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Abstract
The unstable nature of the material point method (MPM) is widely documented
and is a barrier to the method being used for routine engineering analyses of
large deformation problems. The vast majority of articles concerning this issue
are focused on the instabilities that manifest when a material point crosses
between background grid cells. However, there are other issues related to the
stability of MPMs. This article focuses on the issue of the conditioning of the
global system of equations caused by the arbitrary nature of the position of the
physical domain relative to the background computational grid. The issue is
remedied here via the use of a ghost stabilisation technique that penalises vari-
ations in the gradient of the solution field near the boundaries of the physical
domain. This technique transforms the stability of the MPM, providing a robust
computational framework for large deformation explicit dynamic and implicit
quasi-static analysis.
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1 INTRODUCTION

The material point method’s (MPMs)1 greatest advantage, the decoupling of the deformation of the physical material
from the computational grid, is also its greatest challenge in terms of robust and efficient engineering computations. By
allowing the physical bodies to deform through a background grid of finite elements, the MPM can be used to model
large deformation solid mechanics problems involving history dependent materials without re-meshing or re-mapping of
material parameters (see de Vaucorbeil et al.2 and Solowski et al.3 for recent reviews articles), especially when post failure
behaviour is of interest.4 However, this means the overlap between the physical body, represented by material points, and
the background grid, which is used to solve the governing equations, varies over the analysis. This feature is not unique
to the MPM and allows the method to be grouped within a larger class of non-matching mesh-based methods, such as
the cut finite element method,5-7 the finite cover method,8 and the finite cell method,9,10 amongst others, it also shares
some parallels with enriched methods11,12 in terms of the decoupling of physical features from the computational mesh.
However, the variable interaction between the physical body and the material points in the MPM can cause numerical
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2 COOMBS

stability problems.13 Specifically, background elements that are partially filled with material points cause problems in
terms of the conditioning of the global system of equations. Similar problems have been observed in the cut finite element
method,5-7 where arbitrarily small intersections can occur between an element, K, and the physical problem domain, Ω.
These intersections can be much smaller than the size of the elements, h. This impacts on the conditioning of the linear
system of equations being solved as the smallest eigenvalue of the linear system is related to the smallest intersection
between the elements and the background grid, which can be arbitrarily small. This means that the condition number
(the ratio of the largest to smallest eigenvalue) of the linear system of equations is not bounded. These issues have a
detrimental impact on both dynamic and quasi-static analysis via the conditioning of the mass and/or stiffness matrix,
with the issues often being more severe for the stiffness matrix.5 In terms of MPMs, the issue is compounded when using
domain-based MPMs, such as the generalised interpolation material point method (GIMPM),14 where arbitrarily small
overlaps can occur between the material point domains,Ωp, and the elements in the background mesh. The issue can also
occur in B-spline-based material point approaches15,16 due to the extended range of influence of the basis functions and
the potential for material points to have a small contribution to a background grid degree of freedom. This was highlighted
by Yamaguchi et al.17 who reinforced that the issue can be more severe for MPMs than for cut finite element methods
(and other embedded-domain/unfitted methods). A crude way avoid this issue is to exclude small overlaps between the
material point domains and the background mesh (or rather small shape function values), or through excluding those
nodes with small masses from the equilibrium solution or even by adding additional mass to these degrees of freedom.
However, these ad hoc methods rely on the definition of small, which is arbitrary18 and problem dependent and does
not enforce a bound on the conditioning of the linear system of equations being solved. An alternative approach is to
modify the MPM algorithm and weight the internal forces by the basis functions to reduce the impact of small material
point-background grid interactions.18 This modified update stress last (MUSL) approach changes the calculation of the
updated nodal velocities such that when a small mass is calculated at a nodal location it is weighted by a correspondingly
small basis function.19 However, this approach does not directly resolve the potential for the consistent mass (or stiffness)
matrix to be ill-conditioned. One approach that avoids this issue is the total Lagrangian MPM of de Vaucorbeil et al.20

but the approach loses many of the benefits of the MPM, such as the ability to handle large distortional deformations and
automatic contact detection.

The conditioning issues described above are largely avoid by the vast majority of explicit dynamic MPMs via the adop-
tion of a lumped mass matrix, making the inversion of the mass matrix trivial*. However, adopting a lumped mass matrix
has consequences for energy conservation,18,21-25 resulting in artificial numerical dissipation. This issue was recognised by
Nairn and Hammerquist24 who proposed an approximation to the consistent mass matrix inverse based on an eXtended
Particle-In-Cell (XPIC) concept26 which allowed the mass matrix inverse to be written as an infinite series expansion.
Small overlaps between material points and the background grid causes other issues. For example, Ma et al.13 highlighted
impact of small background grid nodal masses on the stability of MPMs when determining the grid node accelerations.
They introduced an approach to redistribute the nodal forces associated with the small nodal masses to eliminate the
spurious accelerations†. However, the method does not deal with the small values in the mass matrix, choosing instead
to deal with the manifestation of these small values in the acceleration calculation. Very few solutions to this issue have
been proposed for implicit quasi-static analyses, where the conditioning of the stiffness matrix is critical for stable con-
vergence. Wang et al.27 are proponents of a soft stiffness to stabilisation, where it is assumed that the background finite
element mesh has a small elastic modulus, which is integrated and added to the global stiffness matrix (see Section 3.1.2
of Wang et al.27 for details). However, the approach is not targeted at the regions that need stabilisation and degrades
the equilibrium convergence rate of implicit solution methods due to the lack of a corresponding term in the weak form.
An alternative technique was proposed by Yamaguchi et al.17 who introduced extended B-spline basis functions in back-
ground grid cells interacting with the boundary of the physical domain in an attempt to reduce the stress oscillations
and conditioning issues associated with poor integration. However, this approach requires the introduction of boundary
points to track the deformation of the body, which limits the applicability of the methods to problems involving significant
distortion, self-contact and so forth.

This article resolves the issue of ill-conditioning of the global consistent mass and stiffness matrices for dynamic and
quasi-static MPMs using, and adapting, the ghost stabilisation technique of Burman28. The method is general in that it
can be applied to any material point variant and does not require the physical boundary of the domain to be tracked
explicitly. The ghost stabilisation opens the door for the consistent mass matrix to be used for routine dynamic material
point analyses, eliminating the additional energy dissipation caused by a lumped mass matrix and provides flexibility
in the stress and velocity updating procedures. It offers the first credible stabilisation technique for implicit quasi-static
MPMs, answering a key question posed by Yamaguchi et al.,17 and removing much of the uncertainty regarding if a given
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COOMBS 3

analysis will converge or not. However, the technique is equally practical for explicit and implicit MPMs, as demonstrated
by the numerical simulations in Section 5. Overall, this article provides a key ingredient for MPMs to become a practical
choice for large deformation engineering analyses.

2 MATERIAL POINT METHOD

The MPM uses material points to represent the physical body/bodies being analysed but the governing equations are
solved on a background mesh/grid of finite elements. This means that quantities must be mapped from points-to-grid and
from grid-to-points during different stages of an analysis, and the key steps in a MPM algorithm are shown in Figure 1.
A given problem is discretised into a number of time (or load) steps and for each of the steps the following procedure is
applied:

(a) the physical body is discretised by a number of material points that carry information on the volume, mass, deforma-
tion, stress and so forth of the material that they represent and the position of these points on the background grid
determined (i.e., identifying the element(s)/nodes(s) the points interact with);

(b) material point information on velocity/momentum, stress, mass, and stiffness is mapped to the background grid
using the basis functions (or spatial derivatives) of the MPM variant under consideration to form nodal velocity, force,
mass, and stiffness quantities, as required by the adopted time stepping algorithm;

(c) governing equations are assembled on the background grid nodes;

F I G U R E 1 Material point method steps (adapted from Coombs and Augarde29). (A) Initial position. (B) Point-to-grid map. (C)
Assembly. (D) Grid solution. (E) Grid-to-point map. (F) Update points and reset grid.
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4 COOMBS

(d) governing equations are solved for the unknown nodal displacements/velocities (depending on the nature of the
governing equations and the adopted time stepping algorithm);

(e) grid information is mapped to the material points to update deformation, velocity, stress, volume and so forth and to
determine the material point displacement over the time step;

(f) material points are updated‡ to their new positions and the background grid reset/replaced.

The above general steps are applicable to dynamic and quasi-static MPMs discretised in time via implicit and explicit
approaches. However, specific details within each of the steps will change depending on algorithm/implementation
choices, for example the material point stress updating algorithmic location will change if an update stress first (USF)
explicit approach is adopted, as the above position corresponds to an update stress last (USL) method. Key to this proce-
dure is the definition of the governing equations that will be solved during the analysis. This article is focused on dynamic
and quasi-static analysis of elastic and elasto-plastic solids undergoing large deformations and the governing equations
for this continuum behaviour will be covered in the next section.

