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Abstract. We construct a general framework for tropical differential equations based on
idempotent semirings and an idempotent version of differential algebra. Over a differential
ring equipped with a non-archimedean norm enhanced with additional differential informa-
tion, we define tropicalization of differential equations and tropicalization of their solution
sets. This framework includes rings of interest in the theory of p-adic differential equations:
rings of convergent power series over a non-archimedean normed field. The tropicalization
records the norms of the coefficients. This gives a significant refinement ofGrigoriev’s frame-
work for tropical differential equations. We then prove a differential analogue of Payne’s
inverse limit theorem: the limit of all tropicalizations of a system of differential equations is
isomorphic to a differential variant of the Berkovich analytification.

1. Introduction

Algebraic ODEs are systems of differential equations formed from polynomial
expressions in an indeterminate function f and its derivatives. The algebraic the-
ory was first developed by Ritt [24] and collaborators. Many important classes of
models from the natural sciences, such as chemical reaction networks, are algebraic
ODEs, and in pure mathematics algebraic ODEs appear in many parts of geometry,
including periods and monodromy. Understanding their solutions and singularities
has many important consequences in pure and applied mathematics.

In this paper we pursue the further development of the tropical mathematics tool
set for studying differential equations. Tropical geometry is a field at the interface
between combinatorics, computational algebra/geometry, and algebraic geometry.
One of the foci of tropical geometry is the study of non-archimedean amoebae
of affine varieties over non-archimedean normed fields, which can be viewed as
combinatorial shadowsof varieties. Tropical geometry has provided important com-
putational and theoretical tools for algebraic geometry, and we hope to open the
door to similar applications in differential algebra.
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In [11] Grigoriev first introduced a theory of tropical differential equations
and defined a framework for tropicalizing algebraic ODEs over a ring of formal
power series R[[t]]. In this framework, one tropicalizes a differential equation by
recording the leading power of t in each coefficient, and one tropicalizes a power
series solution simply recording the powers of t that are present.

Solutions to a differential equation tropicalize to solutions to its tropicalization,
and Grigoriev asked if all solutions to the tropicalization of an equation arise as
tropicalizations of classical solutions; i.e., is the map from classical solutions to
tropical solutions surjective? This is the differential equation analogue of the Fun-
damental Theorem of Tropical Geometry [22, Theorem 3.2.3], and this question
was answered positively by Aroca et al. in [1] (assuming R is an uncountable alge-
braically closed field of characteristic 0). These ideas have also been extended to
the case of algebraic partial differential equations in [6].

Paralleling the role of Gröbner theory in defining tropical varieties in the non-
differential setting, [7] and [12] define initial forms and develop aGröbner-theoretic
approach to Grigoriev’s tropical differential equations. A similar approach is also
presented in [4], which also gives an illuminating account of tropical ordinary and
partial differential equations (in part based on a preliminary report of the algebraic
perspective presented here).

A limitation present in all of the above work is that the tropicalization construc-
tion studied there records only the powers of t present in a power series solution;
it does not record any information about the norms of the coefficients. Thus any
information about convergence of power series solutions is lost when using Grig-
oriev’s tropicalization. In the theory of p-adic differential equations, one of the
central problems is to understand the radii of convergence of formal power series
solutions, which are controlled by the norms of the coefficients.

1.1. Results

Themain purpose of thiswork is to build a refinement ofGrigoriev’s framework that
records and incorporates the norms of the coefficients in a power series solution
so that convergence information is encoded in tropical solutions. This requires
developing a theory of differentials on idempotent semirings in which the usual
Leibniz rule is weakened to a tropical Leibniz rule, and this development includes
constructing free tropical differential algebras (a tropical analogue of Ritt algebras).

We give a brief explanation of our framework here. A tropical pair S = (S1 →
S0) is a tropical differential semiring S1 and a homomorphism to a semiring S0. The
coefficients of tropical differential equations live in S0. Solutions live in S1 (where
they can be differentiated), but the condition that tests if something is a solution
takes place in S0. We think of S0 as recording the leading behavior of elements of
S1. The primary example of a tropical pair has S1 = T[[t]] (the semiring of formal
power series with tropical real number coefficients), S0 = R

2
lex ∪ {∞} is a rank 2

version of the tropical semiring, and the map S1 → S0 sends atn + · · · to (n, a).
We now state out main results informally.
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Theorem A. We construct a category of S-algebras, and to a set E of tropical
differential equations over S we associate an object of this category such that
morphisms to an S-algebra T are in natural bijection with solutions to E with
values in T.

A system of algebraic differential equations over a field k is represented in
coordinate-free form by a differential k-algebra A. To tropicalize A, we need two
pieces of additional data:

(1) A non-archimedean norm on k taking values in an idempotent semiring S0, and
a differential enhancement of the norm, which is a lifting to a map A → S1
that commutes with the differential. (These notions are defined in Sects. 2.3 and
4.7.)

(2) A system of generators xi ∈ A so that A is presented as a quotient of a Ritt
algebra k{x1, . . . , xn} � A.

Any differential algebra A admits a universal presentation k{xa | a ∈ A} → A.
Tropicalizing this presentation, we find:

Theorem B. The tropicalization of A with respect to its universal presentation is
the colimit of its tropicalizations with respect to finite presentations.

Finally, we provide evidence for the appropriateness of our definitions and
framework by proving a differential analogue of Payne’s inverse limit theorem [23].
Recall that, given an algebra A over a non-archimedean field k, the underlying set
of the Berkovich analytification of Spec A is the set of all multiplicative seminorms
on A that are compatible with the norm on k. Now suppose that k is a differential
ring, the norm v on k has a differential enhancement ṽ taking values in a pair S, and
A is a differential algebra over k. In this setting, given an S-algebraT = (T1 → T0),
we can consider the set of all pairs (w, w̃) where w : A → T0 is a multiplicative
seminorm on A compatible with v and w̃ : A → T1 is a differential enhancement
of w compatible with ṽ. We call this the T-valued differential Berkovich space of
A, denoted BerkT(A).

Theorem C. There is auniversalmultiplicative seminormwithdifferential enhance-
ment on A, compatible with the norm on k and it takes values in the tropicalization
of the universal presentation of A. Hence the tropicalization of the universal pre-
sentation corepresents the functor T �→ BerkT(A).

Combining this with Theorem B, we immediately obtain our differential ana-
logue of Payne’s inverse limit theorem.

Corollary D. Let k be a differential ring equipped with a non-archimedean semi-
norm and differential enhancement taking values inS, let A be a differential algebra
over k, and let T be an S-algebra. The set BerkT(A) is isomorphic to the inverse
limit of the T-valued solution sets of the tropicalizations of all finite presentations
of A.
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2. Semirings and non-archimedean seminorms

Several algebraic foundations for tropical geometry have been developed, including
hyperfields [2,15,18,25] Lorscheid’s blueprints [16,17], and idempotent semirings
[3,5,8–10,13,14,19–21,26]. For the present work, we find that idempotent semir-
ings provide the most convenient language for the development of our theory.

2.1. Idempotent semirings

An idempotent semiring is a semiring (S,⊕,⊗) in which addition is an idempotent
operation: a ⊕ a = a. An idempotent semiring carries a canonical partial order
defined by a ≤ b if a⊕ b = b. The additive unit 0S is the unique minimal element.
In a semiring, we will often write the product a ⊗ b simply as ab.

Example 2.1. (1) Let T = R≥0 with the operations a ⊗ b = ab (ordinary multi-
plication), and a ⊕ b = max(a, b). Note that the map a �→ −log(a) gives an
isomorphism to the usual tropical semiring (R ∪ {∞},min,+).

(2) Let Tn denote (R>0)
n ∪ {(0, . . . , 0)}. We define a ⊕ b = max(a, b), where the

maximum is taken with respect to the lexicographic ordering on the positive
orthant, and we define a ⊗ b to be component-wise multiplication.

(3) The boolean semiringB is the sub-semiring {0, 1} ⊂ T. Note thatB is the initial
object in idempotent semirings.

2.2. Congruences and bend relations

A quotient of a ring R is defined by an equivalence relation on R such that the ring
structure descends to the set of equivalence classes. Such equivalence relations are
of course in bijection with ideals via the correspondence

ideal I �→ equivalence relation {a ∼ b if a − b ∈ I },
equivalence relation K �→ ideal {a − b | a ∼K b}.

