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1 Introduction and conclusion

Confining duality is a phenomenon where the infrared physics of a gauge theory can be
described in terms of gauge invariant composites and their interactions. Typically in a
confining duality the matter fields of the dual theory transforming in rank-2 tensor repre-
sentations of the flavor symmetry group can be viewed as mesons of a gauge theory, while
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higher rank representations correspond to baryons. Confining dualities are found in several
supersymmetric gauge theories including 4d N = 1 supersymmetric gauge theories [1–13],
3d N = 2 supersymmetric gauge theories [11, 14–19] and 2d N = (0, 2) supersymmetric
gauge theories [20]. Confining dualities are useful to construct a sequence of dual theories
and to find an essential or basic part of dualities.

In this paper we propose new confining dualities for 3d N = 2 gauge theories with
N = (0, 2) boundary conditions. While several confining dualities can be obtained from
Seiberg-like dualities [21–52, 52, 53] and tested by computing the IR protected data, e.g.
superconformal index (or full-index) [54–58], our strategy is to consider the theories in the
presence of a boundary with boundary conditions preserving the gauge group and to study
the half-indices which enumerate the gauge invariant BPS local operators obeying the half-
BPS N = (0, 2) boundary conditions [59–68]. These half-indices [59, 61–63] are powerful
tools to test the dualities of N = (0, 2) supersymmetric boundary conditions. While the
full-indices are not well-behaved for the theories involving monopole operators with non-
positive dimensions, the half-indices encoding the Neumann boundary conditions for gauge
fields are well-defined even for such theories. We propose confining dualities of N = (0, 2)
boundary conditions for 3d N = 2 SU(N), USp(2n) and SO(N) gauge theories from several
identities of half-indices as well as the precise matching of the boundary ’t Hooft anomalies.
We refer to them as boundary confining dualities. It turns out that the Neumann half-
indices of 3d N = 2 gauge theories which have confining descriptions take the form of
Askey-Wilson type q-beta integrals [69]. From these integrals we conjecture new boundary
confining dualities by checking the agreement of the corresponding half- and full-indices.
Some of these cases are standard examples of 3d Seiberg-like dualities in the bulk while
other cases correspond to 4d Seiberg-like dualities compactified to 3d, specifically those
discussed in subsections 4.1, 4.7, 5.2, 5.3 and 6.3. They include examples of Seiberg-like
boundary dualities with different boundary conditions for chiral multiplets transforming in
the same representation of the gauge group — as far as we are aware the only similar cases
of mixed boundary conditions have been considered for SQED [63] — as well as dualities
of theories with chiral multiplets in the rank-2 antisymmetric representation of the gauge
group. However, in the cases considered in sections 4.6, 4.7, 4.8 and 6.1 the bulk theories
have dimension-zero monopoles and chiral multiplets of non-positive dimensions, so we
have examples where there is only a boundary duality. Similarly, in the case of section 6.2,
although the bulk monopoles would have positive dimension it is not possible to choose
the R-charges so that all chirals have positive dimension.

Our results demonstrate the interplay between physics and mathematics. On the
one hand we rephrase mathematically proven identities as half-index identities, giving an
interpretation as known or conjectured new dualities of 3d N = 2 theories with boundaries.
On the other hand, similar dualities are proposed and the corresponding matching of half-
indices leads to new mathematical identities which can be proven using similar techniques
to the previously known generalized Askey-Wilson identities. Therefore, as a result of the
expected confining dualities, we also find new conjectural identities of Askey-Wilson type
q-beta integrals.
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1.1 Structure

The paper is organized as follows. In section 2 we discuss the boundary confining dual-
ity of Neumann boundary conditions for the SU(2) gauge theory with four flavors. The
half-index realizes the Askey-Wilson q-beta integral [69] and the duality stems from the
Seiberg-like dualities [29, 30]. In section 3 we propose the boundary confining duality
for the SU(2) gauge theory with six fundamental chirals where one of the fundamental
chirals has Dirichlet boundary condition while the others have Neumann boundary con-
dition. The half-index is identified with the Nassrallah-Rahman integral [70, 71] and as
we discuss, the duality also holds in the bulk. In section 4 we discuss the higher-rank
generalization of sections 2 and 3. The half-indices are identified with integrals studied by
Gustafson [72]. Consequently, we propose new confining dualities for SU(N), USp(2n) and
SO(N) gauge theories, including cases with rank-2 antisymmetric chirals. In addition, we
propose boundary confining dualities for specific USp(4) and USp(6) gauge theories with
one or more rank-2 antisymmetric chiral multiplets. Except for the boundary confining
dualities in subsections 4.6, 4.7, 4.8 and z 6.1, they can be generalized to bulk confining
dualities. In section 5 we find the confining dualities of more general SU(N) and USp(2n)
gauge theories with fundamental and rank-2 antisymmetric chirals. The Neumann half-
indices can be identified with the Gustafson-Rakha integrals [73]. In section 6 we find new
Askey-Wilson type q-beta integrals which arise from boundary confining dualities.

1.2 Future works

• It would be interesting to generalize the boundary confining dualities to exceptional
gauge groups and explore their Askey-Wilson type q-beta integrals associated with
the exceptional Lie algebra. We also expect further boundary confining dualities
based on bulk dualities for theories with classical Lie algebras. We hope to report
results in our upcoming work [74].

• The Seiberg-like duality of 3d N = 2 SU(N) gauge theory can be derived from U(N)
Seiberg-like duality by gauging manipulation [29, 30]. While the boundary dualities
work in the case with Nf = Na = N (where there is no dual gauge group) as we
discussed in this paper, more general cases seem to need more delicate treatment of
gauging the Dirichlet boundary conditions by introducing the 2d vector multiplet. It
would be nice to figure out the gauging and ungauging manipulations for the case
with boundary and we hope to report on this in future work.

• While the full-indices of 3d N = 4 ugly or bad theories [75] are not well-defined
due to the non-positive dimensions of monopoles, the Neumann half-indices can be
computed even for such theories. It would be tempting to explore boundary confining
dualities for N ≥ 4 theories.1

• While some of the dualities of N = (0, 2) boundary conditions discussed in this
paper can be extended to the bulk, others may not originate from the bulk 3d N = 2

1See [76] for the boundary confining duality for N = (0, 4) boundary conditions.
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theories so that they should be interpreted as “N = (0, 2) boundary dualities”. Such
dualities potentially enlarge the web of known dualities. It would be intriguing to
explore the “boundary dualities” in other setups.

• The Neumann half-indices can be generalized by introducing the Chern-Simons (CS)
coupling and Wilson line operators. It would be interesting to generalize the Askey-
Wilson type q-beta integrals by introducing additional functions of gauge fugacities in
the integrand to figure out more dualities with CS terms and line defects. The duality
appetizer [19, 24, 77] with boundary conditions would translate into the Askey-Wilson
type q-beta integrals. Also we should be able to examine such decorated half-indices
by studying the difference equations which encode the algebra of line operators.

• Brane construction of the N = (0, 2) boundary conditions can be useful to find more
boundary confining dualities as well as the holographic dual descriptions. It should
be possible to address this from the T-dual configuration in [78].

2 Askey-Wilson integral

Askey and Wilson evaluated an integral which can be understood as a q-analog of the
classical beta integral [69]. We argue that it can be physically understood as a half-index
of the 3dN = 2 SU(2) gauge theory with four flavors and that it demonstrates the confining
duality.

2.1 SU(2) with Nf = 4 flavors

Consider theory A as a 3d N = 2 SU(2) gauge theory with Nf = 4 fundamental chirals
QI , I = 1, 2, 3, 4 with R-charge ra. When we later consider SU(N) gauge group, this
corresponds to Nf = N = 2 fundamental and Na = N = 2 antifundamental chirals.

Unlike the case of U(2) gauge theory, the SU(2) gauge theory with 4 fundamental
flavors is free from gauge anomaly, without a 2d Fermi multiplet in the determinant repre-
sentation of gauge group, when we impose the N = (0, 2) Neumann boundary conditions
for the SU(N) vector multiplet and the chiral multiplets.2 The half-index is evaluated as3

IIA(N ,N,N) = (q)∞
2

∮
ds

2πis(s±2; q)∞
4∏

α=1

1
(q

ra
2 s±axα; q)∞

(2.1)

where ∏4
α=1 xα = 1. Turning off the fugacities xα and setting ra = 1

2 , the half-index (2.1)
has the q-series expansion

IIA(N ,N,N) = 1 + 6a2q1/2 + 20a4q + (6a2 + 50a6)q3/2 + 35(a4 + 3a8)q2

+ 2a2(3 + 57a4 + 98a8)q5/2 + · · · (2.2)

2See [63] for full details of Seiberg-like boundary dualities of U(N) gauge theories with fundamental and
antifundamental chirals.

3See [79, 80] for the notations and conventions of half-indices.

– 4 –



J
H
E
P
0
8
(
2
0
2
3
)
0
4
8

The integral (2.1) is identified with the Askey-Wilson integral4 [69] which is a q-
extension of the classical beta integral. It is equal to

4∏
α<β

(q2raa4; q)∞
(qraa2xαxβ ; q)∞

. (2.3)

We observe that the expression (2.3) can be interpreted as the half-index of theory B
which consists of free chiral multiplets, specifically a chiral multiplet Mαβ with Neumann
boundary conditions transforming as the rank-2 antisymmetric representation of the SU(4)
flavor symmetry and a chiral V with U(1)a charge 4 with Dirichlet boundary conditions.
The content of the two theories is summarized as

bc SU(2) SU(4) U(1)a U(1)R
VM N Adj 1 0 0
Qα N 2 4 1 ra

Mαβ N 1 6 2 2ra
V D 1 1 −4 2− 4ra

(2.4)

Note here that the parameter ra corresponds to shifting the R-charge by ra times the U(1)a
charge. In our conventions the scaling dimension is half the R-charge so we require all chirals
in theory B to have positive R-charge for Neumann boundary conditions and R-charge less
than 2 for Dirichlet boundary conditions. In the case here this means ra > 0. This ensures
the unitarity bound is not violated5 and the half-indices do not contain negative powers of
q. For a 3d bulk duality the corresponding requirement would be that all R-charges lie in
the interval (0, 2).

The ’t Hooft anomalies match for these theories and boundary conditions since

A = 2 Tr(s2) + 3
2r

2︸ ︷︷ ︸
VM, N

−
(
2 Tr(s2) + Tr(x2) + 4(a− r)2

)
︸ ︷︷ ︸

Qα, N

=−
(
Tr(x2) + 3(2a− r)2

)
︸ ︷︷ ︸

Mαβ , N

+ 1
2(−4a+ r)2︸ ︷︷ ︸

V, D

=− Tr(x2)− 4a2 + 8ar − 5
2r

2 (2.5)

where s is the field strength for the SU(2) gauge group, x for the SU(4) flavor symmetry
group, a for the U(1)a axial symmetry group, r for the U(1)R R-symmetry group.6 Note
that we have taken ra for simplicity here since matching of anomalies for any value of ra
guarantees matching for all values of ra.

4In the mathematical literature the expressions are usually given in terms of unconstrained fugacities
Xα = axα and with ra = 0. In our notation the parameter ra is introduced by the replacement a→ qra/2a.

5Note that, assuming the duality, requiring this for theory B is equivalent to ensuring that no gauge-
invariant operators in theory A violate the unitarity bound.

6See [63] for the calculation of the boundary anomaly polynomial.
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To summarize, we propose the following confining duality of N = (0, 2) boundary
conditions:

SU(2) + 4 fund. chirals Qα with b.c. (N , N)
⇔ SU(4) antisym. chiral Mαβ + a single chiral V with b.c. (N,D). (2.6)

The boundary confining duality (2.6) has a counterpart in the 3d bulk. In fact, the
full-index of theory A is calculated as

IA = 1
2
∑
m∈Z

∮
ds

2πis(1− q|m|s±2)
4∏

α=1

(q1− ra2 + |m|2 s∓a−1x−1
α ; q)∞

(q
ra+|m|

2 s±axα; q)∞
q(1−2ra)|m|a−4|m| (2.7)

and that of theory B is

IB =
∏
α<β

(q2raa4; q)∞
(q1−2raa−4; q)∞

(q1−raa−2x−1
α x−1

β ; q)∞
(qraa2xαxβ ; q)∞

. (2.8)

The full-indices (2.7) and (2.8) precisely agree with each other as a special case of the SU(N)
Seiberg-like duality [30, 31]. The operators can be identified as Mαβ ∼ QαQβ (mesons in
theory A) and V corresponds to the minimal monopole in theory A. The superpotentials are

WA =0 (2.9)
WB =V Pf M (2.10)

where here and throughout this article the theory B superpotential is easily interpreted in
terms of a Lagrange multiplier (or in other examples several) imposing a constraint which
through the operator mapping is seen to be an identity in theory A. E.g. in this case the
antisymmetric product of the 4 Qα chirals must be antisymmetric in the 4 SU(2) gauge
indices which is obviously not possible, hence it must vanish.

3 Nassrallah-Rahman integral

We propose a new type of the Seiberg-like duality of SU(2) gauge theory with fundamental
and antifuindamental chiral multiplets where one of the chirals has a different boundary
condition. We argue that the half-index of the Neumann boundary condition for the vector
multiplet is identified with the Nassrallah-Rahman integral [70, 71] which generalizes the
Askey-Wilson q-integral with an additional parameter. In addition, we discuss that the
duality can be generalized to bulk theories.

3.1 SU(2) with Nf = 3, Na = 2(+1) flavors

Next consider theory A as a 3d N = 2 SU(2) gauge theory with 3 fundamental chirals
QI , I = 1, 2, 3 of R-charge 0, 2 antifundamental chirals Qα, α = 1, 2 of R-charge 0 and an
antifundamental chiral Q̃ of R-charge 2. This can be interpreted as a special case of SU(N)
gauge theory with Nf = N + 1 and Na = N plus another antifundamental chiral discussed
later. Since we have gauge group SU(2), we could also describe this as SU(2) with 5 + 1
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fundamental chirals, but here we describe independently fundamental and antifundamental
chirals for easier comparison with later generalizations.

We consider the Neumann boundary condition for the SU(2) vector multiplet while Q̃
obeys the Dirichlet boundary condition, and the other chirals satisfy Neumann boundary
conditions.

The half-index of Neumann boundary conditions for Theory A is calculated as

IIA(N ,N ;N,D)

= (q)∞
2!

∮
ds

2πis(s±2; q)∞
(q(3ra+2rb)/2a3b2s±; q)∞(∏3

I=1(qra/2as±xI ; q)∞
) (∏2

α=1(qrb/2bs∓x̃α; q)∞
) (3.1)

with ∏3
I=1 xI = ∏2

α=1 x̃α = 1. When we choose ra = 1
2 and rb = 1

2 and turn off the
fugacities xI and x̃α, the half-index (3.1) can be evaluated as

IIA(N ,N ;N,D) = 1 + (3a2 + 6ab+ b2)q1/2 + (6a4 + 16a3b+ 21a2b2 + 6ab3 + b4)q

+
[
10a6 + 30a5b+ b2 + 48a4b2 + 54a3b3 + b6 + 3ab(2 + 2b4)

+ a2
(
1 + 13b4 + 2(1 + 4b4)

)]
q3/2 + · · · . (3.2)

The half-index (3.1) is known as the Nassrallah-Rahman integral [70, 71]. It is shown to
be equal to (∏3

I=1

(
q(2ra+2rb)/2a2b2x−1

I ; q
)
∞

)∏2
α=1(q(3ra+rb)/2a3bx̃−1

α ; q)∞(∏3
I=1

(
qraa2x−1

I ; q
)
∞

)
(qrbb2; q)∞

∏3
I=1

∏2
α=1(q(ra+rb)/2abxI x̃α; q)∞

(3.3)

We see that the expression (3.3) can be interpreted as the half-index of the theory consisting
of five kinds of chiral multiplets MIα, BI , B, B̃α and M̃I obeying Neumann, Neumann,
Neumann, Dirichlet and Dirichlet boundary conditions.

The field content and boundary conditions are summarized as

bc SU(2) SU(3) SU(2) U(1)a U(1)b U(1)R
VM N Adj 1 1 0 0 0
QI N 2 3 1 1 0 ra
Qα N 2 1 2 0 1 rb
Q̃ D 2 1 1 −3 −2 2− 3ra − 2rb
MIα N 1 3 2 1 1 ra + rb
BI N 1 3 1 2 0 2ra
B N 1 1 1 0 2 2rb
B̃α D 1 1 2 −3 −1 2− 3ra − rb
M̃I D 1 3 1 −2 −2 2− 2(ra + rb)

(3.4)

Here we have explicitly written the shifted R-charges by shifting the R-charge by ra times
the U(1)a charge and by rb times the U(1)b charge. Suitable choices of ra and rb (in this
case simply rA > 0 and rb > 0) are required to ensure the indices are convergent. However,
to save space we will not explicitly present the shifted R-charges in later tables.
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The operators can be identified as: mesons in theory A, MIα ∼ QIQα and M̃I ∼ QIQ̃;
baryons in theory A, BI ∼ εQJQKε

IJK , B ∼ εQ1Q2 and B̃α ∼ εQαQ̃ where ε without
indices indicates antisymmetric contraction of the gauge indices.

The anomalies match for these theories and boundary conditions since

A = 2 Tr(s2) + 3
2r

2︸ ︷︷ ︸
VM, N

−
(3

2 Tr(s2) + 2
2 Tr(x2) + 3(a− r)2

)
︸ ︷︷ ︸

QI , N

−
(
Tr(s2) + Tr(x̃2) + 2(b− r)2

)
︸ ︷︷ ︸

Qα, N

+ 1
2 Tr(s2) +

(
− 3a− 2b+ r

)2︸ ︷︷ ︸
Q̃, D

=−
(

Tr(x2) + 3
2 Tr(x̃2) + 3(a+ b− r)2

)
︸ ︷︷ ︸

MIα, N

−
(1

2 Tr(x2) + 3
2(2a− r)2

)
︸ ︷︷ ︸

BI , N

− 1
2(2b− r)2︸ ︷︷ ︸

B, N

+
(1

2 Tr(x̃2) +
(
− 3a− b+ r

)2)
︸ ︷︷ ︸

B̃α, D

+
(1

2 Tr(x2) + 3
2(−2a− 2b+ r)2

)
︸ ︷︷ ︸

M̃I , D

=− Tr(x2)− Tr(x̃2) + 6a2 + 2b2 + 12ab− 5
2r

2. (3.5)

Therefore we conjecture that the N = (0, 2) Neumann boundary condition in SU(2)
gauge theory with 6 flavors has the following confinement:

SU(2) + 3 fund. +2 antifund. +1 antifund. with b.c. (N , N ;N,D)
⇔ SU(3)× SU(2) bifund. chiral MIα + an SU(3) antifund. chiral BI

+ a singlet B + an SU(2) antifund. chiral B̃α + an SU(3) fund. chiral M̃I

with b.c. (N,N,N,D,D). (3.6)

Moreover, there is a corresponding confining duality in the bulk by generalizing the
boundary confining duality (3.6)

SU(2) + 3 fund. +2 antifund. +1 antifund.
⇔ SU(3)× SU(2) bifund. chiral MIα + an SU(3) antifund. chiral BI

+ a singlet B + an SU(2) antifund. chiral B̃α + an SU(3) fund. chiral M̃I . (3.7)

In particular the theory A index is well-defined as all monopoles have positive dimen-
sion. In fact, given the charges of Q̃, the monopole dimensions (R-charges) are given by

2|m| ≥ 2 (3.8)

with m ∈ Z, m 6= 0 and there is no dependence on the values of ra and rb indicating that
the monopoles have no other charges. Both theories have non-zero superpotentials

WA =V (3.9)
WB =BIMIαB̃

α +BM̃IB
I (3.10)
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where V is the minimal monopole operator in theory A having R-charge 2 and no other
charges. The theory A superpotential explains the global charges in theory A which do
not include a potential U(1)c symmetry under which Q̃ would have charge 1. Including
such a symmetry would result in V having non-zero U(1)c charge, hence the monopole
superpotential excludes such a U(1)c.