2.1 Continuum formulation

The material point approach adopted in this article is based on the open-source AMPLE (A Material Point Learning Envi-
ronment) code,29 which is a quasi-static implicit finite deformation elasto-plastic MPM based on an updated Lagrangian
formulation§, but extended to include inertia effects for the purpose of this article. The method is defined by the following
weak statement of equilibrium

∫
𝜑t(Ω)

(
𝜎ij(∇x𝜂)ij − (bi − 𝜌v̇i)𝜂i

)
dV − ∫

𝜑t(𝜕Ω)
(ti𝜂i) ds = 0, (1)

where v̇i and 𝜑t are the acceleration and motion of the material body with domain, Ω, which is subjected to tractions, ti,
on the boundary of the domain (with surface, s), 𝜕Ω, and body forces, bi, acting over the volume, V of the domain, which
has a density, 𝜌, and leads to a Cauchy stress field, 𝜎ij, through the body. The weak form is derived in the current frame
assuming a field of admissible virtual displacements, 𝜂i. In the case of quasi-static analysis the acceleration of the body is
assumed to be zero, which reduces (1) to that of the AMPLE framework.29 The surface traction term in (1) is neglected as
the focus of this article is on the stability of the MPM rather than the imposition of surface tractions within the method,
which is a research question in its own right (for example, see Bing et al.31 or Remmerswaal32). We also restrict the
Dirichlet boundary conditions to coincide with the background grid as the imposition of general Dirichlet constraints is
another active area of research.31,33,34

The large deformation elasto-plastic continuum mechanics formulation used in this article is identical to that of
Charlton et al.30 and Coombs et al.29 and readers are referred to those papers for details. In brief, the formulation
adopts a multiplicative decomposition of the deformation gradient into elastic and plastic components, with a linear
relationship between logarithmic elastic strain and Kirchhoff stress. This is combined with an exponential map of the
plastic flow rule which allows conventional small strain plasticity algorithms to be used without modification.35 This
powerful combination is widely used in large deformation finite element methods36 and several MPM implementa-
tions.29,30,34,37-40 These numerical implementations require the weak statement of equilibrium (1) to be discretised in space
and time.

2.2 Discrete formulation

Neglecting the traction term, the Galerkin form of the weak statement of equilibrium over each background grid element,
K, can be obtained from (1) as

∫
𝜑t(K)

[∇xSvp]T{𝜎p}dV − ∫
𝜑t(K)

[Svp]T{b}dV + ∫
𝜑t(K)

𝜌[Svp]T{v̇}dV = {0}, (2)

where [Svp] contains the basis/shape functions that are used to transfer information between the material points and the
background grid, [∇xSvp] is he strain-displacement matrix containing derivatives of the basis functions with respect to the
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COOMBS 5

updated coordinates¶. Consistent with the majority of the published MPM literature, the subscripts (⋅)v and (⋅)p denote
quantities associated with vertices (nodes) of the background grid and material points, respectively.

In the MPM, the physical domain is discretised by a material points, each representing a finite volume of material, Vp.
This allows the Galerkin form of the weak statement of equilibrium (2) to be approximated as

A
∀p

(
[∇xSvp]T{𝜎p}Vp − [Svp]T{b}Vp + [Svp]T{v̇}mp

)
= {0}, (3)

where A is the standard assembly operator acting over all of the material points in the problem# and mp = 𝜌Vp is the
mass associated with a material point. The first term in (3) represents the internal nodal forces generated by the stress
within the material, the second term is the external actions caused by the body forces and the third term accounts for the
inertia of the physical body.

2.3 Explicit dynamics

Explicit time stepping approaches assumed that the next state can be determined from information known at the current
state, essentially forward predicting the new accelerations, {v̇v}, via the difference between the internal and external
forces. Assuming that the material point acceleration can be approximated as

{v̇p} = [Svp]{v̇v}, (4)

where {v̇v} are the accelerations of the background grid nodes, (3) becomes

A
∀p

(
[∇xSvp]T{𝜎p}Vp − [Svp]T{b}Vp + [Svp]T[Svp]{v̇v}mp

)
= {0}, (5)

which can be rearranged to obtain the grid node accelerations

{v̇v} = [Mv]−1
{

A
∀p

(
[Svp]T{b}Vp − [∇xSvp]T{𝜎p}Vp

)}
. (6)

where

[Mv] = A
∀p

(
[Svp]T[Svp]mp

)
, (7)

is the consistent mass matrix assembled on the background grid nodes. The nodal accelerations can be used to increment
the material point velocities via a FLuid Implicit Particle (FLIP) update||

{vp}n+1 = {vp}n + Δt
∑

∀v
Svp{v̇v}, (8)

where Δt is the time step size and the subscripts (⋅)n and (⋅)n+1 denote the previous and updated states, respectively. The
material point positions are updated using

{xp}n+1 = {xp}n + Δt
∑

∀v
Svp{vv}n+1. (9)

The nodal velocities at the start of the step are obtained by mapping the momentum of the material points to the grid
nodes and multiplying this momentum by the inverse of the mass matrix

{vv}n = [Mv]−1
{

A
∀p

(
mp[Svp]T{vp}n

)}
, (10)

and the nodal velocities at the end of the step are obtained by adding nodal accelerations multiplied by the time step the
previous velocity

{vv}n+1 = {vv}n + Δt{v̇v}. (11)
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6 COOMBS

The stress updating algorithmic position is an important consideration for explicit MPMs. There are two basic options22:

1. USF: the stress is updated before the determination of the nodal velocities, (6), using the increment in the deformation
field from the previous step; or

2. USL: the stress is updated after the determination of the nodal velocities using the increment in the deformation field
form the current step.

The stress updating point has implications on the energy conservation of MPMs. For example, when combined with
a lumped mass matrix, the USL approach leads to excessive energy dissipation.22 However, the USL approach is often
preferred as the dissipation is consistent with the accuracy of the solution and it tends to damped unresolved modes.22,43

Differences between USF and USL, alongside the MUSL approach,18 will be explored in more detail as part of the numeri-
cal analyses presented in Section 5, including a study on the energy conserving nature of the approaches with both lumped
and consistent mass matrices.

2.4 Implicit quasi-static analysis

For quasi-static analysis the inertia term in (1) is assumed to be negligible, reducing the discrete statement of
equilibrium to

A
∀p

(
[∇xSvp]T{𝜎p}Vp − [Svp]T{b}Vp

)
= {0}, (12)

which is a non-linear statement of equilibrium in terms of the nodal displacements in the deformed configuration.
This non-linear equation can be efficiently solved using an implicit Newton–Raphson approach, which requires the
equilibrium statement to be linearised with respect to the nodal displacements to form the global stiffness matrix

[K] = A
∀p

(
[∇xSvp]T[ap][∇xSvp]Vp

)
, (13)

where [ap] is the spatial consistent tangent modulus of the material point under its current state of deformation.30 This
global stiffness matrix is used to iteratively update the nodal displacements until the equilibrium statement (12) con-
verges within a given tolerance and at each iteration the material point stress and tangent modulus are updated. Once
convergence has been achieved the material point positions, {xp}, are updated using

{xp}n+1 = {xp}n +
∑

∀v
Svp{uv}, (14)

where {uv} is the displacement of a node over the current load step. This approach is adopted by the open source AMPLE
code and the reader is referred to Coombs and Augarde29 for details.

2.5 Basis functions

Different MPMs are characterised by the choice of basis functions, [Svp], that map information between the material
points and background grid nodes. In this article two options are considered, the:

1. standard MPM (sMPM),1 where the shape functions of the underlying finite element grid are adopted and the material
points are assumed to be concentrated point masses/volumes; and

2. GIMPM,14 where the basis functions are formed via the convolution of the shape functions of the finite element grid
with a particle characteristic function (usually taken to be a unity function), which generates C1 continuous basis
functions via the uniform distribution of the mass/volume associated with the material point over a domain centred
on the material point. In this article, the domains are updated using the symmetric material stretch tensor, as detailed
by Charlton et al.30

The GIMPM was developed to reduce the well documented cell crossing instability of MPMs, caused by the sud-
den transfer of internal force as material points cross between elements of the background grid. Other options include
convected particle domain interpolation methods44,45 and adopting spline-based basis functions.46,47
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COOMBS 7

2.6 Conditioning issues

Explicit and implicit MPMs suffer from stability issues associated with the conditioning of the consistent mass and stiff-
ness matrices. This trivial test problem is designed to highlight these issues. A 2 × 1 m plane strain physical domain was
discretised by eight material points, each representing 0.25 m3 of material with a Young’s modulus of E = 1 Pa, Poisson’s
ratio of 𝜈 = 0 and a density of 𝜌 = 1 kg/m3. A background grid comprised of h = 1 m square bi-linear quadrilateral ele-
ments was used to construct the global consistent mass and small-strain stiffness matrices. The background grid nodes
were constrained as shown in Figure 2, where the grid nodes at y = 0 m are constrained vertically and the node at x = 2 m,
y = 0 m is also constrained horizontally.