This correspondence does not hold for semirings in general, and so we must work
with the equivalence relations themselves when defining quotients.

Recall that a congruence on a semiring S is an equivalence relation K ⊂ S× S
that is also a subsemiring. If K is a congruence on S, then the semiring structure on
S descends to a well-defined semiring structure on S/K . Moreover, if f : S � S′
is a surjective homomorphism of semirings then its kernel congruence ker f =
{(a, b) | f (a) = f (b)} is indeed a congruence and S/ker f ∼= S′.

Given a set of binary relations X ⊂ S × S, the congruence it generates can be
described concretely. First take the subsemiring of S × S generated by X , and then
take the transitive and symmetric closure of this. See [9, Lemma 2.4.5].

We now come to a class of congruences on idempotent semirings that are essen-
tial in tropical geometry. Given an expression a1 ⊕ a2 ⊕ · · · ⊕ an in an idempotent
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semiring S, the bend relations of this expression, written B(a1 ⊕ · · · ⊕ an), is the
congruence on S generated by the relations

Bj :
n

⊕

i=1

ai ∼
n

⊕

i=1,i �= j

ai

for each j = 1 . . . n. As special cases, when n = 2, B(a ⊕ b) is generated by the
single relation a ∼ b. When n = 3, B(a ⊕ b ⊕ c) is generated by the relations

a ⊕ b ⊕ c ∼ a ⊕ b ∼ a ⊕ c ∼ b ⊕ c.

The motivation for the bend relations stems from the following fact. Recall
that the tropical hypersurface of a tropical polynomial f ∈ T[x1, . . . , xn] can be
described away from the boundary of T

n as the locus where the graph of f is
non-linear (with respect to the R ∪ {∞} parametrization of T).

Proposition 2.2. (Prop. 5.1.6 of [9])Givena tropical polynomial f ∈ T[x1, . . . , xn],
the tropical hypersurface of f is precisely the set of homomorphismsT[x1, . . . , xn]/
B( f ) → T.

2.3. Non-archimedean seminorms

A non-archimedean multiplicative seminorm on a ring R is a map v from R to the
tropical semiring T = (R≥0,⊕ = max,×) that is a homomorphism of multiplica-
tive monoids, has v(0) = 0, and satisfies the ultrametric triangle inequality,

v(a + b) ≤ v(a) ⊕ v(b).

The map −log : R≥0 → R ∪ {∞} identifies non-archimedean seminorms (always
assumed to be multiplicative) with valuations, and so we will use the terms inter-
changeably as we adopt the following generalization.

Definition 2.3. A non-archimedean seminorm on a ring R is an idempotent semir-
ing T and a map v : R → T satisfying

(1) v(0) = 0T ,
(2) v(1) = v(−1) = 1T ,
(3) v(ab) = v(a)v(b),
(4) v(a + b) ⊕ v(a) ⊕ v(b) = v(a) ⊕ v(b).

Remark 2.4. Condition (4) generalizes the ultrametric triangle inequality, as it says
that v(a + b) ≤ v(a) ⊕ v(b) in the canonical partial order on T . This definition
thus becomes equivalent to the usual definition of a Krull valuation when the partial
order is a total order, such as when T = Tn . This condition can also be written
more symmetrically as v(a)⊕ v(b)⊕ v(c) = v(a)⊕ v(b) whenever a+ b+ c = 0
in A, since v(c) = v(a + b).

For use later on, we record the following simple observation. A rank 1 valuation
v : R → T can be extended to a rank 2 valuation on the the ring R{{t}} of Puiseux
series (or the subrings of formal Laurent series or polynomials) by the formula

a0t
n0 + · · · �→ (en0 , v(a0)) ∈ T2. (2.1)
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2.4. Tropical differential semirings

Recall that a differential ring is a ring R equipped with an additive map d : R → R
that satisfies the Leibniz relations d(ab) = (da)b + a(db). This relation for 2-
fold products easily implies that d also satisfies an analogous relation for n-fold
products. We will call these relations the strict Leibniz relations, and a map d
satisfying them will be called a strict differential.

In this work we propose that differentials on idempotent semirings should be
required to satisfy a somewhat weaker condition than the strict Leibniz relations.
Given an idempotent semiring S, an additive map d : S → S is said to be a tropical
differential if it satisfies the tropical Leibniz relations: for any pairs of elements
x, y ∈ S the bend relations of the expression

d(xy) ⊕ xd(y) ⊕ yd(x)

hold. Note that we can view the tropical Leibniz relations as the tropicalization of
the strict Leibniz relations.

Definition 2.5. A tropical differential semiring is an idempotent semiring equipped
with a tropical differential. A morphism of tropical differential semirings

f : (S, dS) → (T, dT )

is a morphism of semirings such that f (dS(x)) = dT ( f (x)) for all x ∈ S.

Remark 2.6. Just as the strict Leibniz relations for 2-fold products imply the strict
Leibniz relations for n-fold products, such as

d(xyz) = (dx)yz + x(dy)z + xy(dz),

it is possible to derive n-fold tropical Leibniz relations from the 2-fold tropical
Leibniz relations. I.e., in a tropical differential semiring the bend relations of any
expression

d(x1 · · · xn) ⊕
⊕

i

x1 · · · xi−1(dxi )xi+1 · · · xn

hold. However, the tropical Leibniz relations are distinct from the strict Leibniz
relations in two important ways. (1) A strict differential d automatically satisfies
the tropical Leibniz relations, but there are many tropical differentials that are not
strict. (2) The differential of a product xy is constrained by the tropical Leibniz
relations and the differentials of x and y, but it is not uniquely determined by them.

Example 2.7. (1) Let S be an idempotent semiring and let d be either the zero map
or the identity; these are each strict differentials on S.

(2) Consider the idempotent semiring B[[t]] of formal power series with coeffi-
cients in B. This can be identified with the power set of N by sending a power
series to the set of exponents appearing in it; sum corresponds to union, and the
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product corresponds to Minkowski sum. The map defined by tn �→ tn−1 (for
any n ≥ 1 ) is a strict differential. If p is a prime, the map defined by

tn �→
{

tn−1 n ≥ 1 and p � n
0 n = 0 or p | n

is a tropical differential that is not strict.
(3) Consider the idempotent semiring of formal tropical power series T[[t]]. It can

be endowed with a strict differential, d0, defined by

d0(t
n) =

{

tn−1 n ≥ 1
0 n = 0.

(4) More generally, if v : N → T is a non-archimedean seminorm, then there is a
non-strict tropical differential dv defined by,

dv(t
n) =

{

v(n)tn−1 n ≥ 1
0 n = 0.

(2.2)

Indeed, this satisfies the tropical Leibniz relations since

dv(t
ntm) ⊕ dv(t

n)tm ⊕ tndv(t
m) = (v(n + m) ⊕ v(n) ⊕ v(m))tn+m−1,

and the coefficient v(n + m) ⊕ v(n) ⊕ v(m) on the right satisfies the bend
relations (the argument is essentially the same for k-fold products with k > 2).
Note that v could be either a p-adic norm, or a degenerate p-adic norm where
v(n) = 0 if p divides n, and 1 otherwise.

Remark 2.8. While B is the initial objects in the category of idempotent semirings,
tropical differential semirings do not admit an initial object because the tropical
Leibniz rule does not determine d(1).

2.5. Differential congruences

Let (S, d) be a semiring equipped with an additive map d : S → S. A differential
congruence on S is a congruence K ⊂ S×S that is closed under d; i.e., if (a, b) ∈ K
then (da, db) ∈ K . When K is a differential congruence, the map d descends to an
additive map d : S/K → S/K , and if d is a tropical differential then d is as well.

Proposition 2.9. If {Iλ ⊂ S × S} is a set of differential congruences, then the
congruence generated by them is a differential congruence.

Proof. Let K denote the congruence generated by the Iλ. It is the transitive and
symmetric closure of the subsemiring K0 generated by the Iλ.