As explained in [29], the linear monopole superpotential arises from compactification
of a 4d theory to 3d. Hence, with this superpotential for theory A, this is the 3d realization
of the Nf = NA = N case of the 4d SU(N)↔ SU(Nf −N) Seiberg duality, which in this
case is a confining duality as the theory B gauge group is the trivial SU(1).

The full-indices of theory A and B are evaluated as

IA = 1
2
∑
m∈Z

∮
ds

2πis(1− q|m|s±2)
3∏
I=1

(q1− ra2 + |m|2 a−1s∓x−1
I ; q)∞

(q
ra+|m|

2 as±xI ; q)∞

×
2∏

α=1

(q1− rb2 + |m|2 b−1s±x̃−1
α ; q)∞

(q
rb+|m|

2 bs∓x̃α; q)∞

(q
3ra+2rb+|m|

2 a3b2s±; q)∞
(q1− 3ra+2rb

2 + |m|2 a−3b−2s∓; q)∞
q|m| (3.11)

and

IB =
3∏
I=1

(q
2ra+2rb

2 a2b2x−1
I ; q)∞

(q1− 2ra+2rb
2 a−2b−2xI ; q)∞

2∏
α=1

(q
3ra+rb

2 a3bx̃−1
α ; q)∞

(q1− 3ra+rb
2 a−3b−1x̃α; q)∞

×
3∏
I=1

(q1−raa−2xI ; q)∞
(qraa2x−1

I ; q)∞
(q1−rbb−2; q)∞

(qrbb2; q)∞

3∏
I=1

2∏
α=1

(q1− ra+rb
2 a−1b−1x−1

I x̃−1
α ; q)∞

(q
ra+rb

2 abxI x̃α; q)∞
. (3.12)

In fact, we have found the precise matching of full-indices (3.11) and (3.12) as strong
evidence of the duality (3.7). For example, when we set ra = rb = 1/4 and switch off the
flavored fugacities, we find

IA = IB

= 1 + (3a2 + 6ab+ b2)q1/4 + (6a4 + 3a−2b−2 + 2a−3b−1

+ 16a3b+ 21a2b2 + 6ab3 + b4)q1/2 + (12a−2 + 10a6 + 8b−2 + 18a−1b−1

+ 2a−3b+ 30a5b+ 48a4b2 + 54a3b3 + 21a2b4 + 6ab5 + b6)q3/4 + · · · . (3.13)

4 Gustafson integrals

Gustafson derived several higher-rank generalization of the Askey-Wilson and Nassrallah-
Rahman integral identities including for various SU(N) [72, 73], USp(2n) [72, 73, 81] and
SO(N) [72] groups. Here we give an interpretation of these results as half-index identities
arising from boundary dual theories. Several of these boundary dualities correspond to bulk
dualities and we provide some checks of matching indices. However, others do not seem
to arise from bulk dualities since the natural bulk theories have non-positive dimension
chirals or monopoles.
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4.1 SU(N) with Nf = Na = N flavors

We consider a 3d N = 2 gauge theory with gauge group SU(N), Nf = N fundamental
chirals QI and Na = N antifundamental chirals Qα. We choose the N = (0, 2) half-BPS
Neumann boundary condition for the SU(N) vector multiplet and Neumann boundary con-
ditions for the chiral multiplets. This can be viewed as a higher-rank SU(N) generalization
of the theory discussed in section 2.

We propose that theory A is dual to theory B which has Nf×Na bifundamental chirals
MIα of the non-Abelian flavor symmetry group SU(Nf )× SU(Na) and two singlet chirals
B, B with Neumann boundary conditions. We also have a singlet chiral V with Dirichlet
boundary conditions. In fact, this is an example of dual boundary conditions for a known
bulk duality [82]. This is summarized7 as

bc SU(N) SU(Nf = N) SU(Na = N) U(1)a U(1)b U(1)R
VM N Adj 1 1 0 0 0
QI N N Nf 1 1 0 0
Qα N N 1 Na 0 1 0
MIα N 1 Nf Na 1 1 0
B N 1 1 1 N 0 0
B N 1 1 1 0 N 0
V D 1 1 1 −N −N 2

(4.1)

The anomalies match for these theories and boundary conditions since

A =N Tr(s2) + N2 − 1
2 r2︸ ︷︷ ︸

VM, N

−
(
N

2 Tr(s2) + N

2 Tr(x2) + N2

2 (a− r)2
)

︸ ︷︷ ︸
QI , N

−
(
N

2 Tr(s2) + N

2 Tr(x̃2) + N2

2 (b− r)2
)

︸ ︷︷ ︸
Qα, N

=−
(
N

2 Tr(x2) + N

2 Tr(x̃2) + N2

2 (a+ b− r)2
)

︸ ︷︷ ︸
MIα, N

− 1
2(Na− r)2︸ ︷︷ ︸

B, N

− 1
2(Nb− r)2︸ ︷︷ ︸

B, N

+ 1
2(−Na−Nb+ r)2︸ ︷︷ ︸

V, D

=− N

2 Tr(x2)− N

2 Tr(x̃2)− N2

2 a2 − N2

2 b2 +N2ar +N2br − N2 + 1
2 r2. (4.2)

7From now on we save space by not explicitly parameterising the R-charge by the possible shifts pro-
portional to other global U(1) charges, although suitable shifts are required to ensure the unitarity bound
is satisfied.
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The theory A half-index is

IIA(N ,N,N) = (q)N−1
∞
N !

N∏
i=1

∮
dsi

2πisi

N∏
i 6=j

(sis−1
j ; q)∞

× 1∏N
i=1

(∏N
i=1(qra/2asixI ; q)∞

) (∏N
α=1(qrb/2bs−1

i x̃α; q)∞
) . (4.3)

For example, setting ra = rb = 1
2 , xI = 1 and x̃α = 1 we have

N = 3 :
IIA(N ,N,N) = 1 + 9abq1/2 + (a3 + b3)q3/4 + 45a2b2q + 8ab(a3 + b3)q5/4

+ (a6 + 9ab+ 165a3b3 + b6)q3/2 + (a3 + 45a5b2 + b3 + 45a2b5)q7/4 + · · · , (4.4)
N = 4 :
IIA(N ,N,N) = 1 + 16abq1/2 + (a4 + 136a2b2 + b4)q + 16ab(1 + a4 + 51a2b2 + b4)q3/2

+ (a8 + 136a6b2 + b4 + b8 + 8a2b2(32 + 17b4) + a4(1 + 3876b4))q2 + · · · . (4.5)

The half-index (4.3) can be viewed as a higher-rank Askey-Wilson integral that gen-
eralizes (2.1). Gustafson [72] showed that it is given by(

q
Nra+Nrb

2 aNbN ; q
)
∞(

qNra/2aN ; q
)
∞
(
qNrb/2bN ; q

)
∞
∏N
I=1

∏N
α=1(q(ra+rb)/2abxI x̃α; q)∞

. (4.6)

We can exactly identify equation (4.6) with the half-index of theory B with the specific
boundary conditions described above.

Note that the bulk theory A also has a Seiberg-like dual description [29, 30]. The
mapping of operators between theory A and theory B is given by: MIα ∼ QIQα, B ∼
εQ1 · · ·QN = detQ and B ∼ εQ1 · · ·QN = detQ where the antisymmetric tensors are
used to contact the gauge indices. Theory A has zero superpotential while theory B has a
superpotential

WB = −V
(
detM −BB

)
(4.7)

which imposes the chiral ring relation detM = BB in theory B which corresponds to
det(QQ) = detQ detQ in theory A. It can easily be seen that the contribution of V with
Dirichlet boundary condition does exactly this in the theory B half-index.

Through two dualities this gives an alternative derivation of the above duality. The
first is the Seiberg dual of a SU(N) theory with Nf = NF fundamental and Na = NF

antifundamental chirals which is a U(NF −N)×U(1)y theory with Nf = NF fundamental
and Na = NF antifundamental chirals, two chirals v± with charges ±1 under U(1)y and
chirals MIα in the bifundamental representation of the flavor symmetry group SU(Nf ) ×
SU(Na). In the case here with NF = N the dual gauge group is just U(1)y and there
are hence no fundamental or antifundamental chirals (of U(0)). As the chirals MIα are
not charged under U(1)y we can consider them as spectators and dualize the U(1)y gauge
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theory with the two chirals v± which is dual to the XY Z model, where in our notation we
identify V , B and B with X, Y and Z.

We can extend the above discussion to include boundary conditions as shown in (4.8).
Here U(1)A is the axial symmetry in theory A and U(1)G is the global U(1) arising
from the gauging/ungauging process to derive the SU(N) Seiberg duality from the U(N)
duality [29, 30].

bc SU(N) SU(Nf = N) SU(Na = N) U(1)A U(1)G U(1)y U(1)R
VM N Adj 1 1 0 0 0 0
QI N N Nf 1 1 1 0 0
Qα N N 1 Na 1 −1 0 0
η 1 1 1 0 N 1 0

VM D 1 1 1 0 0 Adj 0
v± D 1 1 1 −N 0 ±1 1
MIα N 1 Nf Na 2 0 0 0
MIα N 1 Nf Na 2 0 0 0
B N 1 1 1 N N 0 0
B N 1 1 1 N −N 0 0
V D 1 1 1 −2N 0 0 2
η 1 1 1 0 N 1 0

(4.8)

With these boundary conditions the anomalies match for all three theories provided
we include a background mixed CS coupling for U(1)G × U(1)y in theory B, contributing
2NGy to the boundary ’t Hooft anomaly. In particular the anomalies match for these
theories and boundary conditions since

A =N Tr(s2) + N2 − 1
2 r2︸ ︷︷ ︸

SU(N) VM, N

−
(
N

2 Tr(s2) + N

2 Tr(x2) + N2

2 (A+G− r)2
)

︸ ︷︷ ︸
QI , N

−
(
N

2 Tr(s2) + N

2 Tr(x̃2) + N2

2 (A−G− r)2
)

︸ ︷︷ ︸
Qα, N

+ (NG+ y)2︸ ︷︷ ︸
η

=− 1
2r

2︸︷︷︸
U(1) VM, D

+ 1
2(−NA+ y)2︸ ︷︷ ︸

v+, D

+ 1
2(−NA− y)2︸ ︷︷ ︸

v−, D

−
(
N

2 Tr(x2) + N

2 Tr(x̃2) + N2

2 (2A− r)2
)

︸ ︷︷ ︸
MIα, N

+ 2NGy︸ ︷︷ ︸
FI

=−
(
N

2 Tr(x2) + N

2 Tr(x̃2) + N2

2 (2A− r)2
)

︸ ︷︷ ︸
MIα, N

− 1
2(NA+NG− r)2︸ ︷︷ ︸

B, N

− 1
2(NA−NG− r)2︸ ︷︷ ︸

B, N

+ 1
2(−2NA+ r)2︸ ︷︷ ︸

V, D

+ (NG+ y)2︸ ︷︷ ︸
η

=− N

2 Tr(x2)− N

2 Tr(x̃2)−N2A2 + 2N2Ar + y2 + 2NGy − N2 + 1
2 r2. (4.9)
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To compare to the previous table (4.1), note that we can map U(1)A×U(1)G to U(1)a×U(1)b
with the following linear combinations of charges Qa = 1

2(QA+QG) and Qb = 1
2(QA−QG).

To summarize, we propose the following confining duality of N = (0, 2) boundary
conditions:

SU(N) + N fund. chirals QI and N antifund. chirals Qα with b.c. (N , N,N)
⇔ SU(N)× SU(N) bifundamental chiral MIα + singlet chirals B and B

with Neumann b.c. and a singlet chiral V with b.c. (N,N,N,D). (4.10)

The operators can be identified as MIα ∼ QIQα (mesons in theory A), B ∼ εQ1 · · ·QN =
detQ and B ∼ εQ1 · · ·QN = detQ (Barons in theory A) and V corresponds to the minimal
monopole in theory A. Theory B has superpotential W = −V (detM −BB).

We also note that there is a bulk duality and the matching of full indices can be
checked as all monopoles in theory A have positive dimension (R-charge). Specifically the
dimensions of the monopoles are given by

N

(
1− ra + rb

2

) N∑
i=1
|mi| −

N∑
i<j

|mi −mj | ≥
(

1− N(ra + rb)
2

) N∑
i=1
|mi| ≥ 2 (4.11)

for ra ≥ 0, rb ≥ 0, mi ∈ Z with the constraint ∑N
i=1mi = 0 (and at least one mi 6= 0). The

lower bound is given for ra = rb = 0 and saturated for a single mi = ±1. Choosing positive
values for ra and rb will decrease the R-charge of the monopoles but there will still be a
range of values 0 < ra+rb < 2/N so that all monopoles and chirals have positive R-charge.

4.2 SU(N) with Nf = N + 1, Na = N(+1)

Consider a higher-rank generalization of the SU(N) for the theory studied in section 3.1
by adding to theory A in section 4.1 a pair of chiral multiplets, one in the fundamental
representation of SU(N) with Neumann boundary conditions, and the other in the anti-
fundamental representation of SU(N) with Dirichlet boundary conditions. This theory has
a SU(Nf = N + 1)× SU(Na = N) flavor symmetry (and some U(1) global symmetries).

The half-index of theory A is given by

IIA(N ,N,N,D) = (q)N−1
∞
N !

N∏
i=1

∮
dsi

2πisi

×
N∏
i 6=j

(sis−1
j ; q)∞

N∏
i=1

(q((N+1)ra+Nrb)/2aN+1bNsi; q)∞(∏N+1
I=1 (qra/2asixI ; q)∞

) (∏N
α=1(qrb/2bs−1

i x̃α; q)∞
) . (4.12)

It is shown in [73] (see eq. (3.3)) that the integral is equivalent to(∏N+1
I=1

(
q(Nra+Nrb)/2aNbNx−1

I ; q
)
∞

)∏N
α=1(q((N+1)ra+rb)/2aN+1bx̃α; q)∞(∏N+1

I=1

(
qNra/2aNx−1

I ; q
)
∞

) (
qNrb/2bN ; q

)
∞
∏N+1
I=1

∏N
α=1(q(ra+rb)/2abxI x̃α; q)∞

. (4.13)

Again we can regard the expression (4.13) as the half-index of the dual boundary conditions
in theory B. In theory B we again have no gauge group. We have various chirals in
representations of the flavor symmetry group SU(Nf ) × SU(Na). Those with Neumann
boundary conditions are
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• Bifundamental MIα of SU(Nf )× SU(Na).

• Antifundamental BI of SU(Nf ).

• a singlet B.

Those with Dirichlet boundary conditions are

• Fundamental B̃α of SU(Nf ).

• Antifundamental M̃I of SU(Na).

The full description of the theories including global charges and boundary conditions is

bc SU(N) SU(Nf = N + 1) SU(Na = N) U(1)a U(1)b U(1)R
VM N Adj 1 1 0 0 0
QI N N Nf 1 1 0 0
Qα N N 1 Na 0 1 0
Q̃ D N 1 1 −(N + 1) −N 2
MIα N 1 Nf Na 1 1 0
BI N 1 Nf 1 N 0 0
B N 1 1 1 0 N 0
B̃α D 1 1 Na −(N + 1) −1 2
M̃I D 1 Nf 1 −N −N 2

(4.14)

The anomalies match for these theories and boundary conditions since

A = N Tr(s2) + N2 − 1
2 r2︸ ︷︷ ︸

VM, N

−
(
N + 1

2 Tr(s2) + N

2 Tr(x2) + N(N + 1)
2 (a− r)2

)
︸ ︷︷ ︸

QI , N

−
(
N

2 Tr(s2) + N

2 Tr(x̃2) + N2

2 (b− r)2
)

︸ ︷︷ ︸
Qα, N

+ 1
2 Tr(s2) + N

2
(
− (N + 1)a−Nb+ r

)2︸ ︷︷ ︸
Q̃, D

= −
(
N

2 Tr(x2) + N + 1
2 Tr(x̃2) + N(N + 1)

2 (a+ b− r)2
)

︸ ︷︷ ︸
MIα, N

−
(1

2 Tr(x2) + N + 1
2 (Na− r)2

)
︸ ︷︷ ︸

BI , N

− 1
2(Nb− r)2︸ ︷︷ ︸

B, N

+
(1

2 Tr(x̃2) + N

2
(
− (N + 1)a− b+ r

)2)
︸ ︷︷ ︸

B̃α, D

+
(1

2 Tr(x2) + N + 1
2 (−Na−Nb+ r)2

)
︸ ︷︷ ︸

M̃I , D

= −N2 Tr(x2)− N

2 Tr(x̃2) + N2(N + 1)
2 a2 + N2(N − 1)

2 b2 +N2(N + 1)ab− N2 + 1
2 r2.

(4.15)
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The mapping of operators between theory A and theory B is given by: MIα ∼ QIQα,
BI ∼ εQJ1 · · ·QJN εIJ1···JN , B ∼ εQ1 · · ·QN , B̃α ∼ εQβ1 · · ·QβN−1Q̃ε

αβ1···βN−1 and M̃I ∼
QIQ̃.

So we propose the boundary confining duality:

SU(N) + (N + 1) fund. +N antifund. +1 antifund. with b.c. (N , N ;N,D)
⇔ SU(N + 1)× SU(N) bifund. chiral MIα + an SU(N + 1) antifund. chiral BI

+ a singlet B + an SU(N) antifund. chiral B̃α + an SU(N + 1) fund. chiral M̃I

with b.c. (N,N,N,D,D). (4.16)

This can be viewed as the deformation of the boundary confining duality (4.10) by
adding extra fundamental chirals and in pairs with Neumann and Dirichlet boundary con-
ditions in theory A which we have seen in section 4.1. In theory B this leads to an extension
of the rank-2 flavor symmetry chiral with Neumann boundary condition and an additional
chiral in the vector of the flavor symmetry group having Dirichlet boundary condition.