Figure 3 shows the evolution of the condition number, 𝜅([⋅]), the ratio of the largest to smallest eigenvalue**, of the
reduced†† consistent mass and stiffness matrices as the physical domain is translated by a∕h = 2 over 5000 steps for both
the sMPM and GIMPM. Note that as the focus of this example is on the impact of the material point positions on the
conditioning of the mass and stiffness matrices, the translation of the physical domain is imposed directly at the material
points rather than being driven by any grid-based boundary conditions. Therefore, no governing equations are solved, or
variables updated, as part of this example beyond updating the positions of the material points. Figure 3 also reports the
condition number of the lumped mass matrix

[Mv] = diag
(

A
∀p

(
[Svp]T{1}mp

))
, (15)

where {1} is a vector of ones of length equal to the number of physical dimensions. The lumped mass matrix is often used
in MPMs instead of the consistent mass matrix‡‡.

The condition number of all of the matrices varies as the physical domain translates through the background grid. For
the sMPM (Figure 3A), sudden increases in the condition number of the mass matrices are observed when material points
transition between background grid cells (for example, at a∕h = 0.25, 0.75, 1.25, and 1.75). This is due to the transitioning
material points having very small contributions to certain nodes in terms of the basis functions values. The stiffness
matrix does not show the same spikes as it is formed using the spatial derivatives of the basis functions, which, as we are
only concerned with the behaviour in the horizontal direction, are piecewise constant within each element. Therefore,
the position of a material point within the element has less impact on the conditioning of the stiffness matrix. Beyond
a∕h = 1.75 the condition of the stiffness matrix 𝜅([K]) = ∞ as there is no constraint in the horizontal direction as all of
the material points have moved beyond the influence of the horizontally constrained node.

The response of the GIMPM is smoother due to the C1 continuity of the basis functions. However, both the mass and
stiffness matrices suffer from conditioning issues as the spatial derivatives of the basis functions are dependent on the
overlap between the domains associated with the material points and the background grid cells. This causes spikes in
the condition number when a∕h = 0, 1, and 2. In all cases, the condition number increase is more pronounced for the
consistent mass matrix than the lumped mass matrix as it contains the product of the basis function with themselves.

F I G U R E 2 Translating material point domain problem setup. (A) Initial position. (B) Domain translation.
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8 COOMBS

F I G U R E 3 Translating material point domain: Condition number variation. (A) sMPM. (B) GIMPM.

This is a trivial problem but it demonstrates the conditioning issues faced by MPMs. The key issue is that we do not
know how the material points, and their associated domains for the GIMPM, will coincide with the background grid
through the analysis. These issues have resulted in most explicit MPMs adopting a lumped mass matrix and/or including
thresholds on the minimum considered basis function values that contributes to the analysis. These numerical fixes are
not universal and have implications on the accuracy, stability and general use of the methods. Although there have been
some papers investigating the issues associated with poor conditioning of the mass13 and stiffness48 matrices, a general
solution has yet to be provided.

3 GHOST STABILISATION

A typical material point situation is shown in Figure 4, where a physical body is discretised by a number of material points
on a regular background mesh. Although a boundary to the physical domain has been shown, most MPMs do not include
a representation of the physical boundary and instead they rely on the location of the material points to represent the
extent of the physical material. Figure 4B identifies the unpopulated elements (the elements that do not contain material
points) in the background mesh, which have been shaded grey. Figure 4C identifies the boundary elements (the elements
that are intersected by the physical boundary), which are shaded dark grey. It is these boundary elements that potentially
contain small overlaps between material points and the background mesh, depending on how the material points are
used to represent the physical material and their associated characteristic function.

One approach to overcome the issues associated with small overlaps between the physical domain and the computa-
tional grid is to add additional stabilising terms of the mass/stiffness matrix that provide a bound on the conditioning of
the system. The ghost penalty stabilisation approach was first proposed by Burman,28 and aims to bound the condition-
ing of a matrix by penalising jumps in the gradient of the solution field across elements cut by the physical boundary.
The name ghost can be interpreted as projection of the physical solution field into the empty part of the computational
mesh. This is achieved by adding an extra term to the linear system being solved, which strengthens the coupling in the
system of equations and ties the solution field in the poorly conditioned part of the linear system to the well-conditioned
part via the gradient of the solution field near the physical boundary. This extra ghost stabilisation term was expressed by
Sticko et al.5 (amongst others) as an integral over the faces of elements cut/intersected by the physical boundary, Γ, with
the following bilinear form

j(ui,wi) =
q∑

k=1

h2k+1

(2k + 1)(k!)2 ∫Γ[[𝜕
k
nui]] [[𝜕k

nwi]]dΓ, (16)

where q is the polynomial order of the basis functions, h is the size of the element face, wi and ui are the test and trial
functions (i are the physical dimensions), 𝜕k

nui is the kth spatial derivative of ui in the direction normal to the face under
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COOMBS 9

F I G U R E 4 Material point method discretisation and boundary representation. (A) MP discretisation. (B) Active/inactive elements.
(C) Boundary elements.

consideration, ni, and [[⋅]] denotes the jump over a face, F

[[ui]] = ui|F+ − ui|F− . (17)

F+ and F− denote the faces associated with the positive and negative elements attached to the boundary between two
elements§§.

3.1 Boundary identification

A key aspect of the ghost stabilisation approach is identifying the element boundaries that are associated with the physical
boundary. The selection of these element boundaries is a clear point of departure between cut-cell finite element and
MPMs as most material point simulations do not explicitly define the boundary of the physical domain(s). Therefore, an
approach is required to identify these element boundaries without constructing/tracking a representation of the physical
boundary.

In this article, the following steps are taken to identify the element boundaries, Γ, for the ghost stabilisation integral:

1. Identify the boundary elements, which are the elements attached to (sharing a face with) any unpopulated elements
(the light grey-shaded elements in Figure 5). These elements are the dark grey shaded elements shown in Figure 5.

2. The boundary element edges are defined as the boundaries of these elements with: (i) other boundary elements or (ii)
elements that are populated by material points (the white-shaded elements in Figure 5). These element boundaries
are shown by the thick red lines in Figure 5¶¶.

For MPMs it is important to integrate over both the faces between boundary elements and the faces between boundary
elements and other active elements. The stabilisation obtained from integrating over the latter faces will impose continuity
between the gradient of the solution of the well-conditioned part of the domain and the partially filled elements. When
considering an analysis with multiple bodies, this process should be adopted for each body and then the union of these
edges used to determine the stabilisation.

3.2 Ghost stabilisation for material point analysis

This article is restricted to MPMs that adopt bi-linear quadrilateral elements as the underlying background grid. However,
the overall approach is general and it can be applied to other elements, for example with reference to the finite element
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10 COOMBS

F I G U R E 5 Material point method boundaries: Positive/negative elements and normal definition.

literature: higher order quadrilaterals,5,6,49 including for coupled materials,50 triangular/tetrahedral elements,51-53 and
different forms of basis functions, such as B-spline based cut/immersed finite element methods,54-56 amongst others.

For bi-linear quadrilateral elements (q = 1) the bi-linear form of the stabilisation term (16) becomes

j(ui,wi) =
h3

3 ∫Γ[[𝜕nui]] [[𝜕nwi]]dΓ, (18)

where for a two-dimensional problem the gradient of ui normal to a boundary can be expressed as

𝜕nui = (∇u)ijnj =
⎡
⎢
⎢
⎣

𝜕u1
𝜕x

𝜕u1
𝜕y

𝜕u2
𝜕x

𝜕u2
𝜕y

⎤
⎥
⎥
⎦

{
nx

ny

}

. (19)

Expanding the jump terms, the stabilisation term for linear elements, (18), can be expressed as

j(ui,wi) =
h3

3 ∫Γ
(
𝜕u+i
𝜕xj

nj −
𝜕u−i
𝜕xj

nj

)(
𝜕w+

i

𝜕xj
nj −

𝜕w−
i

𝜕xj
nj

)

dΓ, (20)

where nj is the outward normal for the positive element, as shown in Figure 5. Expanding (20), introducing the finite
element approximation space for the test and trial functions and eliminating the nodal values associated with the test
function (full derivation given in A) results in a matrix comprised of four sub components multiplied by the physical
displacements of the positive, {d+}, and negative, {d−}, elements

{fG} =

[
[J++G ] [J+−G ]
[J−+G ] [J−−G ]

]{
{d+}
{d−}

}

= [JG]{d}, (21)

the combined [JG] matrix can be compactly expressed as

[JG] =
h3

3 ∫Γ
(
[G]T[m][G]

)
dΓ, where [G] =

[
[G+] − [G−]

]
, (22)

and [m] = [n][n]T . For two-dimensional analysis, the normal matrix and the matrix containing the derivatives of the basis
functions have the following format

[n]T =

[
nx 0 0 ny

0 ny nx 0

]

and [G+] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

N+
1 ,x 0 … N+

n ,x 0
0 N+

1 ,y … 0 N+
n ,y

0 N+
1 ,x … 0 N+

n ,x

N+
1 ,y 0 … N+

n ,y 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.
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COOMBS 11

[G−] has the same format as [G+], with N+
i replaced with N−

i . See Appendix B for three-dimensional forms of the [n] and
[G+] matrices.