We will first show that d(K0) ⊂ K . Suppose that (a1, a2) is a relation in
some Ii and (b1, b2) is a relation in some I j . Since d is additive, it certainly sends
the sum (a1 + b1, a2 + b2) to a relation in K . For the product, we proceed as
follows. In Ii we have (a1b1, a2b1) and hence (d(a1b1), d(a2b1)) since Ii is a dif-
ferential congruence. Likewise, in I j we have the relations (b1a2, b2a2) and hence
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(d(b1a2), d(b2a2)). Hence the relation (d(a1b1), d(a2b2)) is indeed contained in
the transitive closure K . Since any element of K0 is produced by a finite sequence
of sums and products of elements in the Iλ, it follows that d(K0) ⊂ K , as desired.

Now, any relation in K can be decomposed as a finite transitive chain of relations
in K0. Thus is follows that d(K ) ⊂ K .

3. Differential polynomials

The objective of this section is to construct a variant of theRitt algebra of differential
polynomials R{x1, . . . , xn}, where the coefficient ring R is replaced by a tropical
differential semiring S.

3.1. Classical Ritt algebras and their universal property

Recall that, when R is a differential ring, the Ritt algebra of differential polynomials
R{x1, . . . , xn} is the commutative R-algebra freely generated by the variables xi
and their formal derivatives x ( j)

i = d j xi . It carries a differential that sends x
( j)
i to

x ( j+1)
i and extends as an additive derivation to arbitrary elements in R{x1, . . . , xn}.

Ritt algebras are characterized by a universal property: a homomorphism of
differential rings ϕ : R{x1, . . . , xn} → R′ is uniquely determined by the images
of the generators ϕ(xi ) ∈ R′, and there are no restrictions on these elements. It is
this universal property that we wish to extend to the idempotent setting.

3.2. The failure of the naive definition of tropical Ritt algebra

While one can trivially replace the coefficient ring R with a differential idempotent
semiring S in the aboveRitt algebra construction,we shall now see that it impossible
to endow this with a differential (either strict or tropical) for which the analogous
universal property holds. In fact, we will show that there is no longer a unique
choice of differential, and for any choice of differential the universal property fails.

Suppose that S is a differential idempotent semiringwith tropical differential dS .
The naive definition of differential polynomials over S suggested in the preceding
paragraph will nevertheless be useful later on, so we give it a name:

Definition 3.1. Given a tropical differential semiring S, the algebra of basic differ-
ential polynomials over S, denoted

S{x1, . . . , xn}basic
is the polynomial S-algebra on variables xi and their formal derivatives x ( j)

i .

Let us now attempt to extend the differential of S to this algebra. Obviously
we would like to send x ( j)

i to x ( j+1)
i , and we would like the map to be additive.

The difficulty is in choosing how to extend it to arbitrary products. In contrast to
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the case of coefficients in a differential ring, the tropical Leibniz relations allow
more freedom in extending a partially-defined differential to all products; there is
not a uniquely determined extension of dS to a map d on all of S{x1, . . . , xn}basic
satisfying the tropical Leibniz relations. In fact, S{x1, . . . , xn}basic admits many
distinct differentials.

Example 3.2. Suppose w : N → S is a non-archimedean seminorm. Then we can
define a differential dw on S{x1, . . . , xn}basic by the following rule. First, for a pure
power (x ( j)

i )k , we define

dw((x ( j)
i )k) = w(k)(x ( j)

i )k−1x ( j+1)
i

Then, we extend this to monomials c(x ( j1)
i1

)k1 · · · (x ( jm )
im

)km as a strict derivation.
E.g.,

dw

(

cxa1
(

x (3)
2

)b)

= dS(c)x
a
1

(

x (3)
2

)b ⊕ cw(a)xa−1
1 x (1)

1

(

x (3)
2

)b ⊕ cw(b)
(

x (3)
2

)b−1
x (4)
2 xa1 .

It is straightforward to check that this map dw does indeed satisfy the tropical
Leibniz relations.

One can generalize this example by choosing a distinct non-archimedean semi-
norm wi j for each generator x ( j)

i , defining the differential on pure powers by the
rule

d
(

(x ( j)
i )k

) = wi j (k)
(

x ( j)
i

)k−1
x ( j+1)
i ,

and then extending to arbitrary monomials using the strict Leibniz rule.

The above example shows that there is at least one differential on S{x1, . . . , xn}basic
for each n-tuple of non-archimedean seminorms Q → S.

Proposition 3.3. There is no tropical differential on S{x1, . . . , xn}basic that extends
the tropical differential on S and makes this the free object on n generators.

Proof. We use proof by contradiction. Suppose d is such a differential, so for any
non-archimedean seminorm w : N → S the identity map must be a morphism of
differential idempotent semirings

(

S{x1, . . . , xn}basic, d
) → (

S{x1, . . . , xn}basic, dw

)

.

This implies that d = dw on pure powers. But this is a contradiction since dw �= dw′
if w and w′ are distinct seminorms.

We will show below that the idempotent semiring S{x1, . . . , xn}basic can be
enlarged to a tropical differential semiring S{x1, . . . , xn} enjoying the universal
property that justifies calling it the tropical Ritt algebra.
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3.3. Differential polynomials over a ring

As a warm-up to constructing tropical Ritt algebras, we first give an alternative
construction of the classical Ritt algebras in terms of trees.

To avoid ambiguity, let us be precise about our graph theory definitions and
conventions.

Definition 3.4. A forest is a finite set V (the vertices) together with a parent map
P : V → V such for n large enough Pn sends each vertex to a fixed point of P .
The fixed points of P are the roots. A tree is a forest with a single root. The valence
of a vertex v ∈ V is the cardinality of P−1(v) � {v}, and the vertices of valence 0
are the leaves.

Consider the set of isomorphism classes of forests with leaves labelled by ele-
ments of R∪{x1, . . . , xn}. This set becomes an abelian monoid under the operation
of disjoint union. Now let Forest(R, n) denote the quotient monoid obtained by
imposing the following relations:

(1) A tree with a leaf labelled by 0 ∈ R is identified with the empty forest.
(2) Any leaf labelled by 1 can be deleted.

1

∼

(3) If there are two leaves with labels a, b ∈ R having the same parent in a tree,
then we may replace these two leaves with a single leaf labelled ab.

(4) If a leaf with label r ∈ R has a univalent non-root parent then we may replace
the leaf and its parent by a single leaf with label dr .

r

∼
dr

(5) Given elements r1, r2 ∈ R and a tree t , we may form trees r1 · t, r2 · t , and
(r1 + r2) · t by grafting a leaf with label r1, r2, and (r1 + r2), respectively, at
the root. We then identify the pair of trees (r1 · t) ∪ (r2 · t) with the single tree
(r1 + r2) · t .
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t
r1

root

t
r2

root

∼

t
r1 + r2

root

We think of the set of leaves with a given parent as representing the monomial
formed by multiplying their labels, and we think of internal node edges as repre-
senting the differential d. Thus a tree represents a differential monomial, i.e., an
expression formed from the elements of R and the variable x1, . . . , xn by taking
products and applying the differential d.

Example 3.5. The expression r1x1d2(x2)d(r2x1d(x2)) corresponds to the tree:

r1 x1

x2

r2 x1

x2

Proposition 3.6. The monoid Forest(R, n) is a commutative R-algebra.

Proof. The addition operation is disjoint union (the original monoid operation).
The product of two trees is defined by gluing their roots together, and we extend
this operation to products of forests by the distributive rule. The elements r ∈ R sit
inside Forest(R, n) as the trees consisting of just a root and a single leaf with label
r . It is straightforward to verify that this is an R-algebra.

There is a map

d : Forest(R, n) → Forest(R, n)

that inserts an edge at each root in a forest:

d�→

This map is clearly not a derivation, so let

L := {d(st) − sdt − tds | s, t ∈ Forest(R, n)}
and let 〈L〉 denote the differential ideal generated by L , i.e., the smallest ideal in
Forest(R, n) that is closed under applying d. By construction, the differential d
descends to a derivation on the quotient.
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Proposition 3.7. There is a natural isomorphism of differential R-algebras,

Forest(R, n)/〈L〉 ∼= R{x1, . . . , xn}.
Proof. It is straightforward to check that Forest(R, n)/〈L〉 has exactly the same
universal property as the Ritt algebra.

3.4. Differential polynomials over a semiring

We now give a variation on the above construction of the Ritt algebra via trees,
where we replace R with a differential idempotent semiring S, and we replace the
classical Leibniz relations with the tropical Leibniz relations.