This boundary confining duality corresponds to a bulk confining duality which arises
as a direct dimensional reduction of the 4d Seiberg duality between SU(N) with Nf =
Na = N + 1 flavors and an SU(Nf − N) = SU(1) theory. This compactification where
theory A has a linear monopole superpotential is explained in [29]. The full indices can be
computed as

IA = 1
N !

∑
m1,··· ,mN∈Z

N∏
i=1

∮
dsi

2πisi
(1− q

|mi−mj |
2 s±i s

∓
j )

×
N∏
i=1

N+1∏
I=1

(q1− ra2 + |mi|2 a−1s−1
i x−1

I ; q)∞
(q

ra
2 + |mi|2 asixI ; q)∞

N∏
α=1

(q1− rb2 + |mi|2 b−1six̃
−1
α ; q)∞

(q
rb
2 + |mi|2 bs−1

i x̃α; q)∞

×
N∏
i=1

(q
(N+1)ra+Nra

2 + |mi|2 aN+1bNsi; q)∞
(q1− (N+1)ra+Nra

2 + |mi|2 a−N−1b−Ns−1
i ; q)∞

q
2
∑N

i=1 |mi|−
1
2
∑

i<j
|mi±mj | (4.17)

where ∑N
i=1mi = 0 and

IB =
N+1∏
I=1

(q
Nra+Nrb

2 aNbNx−1
I ; q)∞

(q1−Nra+Nrb
2 a−Nb−NxI ; q)∞

N∏
α=1

(q
(N+1)ra+rb

2 aN+1bx̃α; q)∞
(q1− (N+1)ra+rb

2 a−N−1b−1x̃−1
α ; q)∞

×
N+1∏
I=1

(q1−Nra2 a−NxI ; q)∞
(q

Nra
2 aNx−1

I ; q)∞

(q1−Nrb2 b−N ; q)∞
(q

Nrb
2 bN ; q)∞

N+1∏
I=1

N∏
α=1

(q1− (N+1)ra+rb
2 a−1b−1x−1

I x̃−1
α ; q)∞

(q
(N+1)ra+rb

2 abxI x̃α; q)∞
.

(4.18)

In particular the theory A index is well-defined as all monopoles have positive dimension.
In fact, given the charges of Q̃, the monopole dimensions are given by

N
N∑
i=1
|mi| −

N∑
i<j

|mi −mj | ≥
N∑
i=1
|mi| ≥ 2 (4.19)
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with ∑N
i=1mi = 0 and no dependence on the values of ra and rb. We have confirmed

that the full-indices (4.17) and (4.18) match. For example, for N = 4 with ra = rb = 1
8 ,

xI = x̃α = 1, we have

IA = IB

= 1 + 20abq1/8 + (5a4 + 210a2b2 + b4)q1/4 + 4(24a5b+ 385a3b3 + 5ab5)q3/8

+ (15a8 + 5a−4b−4 + 970a6b2 + 8855a4b4 + 210a2b6 + b8)q1/2 + · · · . (4.20)

As for the SU(2) example in section 3.1, both theories have non-zero superpotentials

WA =V (4.21)
WB =BIMIαB̃

α +BM̃IB
I (4.22)

where V is the minimal monopole operator in theory A having R-charge 2 and no other
charges. This again explains the global charges in theory A which do not include a potential
U(1)c symmetry under which Q̃ would have charge 1. Including such a symmetry would
result in V having non-zero U(1)c charge, hence the monopole superpotential excludes such
a U(1)c. Another way to view this is to shift the R-charges but a linear combination of
the U(1)a and U(1)b charges so that all QI , Qα and Q̃ have the same R-charge. Then,
compared to the case of vanishing superpotential, the monopole superpotential reduces the
flavor symmetry from U(N + 1) × U(N + 1) to S(U(N + 1) × U(N + 1)) and the dual
theory is becomes the theory B described here rather than a U(1) gauge theory. In this
description the chirals MIα and M̃I are combined, as are B and B̃α.

Of course, this leads to the obvious conjecture that the general case where theory A
has gauge group SU(N) and Nf = Na fundamental and antifundamental chirals, all having
Neumann boundary conditions except for one of the fundamental or antifundamental chi-
rals, will have a boundary dual theory B. In this case theory B will have the same chirals
as described above along with an SU(Nf − N) vector multiplet with Dirichlet boundary
conditions. The chirals BI will be in the fundamental representation of SU(Nf −N) while
the chirals B and B̃α will be in the antifundamental representation of SU(Nf −N) while
MIα and M̃I will be singlets of SU(Nf − N). We will also have Fermis in theory A to
cancel the gauge anomaly.

4.3 USp(2n) with 2n + 2 fundamental chirals

Consider an alternative higher-rank generalization of the SU(2) gauge theory in section 2
to USp(2n) gauge group. Theory A has gauge group USp(2n) with 2n + 2 fundamental
chirals with R-charge 0. These all have Neumann boundary conditions.

The half-index takes the form

IIA(N ,N,N) = (q)n∞
n!2n

n∏
i=1

∮
dsi

2πisi

n∏
i 6=j

(sis−1
j ; q)∞

n∏
i≤j

(s±i s±j ; q)∞

× 1∏2n+2
α=1

∏n
i=1(qr/2as±i xα; q)∞

. (4.23)
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According to Theorem 7.1 in [72], the half-index (4.23) can be evaluated as(
q(n+1)ra2n+2; q

)
∞∏2n+2

α<β (qra2xαxβ ; q)∞
. (4.24)

The expression (4.23) has a simple implication as a half-index of theory B. Theory B is the
Seiberg-like dual of theory A [83]. It has an SU(2n+ 2) antisymmetric rank-2 chiral Mαβ

with R-charge 0 with Neumann boundary conditions and a singlet chiral V with R-charge
2 with Dirichlet boundary condition. The field content and the boundary conditions are
shown in the following:

bc USp(2n) SU(Nf = 2n+ 2) U(1)a U(1)R
VM N Adj 1 0 0
Qα N 2n Nf 1 0
Mαβ N 1 Nf (Nf − 1)/2 2 0
V D 1 1 −Nf 2

(4.25)

The mapping of operators between theory A and theory B is given by Mαβ ∼ QαQβ
where the gauge indices are contracted with the USp(2n)-invariant rank-2 antisymmetric
tensor, and V is dual to the minimal monopole operator in theory A in the bulk.

The anomalies match for these theories and boundary conditions since

A = (n+ 1) Tr(s2) + n(2n+ 1)
2 r2︸ ︷︷ ︸

VM, N

−
(
(n+ 1) Tr(s2) + nTr(x2) + 2n(n+ 1)(a− r)2

)
︸ ︷︷ ︸

Qα, N

=−
(
nTr(x2) + (n+ 1)(2n+ 1)

2 (2a− r)2
)

︸ ︷︷ ︸
Mαβ , N

+ 1
2
(
− 2(n+ 1)a+ r

)2︸ ︷︷ ︸
V, D

=− nTr(x2)− 2n(n+ 1)a2 + 4n(n+ 1)ar − n(2n+ 3)
2 r2. (4.26)

The matching of the half-indices and boundary anomalies demonstrate that the USp(2n)
higher-rank generalization of the boundary confining duality (2.6) is given by

USp(2n) + 2n+ 2 fund. chirals Qα with b.c. (N , N)
⇔ SU(2n+ 2) antisym. chiral Mαβ + a single chiral V with b.c. (N,D). (4.27)

Again the boundary confining duality can be generalized to a bulk duality. The match-
ing of full indices

IA = 1
n!2n

∑
m1,··· ,mn∈Z

n∏
i=1

∮
dsi

2πisi

n∏
i 6=j

(1−q
|mi−mj |

2 sis
−1
j )

n∏
i≤j

(1−q
|mi+mj |

2 s±i s
±
j )

×
2n+2∏
α=1

n∏
i=1

(q1− r2 + |mi|2 a−1s∓x−1
α ;q)∞

(q r2 + |mi|2 as±xα;q)∞
q

(n+1)(1−r)
∑n

i=1 |mi|−
∑n

i=1 |mi|−
1
2
∑

i<j
|mi±mj |a−6

∑n

i=1 |mi|

(4.28)
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and

IB = (q(n+1)ra2n+2; q)∞
(q1−(n+1)ra−2n−2; q)∞

2n+2∏
α<β

(q1−ra−2x−1
α x−1

β ; q)∞
(qra2xαxβ ; q)∞

(4.29)

can be checked as all monopoles in theory A have positive dimension

2(n− (n+ 1)ra)
n∑
i=1
|mi| −

n∑
i<j

|mi −mj | −
n∑
i<j

|mi +mj |

=
n∑
i=1

2 (i− (n+ 1)ra) |mσ(i)| ≥ 2 (4.30)

for ra ≥ 0, mi ∈ Z (with at least one mi 6= 0) and σ is a permutation giving the ordering
|mσ(i)| ≥ |mσ(j)| for i < j. The lower bound is given for ra = 0 and saturated for a single
mi = ±1. Choosing positive values for ra will decrease the R-charge of the monopoles but
there is still be a range of values 0 < ra < 1/(n+ 1) so that all monopoles and chirals have
positive R-charge. Theory B has superpotential [83]

W =V Pf M . (4.31)

For example, for n = 2 with r = 1
8 , xα = 1 we have

IA = IB

= 1 + 15a2q1/8 + 120a4q1/4 + 679a6q3/8 + 3045a8q1/2 + (a−6 + 11508a10)q5/8

+ 5(3a−4 + 7616a12)q3/4 + 15(7a−2 + 7548a14)q7/8 + (452 + 308142a16)q + · · · .
(4.32)

4.4 USp(2n) with 2n + 3(+1) fundamental chirals

Theory A has gauge group USp(2n) with Nf = 2n+ 3 fundamental chirals with R-charge
0. These all have Neumann boundary conditions. There is another fundamental chiral
with R-charge 2 which has Dirichlet boundary condition. This can be thought of as a
higher-rank USp(2n) generalization of the SU(2) gauge theory discussed in section 3.

The half-index reads

IIA(N ,N,D) = (q)n∞
n!2n

n∏
i=1

∮
dsi

2πisi

n∏
i 6=j

(sis−1
j ; q)∞

n∏
i≤j

(s±i s±j ; q)∞

×
∏n
i=1(qNf r/2aNf s±i ; q)∞∏2n+3

α=1
∏n
i=1(qr/2s±i axα; q)∞

. (4.33)

It follows from Theorem 4.1 in [81] that the half-index (4.33) is equal to∏2n+3
α=1 (q(n+1)raNf−1x−1

α ; q)∞∏
α<β(qra2xαxβ ; q)∞

(4.34)

where ∏2n+3
α=1 xα = 1. The equality of (4.33) and (4.34) can be simply understood as the

boundary confining duality where the dual theory B has an antisymmetric rank-2 SU(Nf )
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chiral with R-charge 0 with Neumann boundary conditions and a chiral in the fundamental
representation of SU(Nf ) with R-charge 2 with Dirichlet boundary condition.

The charges of fields are summarized as follows:

bc USp(2n) SU(Nf = 2n+ 3) U(1)a U(1)R
VM N Adj 1 0 0
Qα N 2n Nf 1 0
Q̃ D 2n 1 −Nf 2
Mαβ N 1 Nf (Nf − 1)/2 2 0
M̃α D 1 Nf 1−Nf 2

(4.35)

The mapping of operators between theory A and theory B is given by Mαβ ∼ QαQβ
and Mα ∼ QαQ̃ where the gauge indices are contracted with the USp(2n)-invariant rank-2
antisymmetric tensor.

The anomalies match for these theories and boundary conditions since

A = (n+ 1) Tr(s2) + n(2n+ 1)
2 r2︸ ︷︷ ︸

VM, N

−
(2n+ 3

2 Tr(s2) + nTr(x2) + n(2n+ 3)(a− r)2
)

︸ ︷︷ ︸
Qα, N

+
(1

2 Tr(s2) + n
(
− (2n+ 3)a+ r

)2)
︸ ︷︷ ︸

Q̃, D

= −
(2n+ 1

2 Tr(x2) + (n+ 1)(2n+ 3)
2 (2a− r)2

)
︸ ︷︷ ︸

Mαβ , N

+ 1
2 Tr(x2) + 2n+ 3

2
(
− 2(n+ 1)a+ r

)2︸ ︷︷ ︸
M̃α, D

= −nTr(x2) + 2n(n+ 1)(2n+ 3)a2 − n(2n+ 3)
2 r2. (4.36)

To summarize, we propose the USp(2n) higher-rank generalization of the boundary
confining duality (3.6)

USp(2n) + (2n+ 3) fund. chirals Qα + 1 fund. chiral Q̃ with b.c. (N , N,D)
⇔ SU(2n+ 3) antisym. chiral Mαβ + a fund. chiral M̃α with b.c. (N,D). (4.37)

This case also corresponds to a bulk confining duality which arises as a direct di-
mensional reduction of the 4d Seiberg duality between USp(2n) with 2n + 4 flavors and
a USp(2n + 4 − 2n − 4) =USp(0) theory which is the confining duality example of the
dualities presented in [1]. This dimensional reduction is explained in [29]. The full indices
can be computed. In particular the theory A index is well-defined as all monopoles have
positive dimension. In fact, given the charges of Q̃, the monopole dimensions are given by

2n
n∑
i=1
|mi| −

n∑
i<j

|mi −mj | −
n∑
i<j

|mi +mj | =
n∑
i=1

2i|mσ(i)| ≥ 2 (4.38)

for mi ∈ Z (with at least one mi 6= 0) and σ is a permutation giving the ordering |mσ(i)| ≥
|mσ(j)| for i < j. The lower bound is saturated for a single mi = ±1. The full-indices are
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given by

IA = 1
n!2n

∑
m1,··· ,mn∈Z

n∏
i=1

∮
dsi

2πisi

n∏
i 6=j

(1− q
|mi−mj |

2 sis
−1
j )

n∏
i≤j

(1− q
|mi+mj |

2 s±i s
±
j )

×
2n+3∏
α=1

n∏
i=1

(q1− r2 + |mi|2 a−1s∓x−1
α ; q)∞

(q r2 + |mi|2 as±xα; q)∞

n∏
i=1

(q
Nfr

2 + |mi|2 aNf s∓i ; q)∞
(q1−

Nfr

2 + |mi|2 a−Nf s±i ; q)∞
× q(n+ 3

2 )(1−r)
∑n

i=1 |mi|+(−1+Nf r)
∑n

i=1 |mi|−
∑n

i=1 |mi|−
1
2
∑

i<j
|mi±mj | (4.39)

and

IB =
2n+3∏
α=1

(q(n+1)raNf−1x−1
α ; q)∞

(q1−(n+1)ra−Nf+1xα; q)∞

2n+2∏
α<β

(q1−ra−2x−1
α x−1

β ; q)∞
(qra2xαxβ ; q)∞

(4.40)

For example, for n = 2 with r = 1
8 , xα = 1 we have

IA = IB

= 1+21a2q1/8+231a4q1/4+1764a6q3/8+10479a8q1/2+(7a−6+51513a10)q5/8

+147(a−4+1482a12)q3/4+(1596a−2+814089a14)q7/8+21(567+130526a16)q+· · · .
(4.41)

Both theories have non-zero superpotentials

WA =V (4.42)
Wb =εαα1β1···αn+1βn+1M̃αMα1β1 · · ·Mαn+1βn+1 (4.43)

where V is the minimal monopole in theory A and, through the operator mapping, the
theory B superpotential corresponds to imposing the fact that the antisymmetric product
of more than 2n Qα in theory A must vanish. Similarly to the case of SU(N) discussed
in section 4.2, the theory A monopole superpotential, after shifting the R-charge by an
appropriate multiple of the U(1)a charge, the Qα and Q̃ will have a U(2n + 4) flavor
symmetry broken to SU(2n+ 4) by the linear monopole superpotential.

Of course, this leads to the obvious conjecture that the general case where theory A
has gauge group USp(N = 2n) and Nf fundamental chirals, all having Neumann boundary
conditions except for one of the fundamental chirals, will have a boundary dual theory
B with Dirichlet boundary condition for the USp(Nf − N − 4) vector multiplet. In this
case theory B will have the same chirals as described above along with a USp(Nf −N − 4)
vector multiplet with Dirichlet boundary conditions and Nf fundamental chirals which will
have Dirichlet boundary condition except for one with Neumann boundary conditions. The
chirals Mαβ and M̃α will combine to the SU(Nf ) rank-2 antisymmetric representation. We
will also have Fermis in theory A to cancel the gauge anomaly.

4.5 USp(4) with 2 fundamental and 2 antisymmetric chirals

Now consider theory A which has gauge group USp(4) with 2 fundamental and 2 rank-2
antisymmetric chirals,8 all with Neumann boundary conditions. The boundary anomaly is

8Here and in other examples in this paper, rank-2 antisymmetric representations of USp(2n) groups are
reducible representations consisting of a (n(2n− 1)− 1)-dimensional irrep. and a singlet.
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evaluated as

A = 3 Tr(s2) + 5r2︸ ︷︷ ︸
VM, N

−
(
Tr(s2) + 2 Tr(x2) + 4(a− r)2

)
︸ ︷︷ ︸

Qα, N

−
(
2 Tr(s2) + 3 Tr(x̃2) + 6(A− r)2

)
︸ ︷︷ ︸

ΦI , N

= −2 Tr(x2)− 3 Tr(x̃2)− 4a2 + 8ar − 6A2 + 12Ar − 5r2. (4.44)

As it is free from the gauge anomaly, this Neumann boundary condition for gauge field is
quantum mechanically consistent.

We can express the half-index as

IIA(N ,N,N) = (q)2
∞

8

2∏
i=1

∮
dsi

2πisi
(s±1 s∓2 ; q)∞

2∏
i≤j

(s±i s±j ; q)∞
1∏2

α=1
∏2
i=1(qra/2as±i xα; q)∞

× 1∏2
I=1(qrA/2As±1 s∓2 x̃I ; q)∞(qrA/2As±1 s±2 x̃I ; q)∞(qrA/2Ax̃I ; q)2

∞
, (4.45)

which again takes the form of the Askey-Wilson type q-beta integral. By means of Theorem
4.1 in [73], we can rewrite the half-index (4.45) as

(q2ra+2rAa4A4; q)∞
(qraa2; q)∞

(∏2
I≤J(qrAA2x̃I x̃J ; q)∞

) (∏2
I=1(qrA/2Ax̃I ; q)∞(qra+rA/2a2Ax̃I ; q)∞

)
× 1∏2

α≤β(qra+rAa2A2xαxβ ; q)∞
(4.46)

where ∏2
α=1 xα = 1 = ∏2

I=1 x̃I . The expression (4.46) enables us to find the dual boundary
condition in theory B which consists of several chiral multiplets; 2 singlet chirals M , V ,
two SU(2)A fundamental chirals φI , BI , an SU(2)A symmetric chiral φIJ , and an SU(2)a
symmetric chiral Bαβ . The content and boundary conditions of both theories are summa-
rized as

bc USp(4) SU(2)a SU(2)A U(1)a U(1)A U(1)R
VM N Adj 1 1 0 0 0
Qα N 4 2 1 1 0 0
ΦI N 6 1 2 0 1 0
M N 1 1 1 2 0 0
φI N 1 1 2 0 1 0
φIJ N 1 1 3 0 2 0
Bαβ N 1 3 1 2 2 0
BI N 1 1 2 2 1 0
V D 1 1 1 −4 −4 2

(4.47)

The mapping of operators between theory A and theory B is given by M ∼ Q1Q2,
φI ∼ Tr ΦI , φIJ ∼ Tr(ΦIΦJ), Bαβ ∼ QαΦ1Φ2Qβ , BI ∼ Q1ΦIQ2 with suitable contractions
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of the gauge indices using a convention that expressions with two Qα include full contraction
of indices, and V is dual to the minimal monopole operator in theory A in the bulk.