3.3 Mass stabilisation for dynamics

For a dynamic MPM, mass stabilisation can be added to reduce the conditioning issues associated with small over-
laps/contributions from material points to the background grid. This involves adding the following stabilisation matrix
to the consistent mass matrix

[MG] = 𝛾M[JG], (23)

where 𝛾M is a scalar constant that controls how much stabilisation is added to the linear system. Sticko et al.5 suggested
𝛾M = 1

4
𝜌, where 𝜌 is the density of the material under consideration, is a suitable stabilisation parameter. The impact of

the variation of this parameter will be explored in the numerical analyses in Section 5. Note that the summation of all
of the terms in [JG] is always equal to zero and therefore the addition of the stabilisation does not change the total mass
in the system. However, changing the consistent mass matrix does have consequences for the conservation of linear and
angular momentum. In the case of a constant velocity field, the conservation of momentum is conserved irrespective
of the magnitude of the stabilisation parameter, 𝛾M , as the overall mass of the system remains unchanged. For varying
velocity fields, ghost stabilisation has the potential to introduce an error in the conservation of momentum but this error
will reduce proportional to h3 (see Equation (22)) with mesh refinement.

3.4 Stiffness stabilisation of quasi-static analysis

Ghost stabilisation for quasi-static analysis is essentially a penalty approach that modifies the quasi-static discrete form
of the weak form statement of equilibrium (2) to

∫
𝜑t(K)

[∇xSvp]T{𝜎p}dV − ∫
𝜑t(K)

[Svp]T{b}dV + 𝛽 ∫Γ [G]
T[n]{g}dΓ = {0}, (24)

where 𝛽 = 𝛾kh3∕3 and 𝛾k is the penalty parameter for ghost stiffness stabilisation##, and {g} is the jump in the
displacement gradient over the boundary element edges, Γ

{g} = [n]T[G]{d}. (25)

The third term in (24) is an additional force associated with the ghost stabilisation that penalises changes in gradient of
the solution field over the boundary element edges. Linearising (24) with respect to the unknown nodal displacements
results in an additional stiffness component linked to this force

[KG] =
𝛾kh3

3 ∫Γ
(
[G]T[m][G]

)
dΓ = 𝛾k[JG]. (26)

There is significant variation in the value of penalty parameter, 𝛾k, used in the literature and also variation in the exponent
on the face length, h. For example, when enforcing Dirichlet boundary conditions for elastic wave analysis, Sticko et al.5
adopted the following stiffness stabilisation

[KD
G ] =

𝛾k

h2 [JG],

with the penalty parameter set to 𝛾k = 𝜇 + 𝜆

2
, where 𝜆 and 𝜇 are the Lamé parameters, which sets the stabilisation param-

eter to be half of the P-wave modulus of the material. Hansbo et al.6 suggested a modification to this approach, where a
different strength of penalisation was imposed on Neumann (traction) and Dirichlet boundaries. The Neumann boundary
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12 COOMBS

F I G U R E 6 Translating material point domain: Condition number variation of (A) the consistent mass and (B) stiffness matrices for
the sMPM and GIMPM with and without ghost stabilisation (the stabilised matrices are denoted by the [∼⋅]).

stabilisation was weakened to

[KN
G ] = 𝛾k[JG],

whereas [KD
G ] was adopted on boundaries with Dirichlet (displacement) constraints. Hansbo et al.6 found that [KN

G ] was
sufficient to bound the condition number of the linear system, whilst producing more accurate numerical results due
to the less onerous penalisation (via the omission of the h−2 multiplier on the stiffness stabilisation). Hansbo et al.6
set 𝛾k = (2𝜇 + 𝜆) × 10−4, which is much smaller than that used by Sticko et al.5 for elastic wave problems. Burman7 set
𝛾k = (𝜇 + 𝜆) × 10−7 when analysing shape optimisation problems and a number of authors have commented that the
results are relatively insensitive to the stabilisation parameter. This article is focused on the stabilisation of MPMs due to
small overlaps between the background mesh and homogeneous Neumann (traction free) physical boundaries defined
by the location of the material points and/or their associated domains and therefore Hansbo et al.’s6 Neumann bound-
ary stabilisation is adopted. The impact of the value of the stabilisation parameter, 𝛾k, will be explored in the numerical
analysis presented in Section 5.

3.5 Ghost stabilised conditioning

The trivial test problem described in Section 2.6 is now re-examined with ghost stabilisation. Figure 6 shows the variation
of the condition numbers of the stabilised, [∼⋅], and unstabilised consistent mass and stiffness matrices as the domain
translates through the background mesh for the sMPM and the GIMPM. The following stabilisation parameters were
adopted

𝛾M = 1
4
𝜌 and 𝛾K = 1.

The ghost stabilisation removes the spikes in the condition number of the consistent mass matrix for both the sMPM
and the GIMPM. The is most clearly seen through the maximum condition numbers reported in Table 1. The stabilisa-
tion has also removed the spikes in the conditioning of the GIMPM stiffness matrix, reducing the maximum condition
number by 24 orders of magnitude. The stiffness matrix of the MPM is well conditioned for a∕h ∈ [0, 7∕4) and there-
fore the stabilisation has minimal impact (note Table 1 reports the maximum MPM stiffness condition number for
a∕h ∈ [0, 7∕4)). The stabilisation does not remove the requirement to constrain rigid body motion and beyond a∕h = 7∕4
the condition of the stabilised stiffness matrix is effectively 𝜅([K̃]) = ∞ as the domain is not constrained in the horizontal
direction.
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COOMBS 13

T A B L E 1 Translating material point domain: Condition number variation of the consistent mass and stiffness matrices for the
sMPM and GIMPM with and without ghost stabilisation.

max(𝜿([Mv])) max(𝜿([M̃v])) max(𝜿([K])) max(𝜿([K̃]))

MPM 9.08 × 1026 1.53 × 102 4.72 × 101a 4.22 × 101a

GIMPM 4.43 × 1043 1.63 × 102 3.32 × 1026 1.66 × 102

a Maximum for a∕h ∈ [0, 7∕4).

The maximum time step size for an explicit time stepping algorithm is limited by the Courant–Friedrichs–Lewy (CFL)
number, CCFL, via

Δt ≤ 𝛼CCFL min(h),

where 𝛼 is a constant that depends on the adopted time stepping algorithm.5 The CFL number can be determined from

CCFL =
1

h
√
𝜆max

,

where 𝜆max is the largest eigenvalue of the generalised eigenvalue problem [K]{x} = 𝜆[M]{x}. The ideal situation is where
the CCFL number is independent of the position of the physical domain relative to the background mesh and scales linearly
with the size of the elements in the background grid. However, ill-conditioning of the mass and stiffness matrices can
cause severe time step limitations due to the unbounded nature of the matrices’ eigenvalues.5 This issue is demonstrated
in Figure 7, where the CFL number is given as the physical domain translates through the background mesh for the sMPM
and GIMPM with and without ghost stabilisation. The CFL number for the non-stabilised methods are highly dependent
on the position of the physical body relative to the background mesh, mirroring the results shown in Figure 6 in terms of
the condition numbers of the mass and stiffness matrices. The CFL number for the ghost stabilised methods are almost
independent of the domain’s position on the background grid.

This conceptual problem has demonstrated the impact of the ghost stabilisation technique on the conditioning, and
therefore accuracy and stability, of the consistent mass and stiffness matrices. It has taken two matrices that are effectively
un-invertible for certain intersections of the background mesh with the physical domain introduced an additional term

F I G U R E 7 Translating material point domain: CFL number with and without ghost stabilisation.
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14 COOMBS

into the linear system that stabilises the equations and removes the strong dependency of the position of the domain
within the background mesh. It also removes the CFL number dependence on the position physical domain within the
background grid. The impact of this stabilisation will be demonstrated further via the numerical examples presented in
Section 5, prior to this key aspects of the implementation of the ghost stabilisation within MPMs will be detailed.

4 IMPLEMENTATION

Implementation of the ghost stabilisation technique only requires minor modification to standard MPM code. These key
differences are described in this section.

4.1 Data structures

The ghost stabilisation technique requires information on the skeleton|||| of the background mesh that is not routinely
stored for the MPM (or continuous Galerkin finite element methods), namely:

face connectivity between elements: this is simply a unique list of all of the internal faces in the analysis and the
elements to which they are connected.

face nodal topology: although this could be derived from the face connectivity between elements, it is convenient to also
store the nodes that are connected to each face, in a similar way to storing the topology of each element in
conventional finite element methods. This face topology information will be used to determine face lengths, normal
directions, global quadrature point locations and so forth.

4.2 Boundary element edge identification

Determining the boundary element edges is a critical stage of the ghost stabilisation technique and needs to be performed
at each time/load step. For each physical body:

(i) determine which elements are populated by the material points representing the body***, that is the elements that
are active in the analysis (the white-shaded elements in Figure 4B/C);

(ii) determine the faces on the boundary between the active and inactive parts of the mesh (faces where one of its
associated elements is active and one that is inactive);

(iii) using the faces from (ii), identify the boundary elements (the dark grey shaded elements in Figure 4C);
(iv) using the boundary elements from (iii), loop over each face of the element and if both elements associated with the

face are active, flag as a boundary element edge (the thick red lines in Figure 4C).