First consider the S-algebra Forest(S, n) defined exactly as above, and then
consider the subset

L trop = {d(t1t2) ⊕ t2dt1 ⊕ t1dt2 | t1, t2 ∈ Forest(S, n)}.
Let 〈L trop〉 denote the smallest ideal containing L trop and closed under applying d.

Definition 3.8. Given a differential idempotent semiring S, we define the tropical
Ritt algebra

S{x1, . . . , xn} := Forest(S, n)/B〈Ltrop〉,
where B〈Ltrop〉 is the congruence of bend relations generated by 〈Ltrop〉.

The tropical Ritt algebra enjoys a universal property in the category of differ-
ential idempotent semirings that is entirely analogous to the universal property of
the classical Ritt algebra in the category of differential rings.

Proposition 3.9. Given a differential S-algebra S′, there is a bijection

Hom(S{x1, . . . , xn}, S′) ∼= (S′)n

implemented by sending a homomorphism ϕ to the n-tuple (ϕ(x1), . . . , ϕ(xn)).

Proof. By the construction of Forest(S, n), any n-tuple (a1, . . . , an) ∈ (S′)n deter-
mines a homomorphism of semirings

Forest(S, n) → S′

that commutes with d, and since the tropical Leibniz relations hold in S′, this
homomorphism descends to the quotient by B〈Ltrop〉. Conversely, a homomor-
phism provides an n-tuple of elements of S′.

The algebra S{x1, . . . , xn}basic of basic differential polynomials that was intro-
duced earlier sits inside S{x1, . . . , xn} as the set of forests where only the root
vertices have valence larger than 1; as the notation suggests. Obviously the basic
subalgebra is not closed under taking differentials.
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4. Algebraic structures for tropical differential equations

In the classical world, a differential equation over a differential ring R is an element
f ∈ R{x1, . . . , xn}, and a solution to f in an R-algebra A is an element p ∈ An such
that f (p) = 0. Equivalently, p is a solution if the corresponding homomorphism
p : R{x1, . . . , xn} → A factors through the quotient R{x1, . . . , xn}/( f ).

In the tropical world, we have introduced differential idempotent semirings,
but these objects on their own are not sufficient to describe solutions to tropical
differential equations. A tropical differential equation over a differential idempotent
semiring S is an element f ∈ S{x1, . . . , xn} (where this is the tropical Ritt algebra
defined above). Solutions to this differential equation will live in Sn , but asking that
f vanish or tropically vanish at p ∈ Sn turns out to be too restrictive. Following
the idea of Grigoriev’s framework, p should be considered a solution to f if f
tropically vanishes at p to leading order (rather than to all orders). This suggests
that we must equip our differential idempotent semirings with something like a
non-archimedean seminorm that provides a way of measuring the leading order of
elements. To this end, we will now define and study the category of tropical pairs.

4.1. The category of tropical pairs

A tropical pair S consists of a tropical differential semiring S1, an idempotent
semiring S0, and a homomorphism of idempotent semirings π : S1 → S0.

Remark 4.1. We think of S1 as a space of functions, and we think of S0 as a space
of leading exponents of the series expansions of these functions. The map π , like
the usual norm on Puiseux series, sends a function to its leading exponent.

In category theoretic terms, if

F : DiffSemirings → Semirings

is the forgetful functor from differential idempotent semirings to idempotent semir-
ings, then the category of pairs is the simply the comma category (F ↓ Semirings).
Explicitly, a morphism of pairs ϕ from (S1 → S0) to (T1 → T0) is a commutative
diagram of idempotent semirings

S1 T1

S0 T0

ϕ1

ϕ0

in which the upper horizontal arrow ϕ1 is a morphism of differential idempotent
semirings. Given a pair S, the category of S-algebras is the category of pairs T
under S.

A pair (S1
π→ S0) is said to be reduced if S1 admits no nontrivial quotient

differential idempotent semiring over S0; i.e., it is reduced if there is no nontrivial
differential congruence contained in the congruence ker(π).
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Example 4.2. (1) For any morphism of idempotent semirings ν : S → T we have
a pair

(S, d = 0) → T,

and it is reduced if and only if ν is injective. If ν is not injective, then we can
replace S with im(ν) to obtain a reduced pair.

(2) Consider the homomorphism

π : B[[t]] → T

defined by tn �→ e−n , and endow B[[t] with the differential tn �→ tn−1. This is
a pair, and it is reduced by the following argument. Suppose a �= b ∈ B[[t]]. If
a = ⊕

ai t i and b = ⊕

bi t i , then there exists a minimal n such that an �= bn .
It then follows that π(dna) �= π(dnb), and so (dn(a), dn(b)) /∈ ker(π). Hence
any differential congruence containing (a, b) is not contained in ker(π).

(3) Consider

π : T[[t]] → T2,

where the source has anyof the differentials fromExample 2.7 and themorphism
π is given by

(an0 t
n0 ⊕ an1 t

n1 ⊕ · · · ) �→ (e−n0 , an0).

This is a pair, and a modification of the argument above shows that it is also
reduced.

We let Pairsred denote the full subcategory of reduced pairs.Wewill show below
in Sect. 4.3 that Pairsred is a reflective subcategory, and so any pair S = (S1 → S0)
has a functorial reduction Sred = (Sred1 → S0).

Finallywe are ready to define the category that will describe tropical differential
equations and their solutions.

Definition 4.3. Given a reduced pair S, an S-algebra is a reduced pair under S, and
we let S−Alg denote the category of S-algebras.

An important example of an S-algebras comes from the tropical Ritt alge-
bra. Given a pair S = (S1 → S0), we first define an idempotent semiring
(S0|S1){x1, . . . , xn} by taking the pushout:

S1 S1{x1, . . . , xn}

S0 (S0|S1){x1, . . . , xn}
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This pushout can be described explicitly as the algebra of trees S1{x1, . . . , xn}
modulo the congruence generated by the relations that identify a, b ∈ S1 ⊂
S1{x1, . . . , xn} if they have the same image in S0; i.e. leaves incident at the root have
labels in S0 rather than S1. Note that (S0|S1){x1, . . . , xn} contains the polynomial
S0-algebra S0{x1, . . . , xn}basic.

The right vertical arrow in the above diagram gives an S-algebra that we will
denote by S{x1, . . . , xn}; these pairs will play the role of tropical Ritt algebras in
the category of S-algebras.

Proposition 4.4. Let S = (S1 → S0) be a pair and Y = (Y1 → Y0) an
S-algebra. Morphisms of S-algebras ϕ : S{x1, . . . , xn} → Y are in bijection
with Y n

1 . The bijection is implemented by sending a morphism ϕ = (ϕ1, ϕ0) to
(ϕ1(x1), . . . ϕ1(xn)).

Proof. Given y ∈ Yn
1 , it follows from the universal property of the tropical Ritt

algebra (Prop. 3.9) that there is a unique morphism of S1-algebras

ϕ1 : S1{x1, . . . , xn} → Y1

sending xi to yi . By the universal property of pushouts, this induces an arrow

ϕ0 : (S0|S1){x1, . . . , xn} → Y0

such that (ϕ1, ϕ0) is a morphism of S-algebras, and this is unique since ϕ1 is unique.

4.2. Tropical differential equations and their solutions

We start with a reduced pair S = (S1
π→ S0). A tropical differential equation

is simply a differential polynomial f ∈ S0{x1, . . . , xn}basic. Let us write f =
∑

α fαxα , where xα runs over the differential monomials in f . If xα has any
factors of the form dnxi for n > 0 then it does not make sense to evaluate xα at an
element c ∈ Sn0 because S0 is not a differential semiring. However, we can evaluate
xα at an element C ∈ Sn1 and then push down to S0 via π . Thus we can evaluate
f ∈ S0{x1, . . . , xn}basic at C ∈ Sn1 by the expression

f (C) =
⊕

α

fαπ(Cα).

Definition 4.5. The solution set of a differential polynomial f = ⊕

α fαxα ∈
S0{x1, . . . , xn}basic, denoted Sol( f ), is the subset of Sn1 consisting of all elements
C = (C1, . . . ,Cn) such that the sum

⊕

α

fαπ(Cα)

tropically vanishes.