The anomalies of boundary condition for theory B is computed as

A = − 1
2(2a− r)2︸ ︷︷ ︸

M, N

−
(1

2 Tr(x̃2) + (A− r)2
)

︸ ︷︷ ︸
φI , N

−
(

2 Tr(x̃2) + 3
2(2A− r)2

)
︸ ︷︷ ︸

φIJ , N

−
(

2 Tr(x2) + 3
2(2a+ 2A− r)2

)
︸ ︷︷ ︸

Bαβ , N

−
(1

2 Tr(x̃2) + (2a+A− r)2
)

︸ ︷︷ ︸
BI , N

+ 1
2(−4a− 4A+ r)2︸ ︷︷ ︸

V, D

.

(4.48)

This precisely agrees with the boundary anomaly (4.44) for theory A.
Therefore we propose the following boundary confining duality:

USp(4) + 2 fund. chirals Qα + 2 antisym. ΦI with b.c. (N , N,N)
⇔ a singlet M + an SU(2)A fund. φI + an SU(2)A sym. chiral φIJ
an SU(2)a sym. chiral Bαβ + and SU(2)A fund. chiral BI
+ a singlet chiral V with b.c. (N,N,N,N,N,D). (4.49)

We remark that all monopoles in theory A have positive dimension

−2ra(|m1|+ |m2|) + (1− 2rA)|m1 −m2|+ (1− 2rA)|m1 +m2| ≥ 2 max{|m1|, |m2|} ≥ 2
(4.50)

for mi ∈ Z (with at least one mi 6= 0) where the inequalities are given for ra = rA = 0 and
the bound is saturated for a single mi = ±1 and for |m1| = |m2| = 1. Choosing positive
values for ra or rA will decrease the R-charge of the monopoles but there will still be a
range of values so that all monopoles have positive R-charge. For ra > 0, the minimal
monopole has |m1| = |m2| = 1 and U(1)A and U(1)A charges equal to −4. Thus there is
a bulk confining duality, which we believe has not been considered before, but appears to
be similar to the symplectic dualities considered in [52].9 Theory B has a superpotential
which we don’t write explicitly where V plays the role of a Lagrange multiplier imposing an
algebraic constraint on a linear combination of detBαβ , BIBJΦ, BIMΦ andM2Φ where Φ
is used to schematically indicate various algebraic combinations of the φI and φIJ chirals.
The precise details can be deduced from the operator mapping to theory A. The matching

9There are however some differences in the operator mapping and global symmetries so this should be
investigated further. It would also be interesting to explore the possibility of generalizing the example in
this section to other USp(2n) confining dualities with two antisymmetric chirals.
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of full indices

IA = 1
8
∑

m1,m2

2∏
i=1

∮
dsi

2πisi
(1− q|mi|s±2

i )(1− q
|m1−m2|

2 s±1 s
∓
2 )(1− q

|m1+m2|
2 s±1 s

±
2 )

×
∏
I=1

(q1− rA2 + |m1−m2|
2 As∓1 s

±
2 x̃
−1
I ; q)∞

(q
rA+|m1−m2|

2 A−1s±1 s
∓
2 x̃I ; q)∞

(q1− rA2 + |m1+m2|
2 As∓1 s

∓
2 x̃
−1
I ; q)∞

(q
rA+|m1+m2|

2 A−1s±1 s
±
2 x̃I ; q)∞

× (q1− rA2 Ax̃−1
I ; q)2

∞

(q
rA
2 A−1x̃I ; q)2

∞
q(1−ra)

∑2
i=1 |mi|+(1−rA)|m1±m2|− 1

2 |m1±m2|−
∑2

i=1 |mi|

× a−2
∑2

i=1 |mi|A−2|m1±m2| (4.51)

and

IB = (q2ra+2rAa4A4; q)∞
(q1−2ra−2rAa−4A−4; q)∞

(q1−raa−2; q)
(qraa2; q)∞

2∏
I≤J

(q1−rAA−2x̃−1
I x̃−1

J ; q)∞
(qrAA2x̃I x̃J ; q)∞

× (q1− rA2 A−1x̃−1
I ; q)∞

(q
rA
2 Ax̃I ; q)∞

(q1− ra+rA
2 a−2A−1x̃−1

I ; q)∞
(q

ra+rA
2 a2Ax̃I ; q)∞

2∏
α≤β

(q1−ra+rAa−2A−2x−1
α x−1

β ; q)∞
(qra+rAa2A2xαxβ ; q)∞

(4.52)

can be checked. For example, by setting xα = x̃I = 1 and ra = rA = 1
8 , we find that both

full-indices can be expanded as

IA = IB

= 1 + 2Aq1/16 + (a2 + 6A2)q1/8 + (4a2A+ 10A3)q3/16 + (a4 + 13a2A2 + 20A4)q1/4

+ (4a4A+ 28a2A3 + 30A5)q5/16 + (a6 + 16a4A2 + 58a2A4 + 50A6)q3/8 + · · · .
(4.53)

From the above expansion, we can study several types of gauge invariant local operators
in theory A and the composite operators in theory B. For example, the terms involving
only the fugacity A enumerate the gauge invariant operators consisting of antisymmetric
chirals in theory A. They can be extracted for the full index by defining t = Aq1/16 and
taking the limit q → 0 while keeping a and t fixed. The resulting expression is given by

1
(1− t)2(1− t2)3 = 1 + 2t+ 6t2 + 10t3 + 20t4 + 30t5 + 50t6 + 70t7 + · · · , (4.54)

which is essentially the Poincaré series P (C2,2; t) of the pure trace algebra C2,2 of 2 generic
2× 2 matrices [84].

4.6 USp(4) with 3 antisymmetric chirals

It is intriguing to add more rank-2 chiral multiplets to theory A. Let us consider theory A
with gauge group USp(4) and 3 rank-2 antisymmetric chirals, all with Neumann boundary
conditions. These boundary conditions lead to the boundary ’t Hoof anomaly

A = 3 Tr(s2) + 5r2︸ ︷︷ ︸
VM, N

−
(
3 Tr(s2) + 3 Tr(x̃2) + 9(A− r)2

)
︸ ︷︷ ︸

ΦI , N

= −3 Tr(x̃2)− 9A2 + 18Ar − 4r2. (4.55)
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As there is no gauge anomaly, these boundary conditions are consistent with Neumann
boundary conditions preserving USp(4) gauge group.

The Neumann half-index of theory A is given by

IIA(N ,N)

= (q)2
∞

8

2∏
i=1

∮
dsi

2πisi
(s±1 s∓2 ; q)∞

∏2
i≤j(s±i s±j ; q)∞∏3

I=1(qrA/2As±1 s∓2 x̃I ; q)∞(qrA/2As±1 s±2 x̃I ; q)∞(qrA/2Ax̃I ; q)2
∞

(4.56)

where ∏3
I=1 x̃I = 1. According to Theorem 4.4 in [73], we can write the half-index (4.56) as

(q1+3rA/2A3; q)∞∏3
I=1(qrA/2Ax̃I ; q)∞

∏3
J≥I(qrAA2x̃I x̃J ; q)∞

. (4.57)

Again this immediately tells the dual boundary condition in theory B. We show the content
and boundary conditions of both theories in the following table:

bc USp(4) SU(3) U(1)A U(1)R
VM N Adj 1 0 0
ΦI N 6 3 1 0
φI N 1 3 1 0
φIJ N 1 6 2 0
V D 1 1 −3 0

(4.58)

The ’t Hooft anomaly for the boundary conditions in theory B is given by

A =−
(1

2 Tr(x̃2) + 3
2(A− r)2

)
︸ ︷︷ ︸

φI , N

−
(5

2 Tr(x̃2) + 3(2A− r)2
)

︸ ︷︷ ︸
φIJ , N

+ 1
2(−3A− r)2︸ ︷︷ ︸

V, D

. (4.59)

This is equal to the boundary anomaly (4.55) for theory A.
The mapping of operators between theory A and theory B is given by φI ∼ ωΦI ,

φIJ ∼ ΦIΦJ and V is dual to the monopole operator with flux |m1| = |m2| = 1 in theory
A in the bulk.

We therefore find the boundary confining duality

USp(4) + 3 antisym. chirals ΦI with b.c. (N , N)
⇔ an SU(3) fund. φI + an SU(3) rank3-sym. chiral φIJ + a singlet chiral V
with b.c. (N,N,D). (4.60)

In this case the bulk theory A has monopoles of zero (or negative) dimension since the
dimensions are given by

(2− 3rA)|m1 −m2|+ (2− 3rA)|m1 +m2| − 2|m1| − 2|m2| ≥ 2
∣∣|m1| − |m2|

∣∣ ≥ 0 (4.61)

for mi ∈ Z (with at least one mi 6= 0) where the inequalities are given for rA = 0. We
can see that the lower bound is indeed saturated if rA = 0 when |m1| = |m2|. Choosing
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positive values for rA will decrease the R-charge of the monopoles so in that case there
will be negative dimension monopoles. Similarly, in theory B any choice of rA results in at
least one chiral having non-positive dimension. Therefore this is an example of a boundary
duality which does not have a corresponding standard bulk Seiberg-like bulk duality of IR
unitary CFTs.

4.7 USp(6) with 2 antisymmetric chirals

Consider theory A with gauge group USp(6) and 2 rank-2 antisymmetric chirals, all with
Neumann boundary conditions. The boundary ’t Hooft anomaly is given by

A = 4 Tr(s2) + 21
2 r

2︸ ︷︷ ︸
VM, N

−
(

4 Tr(s2) + 15
2 Tr(x̃2) + 15(A− r)2

)
︸ ︷︷ ︸

ΦI , N

=− 15
2 Tr(x̃2)− 15A2 + 30Ar − 9

2r
2. (4.62)

The Neumann half-index reads

IIA(N ,N)

= (q)3
∞

48

3∏
i=1

∮
dsi

2πisi

(∏3
i<j(s±i s∓j ; q)∞

)∏3
i≤j(s±i s±j ; q)∞∏2

I=1(qrA/2Ax̃I ; q)3
∞
∏3
i<j(qrA/2As±i s∓j x̃I ; q)∞(qrA/2As±i s±j x̃I ; q)∞

(4.63)

where ∏2
I=1 x̃I = 1. According to Theorem 4.6 in [73], it follows that the integral (4.63) is

equal to

(q1+3rAA6; q)∞
(q2rAA4; q)∞

∏2
I=1(qrA/2Ax̃I ; q)∞

∏2
J≥I(qrAA2x̃I x̃J ; q)∞

∏2
K≥J≥I(q3rA/2A3x̃I x̃J x̃K ; q)∞

.

(4.64)

From the infinite product (4.64) we can read the dual boundary condition in theory B.
Theory B involves an SU(2) fundamental chiral φI , an SU(2) adjoint chiral φIJ , an SU(2)
symmetric chiral φIJK , two singlet chirals φ, V . They obey the boundary conditions
(N,N,N,N,D). The anomalies for theory B is given by

A =−
(
5 Tr(x̃2) + 2(3A− r)2

)
︸ ︷︷ ︸

φIJK , N

− 1
2(4A− r)2︸ ︷︷ ︸

φ, N

+ 1
2(−6A− r)2︸ ︷︷ ︸

V, D

(4.65)

This precisely agrees with the anomaly (4.62) in theory A.
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The content and boundary conditions of both theories are summarized as

bc USp(6) SU(2) U(1)A U(1)R
VM N Adj 1 0 0
ΦI N 15 2 1 0
φI N 1 2 1 0
φIJ N 1 3 2 0
φIJK N 1 4 3 0
φ N 1 1 4 0
V D 1 1 −6 0

(4.66)

We propose a confining boundary duality

USp(6) + 2 antisym. chirals ΦI with b.c. (N , N)
⇔ an SU(2) fund. φI + an SU(2) adj. chiral φIJ +
+ an SU(2) sym. chiral φIJK
+ two singlet chirals φ, V with b.c. (N,N,N,N,D) . (4.67)

The mapping of operators between theory A and theory B is given by φI ∼ ωΦI ,
φIJ ∼ ΦIΦJ , φIJK ∼ ΦIΦJΦK , φ ∼ Φ2

1Φ2
2 and V is dual to the monopole operator with

|m1| = |m2| = 1 and |m3| = 0 in theory A in the bulk.
In this case in the bulk theory A has monopoles of zero (or negative) dimension since

the dimensions are given by

(1− 2rA)
3∑
i<j

(|mi −mj |+ |mi +mj |)− 2
3∑
i=1
|mi| ≥ 2 (max{|mi|} −min{|mi|}) ≥ 0

(4.68)

for mi ∈ Z (with at least one mi 6= 0) and the inequalities are given for rA = 0. We
can see that the lower bound is indeed saturated when |m1| = |m2| = |m3|. Choosing
positive values for rA will decrease the R-charge of the monopoles so in that case there
will be negative dimension monopoles. Similarly, in theory B any choice of rA results in
at least one chiral having non-positive dimension. Therefore this is another example of a
boundary duality which does not seem to have a corresponding standard bulk Seiberg-like
bulk duality of IR unitary CFTs.

4.8 SO(N) with N − 2 fundamental chirals

Let us consider a case with orthogonal gauge group. We take theory A with gauge group
SO(N) and N − 2 fundamental chirals Qα with R-charge 0. We choose the N = (0, 2)
boundary condition so that these all have Neumann boundary conditions. Then the bound-
ary anomaly is given by

A = (N − 2) Tr(s2) + N(N − 1)
4 r2︸ ︷︷ ︸

VM, N

−
(

(N − 2) Tr(s2) + N

2 Tr(x2) + N(N − 2)
2 (a− r)2

)
︸ ︷︷ ︸

Qα, N

=− N

2 Tr(x2)− N(N − 2)
2 a2 +N(N − 2)ar − N(N − 3)

4 r2. (4.69)
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As it is free from the gauge anomaly, the set of Neumann boundary conditions is quantum
mechanically consistent.

We can write the half-index as

IIA(N ,N) = (q)n∞
n!2n−1+ε

n∏
i=1

∮
dsi

2πisi
(s±i ; q)ε∞

n∏
i<j

(s±i s∓j ; q)∞(s±i s±j ; q)∞

× 1∏N−2
α=1

(
(qr/2axα; q)ε∞

∏n
i=1(qr/2s±i axα; q)∞

) (4.70)

where N = 2n+ ε with n ∈ Z and ε ∈ {0, 1}. By means of Theorems 7.14 and 7.16 in [72],
the half-index (4.70) can be simply expressed as(

q1+(N/2−1)raN−2; q
)
∞∏N−2

α≤β (qra2xαxβ ; q)∞
. (4.71)

Note that this identity can be derived as a limit of the symplectic identity discussed
in section 4.3 [72]. Specifically, combining the axial and flavor fugacities as Xα = axα (1 ≤
α ≤ 2n+ 3), then taking X2n+1 = −1, X2n+3 = q1/2 and X2n+3 = −q1/2, before redefining
Xα = axα (1 ≤ α ≤ 2n) with∏2n

α=1 xα = 1 gives the above identity for SO(2n+1) after some
simple manipulations including using the q-Pochhammer identity (±z; q)∞(±q1/2z; q)∞ =
(z2; q)∞. Taking also X2n = 1 gives the identity for SO(2n). The same limits can be taken
for other symplectic identities with at least 3 fundamental chirals10 and this is considered
further in section 6.2 for the identities in section 4.4.

We can also generalize these identities by including fugacities for discrete Z2 symme-
tries C andM. We present the results in section 6.1.

The equation (4.71) is identified with the half-index of the dual boundary condition in
theory B that has a symmetric rank-2 SU(Nf = N − 2) chiral Mαβ with R-charge 0 with
Neumann boundary conditions and a singlet chiral V with U(1)a charge −Nf and R-charge
0 with Dirichlet boundary condition. Note that in comparison to the case of symplectic
or unitary gauge groups with only fundamental (and antifundamental) chirals, here the
singlet V has R-charge 0 rather than 2.

The field content and boundary conditions are summarized as
bc SO(N) SU(Nf = N − 2) U(1)a U(1)R

VM N Adj 1 0 0
Qα N N Nf 1 0
Mαβ N 1 Nf (Nf + 1)/2 2 0
V D 1 1 −Nf 0

(4.72)

The anomaly for theory B is computed as

A =−
(
N

2 Tr(x2) + (N − 1)(N − 2)
4 (2a− r)2

)
︸ ︷︷ ︸

Mαβ , N

+ 1
2
(
− (N − 2)a− r

)2︸ ︷︷ ︸
V, D

, (4.73)

which precisely matches with the anomaly (4.69) for theory A.
10The crucial point is that this limit specialising the 3 or 4 flavor fugacities for fundamental chirals

results in part of the fundamental chiral contribution to the half-index combining with the USp(2n) vector
multiplet contribution to give the contribution of an SO(2n + 1) or SO(2n) vector multiplet.

– 27 –



J
H
E
P
0
8
(
2
0
2
3
)
0
4
8

The mapping of operators between theory A and theory B is given by Mαβ ∼ QαQβ
where the gauge indices are contracted with the SO(N)-invariant rank-2 symmetric tensor
and V is dual to the minimal monopole operator in theory A.

The boundary confining duality is summarized as

SO(N) + (N − 2) fund. chirals Qα with b.c. (N , N)
⇔ an SU(N − 2) sym. Mαβ + a singlet chiral V with b.c. (N,D). (4.74)

In this case in the bulk theory A has monopoles of zero (or negative) dimension since
the dimensions are given by

(2(n− 1)− (N − 2)ra)
n∑
i=1
|mi| −

n∑
i<j

(|mi −mj |+ |mi +mj |) ≥
n∑
i=1

2(i− 1)|mσ(i)| ≥ 0

(4.75)

for mi ∈ Z (with at least one mi 6= 0) and σ is a permutation giving the ordering |mσ(i)| ≥
|mσ(j)| for i < j. The inequalities are given for ra = 0 and we can see that the lower bound
is indeed saturated when a single |mi| = 1. Choosing positive values for ra will (for N > 2)
decrease the R-charge of the monopoles so in that case there will be negative dimension
monopoles. Therefore this is an another example of a boundary duality which does not
originate from the standard Seiberg-like bulk duality of IR unitary CFTs.