4.3 Ghost stabilisation determination

The boundary element edges, Γ, identified using the process described in Section 4.2, must be integrated over to form
the ghost stabilisation matrix (22). Gauss–Legendre quadrature is a convenient and efficient choice, allowing [JG] to be
approximated as

[JG] ≈ A∀Γ

(
h3

3

nGp∑

i=1

(
[Gi]T[m][Gi]

)
wi det([i])

)

, (27)

where the (⋅)i subscripts denote quantities that are potentially dependent on the Gauss point location, wi are the Gauss
point weights, det([ ]) is the determinant of the surface Jacobian (the ratio of the global/local face lengths, h∕2 for
two-dimensional linear elements) and nGp is the number of Gauss points used to approximate the integral.
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COOMBS 15

The implicit quasi-static approach described in Section 2.4 adopts an updated Lagrangian approach and therefore
both the normal to each face and the spatial derivatives of the basis functions will change over the load step. However,
there would be minimal benefit to including this variation as the ghost stabilisation is not a physical quantity. The cost of
including this variation would be that the stabilisation matrix and the associated force contribution to the weak statement
of equilibrium would need to be recalculated at each Newton–Raphson iteration within every load step. Assuming that
the additional stiffness is constant over a load step also allows the force contribution from the ghost stabilisation to the
weak statement of equilibrium to be calculated via the product of the ghost stabilisation stiffness matrix, [KG], with the
background grid nodal displacements from the current step. In summary, as the stabilisation is a numerical fix to improve
the stability of the method, it is assumed that [JG] is constant over each load/time step.

5 NUMERICAL INVESTIGATIONS

All of the simulations presented in this section are conducted under the assumption of plane strain and adopt a
background grid of bi-linear quadrilateral elements. The GIMPM is adopted for all analyses, unless stated otherwise.

5.1 Mass stabilisation: Translating, rotating, and stretching

The first set of numerical analyses are focused on mass stabilisation and key steps that are required in dynamic material
point simulations, namely the mapping of velocity between the material points and the grid at the start of a time step.

5.1.1 Mass stabilisation: Rigid body translation

This experiment investigates the variation of the condition number of the consistent mass matrix of the active elements
as a ghost emoji translates through a regular background mesh. A unit background mesh of bi-linear square elements
was adopted and the ghost had a height and width of 0.4 m, as shown in Figure 8. The ghost underwent a rigid body
motion of

{u} = {0.5 0.5}T m,

over 1000 steps and the condition number of the global (non-stabilised) consistent mass matrix, [Mv], was recorded at
each step along with the condition of the stabilised, [M̃v], and lumped, [Mv], mass matrices. The ghost had a density of
𝜌 = 1 kg/m3 and was represented by 646 generalised interpolation material points†††, as shown in Figure 8.

Figure 9 shows the evolution of the condition number of the consistent (black line), stabilised (thick red line), and
lumped (grey dashed line) mass matrices as the ghost translates through the background mesh with h = 0.0312 m and a
mass stabilisation parameter of 𝛾M = 1

4
𝜌. The maximum condition number of the consistent mass matrix was 1.87 × 1041,

whereas the stabilised mass matrix had a maximum value of 4.33 × 105.
Table 2 explores the variation of the maximum condition number of the non-stabilised, stabilised and lumped mass

matrices with different numbers of generalised interpolation material points with 𝛾M = 0.25. Due to the significant
difference between the stabilised and non-stabilised matrices, the condition number of the stabilised matrix scales approx-
imately linearly with the stabilisation parameter, 𝛾M . That is, reducing/increasing the stabilisation parameter by an order
of magnitude will increase/reduce the condition number of the stabilised mass matrix by an order of magnitude until the
condition number of [JG] approaches [Mv].

Velocity mapping

The stabilised and non-stabilised consistent mass matrices were also used to map the velocity from the coarse material
point distribution to nodes using (10). In this numerical experiment {vp} was set to

{vp} = {1 1}T
,
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16 COOMBS

(A) (B)

F I G U R E 8 Translating ghost discretisation: (A) Initial and final material point positions and (B) boundary elements (grey shaded) and
the faces (thick red lines) for the initial material point distribution (only the active elements in the background mesh are shown).

F I G U R E 9 Translating ghost: Mass matrix condition number variation with displacement step (the stabilised matrices are denoted by
[∼⋅] and the lumped by [⋅]).

and therefore to be consistent with this constant velocity field, all active nodes in the background mesh should have a
velocity equal to {vv} = {1 1}T . The variation of the maximum nodal velocity with displacement step for the stabilised
(red line) and non-stabilised consistent (black line) mass matrices are shown in Figure 10. The nodal values of velocity
obtained from the non-stabilised consistent mass matrix are highly dependent on the position of the ghost relative to the
background mesh, whereas the stabilised mass matrix correctly predicts nodal velocities of {1 1}T , with a maximum
error of 3.32 × 10−13, irrespective of the position of the ghost within the background mesh. The lumped mass matrix
correctly predicts the nodal velocities as, for constant velocity fields, the summation of the mass basis functions in the
lumped matrix and nodal momentum cancel out irrespective of the basis function values, allowing the lumped mass
matrix to achieve machine precision in the nodal velocities with a maximum error of 1.11 × 10−15. This is however only
true for velocity fields that are constant in space, as will be demonstrated in the next section.

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7332 by T
est, W

iley O
nline L

ibrary on [17/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



COOMBS 17

T A B L E 2 Translating ghost: Maximum mass matrix condition number for different numbers of material points per ghost with
h = 0.0312 and 𝛾M = 0.25𝜌.

Coarse Medium Fine

No. material points/ghost 646 2389 9613

Non-stabilised [Mv] 1.87 × 1041 2.38 × 1036 3.01 × 1033

Stabilised [M̃v] 4.33 × 105 3.12 × 105 2.97 × 105

Lumped (diagonal) [Mv] 1.71 × 1010 7.66 × 1011 1.20 × 1011

F I G U R E 10 Translating ghost: Maximum nodal velocity variation with displacement step (the result from the stabilised matrix is
denoted by [∼⋅]).

5.1.2 Explicit dynamics: Stretching ghost and velocity update

This experiment investigates the differences in the velocity mapping process using the consistent and lumped mass
matrices as a ghost emoji expands on a regular background mesh using the explicit dynamic material point formula-
tion described in Section 2.3. A unit background mesh with h = 0.1 m was adopted. The ghost had a height and width
of 0.4 m and was centred within the background mesh, as shown by the dark blue points in Figure 11A. The coarse
material point discretisation (646 material points), as described in the previous section, was adopted for this analysis.
For this artificial problem, the ghost emoji had zero stiffness (E = 0 Pa) and a density of 𝜌 = 1000 kg/m3. The effect of
gravity was ignored and the behaviour modelled over 1 second using 1000 time steps. A mass stabilisation parameter of
𝛾M = 1

4
𝜌 was adopted for the ghost-stabilised simulations. The problem was initialised such that the material points had

a velocity of

{v0
p} =

1
tt

{
{xp} − {xcen}

}
,

where {xcen} = {0.5 0.5}T m was the centre of ghost emoji and tt = 1 s the total simulation time. This velocity field
represents a uniform expansion about {xcen}. As the ghost has zero stiffness, there is nothing to resist the expansion of the
body and the material points should move with a constant velocity throughout the analysis, doubling the size of the ghost
over 1 second (as shown by the light blue points in Figure 11A). This means that at any point in the analysis, the norm of
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18 COOMBS

F I G U R E 11 Stretching ghost: (A) initial discretisation and expected final material point positions for h = 0.1 m and the material point
positions, coloured according to the norm of the displacement error, at the end of the analysis for: (B) the ghost stabilised consistent mass
matrix and the lumped mass matrix using a (C) FLIP and (D) PIC material point velocity update.

the displacement error for any material point in the body can be evaluated using the following Euclidean (or L2) norm

up
error =

|||{up} − t{v0
p}
|||,

where {up} is the displacement of a material point at time t. In terms of deformation, all material points should have
a deformation gradient of [F] = (1 + t)[I] with a volume ratio of J = (1 + t)2. Note that it was not possible to use the
non-stabilised consistent mass matrix for this analysis, with the simulation diverging after 21 time steps.