When the pair S1 → S0 isB[[t]] π→ T, the above definition recoversGrigoriev’s
framework. A subset W ⊂ N corresponds to the boolean formal power series
⊕

i∈W ti , and Grigoriev’s map ValW ( j) is precisely π(d jW ).
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Example 4.6. Consider the pair S = T[[t]] π→ T2, where T[[t]] has the differential
from Example 2.7 part (4) corresponding to the 2-adic norm, d(tn) = |n|2tn−1.
Over this pair we consider solutions to the differential equation

f = (e−4, 1)x ⊕ (1, 8)x ′ ⊕ (e−1, 8)x ′′ ∈ T2{x}basic.
Let us look for solutions of the form

x = 1 ⊕ αt ⊕ βt2 ⊕ γ t3 ⊕ δt4 ⊕ εt5 ⊕ · · · .

We have

x ′ = α ⊕ β

2
t ⊕ γ t2 ⊕ δ

4
t3 ⊕ εt4 ⊕ · · ·

x ′′ = β

2
⊕ γ

2
t ⊕ δ

4
t2 ⊕ ε

4
t3 ⊕ · · · .

If α �= 0 then

π(x) = (1, 1), π(x ′) = (1, α), π(x ′′) = (1, β/2),

and so evaluating f at x gives the expression

f (x) = (e−4, 1)(1, 1) ⊕ (1, 8)(1, α) ⊕ (e−1, 8)(1, β/2)

= (e−4, 1) ⊕ (1, 8α) ⊕ (e−1, 4β).

The maximum occurs only in the middle term, so there is no solution with α �= 0.
Assuming next that α = 0 and β �= 0, we have

π(x) = (1, 1), π(x ′) = (e−1, β/2), π(x ′′) = (1, β/2),

and

f (x) = (e−4, 1)(1, 1) ⊕ (1, 8)(e−1, β/2) ⊕ (e−1, 8)(1, β/2)

= (e−4, 1) ⊕ (e−1, 4β) ⊕ (e−1, 4β).

The second and third terms are equal and maximal, so this is a solution for any
nonzero value of β.

If α = β = 0 and γ �= 0, then

π(x) = (1, 1), π(x ′) = (e−2, γ ), π(x ′′) = (e−1, γ /2),

and f (x) = (e−4, 1)⊕(e−2, 8γ )⊕(e−2, 4γ ). The middle term is the sole maximal
term, so this is not a solution.

If α = β = γ = 0 and δ �= 0 then

π(x) = (1, 1), π(x ′) = (e−3, δ/4), π(x ′′) = (e−2, δ/4),

and f (x) = (e−4, 1) ⊕ (e−2, 2δ) ⊕ (e−2, 2δ), so we have a solution since the
second and third terms are jointly maximal.
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The last case we will look at is α = β = γ = δ = 0 and ε �= 0. Now

π(x) = (1, 1), π(x ′) = (e−4, ε), π(x ′′) = (e−3, ε/4),

and f (x) = (e−4, 1) ⊕ (e−4, 8ε) ⊕ (e−4, 2ε). If ε = 1/8, then the first two terms
are jointly maximal and we have a solution but when ε �= 1/8 either the first or
second term is the sole maximum. In this case we see for the first time that the
tropical framework here provides additional information about solutions beyond
the information contained in Grigoriev’s framework.

4.3. The reduction functor

Given a pair S = (S1
π→ S0), it follows from Proposition 2.9 that the set of

differential congruences contained in ker π has a unique maximal element R(π),
and hence the pair Sred := (S1/R(π) → S0) is reduced.

Proposition 4.7. The morphism S → Sred given by the projection onto the quotient
S1 � S1/R(π) is initial among morphisms from S to reduced pairs.

Proof. Suppose T = (T1
ψ→ T0) is a reduced pair and

S1 T1

S0 T0

π

ϕ1

ψ

ϕ0

is a morphism of pairs. There are inclusions

R(π) ⊂ ker π ⊂ ker π ◦ ϕ0.

The map ϕ1 sends ker ϕ0 ◦ π into ker ψ , and the image of a differential congru-
ence by a homomorphism of tropical differential semirings is again a differential
congruence, so ϕ1 must send R(π) to a differential congruence contained in kerψ .
Since T is reduced, the only such differential congruence on T1 is the diagonal, and
so ϕ1 factors uniquely through the quotient map S1 → S1/R(π).

We now show that the above reduction construction exhibits Pairsred as a reflec-
tive subcategory of Pairs.

Proposition 4.8. Sending S to Sred defines a functorR : Pairs → Pairsred, and the
quotient map S → Sred is a natural transformation Id → R. Moreover R is left
adjoint to the inclusion ι : Pairs ↪→ Pairsred.

Proof. Suppose f : S → T is a morphism of pairs and consider the composition
S → T → Tred. By Proposition 4.7, there is a unique factorization S → Sred →
Tred, and hence we obtain a morphism R( f ) : Sred → Tred. It is straightforward
the check that this respects compositions: R( f ◦ g) = R( f ) ◦ R(g). Hence R is
a functor.



18 J. Giansiracusa, S. Mereta

It is a straightforward verification that the quotient map S → Sred defines a
natural transformation from the identity on Pairs to ι ◦ R. Clearly if S is reduced,
thenSred = S, and there is trivially a natural transformation fromR◦ι to the identity
on Pairsred. It is now elementary to check that these two natural transformations
give the claimed adjunction.

As a consequence of reduction being a left adjoint functor, it commutes with
colimits.

4.4. Quotients of pairs

Let S = (S1 → S0) be a pair. A quotient of S is a morphism of pairs

S1 T1

S0 T0

π

f1

f0

such that both f1 and f0 are surjective. The kernel of f1 is a differential congruence
ker f1 on S1, the kernel of f0 is a congruence ker f0 on S0, and π sends ker f1 into
ker f0. Conversely, a pair of congruences (K1 ⊂ S1× S1, K0 ⊂ S0× S0) satisfying
π(K1) ⊂ K0 defines a quotient of S.

We now describe an important class of quotients. Suppose we are given
a pair S = (S1 → S0) and a congruence K on the polynomial semiring
S0{x1, . . . , xn}basic. By a slight abuse of notation, let (S0|S1){x1, . . . , xn}/K denote
the induced quotient, and then let

S{x1, . . . , xn} // K

denote the reduction of the pair S1{x1, . . . , xn} → (S0|S1){x1, . . . , xn}/K . Quo-
tients of this form will be used when we define the tropicalization of a system of
differential equations in Sect. 5.

Proposition 4.9. Let T = (T1
π→ T0) be a reduced S-algebra and K a congruence

on S0{x1, . . . , xn}basic. Morphisms of S-algebras

S{x1, . . . , xn} // K → T

correspond bijectively with n-tuples y1, . . . , yn ∈ T1 such that the elements
π(d j yi ) ∈ T0 define an S0-algebra homomorphism S0{x1, . . . , xn}basic/K → T0.

Proof. A morphism ( f1, f0) : S{x1, . . . , xn} // K → T determines elements yi =
f1(xi ) that are immediately seen to satisfy the stated condition.

Going in the other direction, suppose yi ∈ T1 are elements satisfying the
above condition. By Proposition 4.4, there is a uniquely determined morphism
( f1, f0) : S{x1, . . . , xn} → T with f1(xi ) = yi . The images π(d j yi ) ∈ T0 are
equal to the elements f0(d j xi ) coming from S0{x1, . . . , xn}basic (recall that this is



A general framework for tropical differential equations 19

the polynomial algebra on the symbols d j xi ), and these define a semiring homo-
morphism

S0{x1, . . . , xn}basic → T0.

that descends to the quotient by K , and since T is reduced, this descends to the
reduction by Proposition 4.8.

4.5. Solutions as morphisms

It follows directly from Proposition 4.9 and the definition of solutions to tropical
differential equations that S-algebra morphisms

S{x1, . . . , xn} // B(E) → S

are in bijection with the solution set Sol(E). In fact, we have

Proposition 4.10. The functor S − Alg → Sets sending an S-algebra S
u→ T to

Sol(u∗E) is corepresented by S{x1, . . . , xn} // B(E).

4.6. Colimits of pairs

In this section we show that colimits in the category of pairs can be computed by
computing the colimits of the top and bottom individually. In order for this to be
useful, it is helpful to note the following.

Proposition 4.11. The categories of idempotent semirings and differential idem-
potent semirings are cocomplete.