5 Gustafson-Rakha integrals

Here we consider the case where theory A has general USp(2n) or SU(N) gauge group with
rank-2 antisymmetric chirals as well as fundamental chirals. We begin with the simplest
example involving a symplectic gauge group. The Neumann half-indices can be identified
with the Gustafson-Rakha integrals [73].

5.1 USp(2n) with rank-2 antisymmetric and 5(+1) fundamental chirals

Consider theory A with a USp(2n) vector multiplet obeying Neumann boundary condition,
a USp(2n) rank-2 antisymmetric chiral Φ with Neumann boundary condition, 5 fundamen-
tal chirals Qα with Neumann boundary conditions, and one fundamental chiral Q̃ with
Dirichlet boundary conditions. The boundary ’t Hooft anomaly is

A = (n+ 1) Tr(s2) + n(2n+ 1)
2 r2︸ ︷︷ ︸

VM, N

−
(5

2 Tr(s2) + nTr(x2) + 5n(a− r)2
)

︸ ︷︷ ︸
Qα, N

−
(

(n− 1) Tr(s2) + n(2n− 1)
2 (A− r)2

)
︸ ︷︷ ︸

Φ, N

+
(1

2 Tr(s2) + n
(
(2− 2n)A− 5a+ r

)2)
︸ ︷︷ ︸

Q̃, D

= −nTr(x2) + 20na2 + 20n(n− 1)Aa+ n(2n− 3)(4n− 3)
2 A2 − (2n− 3)nAr − 3nr2.

(5.1)
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Again this is a consistent N = (0, 2) Neumann boundary condition as it has no gauge
anomaly.

The Neumann half-index takes the form:

IIA(N ,N ,N ,D)

= (q)n∞
n!2n

n∏
i=1

∮
dsi

2πisi

n∏
i 6=j

(sis−1
j ; q)∞

n∏
i≤j

(s±i s±j ; q)∞
∏n
i=1(q(n−1)rA+5ra/2A2n−2a5s±i ; q)∞∏5

α=1
∏n
i=1(qra/2s±i axα; q)∞

× 1
(qrA/2A; q)n∞

∏n
i<j(qrA/2As±i s∓j ; q)∞(qrA/2As±i s±j ; q)∞

(5.2)

where ∏5
α=1 xα = 1. By making use of Theorem 2.1 in [73], we can write the Neumann

half-index (5.2) as
n∏
λ=1

∏5
α=1(q(2n−1−λ)rA/2+2raA2n−1−λa4x−1

α ; q)∞
(qλrA/2Aλ; q)∞

∏
α<β(q(λ−1)rA/2+raAλ−1a2xαxβ ; q)∞

(5.3)

We can understand the infinite product (5.3) as the half-index of theory B. Theory B has n
copies of the following chirals (with different global Abelian charges) in representations of
the SU(5) global flavor symmetry group: rank-2 antisymmetric with Neumann boundary
conditions, singlet with Neumann boundary conditions and fundamental with Dirichlet
boundary conditions. The field content and the charges are given by

bc USp(2n) SU(Nf = 5) U(1)A U(1)a U(1)R
VM N Adj 1 0 0 0
Φ N n(2n− 1) 1 1 0 0
Qα N 2n 5 0 1 0
Q̃ D 2n 1 2− 2n −5 2

M
(λ)
αβ N 1 10 λ− 1 2 0

φ(λ) N 1 1 λ 0 0
M̃

(λ)
α D 1 5 λ+ 1− 2n −4 2

(5.4)

where λ ∈ {1, 2, . . . , n}.
The ’t Hooft anomaly for theory B is calculated as

A = −
(

3n
2 Tr(x2) + 5

n∑
λ=1

(
(λ− 1)A+ 2a− r

)2)
︸ ︷︷ ︸

M
(λ)
αβ

, N

− 1
2

n∑
λ=1

(
λA− r

)2
︸ ︷︷ ︸

φ(λ), N

+ n

2 Tr(x2) + 5
2

n∑
λ=1

(
(λ+ 1− 2n)A− 4a+ r

)2
︸ ︷︷ ︸

M̃
(λ)
α , D

. (5.5)

This agrees with the anomaly (5.1) for theory A.
The mapping of operators between theory A and theory B is given byM (λ)

αβ ∼QαΦλ−1Qβ ,
φ(λ) ∼ Φλ and M̃ (λ)

α ∼ QαΦλ−1Q̃ where the gauge indices are contracted with the USp(2n)-
invariant rank-2 antisymmetric tensor.
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We propose the following boundary confining duality:

USp(2n) + antisym. chiral Φ + 5 fund. chirals Qα
+ 1 fund. chiral Q̃ with b.c. (N , N,N,D)

⇔ an SU(5) antisym. M (λ)
αβ + a singlet φ(λ)

+ a SU(5) fund. chiral M̃ (λ)
α with b.c. (N,N,D). (5.6)

All monopoles in theory A have positive dimension

2(1 + (n− 1)rA)
n∑
i=1
|mi| − rA

n∑
i<j

|mi +mj | − rA
n∑
i<j

|mi −mj | ≥ 2 (5.7)

for mi ∈ Z (with at least one mi 6= 0)and the inequality is given for rA = 0. Choosing
positive values for rA may decrease the R-charge of the monopoles but there will still be a
range of values so that all monopoles have positive R-charge. Hence the boundary duality
can be extended to a bulk duality where theory A has superpotential WA = V + Tr Φn+1

and theory B has a superpotential which is a linear combination of terms of the form
εαα1β1α2β2M̃

(λ)
α M

(λ1)
α1β1

M
(λ2)
α1β2

φ̂ where φ̂ schematically indicates some algebraic combination
of the φ(λ) chirals. The precise details of the theory B superpotential can be deduced from
the operator mapping to theory A. This is the confining duality case of a 4d Seiberg-like
duality derived in [85, 86] and with the inclusion of the linear monopole term in the theory
A superpotential it reduces to a 3d duality [29].11 In fact, the matching of full indices

IA = 1
n!2n

∑
m1,··· ,mn

n∏
i=1

∮
dsi

2πisi

n∏
i 6=j

(1− q
|mi−mj |

2 sis
−1
j )

n∏
i≤j

(1− q
|mi+mj |

2 s±i s
±
j )

×
n∏
i=1

5∏
α=1

(q1− ra2 + |mi|2 s∓i a
−1x−1

α ; q)∞
(q

ra+|mi|
2 s±i axα; q)∞

×
n∏
i<j

(q1− rA2 +
|mi−mj |

2 s±i s
∓
j A
−1; q)∞

(q
rA+|mi−mj |

2 s±i s
∓
j A; q)∞

(q1− rA2 +
|mi+mj |

2 s∓i s
∓
j A
−1; q)∞

(q
rA+|mi+mj |

2 s±i s
±
j A; q)∞

× (q1− rA2 A−1; q)n∞
(q

rA
2 A; q)n∞

n∏
i=1

(q(n−1)rA+ 5
2 ra+ |mi|2 A2n−2a5s±i ; q)∞

(q1−(n−1)rA− 5
2 ra+ |mi|2 A−2n+2a−5s∓i ; q)∞

× q
5
2 (1−ra)

∑
i
|mi|+ 1

2 (1−rA)
∑

i<j
|mi±mj |+ 1

2 [−1+2(n−1)rA+5ra]
∑

i
|mi|− 1

2
∑

i<j
|mi±mj |−

∑
i
|mi|

×A−
∑

i<j
|mi±mj |+2(n−1)

∑
i
|mi| (5.8)

11We haven’t checked the full details of the reduction from 4d to 3d including the counting of fermionic zero
modes to check that the linear monopole superpotential is indeed generated from the circle compactification.
However, we believe this is the case as the spectrum of the 3d theories matches expectations from such a
reduction and the absence of a chiral multiplet in theory B dual to the minimal monopole in theory A is
consistent with a linear monopole superpotential. This applies also to other cases described later where we
interpret the 3d duality as arising from a 4d duality compactified on a circle.
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and

IB =
n∏
λ=1

∏
α<β

(q1−(λ−1) rA2 −raA−λ+1a−2x−1
α x−1

β ; q)∞
(q(λ−1) rA2 +raAλ−1a2xαxβ ; q)∞

×
5∏

α=1

(q(2n−1−λ) rA2 +2raA2n−1−λa4x−1
α ; q)∞

(q1−(2n−1−λ) rA2 −2raA−2n+1+λa−4xα; q)∞
(q1−λ rA2 A−λ; q)∞

(qλ
rA
2 Aλ; q)∞

(5.9)

can be checked.
For example, for n = 2 with ra = 1

6 , rA = 1
4 we have

IA = IB

= 1 +Aq1/8 + 10a2q1/6 + 10a2q1/6 + 2A2q1/4 + 20a2Aq7/24 + 55a4q1/3

+ 2A3q3/8 + (5a−4A−2 + 30a2A2)q5/12 + 150a4Aq11/24 + (220a6 + 3A4)q1/2 + · · · .
(5.10)

5.2 SU(N) with rank-2 antisymmetric, 3(+1) fundamental and N antifunda-
mental chirals

Let us consider theory A with gauge group SU(N), an antisymmetric chiral Φ, Nf = 3
fundamental chirals QI and Na = N antifundamental chirals Qα with R-charge 0. These all
obey Neumann boundary conditions. Also we introduce an additional fundamental chiral
Q̃ with Dirichlet boundary conditions. One finds the boundary ’t Hooft anomaly

AA = N Tr(s2) + N2 − 1
2 r2︸ ︷︷ ︸

VM, N

−
(3

2 Tr(s2) + N

2 Tr(x2) + 3N
2 (a− r)2

)
︸ ︷︷ ︸

QI , N

−
(
N

2 Tr(s2) + N

2 Tr(x̃2) + N2

2 (b− r)2
)

︸ ︷︷ ︸
Qα, N

−
(
N − 2

2 Tr(s2) + N(N − 1)
4 (A− r)2

)
︸ ︷︷ ︸

Φ, N

+
(1

2 Tr(s2) + N

2
(
(2−N)A− 3a−Nb+ r

)2)
︸ ︷︷ ︸

Q̃, D

= −N Tr(x2)−N Tr(x̃2) + 3Na2 + 3N2ab+ N2(N − 1)
2 b2 + N(N − 3)(2N − 3)

4 A2

+ 3N(N − 2)Aa+N2(N − 2)Ab− N(N − 3)
2 Ar − (N + 1)(N + 2)

4 r2. (5.11)

The absence of gauge anomaly ensures that the Neumann boundary condition is consistent.
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We can evaluate the Neumann-half-index as

IIA(N ,N,N,N,D)

= (q)N−1
∞
N !

N−1∏
i=1

∮
dsi

2πisi

N∏
i 6=j

(sis−1
j ; q)∞

×
N∏
i=1

(q((N−2)rA+3ra+Nrb)/2AN−2a3bNs−1
i ; q)∞(∏N

α=1(qrb/2bs−1
i x̃α; q)∞

) (∏3
I=1(qra/2asixI ; q)∞

) (∏N
i<j(qrA/2Asisj ; q)∞

) (5.12)

where ∏N
i=1 si = ∏3

I=1 xI = ∏N
α=1 x̃α = 1. The half-index (5.12) is identified with the

integral studied in [87]. For N = 2n it can be expresses as

(
q(nrA+Nrb)/2AnbN ; q

)
∞

(∏N
α=1

(
q((N−2)rA+3ra+(N−1)rb)/2AN−2a3bN−1x̃−1

α ; q
)
∞

)
(
qnrA/2An; q

)
∞
(
qNrb/2bN ; q

)
∞
∏3
I=1

∏N
α=1(q(ra+rb)/2abxI x̃α; q)∞

×

(∏3
I=1

(
q((n−1)rA+2ra+Nrb)/2An−1a2bNx−1

I ; q
)
∞

)
(∏3

I=1

(
q((n−1)rA+2ra)/2An−1a2x−1

I ; q
)
∞

)∏N
α<β(q(rA+2rb)/2Ab2x̃αx̃β ; q)∞

. (5.13)

For N = 2n+ 1 the Neumann half-index (5.12) can be written as

(
q((n−1)rA+3ra+Nrb)/2An−1a3bN ;q

)
∞

(∏N
α=1

(
q((N−2)rA+3ra+(N−1)rb)/2AN−2a3bN−1x̃−1

α ;q
)
∞

)
(
q((n−1)rA+3ra)/2An−1a3;q

)
∞
(
qNrb/2bN ;q

)
∞
∏3
I=1

∏N
α=1(q(ra+rb)/2abxI x̃α;q)∞

×

(∏3
I=1

(
q(nrA+ra+Nrb)/2AnabNxI ;q

)
∞

)
(∏3

I=1
(
q((n+1)rA+ra)/2An+1axI ;q

)
∞

)∏N
α<β(q(rA+2rb)/2Ab2x̃αx̃β ;q)∞

. (5.14)

These half-indices should be convergent for any positive values for rA, ra and rb.
For example if we have SU(4) the identity is

IIA(N ,N,N,N,D)

= (q)3
∞

4!

3∏
i=1

∮
dsi

2πisi

4∏
i 6=j

(sis−1
j ; q)∞

×
4∏
i=1

(q(2rA+3ra+4rb)/2A2a3b4s−1
i ; q)∞(∏4

α=1(qrb/2bs−1
i x̃α; q)∞

) (∏3
I=1(qra/2asixI ; q)∞

) (∏4
i<j(qrA/2Asisj ; q)∞

)
=
(
qrA+2rbA2b4; q

)
∞

(∏4
α=1

(
q(2rA+3ra+3rb)/2A2a3b3x̃−1

α ; q
)
∞

)
(qrAA2; q)∞ (q2rbb4; q)∞

∏3
I=1

∏4
α=1(q(ra+rb)/2abxI x̃α; q)∞

×

(∏3
I=1

(
q(rA+2ra+4rb)/2Aa2b4x−1

I ; q
)
∞

)
(∏3

I=1

(
q(rA+2ra)/2Aa2x−1

I ; q
)
∞

)∏4
α<β(q(rA+2rb)/2Ab2x̃αx̃β ; q)∞

. (5.15)
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When the R-charges are chosen as ra = rb = rA = 1
4 and fugacities xI and x̃α are switched

off, it can be expanded as

IIA(N ,N,N,N,D)

= 1 + (A2 + 12ab)q1/4 + (3a2A+ 6Ab2)q8/3

+ (A4 + 12aA2b+ 78a2b2 + b4)q1/2 + (3a2A3 + 36a3Ab+ 6A3b2 + 72aAb3)q5/8 + · · · .
(5.16)

The expressions (5.13) and (5.14) allow us to read the confined descriptions of the
Neumann boundary condition of theory A as the boundary condition for dual theory B
consisting of chiral multiplets. The field content of theory B depends on whether N is even
or odd, i.e. for n ∈ N, N = 2n or N = 2n+ 1, and is summarized in the following tables.

For N = 2n with n ≥ 2 we have

bc SU(N = 2n) SU(Nf = 3) SU(Na = N) U(1)A U(1)a U(1)b U(1)R
VM N Adj 1 1 0 0 0 0
Φ N N(N− 1)/2 1 1 1 0 0 0
QI N N 3 1 0 1 0 0
Qα N N 1 N 0 0 1 0
Q̃ D N 1 1 2−N −3 −N 2
MIα N 1 3 N 0 1 1 0
B N 1 1 1 0 0 N 0
φ N 1 1 1 n 0 0 0

Mαβ N 1 1 N(N− 1)/2 1 0 2 0
BI N 1 3 1 n− 1 2 0 0
M̃α D 1 1 N 2−N −3 1−N 2
B̂ D 1 1 1 −n 0 −N 2
B̃I D 1 3 1 1− n −2 −N 2

(5.17)

with the operator mapping MIα ∼ QIQα, B ∼ εQ1 · · ·QN , φ ∼ εΦn, Mαβ ∼ ΦQαQβ ,
BI ∼ εΦn−1QJQKε

IJK , M̃α ∼ QαQ̃, B̂ ∼ εΦn−2Q1Q2Q3Q̃ and B̃I ∼ εΦn−1QIQ̃.

In the case where N = 2 the chirals Φ in theory A and φ in theory B are both singlets
with the same charges so can be removed from both theories. We then see that theory A
is the same as theory A in section 3.1. Theory B also matches once we notice that in this
case the chirals Mαβ and B̂ can be ignored as they cancel in the half-index.
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For N = 2n+ 1 we have

bc SU(N = 2n+ 1) SU(Nf = 3) SU(Na = N) U(1)A U(1)a U(1)b U(1)R
VM N Adj 1 1 0 0 0 0
Φ N N(N− 1)/2 1 1 1 0 0 0
QI N N 3 1 0 1 0 0
Qα N N 1 N 0 0 1 0
Q̃ D N 1 1 2−N −3 −N 2
MIα N 1 3 N 0 1 1 0
B N 1 1 1 0 0 N 0
BI N 1 3 1 n 1 0 0
Mαβ N 1 1 N(N− 1)/2 1 0 2 0
B N 1 1 1 n− 1 3 0 0
M̃α D 1 1 N 2−N −3 1−N 2
B̂I D 1 3 1 −n −1 −N 2
B̃ D 1 1 1 1− n −3 −N 2

(5.18)

with the operator mapping MIα ∼ QIQα, B ∼ εQ1 · · ·QN , BI ∼ εΦnQI , Mαβ ∼ ΦQαQβ ,
B ∼ εΦn−1Q1Q2Q3, M̃α ∼ QαQ̃, B̂I ∼ εΦn−1QJQKQ̃ε

IJK and B̃ ∼ εΦnQ̃.

In the case where N = 3, the antisymmetric representation is the same as the antifun-
damental representation of SU(3) so this duality is the same as discussed in section 4.2 up
to relabelling of fields and exchanging gauge group representations 3↔ 3.