Figure 11B,C show the material point positions, coloured according to the norm of the displacement error, at the
end of the analysis for the (b) ghost stabilised consistent and (c) lumped mass matrices using a FLIP velocity update
(8). It is worth highlighting that the scales on the colour bars are different for the two figures, with Figure 11C having a
range of [0, 3] × 10−2 whereas Figure 11B has a range 12 orders of magnitude smaller, at [0, 8] × 10−14. Figure 11C also
shows the expected positions of the material points at the end of the analysis using light blue shaded circles. Figure 11D
shows the final material point positions using a PIC material point velocity update‡‡‡, where again the material points are
coloured according to the norm of the displacement error. A number of points can be observed from the results presented
in Figure 11B–D:

(i) for this zero acceleration problem, a FLIP material point velocity update maintains the correct velocities at the
material points throughout the analysis irrespective if a lumped of consistent mass matrix is adopted25;
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COOMBS 19

(ii) the ghost stabilised consistent mass matrix correctly predicts the material point velocities throughout the analysis
with a displacement error of less than 10−13 m across all material points and time steps;

(iii) the lumped mass matrix causes in an error in the updated material point positions for non-rigid body motions due
to errors in the mapping of the material point velocities to the background grid vertices using (10) as these nodal
velocities are used to update the material point positions at the end of the time step such that the deformation of
the material points are consistent with the background grid. Therefore, adopting a lumped mass matrix means that
the material point velocities are no longer consistent with their deformation over the time step, which is mapped
from the grid incremental displacements via (9);

(iv) the ghost stabilised consistent mass matrix predicts vertex velocities, {vv}, that are consistent with the physical
linear velocity variation due to the ghost stabilisation penalising variations of the gradient of the basis functions
across the boundary element edges this means that the method predicts the correct material point displacements
(and velocities) using both FLIP and PIC velocity updates; and

(v) combining a PIC velocity update with a lumped mass matrix destroys the initial material point velocity field due to
inaccuracies in the vertex velocities (as explained under point (ii) and also by Pretti et al.25), leading to a physically
unrealistic solution as the total velocity field is repeatedly mapped between the material points and the grid vertices.

This simple problem has demonstrated the benefits of adopting a ghost stabilised consistent mass matrix over a lumped
mass matrix. It is important to highlight that adopting a lumped mass matrix also has consequences for the energy
conservation of MPMs (as discussed in detail by Love and Sulsky23). This point is explored in the following numerical
example.

5.2 Explicit dynamics: Collision of elastic ghosts

This example considers the collision of two elastic ghosts and has been designed to investigate the energy conservation
implications of adopting a lumped or a stabilised consistent mass matrix. The analyses were run on a 1 m×1 m background
grid, with 5, 10, and 20 elements in each direction (h = 0.20, 0.10, and 0.05 m). The ghosts were initially placed in the upper
right and lower left corners of the background grid, with velocities of {−0.1,−0.1} m/s and {0.1, 0.1} m/s respectively
(as shown in Figure 12). Each ghost had width and height of 0.4 m, a Young’s modulus of E = 1000 Pa, a Poisson’s ratio
of 𝜈 = 0.3 and a density of 𝜌 = 1000 kg/m3. The same three generalised interpolation material point resolutions used in
the previous sections, and detailed in Table 2, were adopted for this analysis. The effect of gravity was ignored and the

F I G U R E 12 Collision of elastic ghosts: Initial coarse material point discretisation with h = 0.1 m.
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20 COOMBS

F I G U R E 13 Collision of elastic ghosts: (A) USF ghost-stabilised energy variation for h = 0.1 m, nt = 1000 and the medium material
point discretisation and (B) energy error for h = 0.1 m, nt = 2000 and the medium material point discretisation.

behaviour modelled over 3.5 s using a total of nt = 1000, 2000, and 4000 time steps. The system was undamped and was
analysed using the explicit dynamic material point formulation described in Section 2.3 with a lumped and stabilised
consistent mass matrix (𝛾M = 1

4
𝜌). USF, USL, and MUSL18 material point stress updating procedures were considered.

The total initial energy in the system for all of the analyses was W0 = 2.14726 J.
Note that it is not possible to analyse this problem using a non-stabilised consistent mass matrix for any of the com-

binations of parameters used with the lumped/stabilised analyses. When trying to use the non-stabilised consistent mass
matrix, the simulation becomes unstable after a small number of time steps and the ghosts explode due to spurious nodal
velocity values associated with the inversion of [Mv].

Figure 13A shows the USF ghost-stabilised energy variation for h = 0.1 m, nt = 1000 and the medium (2389 material
points for each ghost, see Section 5.1.1) material point discretisation and Figure 13B shows the energy error

energy error = Wkin
i +W𝜀

i −W0,

where Wkin
i and W𝜀

i are the kinetic and strain energies associated with time step i, for h = 0.1 m, nt = 4000 and the
medium material point discretisation over the duration of the analysis for the lumped and stabilised consistent mass
matrices using the USF, USL and MUSL approaches. As reported in the literature,22,23 combining an USL approach with
a lumped mass matrix (dashed black line) results in significant energy dissipation. This excessive dissipation is removed
via the adoption of the ghost stabilised consistent mass matrix (dashed red line), resulting a simulation that approxi-
mately mirrors the USF analysis (solid red line) in terms of the energy dissipated at any point in the analysis. The lumped
and stabilised consistent mass matrices yield very similar results in terms of the energy error for the USF and MUSL
approaches.

Table 3 provides the normalised mean energy error

normalised mean error = 1
ntW0

nt∑

i=1

|||W
kin
i +W𝜀

i −W0
|||,

for the 162 analyses, where nt is the total number of time steps. The numbers are coloured according to the magnitude of
the average energy error, when yellow and green correspond to the minimum and maximum errors, respectively.

A number of points can be observed from Table 3:

(i) increasing the number of time steps reduces the average energy error over the simulation for all analyses;
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COOMBS 21

T A B L E 3 Collision of elastic ghosts: Normalised mean energy errors (×10−3) for different discretisations using USF, USL, and MUSL
approaches and the lumped and ghost-stabilised consistent mass matrices.

(a) USF ghost coarse
h (m) 0.20 0.10 0.05

tim
es

tep
s 1000 1.370 0.888 1.386

2000 0.682 0.445 0.707

4000 0.340 0.223 0.357

(b) USF ghost medium
h (m) 0.20 0.10 0.05

tim
es

tep
s 1000 1.294 0.889 1.559

2000 0.643 0.447 0.792

4000 0.321 0.224 0.399

(c) USF ghost fine
h (m) 0.20 0.10 0.05

tim
es

tep
s 1000 1.261 0.899 1.629

2000 0.627 0.451 0.828

4000 0.313 0.226 0.418

(d) USF lumped coarse
h (m) 0.20 0.10 0.05

tim
es

tep
s 1000 1.418 0.956 0.871

2000 0.706 0.478 0.438

4000 0.352 0.239 0.220

(e) USF lumped medium
h (m) 0.20 0.10 0.05

tim
es

tep
s 1000 1.325 0.916 1.011

2000 0.660 0.458 0.511

4000 0.329 0.229 0.257

(f) USF lumped fine
h (m) 0.20 0.10 0.05

tim
es

tep
s 1000 1.283 0.908 1.122

2000 0.638 0.454 0.567

4000 0.319 0.227 0.285

(g) USL ghost coarse
h (m) 0.20 0.10 0.05

tim
es

tep
s 1000 4.533 0.859 0.980

2000 2.738 0.493 0.557

4000 1.542 0.272 0.409

(h) USL ghost medium
h (m) 0.20 0.10 0.05

tim
es

tep
s 1000 4.319 0.751 1.242

2000 2.576 0.346 0.519

4000 1.435 0.174 0.216

(i) USL ghost fine
h (m) 0.20 0.10 0.05

tim
es

tep
s 1000 4.183 0.789 1.425

2000 2.440 0.368 0.639

4000 1.337 0.175 0.275

(j) USL lumped coarse
h (m) 0.20 0.10 0.05

tim
es

tep
s 1000 12.32 8.417 10.58

2000 6.647 4.726 6.790

4000 3.460 2.521 3.989

(k) USL lumped medium
h (m) 0.20 0.10 0.05

tim
es

tep
s 1000 12.39 8.207 8.899

2000 6.684 4.607 5.674

4000 3.481 2.457 3.319

(l) USL lumped fine
h (m) 0.20 0.10 0.05

tim
es

tep
s 1000 12.35 7.992 8.022

2000 6.666 4.484 5.105

4000 3.473 2.391 2.982

(m) MUSL ghost coarse
h (m) 0.20 0.10 0.05

tim
es

tep
s 1000 1.699 0.997 1.238

2000 0.853 0.499 0.613

4000 0.427 0.250 0.305

(n) MUSL ghost medium
h (m) 0.20 0.10 0.05

tim
es

tep
s 1000 1.619 0.938 1.326

2000 0.813 0.469 0.653

4000 0.408 0.234 0.324

(o) MUSL ghost fine
h (m) 0.20 0.10 0.05

tim
es

tep
s 1000 1.585 0.929 1.359

2000 0.796 0.464 0.670

4000 0.399 0.232 0.332

(p) MUSL lumped coarse
h (m) 0.20 0.10 0.05

tim
es

tep
s 1000 1.369 1.221 1.088

2000 0.685 0.612 0.550

4000 0.343 0.306 0.276

(q) MUSL lumped medium
h (m) 0.20 0.10 0.05

tim
es

tep
s 1000 1.284 1.128 0.932

2000 0.643 0.565 0.466

4000 0.322 0.283 0.233

(r) MUSL lumped fine
h (m) 0.20 0.10 0.05

tim
es

tep
s 1000 1.246 1.097 0.905

2000 0.624 0.550 0.452

4000 0.312 0.275 0.226

Note: The cells are coloured according to the magnitude of the error from yellow (small) to green (large).
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22 COOMBS

T A B L E 4 Collision of elastic ghosts: Normalised mean energy error (×10−3) variation with 𝛾M for USF with coarse ghosts and 1000
time steps.