Proof. The category of idempotent semirings is cocomplete for the same reason as
the category of rings; one can easily check that arbitrary coproducts and coequaliz-
ers exist. For differential idempotent semirings, one must only verify that tropical
differentials di on Si induce a tropical differential on the coproduct

⊕

i Si , and
likewise for coequalizers. Both of these verifications are elementary and straight-
forward.

Proposition 4.12. The forgetful functors

Pairs

Semirings DiffSemirings

πtπb

commute with colimits, and πt also commutes with limits.
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Proof. It suffices to show that πb admits a right adjoint and πt admits both a left
and a right adjoint.

We start with πt . Let

Lt : DiffSemirings → Pairs

be the functor sending a differential idempotent semiring S to the pair S
id→ S,

and let Rt be the functor sending S to the pair S → ∗, where ∗ denotes the

trivial idempotent semiring consisting of a single element. Given a pair A
p→ B,

a morphism of differential idempotent semirings f : S → A uniquely determines,
and is uniquely determined by, a morphism of pairs

S A

S B

id

f

p
p◦ f

that is evidently natural in the semiring S and the pair A → B. Thus Lt is left
adjoint to πt . For Rt , observe that a morphism of differential semirings f : A → S
is equivalent to a morphism of pairs:

A S

B ∗
p

f

For πb, we will construct a right adjoint Rb. Consider the subcategory

Pairs/T ⊂ Pairs

of pairs S → T , where a morphism is a morphism of pairs that is the identity on
T . The colimit colimPairs/T πt comes with a natural semiring homomorphism to T ,
and this defines a pair Rb(T ). It is straightforward to verify that Rb(T ) is functorial
in T . A morphism of pairs

A colimPairs/T πt

B T

p

f

clearly provides a semiring homomorphism B → T . Conversely, given a semiring
homomorphism B → T , the composition A → B → T is an object of Pairs/T
and hence it has a canonical map to Rb(T ).

Finally, note that since the reduction functor is idempotent and has a left adjoint
(Proposition 4.8), the colimit of a diagram of reduced pairs is reduced.
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4.7. Differential enhancements of seminorms

Given a seminorm v on R as in Definition 2.3, v(x) does not in general determine
the seminorm of derivatives of x . In order to define tropical differential equations,
we must enhance the seminorm with some additional information in order to deter-
mine the seminorms of sequences a, da, d2a, . . .. To this end, we now introduce
differential enhancements of seminorms.

Definition 4.13. Given a differential ring R and a non-archimedean seminorm
v : R → S0, a differential enhancement of v is a reduced pair S = (S1 → S0)
and a map of sets ṽ : R → S1 such that

(1) ṽ(0) = 0 ∈ S1 and ṽ(1) = 1 ∈ S1;
(2) it commutes with the differentials: dS1 ṽ(x) = ṽ(dRx) for any x ∈ R;
(3) the following diagram commutes:

S1

R S0

ṽ

v

We will use the term differentially enhanced seminorm v = (v, ṽ) : A → S to
mean a seminorm v together with a differential enhancement ṽ.

Note that if (v, ṽ) : A → S is a differentially enhanced seminorm and
( f0, f1) : S → T is a morphism of pairs, then the composition

S1 T1

R S0 T0

f1

ṽ

v f0

is also a differentially enhanced seminorm.

Example 4.14. Let k be a field and consider the differential ring of formal power
series k[[t]]with differential d/dt . The t-adic norm k[[t]] → T admits a differential
enhancement

B[[t]]

k[[t]] T

ṽ

v

inwhich themapB[[t]] → T sends abooleanpower series tn⊕· · · to exp(−n).Note
that while v is multiplicative, its differential enhancement ṽ is not. For instance,

ṽ((1 + t)(1 − t)) = 1 ⊕ t2, whereas ṽ(1 + t) · ṽ(1 − t) = 1 ⊕ t ⊕ t2.

This is the differentially enhanced seminorm used by Grigoriev [11] in his frame-
work and subsequent works [1,4,6,7].
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Example 4.15. Consider the p-adic seminorm vp : Q → T and extend this to a
seminorm Q[[t]] → T2 as in (2.1). This admits a differential enhancement

T[[t]]

Q[[t]] T2

ũ

u

where the differential on T[[t]] is by (2.2), and the vertical arrow sends a0tn0 ⊕· · ·
to (exp(−n0), a0). Let u = (u, ũ). There is a morphism of pairs

T[[t]] B[[t]]

T2 T

given on the top by the sending all non-zero coefficients to 1, and on the bottom by
projection onto the first component. This morphism of pairs sends the differentially
enhanced seminorm u to the v of Example 4.14. Thus u provides a refinement of
the structure considered by Grigoriev.

While a seminorm u : R → S0 may admit multiple distinct differential
enhancements ũ, as illustrated in the examples above, it turns out that there is
at most one for any given reduced pair S over S0.

Proposition 4.16. Let u : R → S0 be a seminorm and S1
π→ S0 a reduced pair. If

ũ, ũ′ : R → S1 are two differential enhancements of u, then ũ = ũ′.

Proof. Consider the congruence K on S1 generated by the relations ũ(x) ∼ ũ′(x)
for x ∈ R. Since ũ and ũ′ both commute with the differentials, K is a differential
congruence, and since π ◦ ũ = π ◦ ũ′, it follows that K ⊂ ker π . Now, since
S1 → S0 is reduced, K must be trivial.

In a differential ring R, an element a ∈ R is said to be a constant if d(a) = 0.
The constants form a subring of R.

Proposition 4.17. Given a differentially enhanced seminorm v = (̃v : R →
S1, v : R → S0) on R, ṽ restricts to a seminorm on the subring of constants
in R.

Proof. Suppose a, b are constants and consider the semiring congruence K on S1
generated by the relations

ṽ(0) ∼ 0S1
ṽ(1) ∼ ṽ(−1)

ṽ(ab) ∼ ṽ(a)̃v(b)

ṽ(a + b) ⊕ ṽ(a) ⊕ ṽ(b) ∼ ṽ(a) ⊕ ṽ(b).
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Since v is a non-archimedean seminorm, the relations v(a + b) ⊕ v(a) ⊕ v(b) =
v(a) ⊕ v(b) and v(ab) = v(a)v(b) hold in S0, and hence the semiring homomor-
phism S1 → S0 factors through the quotient semiring S1/K because each of the
generators of K (as a semiring congruence) is a relation that holds in S0. Since ṽ

commutes with the differentials, ṽ(1), ṽ(−1), ṽ(a), ṽ(b), ṽ(a + b) and ṽ(ab) are
each constants in S1. From this we see that K is in fact a congruence of differential
semirings. If K were nontrivial then the factorization S1 → S1/K → S0 would
contradict the fact that S1 → S0 is reduced. Thus the equalities

ṽ(0) = 0S1
ṽ(1) = v(−1)

ṽ(a)̃v(b) = ṽ(ab),

ṽ(−a − b) ⊕ ṽ(a) ⊕ ṽ(b) = ṽ(a) ⊕ ṽ(b)

must hold in S1.

4.8. The differential Berkovich space

Let k be a ring with a non-archimedean seminorm v : k → T. Given a k-algebra A,
recall that the Berkovich analytification of Spec A is the set of seminormsw : A →
T that are compatible with v in the sense that the composition k → A

w→ T is equal
to v. The analytification is denoted (Spec A)an. It is equipped with a topology that
we will not discuss here.

We now propose a generalization to the differential setting. Suppose k is a
differential ring equippedwith a differentially enhanced seminorm� toS = (S1 →
S0), and let A be a differential k-algebra. Given an S-algebra T, a differentially
enhanced seminorm w = (w̃, w) is said to be compatible with v if the diagram

S1 T1

A

S0 T0

wv

ṽ
w̃

commutes.

Definition 4.18. Given an S-algebra T, the differential Berkovich space of A,
denoted BerkT(A), is the set of differentially enhanced seminorms w : A → T
that are compatible with v.