For N = 2n the boundary anomaly for theory B is

AB,N=2n

= −
(
N

2 Tr(x2) + 3
2 Tr(x̃2) + 3N

2 (a+ b− r)2
)

︸ ︷︷ ︸
MIα, N

− 1
2(Nb− r)2︸ ︷︷ ︸

B, N

− 1
2(nA− r)2︸ ︷︷ ︸

φ, N

−
(
N − 2

2 Tr(x̃2) + N(N − 1)
4 (A+ 2b− r)2

)
︸ ︷︷ ︸

Mαβ , N

−
(1

2 Tr(x2) + 3
2
(
(n− 1)A+ 2a− r

)2)
︸ ︷︷ ︸

BI , N

+ 1
2(−nA−Nb+ r)2︸ ︷︷ ︸

B̂, D

+
(1

2 Tr(x̃2) + N

2
(
(2−N)A− 3a+ (1−N)b+ r)2

)
︸ ︷︷ ︸

M̃α, D

+
(1

2 Tr(x2) + 3
2
(
(1− n)A− 2a−Nb+ r

)2)
︸ ︷︷ ︸

B̃I , D

(5.19)
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and for N = 2n+ 1 it is

AB,N=2n+1

= −
(
N

2 Tr(x2) + 3
2 Tr(x̃2) + 3N

2 (a+ b− r)2
)

︸ ︷︷ ︸
MIα, N

− 1
2(Nb− r)2︸ ︷︷ ︸

B, N

− 1
2
(
(n− 1)A+ 3a− r

)2︸ ︷︷ ︸
B, N

−
(
N − 2

2 Tr(x̃2) + N(N − 1)
4 (A+ 2b− r)2

)
︸ ︷︷ ︸

Mαβ , N

−
(1

2 Tr(x2) + 3
2(nA+ a− r)2

)
︸ ︷︷ ︸

BI , N

+
(1

2 Tr(x2) + 3
2
(
− nA− a−Nb+ r

)2)
︸ ︷︷ ︸

B̂I , D

+ 1
2
(
(1− n)A− 3a−Nb+ r)2︸ ︷︷ ︸

B̃, D

+
(1

2 Tr(x̃2) + N

2
(
(2−N)A− 3a+ (1−N)b+ r)2

)
︸ ︷︷ ︸

M̃α, D

. (5.20)

The anomalies (5.19) and (5.20) exactly coincide with the anomaly (5.11) for theory A.

The matching of the half-indices and the anomalies support the following boundary
confining dualities:

SU(N) + antisym. chiral Φ + 3 fund. chirals QI
+ N antifund. chiral Qα + 1 antifund. chiral Q̃ with b.c. (N , N,N,N,D)
⇔ an SU(3)× SU(N) bifund. MIα + a singlet B + a singlet φ

+ an SU(N) antisym. chiral Mαβ + an SU(3) antifund. BI + an SU(N) fund. chiral M̃α

+ a singlet B̂ + an SU(3) fund. chiral B̃I with b.c. (N,N,N,N,N,D,D,D). (5.21)

for N = 2n and

SU(N) + antisym. chiral Φ + 3 fund. chirals QI
+ N antifund. chiral Qα + 1 antifund. chiral Q̃ with b.c. (N , N,N,N,D)
⇔ an SU(3)× SU(N) bifund. MIα + a singlet B + an SU(3) fund. BI

+ an SU(N) antisym. chiral Mαβ + a singlet B + an SU(N) fund. chiral M̃α

+ an SU(3) antifund. B̂I + a singlet B̃ with b.c. (N,N,N,N,N,D,D,D). (5.22)

for N = 2n+ 1.

These boundary confining dualities (5.21) and (5.22) are extended to bulk confining
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dualities with superpotentials

WA =V (5.23)

WN=2n
B = M̃α1

(
MIβ1B

IMα2β2 − εIJKMIβ1MJα2MKβ2

)
Mα3β3 · · ·Mαnβnε

α1β1···αnβn

+ B̃I
(
BIB − εIJKMJα1MKβ1Mα2β2 · · ·Mαnβnε

α1β1···αnβn
)

+ B̂
(
Bφ− Pf Mαβ

)
(5.24)

WN=2n+1
B = M̃α

(
BMα1β1 − εIJKBIMJα1MKβ1

)
Mα2β2 · · ·Mαnβnε

αα1β1···αnβn ,

+ B̃
(
BB − εIJKMIαMJα1MKβ1Mα2β2 · · ·Mαnβnε

αα1β1···αnβn
)

+ B̂I
(
BIB −MIαMα1β1 · · ·Mαnβnε

αα1β1···αnβn
)

(5.25)

where V is the dimension 2 monopole. This is the confining duality case of the 4d dual-
ities presented in [2, 3, 86] compactified to 3d with the addition of the linear monopole
superpotential [29].

For example, for N = 4 with ra = 1
6 , rb = 1

6 and rA = 1
4 we have checked the precise

agreement of the full-indices for theory A and B

IA = IB

= 1 + 12abq1/6 + (A2 + 4a−3A−2b−3)q1/4 + 3A(a2 + 2b2)q7/24 + (78a2b2 + b4)q1/3

+ 3a−2A−1b−4q3/8 + (A−2b−4 + 48a−2A−2b−2 + 12aA2b)q5/12 + · · · (5.26)

where

IA = 1
4!

∑
m1,m2,m3∈Z

3∏
i=1

∮
dsi

2πisi

4∏
i 6=j

(1− q
|mi−mj |

2 s±i s
∓
j )

4∏
i=1

4∏
α=1

(q1− rb2 + |mi|2 b−1six̃
−1
α ; q)∞

(q
rb
2 + |mi|2 bs−1

i x̃α; q)∞

×
4∏
i=1

3∏
I=1

(q1− ra2 + |mi|2 a−1six̃
−1
I ; q)∞

(q
ra
2 + |mi|2 as−1

i x̃I ; q)∞

∏
i<j

(q1− rA2 +
|mi+mj |

2 A−1s−1
i s−1

j ; q)∞

(q
rA
2 +

|mi+mj |
2 Asisj ; q)∞

× (q
2rA+3ra+4rb+|mi|

2 A2a3b4s−1
i ; q)∞

(q1− 2rA+3ra+4rb
2 + |mi|2 A−2a−3b−4si; q)∞

× q∆A
−
∑

i<j
|mi−mj |+2

∑4
i=1 |mi| (5.27)

and

IB = (qrA+2rbA2b4; q)∞
(q1−rA−2rbA−2b−4; q)∞

(q1−rAA−2; q)∞
(qrAA2; q)∞

(q1−2rbb−4; q)∞
(qrbb4; q)∞

×
4∏

α=1

(q
2rA+3ra+3rb

2 Aa3b3x̃−1
α ; q)∞

(q1− 2rA+3ra+3rb
2 A−1a−3b−3x̃α; q)∞

×
3∏
i=1

4∏
α=1

(q1− ra+rb
2 a−1b−1x−1

I x̃−1
α q)∞

(q
ra+rb

2 abxI x̃α; q)∞

3∏
I=1

(q
rA+2ra+4rb

2 Aa2b4x−1
I ; q)∞

(q1− rA+2ra+4rb
2 A−1a−2b−4xI ; ; q)∞

×
3∏
I=1

(q1− rA+2ra
2 A−1a−2xI ; q)∞

(q
rA+2ra

2 Aa2x−1
I ; ; q)∞

∏
α<β

(q1− rA+2rb
2 A−1b−2x̃−1

α x̃−1
β ; q)∞

(q
rA+2rb

2 Ab2x̃αxβ ; ; q)∞
(5.28)
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with m4 = −(m1 +m2 +m3) and

∆ = 3
4(1− ra)

4∑
i=1
|mi|+ (1− rb)

4∑
i=1
|mi|+

1
2(1− rA)

∑
i<j

|mi +mj |

+ 1
4(−1 + 2rA + 3ra + 4rb)

4∑
i=1
|mi| −

1
2
∑
i<j

|mi −mj | . (5.29)

For general N the monopoles have dimensions given, with ∑N
i=1mi = 0, by

N + 2 + (N − 2)rA
2

N∑
i=1
|mi|+ (1− rA)

N∑
i<j

|mi +mj | −
N∑
i<j

|mi −mj | (5.30)

which we believe are bounded from below by 2 for rA = 0 (and N ≥ 2) but we haven’t
proven this. For rA > 0 the monopole dimensions may decrease but there will still be a
range of values of rA for which all monopoles will have positive dimension.

We will see in section 6.3 that there is a similar duality for SU(N) with an anti-
symmetric rank-2 chiral, four fundamental and N antifundamental chirals where one of
the antifundamental (rather than fundamental) chirals has Dirichlet boundary condition.
These both correspond to the same 3d bulk duality described above.

5.3 SU(N) with 2 rank-2 antisymmetric, 3 fundamental and 2(+1) antifun-
damental chirals

Next consider theory A that has an SU(N) vector multiplet with Neumann boundary
condition, two chirals Φ, Φ with Neumann boundary conditions in the antisymmetric and
conjugate antisymmetric rank-2 representations of SU(N), 3 fundamental QI and 2 antifun-
damental chirals Qα also with Neumann boundary conditions, and one antifundamental
Q̃ with Dirichlet boundary condition. This setup can be obtained by adding one more
rank-2 antisymmetric chiral multiplet Φ with Neumann boundary condition to theory A
in subsection 5.2.
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We obtain the boundary ’t Hooft anomaly

AA = N Tr(s2) + N2 − 1
2 r2︸ ︷︷ ︸

VM, N

−
(3

2 Tr(s2) + N

2 Tr(x2) + 3N
2 (a− r)2

)
︸ ︷︷ ︸

QI , N

−
(

Tr(s2) + N

2 Tr(x̃2) +N(b− r)2
)

︸ ︷︷ ︸
Qα, N

−
(
N − 2

2 Tr(s2) + N(N − 1)
4 (A− r)2

)
︸ ︷︷ ︸

Φ, N

−
(
N − 2

2 Tr(s2) + N(N − 1)
4 (B − r)2

)
︸ ︷︷ ︸

Φ, N

+
(1

2 Tr(s2) + N

2
(
(2−N)A+ (2−N)B − 3a− 2b+ r

)2)
︸ ︷︷ ︸

Q̃, D

= − N

2 Tr(x2)− N

2 Tr(x̃2) + 3a2N + 3N(N − 2)Aa+ 2N(N − 2)Ab

+N(N − 2)2AB − 1
2(N − 3)NAr + 3(N − 2)NBa+ 2(N − 2)NBb

− 1
2(N − 3)NBr + 6Nab+ 1

4N(N − 3)(2N − 3)A2 + b2N

+ 1
4N(N − 3)(2N − 3)B2 − 1

2(3N + 1)r2. (5.31)

The Neumann half-index is evaluated as

IIA =(q)N−1
∞
N !

N−1∏
i=1

∮
dsi

2πisi

N∏
i 6=j

(sis−1
j ; q)∞

1∏N
i<j(qrA/2Asisj ; q)∞(qrB/2Bs−1

i s−1
j ; q)∞

×
N∏
i=1

(q((N−2)rA+(N−2)rB+3ra+2rb)/2AN−2BN−2a3b2si; q)∞(∏2
α=1(qrb/2bs−1

i x̃α; q)∞
) (∏3

I=1(qra/2asixI ; q)∞
) . (5.32)

The Neumann half-index (5.32) is identified with the integral studied in [73]. According
to the equation (3.2a) in [73], the half-index (5.32) for SU(2n) can be written as On the
other hand, for

∏2
α=1

(
q((N−2)rA+(n−1)rB+3ra+rb)/2AN−2Bn−1a3bx̃α;q

)
∞(

qnrA/2An;q
)
∞
(
qnrB/2Bn;q

)
∞
(
q(n−1)rB/2+rbBn−1b2;q

)
∞
∏3
I=1(q(n−1)rA/2+raAn−1a2x−1

I ;q)∞

×
n−1∏
λ=0

3∏
I=1

(
q((n−1−λ/2)rA+(n−1−λ/2)rB+ra+rb)AN−2−λBN−2−λa2b2x−1

I ;q
)
∞∏2

α=1
(
q(λrA+λrB+ra+rb)/2AλBλabxI x̃α;q

)
∞

×
∏n−2
λ=0

∏2
α=1

(
q((n−3/2−λ/2)rA+(n−1−λ/2)rB+3ra/2+rb/2)AN−3−λBN−2−λa3bx−1

α ;q
)
∞∏n−1

λ=1
(
qλrA/2+λrB/2AλBλ;q

)
∞
(
qλrA/2+(λ−1)rB/2+rbAλBλ−1b2;q

)
∞

×
n−1∏
λ=1

3∏
I=1

1(
q(λ−1)rA/2+λrB/2+raAλ−1Bλa2x−1

I ;q
)
∞

. (5.33)
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On the other hand, for SU(2n + 1) it follows from equation (3.2b) in [73] that it can be
expressed as(

q((N−2)rA+(n−1)rB/2+3ra+2rb)/2AN−2Bn−1a3b2; q
)
∞(∏2

α=1
(
qnrB/2Bnbx̃α; q

)
∞

) (
q(n−1)rA/2+3ra/2An−1a3; q

)
∞

×

(
q((N−2)rA+nrB+3ra)/2AN−2Bna3; q

)
∞∏3

I=1(qnrA/2+ra/2AnaxI ; q)∞

×
n−1∏
λ=0

3∏
I=1

(
q((n−1/2−λ/2)rA+(n−1/2−λ/2)rB+ra+rb)AN−2−λBN−2−λa2b2x−1

I ; q
)
∞∏2

α=1
(
q(λrA+λrB+ra+rb)/2AλBλabxI x̃α; q

)
∞

×
n−1∏
λ=0

2∏
α=1

(
q((n−1−λ/2)rA+(n−1/2−λ/2)rB+3ra/2+rb/2)AN−3−λBN−2−λa3bxα; q

)
∞

×
n∏
λ=1

1(
qλrA/2+λrB/2AλBλ; q

)
∞
(
qλrA/2+(λ−1)rB/2+rbAλBλ−1b2; q

)
∞

×
n∏
λ=1

3∏
I=1

1(
q(λ−1)rA/2+λrB/2+raAλ−1Bλa2x−1

I ; q
)
∞

. (5.34)

The equations (5.33) and (5.34) can be understood as the half-indices of dual boundary
conditions for theory B. Theory B has no gauge group and the chirals depend on whether
N is even, i.e. N = 2n, or odd, i.e. N = 2n + 1. Note that in both cases there is a
global SU(3) × SU(2) flavor symmetry in theory A, and we can label the chirals by their
representations of this group.

For N = 2n we have
bc SU(N = 2n) SU(3) SU(2) U(1)A U(1)B U(1)a U(1)b U(1)R

VM N Adj 1 1 0 0 0 0 0
Φ N N(N− 1)/2 1 1 1 0 0 0 0
Φ N N(N− 1)/2 1 1 0 1 0 0 0
QI N N 3 1 0 0 1 0 0
Qα N N 1 2 0 0 0 1 0
Q̃ D N 1 1 2− 2n 2− 2n −3 −2 2
BI N 1 3 1 n− 1 0 2 0 0
B N 1 1 1 0 n− 1 0 2 0
φ N 1 1 1 n 0 0 0 0
φ N 1 1 1 0 n 0 0 0

M
(0≤λ≤n−1)
Iα N 1 3 2 λ λ 1 1 0

φ̂(1≤λ≤n−1) N 1 1 1 λ λ 0 0 0
M (1≤λ≤n−1) N 1 1 1 λ λ− 1 0 2 0
M I (1≤λ≤n−1) N 1 3 1 λ− 1 λ 2 0 0

M̃α D 1 1 2 2− 2n 1− n −3 −1 2
M̃

(0≤λ≤n−1)
I D 1 3 1 2− 2n+ λ 2− 2n+ λ −2 −2 2

M̃
(0≤λ≤n−2)
α D 1 1 2 3− 2n+ λ 2− 2n+ λ −3 −1 2

(5.35)
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with the operator mapping BI ∼ εQJQKε
IJKΦn−1, B ∼ εQ1Q2Φn−1, φ ∼ εΦn, φ ∼ εΦn,

M
(λ)
Iα ∼ QIΦλΦλ

Qα, φ̂(λ) ∼ ΦλΦλ, M (λ) ∼ ΦλΦλ−1
Q1Q2, M

(λ)
IJ ∼ QIQJΦλ−1Φλ, M̃α ∼

Q̃QαΦn, M̃ (λ)
I ∼ QIΦλΦλ

Q̃ and M̃ (λ)
α ∼ Φλ+1Φλ

QαQ̃. In the table, to save space, we have
indicated the range of λ within the superscripts.

In the case of N = 2 this is equivalent to the duality discussed in section 3.1 after
removing Φ and Φ from theory A and the matching φ and φ from theory B.

The boundary anomaly for theory B is given by

AB,N=2n = −
(
nTr(x2) + 3n

2 Tr(x̃2) + 3
n−1∑
λ=0

(λA+ λB + a+ b− r)2
)

︸ ︷︷ ︸
M

(λ)
Iα , N

− 1
2
(
(n− 1)B + 2b− r

)2︸ ︷︷ ︸
B, N

− 1
2(nA− r)2︸ ︷︷ ︸

φ, N

− 1
2(nB − r)2︸ ︷︷ ︸

φ, N

−
(

1
2

n−1∑
λ=1

(λA+ (λ− 1)B + 2b− r)2
)

︸ ︷︷ ︸
M

(λ)
αβ

, N

−
(1

2 Tr(x2) + 3
2
(
(n− 1)A+ 2a− r

)2)
︸ ︷︷ ︸

BI , N

−
(
n− 1

2 Tr(x2) + 3
2

n−1∑
λ=1

(
(λ− 1)A+ λB + 2a− r

)2)
︸ ︷︷ ︸

MI (λ), N

− 1
2

n−1∑
λ=1

(λA+ λB − r)2

︸ ︷︷ ︸
φ̂(λ), N

+

n
2 Tr(x̃2) +

n−2∑
λ=−1

(
(3− 2n+ λ)A+ (2− 2n+ λ)B − 3a− b+ r)2


︸ ︷︷ ︸

M̃α, M̃
(λ)
α , D

+
(
n

2 Tr(x2) + 3
2

n−1∑
λ=0

(
(2− 2n+ λ)A+ (2− 2n+ λ)B − 2a− 2b+ r

)2)
︸ ︷︷ ︸

M̃
(λ)
I , D

,

(5.36)

which agrees with the anomaly (5.31) for theory A.
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For N = 2n+ 1 we have

bc SU(N = 2n+ 1) SU(3) SU(2) U(1)A U(1)B U(1)a U(1)b U(1)R
VM N Adj 1 1 0 0 0 0 0
Φ N N(N− 1)/2 1 1 1 0 0 0 0
Φ N N(N− 1)/2 1 1 0 1 0 0 0
QI N N 3 1 0 0 1 0 0
Qα N N 1 2 0 0 0 1 0
Q̃ D N 1 1 1− 2n 1− 2n −3 −2 2
BI N 1 3 1 n 0 1 0 0
Bα N 1 1 2 0 n 0 1 0
B N 1 1 1 n− 1 0 3 0 0

M
(0≤λ≤n−1)
Iα N 1 3 2 λ λ 1 1 0
φ̂(1≤λ≤n) N 1 1 1 λ λ 0 0 0
M

(1≤λ≤n) N 1 1 1 λ λ− 1 0 2 0
M I (1≤λ≤n) N 1 3 1 λ− 1 λ 2 0 0

B̂ D 1 1 1 1− 2n 1− n −3 −2 2
B̃ D 1 1 1 1− 2n −n −3 0 2

M̃
(0≤λ≤n−1)
I D 1 3 1 1− 2n+ λ 1− 2n+ λ −2 −2 2

M̃
(0≤λ≤n−1)
α D 1 1 2 2− 2n+ λ 1− 2n+ λ −3 −1 2

(5.37)

with the operator mapping BI ∼ εQIΦn, Bα ∼ εQαΦn, B ∼ εQ1Q2Q3Φn−1, M (λ)
Iα ∼

QIΦλΦλ
Qα, φ̂(λ) ∼ ΦλΦλ, M (λ) ∼ ΦλΦλ−1

Q1Q2, M I (λ) ∼ QJQKε
IJKΦλ−1Φλ, B̂ ∼

εQ̃Φn, B̃ ∼ εQ̃Q1Q2Φn−1, M̃ (λ)
I ∼ QIΦλΦλ

Q̃ and M̃ (λ)
α ∼ ΦλΦλ+1

QαQ̃.
In the case of N = 3 the antisymmetric and conjugate antisymmetric chirals Φ and

Φ are antifundamental and fundamental chirals so this duality is equivalent to the N = 3
example of the duality discussed in section 4.2.