Normalised penalty parameter, 𝜸M∕𝝆

h (m) 22 20 2−2 2−4 2−6 2−8 2−10 2−12 2−14 2−16 2−18 2−20

0.20 0.834 1.197 1.370 1.414 1.420 1.407 1.390 1.388 1.375 1.375 1.388 -

0.10 0.858 0.872 0.888 0.919 0.925 0.940 0.953 0.943 - - - -

(ii) the ghost stabilised consistent mass matrix is more sensitive to changes in background grid resolution compared
to the lumped mass matrix when an USF approach is adopted, with the average energy error being smaller for the
h = 0.2 and 0.1 m analyses when using [M̃v] than [Mv] but the opposite being true for the h = 0.05 m analysis;

(iii) the combination of an USL approach with a lumped mass matrix, [Mv], yields excessive energy dissipation, as shown
by sub Table 3j–l, where the average energy error an order of magnitude larger than that of the USL with a stabilised
consistent mass matrix, [M̃v], for mesh sizes h = 0.1 and 0.05 m;

(iv) the errors associated with the lumped and stabilised MUSL approaches are very similar for all combinations of h and
nt, with no clear trend in terms of the advantages of one approach over the other in terms of energy conservation.

The final result in this section is a study on the impact the magnitude of the mass stabilisation parameter, 𝛾M , on the
energy conservation of the elastic ghost collision problem with the USF approach. The results are summarised in Table 4,
which details the normalised mean energy error for analyses with a coarse ghost and 1000 time steps with h = 0.2 and
0.1 m. The mass stabilisation parameter is varied between 𝛾M = 22

𝜌 and 𝛾M = 20−20
𝜌. Most of the analyses are stable, but

the analyses fail to complete for 𝛾M < 20−18
𝜌 and 𝛾M < 20−12

𝜌 for the h = 0.2 and 0.1 m background grid sizes, respectively,
as the penalty is insufficient to stabilise the consistent mass matrix. Note that the energy error reduces with increasing
penalty but this is at the expense of increasing stiffness of the results due to the gradient of the solution being increasing
constrained over the boundary of the physical domain. Therefore, the selection of the penalty parameter is a compromise
between stability of the analyses whilst minimising the impact on the physical response of the problem. The experience of
the author is that the 𝛾M = 𝜌∕4 value suggested in the cut FEM literature5 is a good starting point to balance these issues.

The analyses presented for this problem demonstrate that the ghost stabilisation allows the consistent mass matrix to
be used for explicit dynamic analysis and also corrects an issue with the USL approach when combined with a lumped
mass matrix. The following section will analyse the impact of including elasto-plasticity.

5.3 Explicit dynamics: Collision of elasto-plastic ghosts

This example considers the collision of two elasto-plastic ghosts to demonstrate that the ghost stabilisation approach can
be adopted for non-linear materials. The analyses were run on a 1 m×1 m background grid, with 20 elements in each
direction (h = 0.05 m). The ghosts were initially placed in the upper right and lower left corners of the background grid,
with velocities of {−0.1,−0.1} m/s and {0.1, 0.1} m/s respectively (as shown in Figure 12). Each ghost had width and
height of 0.4 m, a Young’s modulus of E = 1000 Pa, a Poisson’s ratio of 𝜈 = 0.3 and a density of 𝜌 = 1000 kg/m3. Yielding
of the material was governed by a von Mises function of the form

f = 𝜚 − 𝜚y = 0, (28)

where 𝜚 =
√

2J2, J2 = sijsji∕2, sij = 𝜏ij − 𝜏kk𝛿ij∕3 and 𝜏ij is the Kirchhoff stress. The deviatoric yield stress of both ghosts
was set to 𝜚y = 100 Pa and the constitutive model adopted a elastic predictor, plastic corrector closest point projection
algorithm (see Coombs57 amongst others). The medium generalised interpolation material point resolution used in the
previous sections, and detailed in Table 2, was adopted for this analysis. The effect of gravity was ignored and the behaviour
modelled over 3.5 s using 1000 time steps. The system was undamped and was analysed using the USF explicit dynamic
material point formulation described in Section 2.3 with a stabilised consistent mass matrix (𝛾M = 1

4
𝜌).

Figure 14 shows the evolution of the energy components over the analysis, showing the kinetic (Wkin, dashed black
line) and strain (W𝜀, dashed grey line) energies, the plastic dissipation (Wp, red line) and the total energy of the bodies
(Wkin +W𝜀, black line). The initial collision starts at approximately 1.5 s, which initiates strain energy generation and
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COOMBS 23

F I G U R E 14 Collision of elasto-plastic ghosts: Energy components for a medium material point discretisation, a background mesh size
of h = 0.05 m and 1000 time steps.

plastic dissipation within the ghosts. Beyond this initial collision there is additional plastic dissipation from around 2.7 s
due to stress waves through the material. The plastic deformation also traps a degree of strain energy in the ghosts, as
seen by the plateau in the strain energy beyond 3.0 s.

Figure 15 shows the material point positions at t = 1.5, 2.0, 2.5, and 3.0 s, coloured according to the magnitude of the
total plastic logarithmic strains. It is worth noting that the native no slip contact in MPMs is based on the background
grid and the proximity between the two bodies when contact occurs is based on the grid spacing rather than a description
of the surface of the objects. With this native formulation (based on the work of Sulsky et al.1) contact occurs when
material points from the two bodies interact via shared degrees of freedom on the background grid. This means that the
bodies always maintain some separation proportional to the size of the background grid. Several papers (for example,
see relevant papers in the MPM contact literature,58-65 amongst others, and de Vaucorbeil et al.2 and Solowski et al.3 for
recent reviews) have investigated alternative contact formulations in the MPM but these techniques are not explored in
this article, where the focus is on the stabilisation of MPMs in general and comparison with existing techniques, which
will be explored in the next example.

5.4 Explicit dynamics: Elastic cantilever beam

This example considers an elastic cantilever beam under dynamic loading and is focused on examining the capabilities of
the ghost stabilisation technique compared to other methods available in the literature designed to mitigate small nodal
masses and/or nodal force contributions. The elastic cantilever beam was subjected to a point load at its free end and
modelled using the GIMPM. The beam was l0 = 10 m long and d0 = 1 m deep and the material had a Young’s modulus of
100 MPa, a Poisson’s ratio of 0.2 and a density of 𝜌 = 7750 × 103 kg/m3§§§. The end point load was split between the two
material points closest to the end of the beam either side of the neutral axis and increased linearly from zero to f0 = 500 kN
over the first 25 s of the analysis. Beyond 25 s the force was removed and the beam allowed to oscillate until the end of the
analysis at 150 s, over a total of 6000 equal time steps (Δt = 0.025 s). All analyses were run on a 11 m× 16 m background
grid of bi-linear square elements with h = 0.5 m. The beam was positioned such that the outer boundary of the beam
aligned with element boundaries, the beam’s left hand edge coincided with the left hand edge of the background grid
and the beam’s neutral axis was centralised vertically within the background grid. The initial discretisation of the beam
is shown in Figure 16 with h = 0.5 m and with 22 material points per initially populated background grid cells. Note that
the figure uses 22 material points for clarity of the illustration, for all of the analyses 42 generalised interpolation material
points per background grid cell was used. The loaded material points are shown by the black-filled circles.
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24 COOMBS

F I G U R E 15 Collision of elasto-plastic ghosts: Deformed material point positions coloured according to the magnitude of the total
plastic logarithmic strains using a medium material point discretisation, a background mesh size of h = 0.05 m and 1000 time steps. (A)
t = 1.5 s. (B) t = 2.0 s. (C) t = 2.5 s. (D) t = 3.0 s.

Four methods were investigated:

1. USL GIMPM with a ghost-stabilised consistent mass matrix
(
𝛾M = 1

4
𝜌

)
;

2. MUSL18 GIMPM with a lumped mass matrix; and
3. USF GIMPM with a lumped mass matrix and the distribution coefficient algorithm for small mass nodes of Ma et al.13

with a threshold of 4% of the maximum mass value to trigger residual force redistribution¶¶¶.
4. USF GIMPM with a lumped mass matrix.

Figure 17 provides the normalised horizontal and vertical displacement response of the tip of the cantilever by aver-
aging the displacement of the loaded material points (the black filled circles in Figure 16) for all of the considered
approaches. The result of the lumped USF, the lumped MUSL and the ghost stabilised USL approaches are very similar
in terms of their global time-displacement response but the approach of of Ma et al.13 failed at time step 4386 (at a time
of 2.56 s, shown by the A points in Figure 17), with the material points exploding and exiting the background grid. If the
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COOMBS 25

F I G U R E 16 Elastic beam: Initial discretisation and boundary conditions with h = 0.5 m (only part of the background mesh is shown).

F I G U R E 17 Elastic beam: Mean normalised displacement response of the loaded material points.

threshold on the percentage the maximum mass value to trigger residual force redistribution was dropped to 1% then the
analysis was able to complete, giving a near identical result to the lumped USF simulation, which is not surprising given
that the lumped USF is stable for this analysis.

