19 0.12 0.47

2011 2,738 508 18.55 -0.21 0.13 0.24

2012 2,654 579 21.82 -0.20 0.14 0.52

2013 2,664 584 21.92 -0.19 0.12 0.51

2014 2,755 619 22.47 -0.21 0.13 0.41

2015 2,718 655 24.09 -0.24 0.15 0.41

2016 2,611 608 23.29 -0.23 0.17 0.36

2017 2,582 661 25.60 -0.21 0.13 0.57

2018 2,621 652 24.88 -0.24 0.16 0.55

2019 2,610 611 23.41 -0.27 0.16 0.67

Totals 62,657 12,456 20.28 -0.23 0.14 0.36
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Table 2. Yearly incidence and magnitude of stock price crashes
Entries report yearly information about the incidence and magnitude of crashes. The crash risk 
measure is the CEQ-CRASH. Focusing on the 0.1th quantile estimate our adjusted crash measure 
is that if a firm i for a given fiscal year t experiences at least one firm-specific weekly return below 
a CEQ estimated threshold then it is classified as a crashed firm.

Year Number of 
observations

Number of 
crashes

Percentage of 
crashes

Average 
returns during 

crashes

Standard 
deviation of 

returns during 
crashes

Mean Ncskew 
during crashes

2000 4,706 342 7.27 -0.35 0.18 -0.51

2001 4,161 392 9.42 -0.30 0.17 -0.36

2002 3,785 360 9.51 -0.29 0.19 -0.69

2003 3,542 352 9.94 -0.22 0.13 -0.47

2004 3,533 341 9.65 -0.23 0.15 -0.02

2005 3,449 330 9.57 -0.22 0.14 0.04

2006 3,359 369 10.99 -0.20 0.15 -0.01

2007 3,310 332 10.03 -0.26 0.17 -0.09

2008 3,115 318 10.21 -0.31 0.20 -0.93

2009 2,924 276 9.44 -0.23 0.16 -1.08

2010 2,820 277 9.82 -0.21 0.14 -0.26

2011 2,738 325 11.87 -0.22 0.14 -0.29

2012 2,654 314 11.83 -0.22 0.14 0.09

2013 2,664 280 10.51 -0.19 0.13 -0.23

2014 2,755 309 11.21 -0.22 0.17 -0.16

2015 2,718 280 10.30 -0.26 0.17 -0.33

2016 2,611 332 12.72 -0.18 0.16 -0.10

2017 2,582 277 10.73 -0.22 0.14 0.04

2018 2,621 331 12.63 -0.21 0.17 -0.04

2019 2,610 310 11.88 -0.25 0.17 0.07

Totals 62,657 6,447 10.48 -0.24 0.16 -0.27
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Table 3. Yearly incidence and magnitude of stock price crashes under adjusted CRASH 
Entries report yearly information about the incidence and magnitude of crashes. The crash risk 
measure is a binary variable that equals 1 when firm experiences at least one crash week during the 
fiscal year, and zero otherwise. A crash week is identified when the firm-specific weekly return is 
3.09 standard deviations below the average industry weekly returns for the entire fiscal year where 
3.09 is chosen to generate a frequency of 0.1% in the normal distribution.

Year Number of 
observations

Number of 
crashes

Percentage of 
crashes

Average 
returns during 

crashes

Standard 
deviation of 

returns during 
crashes

Mean Ncskew 
during crashes

2000 4,706 942 20.02 -0.37 0.13 -1.35

2001 4,161 833 20.02 -0.32 0.13 -1.46

2002 3,785 797 21.06 -0.33 0.13 -1.45

2003 3,542 519 14.65 -0.24 0.11 -1.79

2004 3,533 568 16.08 -0.26 0.12 -1.61

2005 3,449 626 18.15 -0.24 0.10 -1.61

2006 3,359 601 19.89 -0.24 0.12 -1.64

2007 3,310 695 20.99 -0.28 0.12 -1.76

2008 3,115 731 23.47 -0.33 0.15 -1.89

2009 2,924 436 14.91 -0.25 0.15 -2.19

2010 2,820 385 13.65 -0.23 0.12 -1.86

2011 2,738 542 19.79 -0.25 0.11 -1.59

2012 2,654 526 19.82 -0.24 0.11 -1.67

2013 2,664 432 16.22 -0.23 0.12 -1.93

2014 2,755 568 20.62 -0.25 0.11 -1.78

2015 2,718 606 22.30 -0.28 0.13 -1.70

2016 2,611 492 18.84 -0.27 0.16 -1.63

2017 2,582 486 18.82 -0.26 0.13 -1.85

2018 2,621 476 18.16 -0.29 0.15 -2.04

2019 2,610 574 21.99 -0.32 0.15 -1.77

Totals 62,657 11,835 18.87 -0.27 0.13 -1.73
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Table 4. Summary statistics
This table presents summary statistics of the stock price crash measures (CRASH and CEQ - 
CRASH), Opacity, Overinvestment, and control variables. The CRSP-Compustat data set covers 
the period 2000-2019. The number of observations for each variable corresponds to the number of 
non-missing observations for the variables included in the regression models. For variable definitions 
and details of their computation, see Andreou et al. (2022).