The ’t Hooft anomaly (5.36) for theory A matches with that for theory B, which is
given by

AB,N=2n+1 = −
(
nTr(x2) + 3n

2 Tr(x̃2) + 3
n−1∑
λ=0

(λA+ λB + a+ b− r)2
)

︸ ︷︷ ︸
M

(λ)
Iα , N

− 1
2
(
(n− 1)B + 3b− r

)2︸ ︷︷ ︸
B, N

−
(1

2 Tr(x̃2) + 3
2
(
nB +−r

)2)
︸ ︷︷ ︸

Bα, N

−
(

1
2

n∑
λ=1

(λA+ (λ− 1)B + 2b− r)2
)

︸ ︷︷ ︸
M

(λ)
, N

−
(1

2 Tr(x2) + 3
2
(
nA+ a− r

)2)
︸ ︷︷ ︸

BI , N
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−
(
n

2 Tr(x2) + 3
2

n∑
λ=1

(
(λ− 1)A+ λB + 2a− r

)2)
︸ ︷︷ ︸

MI (λ), N

− 1
2

n∑
λ=1

(λA+ λB − r)2

︸ ︷︷ ︸
φ̂(λ), N

+
((

(1− 2n)A− nB − 3a+ r
)2)︸ ︷︷ ︸

B̃, D

+
((

(1− 2n)A+ (1− n)B − 3a− 2b+ r
)2)︸ ︷︷ ︸

B̂, D

+
(
n

2 Tr(x̃2) +
n−1∑
λ=0

(
(2− 2n+ λ)A+ (1− 2n+ λ)B − 3a− b+ r)2

)
︸ ︷︷ ︸

M̃
(λ)
α , D

+
(
n

2 Tr(x2) + 3
2

n−1∑
λ=0

(
(2− 2n+ λ)A+ (2− 2n+ λ)B − 2a− 2b+ r

)2)
︸ ︷︷ ︸

M̃
(λ)
I , D

.

(5.38)

This precisely matches with the boundary ’t Hooft anomaly (5.31) for theory A.
The precise agreement of the half-indices and the boundary anomalies lead to the

following boundary confining dualities:

SU(N) + 2 antisym. chirals Φ,Φ + 3 fund. chirals QI
+ 2 antifund. chiral Qα + 1 antifund. chiral Q̃ with b.c. (N , N,N,N,N,D)
⇔ an SU(3) antifund. BI + a singlet B + 2 singlets φ, φ

+ an SU(3)× SU(2) bifund. M (0≤λ≤n−1)
Iα + a singlet φ̂(0≤λ≤n)

+ a singlet M (1≤λ≤n−1) + an SU(3) antifund. M I(1≤λ≤n−1)

+ an SU(2) fund. M̃α + an SU(3) fund. M̃ (0≤λ≤n−1)
I + an SU(2) fund. M̃ (0≤λ≤n−2)

α

with b.c. (N,N,N,N,N,N,N,N,D,D,D). (5.39)

for N = 2n and

SU(N) + 2 antisym. chirals Φ,Φ + 3 fund. chirals QI
+ 2 antifund. chiral Qα + 1 antifund. chiral Q̃ with b.c. (N , N,N,N,N,D)
⇔ an SU(3) antifund. BI + an SU(2) fund. Bα + a singlet B

+ an SU(3)× SU(2) bifund. M (0≤λ≤n−1)
Iα + a singlet φ̂(1≤λ≤n)

+ a singlet M (1≤λ≤n−1) + an SU(3) antifund. M I(1≤λ≤n−1)

+ 2 singlets B̂, B̃ + an SU(3) fund. M̃ (0≤λ≤n−1)
I + an SU(2) fund. M̃ (0≤λ≤n−2)

α

with b.c. (N,N,N,N,N,N,N,D,D,D,D). (5.40)

for N = 2n+ 1.

– 42 –



J
H
E
P
0
8
(
2
0
2
3
)
0
4
8

Moreover, the boundary confining dualities (5.39) and (5.40) can be extended to the
bulk where theory A has superpotential WA = V + Tr(ΦΦ)n+1 and theory B has a com-
plicated superpotential which we do not write. This corresponds to a 4d duality described
in [86] which compactifies to the same duality in 3d with the addition of the linear monopole
superpotential term V in theory A. For example, for N = 4 with ra = 1

6 , rb = 1
6 and rA = 1

4 ,
rB = 1

4 , we have confirmed that the full-indices for theory A and B beautifully match

IA = IB

= 1 + (6ab+ 3a−2A−2b−2B−2)q1/6 + (A2 +AB +B2)q1/4

+ (3a2 + b2 + 2a−3A−2b−1B−2)(A+B)q7/24

+ 3(7a2b2 + 2a−4A−4b−4B−4 + 6a−1A−2b−1B−2)q1/3 + · · · (5.41)

where

IA = 1
4!

∑
m1,m2,m3∈Z

3∏
i=1

∮
dsi

2πisi

4∏
i 6=j

(1− q
|mi−mj |

2 s±i s
∓
j )

4∏
i=1

2∏
α=1

(q1− rb2 + |mi|2 b−1six̃
−1
α ; q)∞

(q
rb
2 + |mi|2 bs−1

i x̃α; q)∞

×
4∏
i=1

3∏
I=1

(q1− ra2 + |mi|2 a−1six̃
−1
I ; q)∞

(q
ra
2 + |mi|2 as−1

i x̃I ; q)∞

∏
i<j

(q1− rA2 +
|mi+mj |

2 A−1s−1
i s−1

j ; q)∞

(q
rA
2 +

|mi+mj |
2 Asisj ; q)∞

×
∏
i<j

(q1− rB2 +
|mi+mj |

2 B−1sisj ; q)∞
(q

rB
2 +

|mi+mj |
2 Bs−1

i s−1
j ; q)∞

(q
2rA+3ra+2rb+|mi|

2 A2a3b2s−1
i ; q)∞

(q1− 2rA+3ra+2rb
2 + |mi|2 A−2a−3b−2si; q)∞

× q∆A
−
∑

i<j
|mi−mj |+2

∑4
i=1 |mi|B

−
∑

i<j
|mi−mj |+2

∑4
i=1 |mi| (5.42)

and

IB =
2∏

α=1

(q
2rA+rB+3ra+rb

2 A2Ba3bx̃α; q)∞
(q1− 2rA+rB+3ra+rb

2 A−2B−1a−3b−1x̃−1
α ; q)∞

(q1−rAA−2; q)∞
(qrAA2; q)∞

(q1−rBB−2; q)∞
(qrBB2; q)∞

× (q1− rB2 −rbB−1b−2; q)∞
(q

rB
2 +rbBb2; q)∞

3∏
I=1

(q1− rA2 A−1a−2xI ; q)∞
(q

rA
2 Aa2x−1

I ; q)∞

×
1∏

λ=0

3∏
I=1

(q(1−λ2 )rA+(1−λ2 )rB+ra+rbA2−λB2−λa2b2x−1
I ; q)∞

(q1−(1−λ2 )rA−(1−λ2 )rB−ra−rbA−2+λB−2+λa−2b−2xI ; q)∞

×
1∏

λ=0

3∏
I=1

2∏
α=1

(q1−λrA+λrB+ra+rb
2 A−λB−λa−1b−1x−1

I x̃−1
α ; q)∞

(q
λrA+λrB+ra+rb

2 AλBλabxI x̃α; q)∞

×
2∏

α=1

(q
rA
2 +rB+ 3

2 ra+ rb
2 AB2a3bx−1

α ; q)∞
(q1− rA2 −rB−

3
2 ra−

rb
2 A−1B−2a−3b−1xα; q)∞

(q1− rA2 −
rB
2 A−1B−1; q)∞

(q
rA
2 + rB

2 AB; q)∞

× (q1− rA2 −rbA−1b−2; q)∞
(q

rA
2 +rbAb2; q)∞

3∏
I=1

(q1− rB2 −raB−1a−2xI ; q)∞
(q

rB
2 +raBa2x−1

I ; q)∞
(5.43)
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with m4 = −(m1 +m2 +m3) and

∆ = 3
4(1− ra)

4∑
i=1
|mi|+

1
2(1− rb)

4∑
i=1
|mi|

+ 1
2(1− rA)

∑
i<j

|mi +mj |+
1
2(1− rB)

∑
i<j

|mi +mj |

+ 1
4(−1 + 2rA + 2rB + 3ra + 2rb)

4∑
i=1
|mi| −

1
2
∑
i<j

|mi −mj | . (5.44)

For general N the monopoles have dimensions given, with ∑N
i=1mi = 0, by

(
2 + (N − 2)(rA + rB)

2

) N∑
i=1
|mi|+ (2− rA − rB)

N∑
i<j

|mi +mj | −
N∑
i<j

|mi −mj | (5.45)

which we believe are bounded from below by 2 for rA = 0 and rB = 0 but we haven’t
proven this. For rA ≥ 0 and rB ≥ 0 the monopole dimensions may decrease but there will
still be a range of values of rA and rB for which all monopoles will have positive dimension.

6 New integrals

In this section we consider different pairs of theory A and theory B which admit the
boundary confining dualities. As a consequence of the conjectural boundary confining
dualities, we present new identities of the Askey-Wilson type q-beta integrals.

6.1 SO(N) with N − 2 fundamental chirals and Z2 fugacities

In section 4.8 we interpreted the identity of the Askey-Wilson type q-beta integral as a
consequence of the boundary confining duality for SO(N) with N−2 chirals. In the case of
orthogonal gauge groups we can have gauge groups with the same Lie algebra but different
global structure, distinguished by Z2 global symmetries ZM2 (magnetic) and ZC2 (charge
conjugation) with discrete fugacities ζ and χ as discussed for these 3d theories in [31]. As
shown in [79] these discrete fugacities can be included in the half-indices and the dualities
hold also with appropriate boundary conditions. In the case here the dual theory has gauge
group SO(0) which we interpret as the absence of a gauge group. The expressions for the
half-indices in theory B also depend on discrete fugacities which are mapped from theory
A as ζ̃ = ζ and χ̃ = ζχ. In the case of SO(0) there is no magnetic symmetry which we
interpret as a restriction ζχ = χ̃ = 1. Indeed, the general half-index expression makes
sense with simply no contribution from the gauge group if χ̃ = +1 but it is not well-
defined for χ̃ = −1 as in that case we should fix one of the gauge fugacities (for Neumann
boundary condition) or one of the monopole fluxes (for Dirichlet boundary condition), but
there are none.12 So, we must restrict to the cases of ζ = χ = +1 (corresponding to the
case discussed in section 4.8) or ζ = χ = −1 in theory A. The latter leads to the following

12See [79] for the explicit expressions but the issue can also be seen here in the expression for SO(N = 2n)
in theory A.
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identities where, since χ = −1, the theory A half-index takes a different form for the even
N = 2n and odd N = 2n+ 1 cases.

For the case N = 2n+ 1 we have the half-index of theory A

IIA(N ,N) = (q)n∞
n!2n

n∏
i=1

∮
dsi

2πisi
(−s±i ; q)∞

n∏
i<j

(s±i s∓j ; q)∞(s±i s±j ; q)∞

× 1∏N−2
α=1

(
(−qr/2axα; q)ε∞

∏n
i=1(qr/2s±i axα; q)∞

) . (6.1)

This coincides with

IIB(N,D) =

(
−q1+(N/2−1)raN−2; q

)
∞∏N−2

α≤β (qra2xαxβ ; q)∞
. (6.2)

But in fact this is simply derived from the ζ = χ = +1 case by replacing a → −a and in
the theory A half-index integrand si → −si.

For the case N = 2n we have

IIA(N ,N) = (q)n−1
∞ (−q; q)∞

(n− 1)!2n−1

n−1∏
i=1

∮
dsi

2πisi
(s±i ; q)∞(−s±i ; q)∞

n−1∏
i<j

(s±i s∓j ; q)∞(s±i s±j ; q)∞

× 1∏N−2
α=1

(
(±qr/2axα; q)∞

∏n−1
i=1 (qr/2s±i axα; q)∞

) . (6.3)

This agrees with

IIB(N,D) =

(
−q1+(N/2−1)raN−2; q

)
∞∏N−2

α≤β (qra2xαxβ ; q)∞
. (6.4)

which is not trivially related to the ζ = χ = +1 case.
For example in the case of N = 4, turning off the fugacity xα and setting r = 1

4 , the
half-indices are expanded as

IIA(N ,N) = IIB(N,D)

=1 + 3a2q1/4 + 6a4q1/2 + 10a6q3/4 + 15a8q + a2(4 + 21a8)q5/4 + 4a4(3 + 7a8)q3/2

+ 12a6(2 + 3a8)q7/4 + 5a8(8 + 9a8)q2 + a2(4 + 60a8 + 55a16)q9/4 + · · · (6.5)

We also note that identities for confining dualities can be derived from theory A with
SO(N) gauge group and N − 1 fundamental chirals (and discrete fugacities). The dual
theory B has the trivial gauge group SO(1). Alternatively, we can start with gauge group
SO(1) in theory A which gives a theory of free chirals dual to an interacting theory B. For
full details of how to construct the half-indices and several examples see [79].

As for the case with ζ = χ = +1 discussed in section 4.8 the bulk theory A has
non-positive dimension monopole operators as the dimensions are

2(n− 2)
n∑
i=1
|mi| −

n−1∑
i<j

(|mi −mj |+ |mi +mj |) =
n−1∑
i=1

2(i− 1)|mσ(i)| ≥ 0 (6.6)
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for mi ∈ Z (with at least one mi 6= 0) and σ is a permutation giving the ordering |mσ(i)| ≥
|mσ(j)| for i < j. We can see that the lower bound is indeed saturated when a single mi 6= 0.
This expression is for ra = 0. Choosing positive values for ra will decrease the R-charge
of the monopoles so in that case there will be negative dimension monopoles. Therefore,
again we have a boundary duality which does not correspond to a bulk IR duality of unitary
theories.

6.2 SO(N) with N − 1(+1) fundamental chirals

Consider theory A with SO(N = 2n+ ε) gauge group coupled to Nf = N − 1 fundamental
chirals Qα with R-charge 0 satisfying Neumann boundary conditions and one fundamental
chiral Q̃ with R-charge 0 satisfying Dirichlet boundary conditions. The boundary ’t Hooft
anomaly is

A = (N − 2) Tr(s2) + N(N − 1)
4 r2︸ ︷︷ ︸

VM, N

−
(

(N − 1) Tr(s2) + N

2 Tr(x2) + N(N − 1)
2 (a− r)2

)
︸ ︷︷ ︸

Qα, N

+
(

Tr(s2) + N

2
(
− (N − 1)a− r

)2)
︸ ︷︷ ︸

Q̃, D

= −N2 Tr(x2) + N(N − 1)(N − 2)
2 a2 + 2N(N − 1)ar − N(N − 3)

4 r2. (6.7)

The Neumann half-index realizes the Askey-Wilson type q-beta integral of the form

IIA(N ,N,D) = (q)n∞
n!2n+ε−1

n∏
i=1

∮
dsi

2πisi
(s±i ; q)ε∞

n∏
i<j

(s±i s∓j ; q)∞(s±i s±j ; q)∞

× (q1+Nf r/2aNf ; q)ε∞
∏n
i=1(q1+Nf r/2s±i a

Nf ; q)∞∏Nf
α=1

(
(qr/2axα; q)ε∞

∏n
i=1(qr/2s±i axα; q)∞

) (6.8)

where ∏N
α=1 xα = 1. This is identical to

IIB(N,D,D) =(q1+Nf ra2Nf ; q)∞
∏Nf
α=1(q1+(Nf−1)r/2aNf−1x−1

α ; q)∞∏Nf
α≤β(qra2xαxβ ; q)∞

. (6.9)

For example in the case of N = 4, turning off the fugacity xα and setting r = 1
4 , the

half-indices are expanded as

IIA(N ,N,D) = IIB(N,D,D)

=1 + 6a2q1/4 + 21a4q1/2 + 56a6q3/4 + 126a8q + 3(a2 + 84a10)q5/4 + 6a4(3 + 77a8)q3/2

+ 2a6(31 + 396a8)q7/4 + 9a8(18 + 143a8)q2 + a2(3 + 357a8 + 2002a16)q9/4 + · · · (6.10)

These identities can be derived by starting with the symplectic half-index identity in
section 4.4 and applying the limits [72] discussed in section 4.8. Specifically, combining
the axial and flavor fugacities as Xα = axα (1 ≤ α ≤ 2n + 3), then taking X2n+1 = −1,
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X2n+3 = q1/2 and X2n+3 = −q1/2, before redefining Xα = axα (1 ≤ α ≤ 2n) with∏2n
α=1 xα = 1 gives the identity for SO(N = 2n + 1) after some simple manipulations

including using the q-Pochhammer identity (±z; q)∞(±q1/2z; q)∞ = (z2; q)∞. Taking also
X2n = 1 gives the identity for SO(N = 2n).

Now the equation (6.8) can be interpreted as the half-index of dual theory B. The-
ory B has an symmetric rank-2 SU(Nf ) chiral with R-charge 0 with Neumann boundary
conditions and a chiral in the fundamental representation of SU(Nf ) as well as a singlet
with R-charge 0 with Dirichlet boundary conditions. The full details of the charges and
boundary conditions are summarized as

bc SO(N) SU(Nf = N − 1) U(1)a U(1)R
VM N Adj 1 0 0
Qα N N Nf 1 0
Q̃ D N 1 −Nf 0
Mαβ N 1 Nf (Nf + 1)/2 2 0
M̃α D 1 Nf 1−Nf 0
M D 1 1 −2Nf 0

(6.11)

The boundary anomaly for theory B is

A = −
(
N + 1

2 Tr(x2) + N(N − 1)
4 (2a− r)2

)
︸ ︷︷ ︸

Mαβ , N

+ 1
2 Tr(x2) + N − 1

2
(
− (N − 2)a− r

)2︸ ︷︷ ︸
M̃α, D

+ 1
2
(
− 2(N − 1)a− r

)2︸ ︷︷ ︸
M, D

. (6.12)

This precisely agrees with the anomaly (6.7) for theory A.
The mapping of operators between theory A and theory B is given by Mαβ ∼ QαQβ ,

Mα ∼ QαQ̃ andM ∼ Q̃Q̃ where the gauge indices are contracted with the SO(N)-invariant
rank-2 symmetric tensor.