Note that there is a natural map BerkT(A) → (Spec A)an induced by sending a
differentially enhanced seminormw = (w̃, w) to its underlying ordinary seminorm
w. This map is injective thanks to Proposition 4.16.
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5. Tropicalization

5.1. Review of the non-differential case

In the familiar non-differential setting, one starts with a field k with a non-
archimedean seminorm v : k → T, and one then defines three tropicalization
maps:

(1) Tropicalization of points is the map trop : kn → T
n given by applying the

seminorm coordinate-wise.
(2) Tropicalization of equations is themaptrop : k[x1, . . . , xn] → T[x1, . . . , xn]

given by applying the seminorm coefficient-wise. This extends to amap sending
ideals in k[x1, . . . , xn] to ideals in T[x1, . . . , xn].

(3) Tropicalization of varieties sends V (I ) to the subset of T
n defined by the inter-

section of the tropical hypersurfaces of all f ∈ trop(I )

An ideal I ⊂ k[x1, . . . , xn] is of course a system of polynomial equations, and a
solution to this system is the same as a homomorphism k[x1, . . . , xn]/I → k (or a
homomorphism to some k-algebra A). Since the tropical hypersurface of a tropical
polynomial f is exactly the solution set of the bend relations oftrop( f ), it follows
that the tropicalization of a variety is the set of solutions to the bend relations of
the tropicalization of its defining ideal. Moreover, solutions to these bend relations
are precisely homomorphisms of semirings T[x1, . . . , xn]/Btrop(I ) → T. One
can thus think of the semiring T[x1, . . . , xn]/Btrop(I ) as the coordinate algebra
of the tropical variety, and hence tropicalization of varieties has an incarnation at
the level of algebras given by

k[x1, . . . , xn]/I �→ T[x1, . . . , xn]/Btrop(I )

Note that this is a construction carried out when the seminorm v takes values in an
idempotent semiring, not just T; see [9] for further details.

5.2. Differential tropicalization

We now turn to the differential setting. Let k be a differential ring equipped with a
differentially enhanced seminorm v = (̃v, v) : k → S = (S1

π→ S0)

(1) We tropicalize points p ∈ kn via the map trop : kn → Sn1 defined by applying
ṽ component-wise.

(2) We tropicalize differential equations by applying v coefficient-wise to define a
map

trop : k{x1, . . . , xn} → S0{x1, . . . , xn}basic.

We write trop(I ) for the ideal generated by the image of I , and so there is an
induced a map sending ideals in k{x1, . . . , xn} to ideals in S0{x1, . . . , xn}basic.
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(3) We use the tropicalization of equations map to define a construction sending
quotients α : k{x1, . . . , xn} � k{x1, . . . , xn}/I to quotients trop(α) of the pair
S{x1, . . . , xn}. Define

trop(α) := S{x1, . . . , xn} // Btrop(I ),

where Btrop(I ) is the congruence on (S0|S1){x1, . . . , xn} generated by the
bend relations of trop(I ) and we use the quotient construction at the end of
Sect. 4.4.

Remark 5.1. Since (S0|S1){x1, . . . , xn} is not a polynomial algebra, we cannot form
the bend relations of an arbitrary element in it. The above construction uses the fact
that applying v coefficient-wise lands in S0{x1, . . . , xn}basic ⊂ (S0|S1){x1, . . . , xn},
and this algebra is a polynomial algebra so we can form bend relations in it.

Proposition 5.2. Given a differential ideal I ⊂ k{x1, . . . , xn}, tropicalization of
points

trop : kn → Sn1

sends Sol(I ) into Sol(trop(I )).

Proof. It suffices to show that if p ∈ kn is a solution to f ∈ k{x1, . . . , xn},
then trop(p) ∈ Sn1 is a solution to trop( f ) ∈ S0{x1, . . . , xn}basic. Write f =
∑

ε∈supp f fεxε , where xε denotes a differential monomial in the variables xi . We
have f (p) = 0, so v(

∑

ε fε pε) = 0 in S0. Since v : k → S0 is a non-archimedean
seminorm, this happens if and only if the sum

∑

ε

v( fε p
ε),

tropically vanishes. Since the differential enhancement map ṽ commutes with the
differentials, we have that v( fε pε) is equal to v( fε)π(̃v(p)ε), which is equal to
the evaluation of the differential monomial v( fε)xε at the point trop(p). Thus
trop( f ) tropically vanishes at trop(p).

5.3. Functoriality of tropicalization

Tropicalization of differential equations sends a presentation of a differential alge-
bra to a tropical pair. Here we show that this defines a functor from a category of
presentations to the category of tropical pairs.

A homomorphism of differential algebras

f : k{x1, . . . , xn} → k{y1, . . . , ym}
is said to be monomial if each variable xi is sent to a monomial (with coefficient 1)
in the variables yi and their derivatives (it need not send monomials to monomials
in general), and it is said to be linearly monomial if each xi is sent to some y j , a
derivative of y j , or to 0.
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Example 5.3. The map f : k{x} → k{y} given by f (x) = ydy is monomial even
though it sends the monomial dx to (dy)2 + yd2y. However, it is not linearly
monomial.

We now define the category of presentations Pres(A). Objects of this category
are presentations of A; i.e., an object is a Ritt algebra k{xi |i ∈ �} together with a
surjective homomorphism k{xi |i ∈ �} → A, and whose morphisms are commu-
tative triangles

k{x1, . . . , xn} k{y1, . . . , ym}

A

f

(5.1)

where f is a monomial morphism. We allow the set � of variables to be infinite,
and let Presfin(A) denote the subcategory of finite presentations. Let Preslin(A) ⊂
Pres(A) denote the subcategory of presentations and linearlymonomialmorphisms.

Proposition 5.4. The tropicalization construction (k{xi |i ∈ �} α→ A) �→ trop(α)

yields a functor Pres(A) → S−Alg.

Proof. Given a morphism of presentations

k{xi | i ∈ �1} k{y j | j ∈ �2}

A

f

α β

each monomial in k{xi | i ∈ �1} corresponds to a monomial in the tropical Ritt
algebra S{xi | i ∈ �1}, and so it follows from Proposition 3.9 that there is a
functorially induced morphism of S-algebras

f∗ : S{xi | i ∈ �1} → S{y j | j ∈ �2},
and this restricts to a morphism of the basic subalgebras on the bottom. Moreover,
the congruence Btrop(ker α) on S0{xi | i ∈ �1}basic is sent into the congruence
Btrop(ker β) on S0{y j | j ∈}basic by [9, Prop. 6.4.1]. Hence f∗ descends to a
morphism of quotient pairs:

S1{xi | i ∈ �1} S1{y j | j ∈ �2}

(S0|S1){xi | i ∈ �1}/Btrop(ker α) (S0|S1){y j | j ∈ �2}/Btrop(ker β)

and by Proposition 4.8 this induces a morphism of their reductions, which is
precisely the desired morphism

trop(α) → trop(β).
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5.4. The universal presentation

Given a differential k-algebra A, consider the presentation

k{xa | a ∈ A} Univ
� A

defined by sending xa to a. It takes a formal differential polynomial in the elements
of A and evaluates it to an element of A using the differential algebra structure of
A. A similar morphism was studied in the non-differential setting in [8]. In light of
the following fact, we call this the universal presentation of A.

Proposition 5.5. The presentation k{xa | a ∈ A} Univ
� A is

(1) The final object in Preslin(A), and
(2) The colimit of the inclusion functor ι : Presfinlin(A) ↪→ Preslin(A).

Proof. Part (1): Let α : k{yi | i ∈ �} � A be a presentation. We will show that
the set of morphisms HomPres(A)(α,Univ) contains exactly one element that is
linearly monomial. Any morphism of presentations f from α to Univ must send
each variable yi to a monomial in k{xa | a ∈ A} that is mapped to α(yi ) by Univ.
One option is f (yi ) = xα(yi ), and this is evidently the unique choice that defines a
linearly monomial morphism.

Part (2): By (1), any finite presentation α admits a unique linearly monomial
morphism α → Univ, and hence there is a canonical morphism u : colim ι →
Univ. Given a finite presentation α : k{y1, . . . , yn} → A and an element a ∈ A,
we extend to a new finite presentation α′ : k{y1, . . . , yn, ya} → A by ya �→ a.
The morphism α′ → Univ sends ya to xa , and thus any element xa in the universal
presentation is in the image of some finite presentation, so u is surjective.

We turn now to injectivity of u. If

k{y1, . . . , yn} α→ A
β← k{z1, . . . , zm}

are two finite presentations with α(y1) = β(z1), then they each map to the presen-
tation k{w, y2 . . . , yn, z2, . . . , zm} by y1, z1 �→ w and identity of all of the other
generators. Hence u is injective as well.