Variable Number of 
observations

Mean Std Dev Lower 
quartile

Median Upper 
quartile

CRASH 33,698 0.211 0.408 0.000 0.000 0.000

CEQ-CRASH 33,698 0.094 0.292 0.000 0.000 0.000

Opacity 33,698 0.231 0.229 0.022 0.160 0.279

Overinvestment 33,698 0.020 0.233 -0.423 -0.016 0.087

log(Total assets) 33,698 6.533 1.957 1.483 6.508 7.880

Firm age 33,698 3.034 0.636 1.609 2.996 3.555

Zscore 33,698 5.557 2.011 4.556 4.863 5.624

Market to Book 33,698 3.269 3.809 -7.790 2.218 3.735

Return on equity 33,698 0.034 0.423 -2.539 0.093 0.167

Detrended turnover 33,698 0.001 0.020 -0.058 0.000 0.007

Ncskew 33,698 -0.016 0.783 -4.822 -0.053 0.361
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Table 5. The effect of opacity and overinvestment on future stock price crashes
This table reports logistic regression estimates for the relation between opacity, overinvestment, 
and stock price crashes. Estimates are derived using the CRSP-Compustat universe for the period 
2000-2019. The dependent variable in models (1)-(3) is CRASH estimated as per Eq. (7) and 
measured in fiscal year t+ 1. The dependent variable in models (4)-(6) is CEQ - CRASH estimated 
as per Eqs. (2) and (3) and measured in fiscal year t + 1. The explanatory variables are measured 
in fiscal year t or earlier. The estimates include a constant and different conditional fixed effects (as 
indicated at the bottom of the table) whose coefficients are suppressed. Industry fixed effects are 
defined based on the Fama-French 12-industry classification. All continuous variables are winsorized 
at the 1st and 99th percentiles. Robust standard errors clustered at the firm level are shown in 
parentheses. The symbols ***, **, and * denote two-tailed statistical significance at the 1%, 5%, 
and 10% level, respectively.

CRASH EQR-CRASH

(1) (2) (3) (4) (5) (6)

Opacity 0.074 0.065 0.295*** 0.271**
(0.066) (0.067) (0.107) (0.109)

Overinvestment 0.067 0.058 0.193** 0.164*
(0.062) (0.063) (0.092) (0.093)

log(Total assets) 0.037*** 0.033*** 0.035*** 0.084*** 0.070*** 0.079***
(0.009) (0.009) (0.009) (0.021) (0.021) (0.021)

Firm age -0.098*** -0.099*** -0.098*** -0.091** -0.097** -0.090**
(0.027) (0.027) (0.027) (0.044) (0.044) (0.044)

Market to Book 0.009** 0.009** 0.009** -0.007 -0.006 -0.007
(0.004) (0.004) (0.004) (0.006) (0.006) (0.006)

Zscore 0.011 0.012 0.012 0.014 0.017 0.016
(0.008) (0.008) (0.008) (0.014) (0.014) (0.014)

Return on equity 0.083** 0.082** 0.085** -0.204*** -0.216*** -0.201***
(0.036) (0.036) (0.036) (0.047) (0.048) (0.048)

Detrended turnover 0.066 0.024 0.032 2.074* 1.962* 1.976*
(0.707) (0.711) (0.710) (1.072) (1.081) (1.070)

Ncskew 0.036*** 0.036*** 0.036*** 0.018 0.018 0.018
(0.017) (0.017) (0.017) (0.027) (0.027) (0.027)

Ncskew (t - 1) 0.063*** 0.063*** 0.063*** -0.001 -0.001 -0.001
(0.018) (0.018) (0.018) (0.026) (0.026) (0.026)

Fixed effects
Year, Year, Year, Year, Year, Year,

Industry Industry Industry Industry Industry Industry
No. of observations 33,285 33,285 33,285 33,285 33,285 33,285
Pseudo R-squared 0.012 0.012 0.012 0.059 0.059 0.059
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