In this case, although the monopoles would have positive dimension, there is no corre-
sponding bulk duality since for any choice of ra 6= 0 some of the chirals will have negative
dimension (and all have zero dimension for ra = 0). However, we note that this is closely
related to the bulk duality between SO(N) gauge theory with Nf > N + 1 fundamental
chirals and an SO(Nf − N) gauge theory with linear monopole superpotentials [31, 42].
The bulk confining duality cases arising from this, including Nf = N , have been discussed
in [19] and are seemingly very similar to the boundary dualities described above.

As in section 6.1 we can include a ZC2 fugacity χ, with the above discussion correspond-
ing to χ = 1. Considering the case χ = −1 modifies the contributions of both the vector
multiplet and fundamental chirals to the half-index for theory A. We also take Q̃ to be
charged under this symmetry. In theory B only M̃α are charged under this symmetry.
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For the case N = 2n+ 1 we have the half-index of theory A

IIA, χ=−1
(N ,N,D) =(q)n∞

n!2n
n∏
i=1

∮
dsi

2πisi
(−s±i ; q)∞

n∏
i<j

(s±i s∓j ; q)∞(s±i s±j ; q)∞

× (q1+Nf r/2aNf ; q)∞
∏n
i=1(−q1+Nf r/2s±i a

Nf ; q)∞∏Nf
α=1

(
(−qr/2axα; q)∞

∏n
i=1(qr/2s±i axα; q)∞

) . (6.13)

This coincides with

IIB, χ=−1
(N,D,D) =(q1+Nf ra2Nf ; q)∞

∏Nf
α=1(−q1+(Nf−1)r/2aNf−1x−1

α ; q)∞∏Nf
α≤β(qra2xαxβ ; q)∞

. (6.14)

But in fact this is simply derived from the χ = +1 case by replacing a → −a, noting for
theory A that Nf = N − 1 is even and for theory B that Nf − 1 = N − 2 is odd, and in
the theory A half-index integrand also replacing si → −si.

For the case N = 2n we have

IIA, χ=−1
(N ,N,D) =(q)n−1

∞ (−q; q)∞
(n− 1)!2n−1

n−1∏
i=1

∮
dsi

2πisi
(s±i ; q)∞(−s±i ; q)∞

n−1∏
i<j

(s±i s∓j ; q)∞(s±i s±j ; q)∞

× (±q1+Nf r/2aNf ; q)∞
∏n−1
i=1 (−q1+Nf r/2s±i a

Nf ; q)∞∏Nf
α=1(±qr/2axα; q)∞

∏n−1
i=1 (qr/2s±i axα; q)∞

. (6.15)

This agrees with

IIB, χ=−1
(N,D,D) =(q1+Nf ra2Nf ; q)∞

∏Nf
α=1(−q1+(Nf−1)r/2aNf−1x−1

α ; q)∞∏Nf
α≤β(qra2xαxβ ; q)∞

(6.16)

which is not trivially related to the χ = +1 case.
For the case of N = 2, Nf = 1 we have a simple derivation of this identity

IIA, χ=−1
(N ,N,D) = (−q; q)∞(±q1+r/2a; q)∞

(±qr/2a; q)∞
= (−q; q)∞

(1− qr/2a)(1 + qr/2a)
= (−q; q)∞

(1− qra2)

=(q1+ra2; q)∞(−q; q)∞
(qra2; q)∞

= IIB, χ=−1
(N,D,D) . (6.17)

For the case of N = 4, Nf = 3 we have

IIA, χ=−1
(N ,N,D) =(q)∞(−q; q)∞

2

∮
ds

2πis(s±; q)∞(−s±; q)∞

× (±q1+3r/2a3; q)∞(−q1+3r/2s±a3; q)∞∏3
α=1(±qr/2axα; q)∞

(
(qr/2s±axα; q)∞

) , (6.18)

IIB, χ=−1
(N,D,D) =(q1+3ra6; q)∞

∏3
α=1(−q1+ra2x−1

α ; q)∞∏
α≤β(qra2xαxβ ; q)∞

. (6.19)
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For example, turning off the fugacity xα and setting r = 1
4 , the half-indices (6.18)

and (6.19) are expanded as

IIA, χ=−1
(N ,N,D) = IIB, χ=−1

(N,D,D)

= 1 + 6a2q1/4 + 21a4q1/2 + 56a6q3/4 + 126a8q + 9(a2 + 28a10)q5/4 + 6a4(9 + 77a8)q3/2

+ 4a6(47 + 198a8)q7/4 + 3a8(166 + 429a8)q2 + a2(9 + 1113a8 + 2002a16)q9/4 + · · ·
(6.20)

6.3 SU(N) with rank-2 antisymmetric, 4 fundamental and N − 1(+1) anti-
fundamental chirals

In this subsection we consider theory A with SU(N) gauge group, an antisymmetric chiral
Φ, Nf = 4 fundamental chirals QI and Na = N − 1 antifundamental chirals Qα with
R-charge 0. These all have Neumann boundary conditions. There is an additional anti-
fundamental chiral Q̃ with Dirichlet boundary condition. We have the boundary ’t Hooft
anomaly

AA = N Tr(s2) + N2 − 1
2 r2︸ ︷︷ ︸

VM, N

−
(

2 Tr(s2) + N

2 Tr(x2) + 2N(a− r)2
)

︸ ︷︷ ︸
QI , N

−
(
N − 1

2 Tr(s2) + N

2 Tr(x̃2) + N(N − 1)
2 (b− r)2

)
︸ ︷︷ ︸

Qα, N

−
(
N − 2

2 Tr(s2) + N(N − 1)
4 (A− r)2

)
︸ ︷︷ ︸

Φ, N

+
(1

2 Tr(s2) + N

2
(
(2−N)A− 4a− (N − 1)b+ r

)2)
︸ ︷︷ ︸

Q̃, D

= − N

2 Tr(x2)− N

2 Tr(x̃2) + 6Na2 + 4N(N − 2)Aa+N(N − 2)(N − 1)Ab

− 1
2(N − 3)NAr + 4N(N − 1)ab+ 1

4N(N − 3)(2N − 3))A2

+ 1
2N(N − 1)(N − 2)b2 − 1

4(N + 1)(N + 2)r2 (6.21)

for theory A.
The half-index is evaluated as

IIA(N ,N,N,N,D) = (q)N−1
∞
N !

N−1∏
i=1

∮
dsi

2πisi

N∏
i 6=j

(sis−1
j ; q)∞

×
N∏
i=1

(q((N−2)rA+4ra+(N−1)rb)/2AN−2a4bN−1si; q)∞(∏N−1
α=1 (qrb/2bs−1

i x̃α; q)∞
) (∏4

I=1(qra/2asixI ; q)∞
) (∏N

i<j(qrA/2Asisj ; q)∞
) (6.22)
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where ∏N
i=1 si = ∏4

I=1 xI = ∏N−1
α=1 x̃α = 1. The Neumann half-index (6.22) generalizes the

Gustafson-Rakha integral (5.12) with a different combination of fundamental and antifun-
damental chirals.

For N = 2n the half-index coincides with(
q((N−2)rA+4rb)/2AN−2a4; q

)
∞

(∏N−1
α=1

(
q((N−3)rA+4ra+(N−2)rb)/2AN−3a4bN−2x̃−1

α ; q
)
∞

)
(
qnrA/2An; q

)
∞
(
q((N−2)rA+4ra)/2AN−2a4; q

)
∞
∏4
I=1

∏N−1
α=1 (q(ra+rb)/2abxI x̃α; q)∞

×

(∏4
I=1

(
q((N−2)rA+3ra+(N−1)rb)/2AN−2a3bN−1x−1

I ; q
)
∞

)
(∏4

I<J

(
q((n−1)rA+2ra)/2An−1a2xIxJ ; q

)
∞

)∏N−1
α<β (q(rA+2rb)/2Ab2x̃αx̃β ; q)∞

. (6.23)

For N = 2n+ 1 it agrees with(
q((N−2)rA+4ra)/2AN−2a4; q

)
∞

(∏N−1
α=1

(
q((N−3)rA+4ra+(N−2)rb)/2AN−3a4bN−2x̃−1

α ; q
)
∞

)
(∏4

I=1
(
q(nrA+ra)/2AnaxI ; q

)
∞

)∏4
I=1

∏N−1
α=1 (q(ra+rb)/2abxI x̃α; q)∞

×

(∏4
I=1

(
q((N−2)rA+3ra+(N−1)rb)/2AN−2a3bN−1x−1

I ; q
)
∞

)
(∏4

I=1

(
q((n−1)rA+3ra)/2An−1a3x−1

I ; q
)
∞

)∏N−1
α<β (q(rA+2rb)/2Ab2x̃αx̃β ; q)∞

. (6.24)

For SU(2), SU(3) and SU(4), the identity is equivalent to previous cases so the first new
example is SU(5) with the identity

(q)4
∞

5!

4∏
i=1

∮
dsi

2πisi

5∏
i 6=j

(sis−1
j ; q)∞

×
5∏
i=1

(q(3rA+4ra+4rb)/2A3a4b4si; q)∞(∏4
α=1(qrb/2bs−1

i x̃α; q)∞
) (∏4

I=1(qra/2asixI ; q)∞
) (∏5

i<j(qrA/2Asisj ; q)∞
)

=

(
q(3rA+4ra)/2A3a4; q

)
∞

(∏4
α=1

(
q(2rA+4ra+3rb)/2A2a4b3x̃−1

α ; q
)
∞

)
(∏4

I=1
(
q(nrA+ra)/2AnaxI ; q

)
∞

)∏4
I=1

∏4
α=1(q(ra+rb)/2abxI x̃α; q)∞

×

(∏4
I=1

(
q(3rA+3ra+4rb)/2A3a3b4x−1

I ; q
)
∞

)
(∏4

I=1

(
q((n−1)rA+3ra)/2An−1a3x−1

I ; q
)
∞

)∏4
α<β(q(rA+2rb)/2Ab2x̃αx̃β ; q)∞

(6.25)

For example, for ra = rb = 1/2, rA = 1/3 we have checked that the identity (6.25) holds
as we have the following q-series expansion:

1 + 16abq1/2 + 4aA2q7/12 + 6Ab2q2/3 + 4a3Aq11/12

+ 136a2b2q + 64a2A2bq13/12 + (10a2A4 + 96Ab3)q7/6 + · · · (6.26)

Note that these half-indices should be convergent for any positive values for rA, ra and rb.
From the expressions (6.23) and (6.23) we obtain the confining dual descriptions as

theory B. Theory B has no gauge group and the chirals depend on whether N is even, i.e.
N = 2n, or odd, i.e. N = 2n+1. Note that in both cases there is a global SU(4)×SU(N−1)
flavor symmetry in theory A, and we can label the chirals by their representations of this
group along with several Abelian charges.
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For the case of N = 2n we have

bc SU(N = 2n) SU(Nf = 4) SU(Na = N − 1) U(1)A U(1)a U(1)b U(1)R
VM N Adj 1 1 0 0 0 0
Φ N N(N− 1)/2 1 1 1 0 0 0
QI N N 4 1 0 1 0 0
Qα N N 1 Na 0 0 1 0
Q̃ D N 1 1 2−N −4 1−N 2
MIα N 1 4 Na 0 1 1 0
B N 1 1 1 n− 2 4 0 0
φ N 1 1 1 n 0 0 0

Mαβ N 1 1 Na(Na − 1)/2 1 0 2 0
BIJ N 1 6 1 n− 1 2 0 0
M̃I D 1 4 1 2−N −3 1−N 2
M̃α D 1 1 Na 3−N −4 2−N 2
B̃ D 1 1 1 2−N −4 0 2

(6.27)

The boundary ’t Hooft anomaly for theory B with N = 2n is given by

AB,N=2n

= −
(
N

2 Tr(x2) + 2 Tr(x̃2) + 2N(a+ b− r)2
)

︸ ︷︷ ︸
MIα, N

− 1
2
(
(n− 2)A+ 4a− r

)2︸ ︷︷ ︸
B, N

− 1
2(nA− r)2︸ ︷︷ ︸

φ, N

−
(
N − 3

2 Tr(x̃2) + (N − 1)(N − 2)
4 (A+ 2b− r)2

)
︸ ︷︷ ︸

Mαβ , N

−
(
Tr(x2) + 3

(
(n− 1)A+ 2a− r

)2)︸ ︷︷ ︸
BIJ , N

+ 1
2
(
(1−N)A− 4a+ r

)2︸ ︷︷ ︸
B̃, D

+
(1

2 Tr(x̃2) + N − 1
2

(
(3−N)A− 4a+ (2−N)b+ r)2

)
︸ ︷︷ ︸

M̃α, D

+
(1

2 Tr(x2) + 2
(
(2−N)A− 3a+ (1−N)b+ r

)2)
︸ ︷︷ ︸

M̃I , D

. (6.28)

This is equal to the boundary anomaly (6.21) for theory A.
We have the operator mappingMIα ∼ QIQα, B ∼ εΦn−2Q1Q2Q3Q4, φ ∼ εΦn,Mαβ ∼

ΦQαQβ , BIJ ∼ εΦn−1QIQJ , M̃I ∼ QIQ̃, M̃α ∼ ΦQαQ̃ and B̃ ∼ εQ1 · · ·QN−1Q̃.
In the case of N = 2 the antisymmetric chiral Φ in theory A is a singlet and we can

remove it along with the singlet φ in theory B. This leaves the same duality as discussed
in section 3.1. Also, the case of N = 4 is equivalent to the N = 4 case in section 5.2 after
exchanging the gauge group representations 4↔ 4.
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For N = 2n+ 1 the field content and charges are

bc SU(N = 2n+ 1) SU(Nf = 4) SU(Na = N − 1) U(1)A U(1)a U(1)b U(1)R
VM N Adj 1 1 0 0 0 0
Φ N N(N− 1)/2 1 1 1 0 0 0
QI N N 4 1 0 1 0 0
Qα N N 1 Na 0 0 1 0
Q̃ D N 1 1 2−N −4 1−N 2
MIα N 1 4 Na 0 1 1 0
BI N 1 4 1 n 1 0 0
Mαβ N 1 1 Na(Na − 1)/2 1 0 2 0
BI N 1 4 1 n− 1 3 0 0
M̃I D 1 4 1 2−N −3 1−N 2
M̃α D 1 1 Na 3−N −4 2−N 2
B̃ D 1 1 1 2−N −4 0 2

(6.29)

In the case of N = 3 the antisymmetric chiral Φ in theory A is a fundamental chiral. This
leaves the same duality as discussed in section 4.2 in the case of N = 3.

The ’t Hooft anomalies match since the boundary anomaly for theory B with N = 2n+1
is calculated as

AB,N=2n+1

= −
(
N − 1

2 Tr(x2) + 2 Tr(x̃2) + 2(N − 1)(a+ b− r)2
)

︸ ︷︷ ︸
MIα, N

−
(1

2 Tr(x2) + 2
(
nA+ a− r

)2)
︸ ︷︷ ︸

BI , N

−
(
N − 3

2 Tr(x̃2) + (N − 1)(N − 2)
4 (A+ 2b− r)2

)
︸ ︷︷ ︸

Mαβ , N

−
(1

2 Tr(x2) + 2
(
(n− 1)A+ 3a− r

)2)
︸ ︷︷ ︸

BI , N

+ 1
2
(
(2−N)A− 4a+ r

)2︸ ︷︷ ︸
B̃, D

+
(1

2 Tr(x̃2) + N − 1
2

(
(3−N)A− 4a+ (2−N)b+ r)2

)
︸ ︷︷ ︸

M̃α, D

+
(1

2 Tr(x2) + 2
(
(2−N)A− 3a+ (1−N)b+ r

)2)
︸ ︷︷ ︸

M̃I , D

. (6.30)

The operator mapping is MIα ∼ QIQα, BI ∼ εΦnQI , Mαβ ∼ ΦQαQβ , BI ∼
εΦn−1QJQKQLε

IJKL, M̃I ∼ QIQ̃, M̃α ∼ ΦQαQ̃ and B̃ ∼ εQ1 · · ·QN−1Q̃.
The matching of the half-indices and the anomalies support the following boundary
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confining dualities:

SU(N) + antisym. chiral Φ + 4 fund. chirals QI
+ N − 1 antifund. chiral Qα + 1 antifund. chiral Q̃ with b.c. (N , N,N,N,D)
⇔ an SU(4)× SU(N − 1) bifund. MIα + a singlet B + a singlet φ

+ an SU(N − 1) antisym. chiral Mαβ + an SU(4) antisym. chiral BIJ
+ an SU(N) fund. chiral M̃α

+ a singlet B̃ + an SU(4) fund. chiral M̃I with b.c. (N,N,N,N,N,D,D,D). (6.31)

for N = 2n and

SU(N) + antisym. chiral Φ + 4 fund. chirals QI
+ N − 1 antifund. chiral Qα + 1 antifund. chiral Q̃ with b.c. (N , N,N,N,D)
⇔ an SU(4)× SU(N − 1) bifund. MIα + an SU(4) fund. BI

+ an SU(N − 1) antisym. chiral Mαβ + an SU(4) antifund. BI

+ an SU(N − 1) fund. chiral M̃α

+ an SU(4) fund. M̃I + a singlet B̃ with b.c. (N,N,N,N,D,D,D). (6.32)

for N = 2n+ 1.
These boundary confining dualities (6.31) and (6.32) are extended to the bulk with

superpotentials

WN=2n =M̃α

(
BMα1β1−εIJKLMIα1MJβ1BKL

)
Mα2β2 · · ·Mαn−1βn−1ε

αα1β1···αn−1βn−1

+M̃Iε
IJKLMJα

(
BKLMα1β1−φMKα1MLβ1

)
Mα2β2 · · ·Mαnβnε

αα1β1···αn−1βn−1

+B̃
(
Bφ−εIJKLBIJBKL

)
(6.33)

WN=2n+1 =M̃I

(
BIMα1β1−εIJKLBJMKα1MLβ1

)
Mα2β2 · · ·Mαnβnε

α1β1···αnβn

+M̃α1

(
BIMIβ1Mα2β2−εIJKLBIMJβ1MKα2MLβ2

)
Mα3β3 · · ·Mαnβnε

α1β1···αnβn

+B̃BIBI (6.34)

In fact, this boundary duality corresponds to the same bulk duality described in sec-
tion 5.2 subject to a redefinition of the global charges. The labelling of the chiral multiplets
looks different but only because we presented the chirals in terms of the global symmetries
with the specific boundary conditions.
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