Example 5.6. Consider the presentation α : k{y1, y2} → k{z} = A given by
α(y1) = z and α(y2) = zdz. In addition to the linearly monomial morphism
from α to Univ, there are also the monomial morphisms given by sending y2 to
xzxdz or xzdxz .

5.5. The universal tropicalization

We define the universal tropicalization of A to simply be the tropicalization of the
universal presentation, trop(Univ).
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Theorem 5.7. For any differential k-algebra A, there is a canonical isomorphism
of pairs

trop(Univ) ∼= colim
α∈Preslin(A)

trop(α),

and if A admits a finite presentation k{x1, . . . , xn} → A then the colimit can be
taken over the subcategory Presfinlin(A) of finite presentations.

Proof. The first statement is an immediate consequence of Proposition 5.5. For the
second statement, consider the canonical morphism

j = ( j1, j0) : colim
α∈Presfinlin(A)

trop(α) → trop(Univ).

Given any element a ∈ A, any finite presentation α : k{x1, . . . , xn} → Amaps to a
finite presentation α′ : k{x1, . . . , xn, xa} → A, with α′(xa) = a. Hence it follows
from Proposition 4.12 that j1 and j0 are both surjective. We turn to injectivity.
Observe that the congruence Btrop(kerUniv) on S0{xa | a ∈ A} is the transitive
closure of the symmetric semiring generated by the bend relations of elements in
trop(kerUniv), and so for any relation ( f ∼ g) ∈ Btrop(kerUniv) there exists
a finite subset � ⊂ A containing all variables appearing in either f or g and such
that, for the restriction Univ|� : k{xa | a ∈ �} → A, we have

( f ∼ g) ∈ Btrop(kerUniv|�).

If � does not generate A as a differential algebra then we may add finitely many
elements so that it does. We thus have a finite presentation β such that ( f ∼ g) is
in the image of the canonical map

Btrop(ker β) → Btrop(kerUniv).

Therefore the map

j0 : colim
α∈Presfinlin

(S0|S1){xa | a ∈ �}/Btrop(ker β)

→ (S0|S1){xa | a ∈ A}/Btrop(kerUniv)

is an isomorphism. The claim now follows from Proposition 4.12.

We now come to our main result, which says that a differential algebra A admits
a universal differentially enhanced seminorm which is valued in the tropicalization
of the universal presentation of A, (c.f. [8, Theorem A]).

Theorem 5.8. Given a differential k-algebra A, there is a differentially enhanced
seminorm

u = (u, ũ) : A → trop(Univ)

defined by sending a �→ xa, and this is initial among differentially enhanced
seminorms on A compatible with the differentially enhanced seminorm v on k.
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As an immediate corollary, we have:

Corollary 5.9. Let T be an S-algebra. There is a bijection

HomS−alg(trop(Univ),T) ∼= BerkT(A).

that is natural in T. I.e., trop(Univ) co-represents the functor sending T to the set
of differentially enhanced seminorms on A taking values in T and compatible with
v.

The proof of the theorem requires an explicit description of the congruence
Btrop(kerUniv), which we provide below.

Proposition 5.10. The differential ideal kerUniv ⊂ k{xa | a ∈ A} is generated as
an ideal by the following family of elements:

(1) x1 − 1;
(2) xλa − λxa for a ∈ A and λ ∈ k;
(3) xda − dxa for a ∈ A;
(4) xaxb − xab for a, b ∈ A;
(5) xa + xb + xc for a, b, c ∈ A satisfying a + b + c = 0.

Proof. It is clear that all of these relations are in the kernel. Let f be an arbitrary
element in the kernel. Using relations (2), (3) and (4) we move all coefficients and
differentials into the subscripts and reduce each monomial to a single variable, so
f is transformed into a degree 1 non-differential polynomial f ′ = ∑

a∈� xa , for
some finite subset � ⊂ A. We can then use relation (5) (and (2) with λ = −1)
repeatedly to reduce the number of terms by replacing xa1 + xa2 with xa1+a2 , and
thus we transform f ′ to a trinomial, which is in the kernel if and only if it is an
expression of type (5).

Tropicalizing the above family of elements, we have:

Lemma 5.11. The congruence Btrop(kerUniv) on S0{xa | a ∈ A}basic is gener-
ated by the bend relations of the polynomials:

(1) x1 ⊕ 1S0
(2) xλa ⊕ v(λ)xa for a ∈ A and λ ∈ k;
(3) xda ⊕ dxa for a ∈ A;
(4) xaxb ⊕ xab for a, b ∈ A;
(5) xa ⊕ xb ⊕ xc for a, b, c ∈ A satisfying a + b + c = 0.

Proof. It suffices to show that the bend relations of listed expressions imply the the
bend relations of any element g ∈ trop(kerUniv). As in the proof of Proposition
5.10 above, using the bend relations of (1)–(4) allows us reduce g to an expression
of the form

⊕

a∈�

xa, with
∑

a∈�

a = 0.
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Let us call a finite set � ⊂ A a null set if
∑

� a = 0. It remains to show that the
bend relations of sums over null sets of size 3 (i.e., relation (5) from the list) imply
the bend relations for sums as above over null sets of arbitrary size.

We prove this by induction on the cardinality n of the null set �. The base case
n = 3 is simply relation (5). Assume the bend relations hold for all sums over null
sets of size ≤ n, and consider a null set � = {a1, . . . , an+1}. Let

b = a1 + a2 = −(a3 + · · · + an+1),

so we have null sets �1 = {a1, a2,−b} and �2 = {b, a3, . . . , an+1} of size 3 and
n. Then

xa1 ⊕ xa2 ⊕ · · · ⊕ xan+1

∼ xa1 ⊕ xa2⊕
· · · ⊕ xan+1 ⊕ x−b (using the bend relations of�1 to pull out x−b)

∼ xa2 ⊕ · · · ⊕ xan+1 ⊕ x−b (using the bend relations of�1 to delete xa1)

∼ xa2 ⊕ · · · ⊕ xan+1 ⊕ xb (since xb ∼ x−b by (2))

∼ xa2 ⊕ · · · ⊕ xan+1 (using the bend relations of�2 to delete xb).

Since a1 was chosen arbitrarily, this shows that the bend relations of sums over null
sets of size n + 1 hold.

Note that relations (1), (2), (4) and (5) correspond to the four conditions defining a
non-archimedean seminorm in Definition 2.3.

Let us write U1
π→ U0 for the pair trop(Univ), which is the reduction of the

pair

S1{xa | a ∈ A} → (S0|S1){xa | a ∈ A}/Btrop(kerUniv).

Lemma 5.12. The relation d(xa) = xda holds in U1.

Proof. Observe that for any a ∈ A and any n ∈ N the elements dnxa and xdna in
U1 are mapped to the elements in U0 that are equivalent modulo the congruence
Btrop(kerUniv) by Lemma 5.11 relation (3). Hence the relation d(xa) ∼ xda is
in the reduction congruence and so it holds in U1.

Proof of Theorem 5.8. It is clear from the definition that π ◦ ũ = u. By Lemma
5.12, the map ũ : A → U1 commutes with the differential, and by relations (1),
(4), and (5) of Lemma 5.11, the map u : A → U0 is a non-archimedean seminorm.
Thus u is a differentially enhanced seminorm. Moreover, relation (2) implies that
u is compatible with the seminorm v : A → S0.

It remains to show that there is a unique morphism from u to any other differ-
entially enhanced seminorm w = (w, w̃) : A → T compatible with v : A → S.
Let ỹa = w̃(a) ∈ T1. Mapping these elements and their derivatives down to T0
gives a list of elements y( j)

a = w(d ja) ∈ T0 for a ∈ A and j ∈ N. Since w

is a non-archimedean seminorm, it follows from Lemma 5.11 that the semiring
homomorphism

S0{xa | a ∈ A}basic → T0
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sendingd j xa �→ y( j)
a descends to thequotient by the congruenceBtrop(kerUniv).

Hence, byProposition4.9, there is a uniquemorphismofS-algebras fw : trop(Univ) →
T sending xa to ỹa on top, and to ya on the bottom. By construction, composition
with fw sends u to w, and this completes the proof.
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