The horizontal stress 𝜎xx distribution at t = 150 s for the ghost stabilised USL and MUSL approaches are shown in
Figure 18. The overall stress distributions are similar but it is clear that the ghost stabilisation reduces the stress oscillations
seen near the boundary of the beam. This is particularly evident in the region highlighted by the A-labelled dashed circle
but can also be seen in other regions of the beam.

The examples explored so far have all focused on explicit dynamic analysis. The following sections will demonstrate
the benefits of ghost stabilisation for implicit quasi-static analysis.

5.5 Implicit quasi-static: Elastic compression under self weight

This example considers the one dimensional compression of an elastic column with an initial height of l0 = 50 m under
its own self weight and aims to demonstrate that including ghost stabilisation has minimal impact on the convergence of
the method using a problem with an analytical solution. The material has a Young’s modulus of 10 kPa and a Poisson’s
ratio of zero. The background mesh is comprised of square background elements with roller boundary conditions on the
base and sides and the column is discretised by a 2 × 2 grid of equally spaced material points in each initially populated
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26 COOMBS

F I G U R E 18 Elastic beam: Horizontal stress 𝜎xx distribution at t = 150 s for the (A) ghost-stabilised USL and (B) MUSL approaches.

F I G U R E 19 Compression under self weight: Normalised stress error convergence with grid refinement and initial problem
discretisation and final material point positions coloured according to 𝜎yy with h = 6.25 m.

background grid element (as shown to the right of Figure 19 for h = 6.25 m). A body force of 800 N/m2 (g = 10 m/s2 and
an initial density of 𝜌0 = 80 kg/m3) is applied over 40 equal load steps. The magnitude of the load causes the column to
compress to approximately half of its initial height.

The analytical solution for the normal stress in the vertical (y) direction for this problem is

𝜎
a
yy = 𝜌0g(l0 − Y ), (29)

where Y is the original position of the point in the body and l0 is the original height of the column. Figure 19 shows
the convergence of the GIMPM with background mesh refinement whilst maintaining 4 material points per initially
populated element. The reported normalised stress error is

error =
np∑

p=1

|𝜎p
yy − 𝜎a

yy(Yp)| V 0
p

(g𝜌0l0)V0
, (30)
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COOMBS 27

T A B L E 5 Compression under self weight: Stress error variation with 𝛾k.

Normalised penalty parameter, 𝜸k∕E

h (m) 1−6 1−3 10 13 16

0.098 4.938 × 10−5 4.938 × 10−5 4.938 × 10−5 4.926 × 10−5 4.962 × 10−5

1.563 1.049 × 10−3 1.042 × 10−3 8.912 × 10−4 1.208 × 10−3 1.210 × 10−3

where V0 =
∑

V 0
p is the initial volume of the column and 𝜎p

yy is the vertical stress at each of the material points. Figure 19
provides the errors with and without ghost stabilisation, where 𝛾k was set to 10 kPa for the stabilised analyses. The
GIMPM with and without stabilisation converge towards the analytical solution at a rate between 1 and 2, which is con-
sistent with the underlying basis of the method and there is very little difference between the error values for different
background mesh resolutions. The difference in error also reduces with grid refinement due to the region influenced by
the stabilisation reducing as the grid is refined. This point is reinforced by Table 5, which gives the normalised stress
error for h = 50∕29 ≈ 0.098 m and h = 50∕25 ≈ 0.163 m with different stabilisation parameter values. It is clear from the
table that reducing the background element size reduces the sensitivity of the result to the value of the penalty param-
eter for the reason explained above. For the analysis with a mesh size of 0.098 m, twelve orders of magnitude variation
in the penalty parameter only changes the normalised stress error by 0.49%, and the variation in stress error is 15% for
the h = 1.563 m analyses. Although a variation of 15% in the normalised stress error seems significant, it is only a very
small variation in the actual error, which is magnified by normalising by the error associated with the non-stabilised
analysis.

5.6 Implicit quasi-static: Elastic beam

The final example in this article presents the implicit quasi-static analysis of a large deformation beam as a challenging
problem for the MPM due numerous small overlaps between the material points and the background grid. The elastic
cantilever beam was subjected to a point load at its free end and modelled using the GIMPM. The beam was l0 = 10 m
long and d0 = 1 m deep and the material had a Young’s modulus of 12 MPa, a Poisson’s ratio of 0.2 and was assumed to
be weightless (𝜌 = 0). The f0 = 100 kN end point load was split between the two material points closest to the end of the
beam either side of the neutral axis and applied over 50 equal load steps. The initial discretisation of the beam is shown in
Figure 16 with h = 0.5 m and with 22 material points per initially populated background grid cells. The loaded material
points are shown by the black-filled circles. The stiffness stabilisation parameter was taken to be the same as the Young’s
modulus of the material, 𝛾K = 12 MPa.

Tables 6 and 7 provide information on the stability of the quasi-static analysis with different numbers of generalised
interpolation and standard material points per element with and without ghost stabilisation. The tables report different
information depending on if an analysis was able to complete all load steps:

✗ unstable analysis: the number indicates the final stable load step; and
✓ stable analysis: the numbers indicate the total and (maximum) number of Newton–Raphson iterations for the analysis.

The normalised convergence tolerance### was set to 1 × 10−6 for all analyses. All of the ghost-stabilised analyses were
able to complete all of the load steps, however several of the standard GIMPM and MPM analyses failed to converge (or
reached the maximum number of Newton iterations, set to 10 for all analyses) before the full load had been applied. For
the standard GIMPM there is a general trend of increasing stability with increasing numbers of material points but this
is not always the case, for example the h = 0.5 m, 62 material point failed at load step 10 whereas the 52 material point
analysis was able to apply the full load for the same background mesh size. The is no clear trend for the sMPM results
shown in Table 7. In essence a user does not know if the analysis will converge or not before running a simulation when
using the standard GIMPM or MPM, even if similar analyses have converged. Reducing the mesh size also increases the
average total number of Newton–Raphson iterations required to complete the analysis for the standard (non-stabilised)
GIMPM whereas the total and maximum number of iterations for the stabilised GIMPM is relatively insensitive to mesh
size variations. In fact, there is trend of reducing total numbers of iterations as the mesh is refined. Although the mean
total number of iterations for the stabilised MPM analyses increases with mesh refinement, the total number of iterations
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T A B L E 6 Elastic beam (GIMP): For entries marked ✗, the number indicates the final stable load step; for entries marked ✓, the
numbers indicate the total and (maximum) number of Newton iterations for the analysis.

Standard GIMPM Ghost stabilised GIMPM

MPs/elem. h = 0.500 h = 0.250 h = 0.125 h = 0.500 h = 0.250 h = 0.125

22 ✗ 5 ✗ 11 ✗ 1 ✓ 205 (5) ✓ 203 (5) ✓ 205 (5)

32 ✓ 215 (9) ✓ 215 (8) ✗ 5 ✓ 204 (5) ✓ 204 (5) ✓ 203 (5)

42 ✗ 40 ✗ 26 ✓ 215 (5) ✓ 204 (5) ✓ 204 (5) ✓ 201 (5)

52 ✓ 207 (6) ✓ 207 (5) ✓ 214 (5) ✓ 204 (5) ✓ 203 (5) ✓ 202 (5)

62 ✗ 9 ✓ 207 (5) ✓ 216 (6) ✓ 204 (5) ✓ 204 (5) ✓ 202 (5)

Mean 211 (7.5) 209.7 (6) 215 (5.3) 204.2 (5) 203.6 (5) 202.6 (5)

T A B L E 7 Elastic beam (MPM): For entries marked ✗, the number indicates the final stable load step; for entries marked ✓, the
numbers indicate the total and (maximum) number of Newton iterations for the analysis.

Standard MPM Ghost stabilised MPM

MPs/elem. h = 0.500 h = 0.250 h = 0.125 h = 0.500 h = 0.250 h = 0.125

22 ✓ 216 (6) ✗ 14 ✗ 13 ✓ 214 (5) ✓ 218 (5) ✓ 224 (6)

32 ✗ 40 ✗ 37 ✓ 224 (9) ✓ 211 (5) ✓ 216 (5) ✓ 218 (5)

42 ✓ 211 (5) ✓ 213 (5) ✓ 222 (6) ✓ 206 (5) ✓ 213 (5) ✓ 218 (5)

52 ✓ 208 (6) ✓ 215 (5) ✓ 218 (5) ✓ 202 (5) ✓ 210 (5) ✓ 217 (5)

62 ✓ 211 (6) ✗ 44 ✗ 5 ✓ 202 (5) ✓ 206 (5) ✓ 214 (5)

Mean 211.5 (5.8) 214 (5) 221.3 (6.7) 207 (5) 212.7 (5) 218.2 (5.2)

reduces with increasing numbers of material points and the maximum number of iterations within a step is 5 for all but
one of the 15 analyses.

Figure 20 shows the normalised force-displacement response of the beam for the ghost stabilised GIMPM with dif-
ferent background mesh sizes and 32 material points per initially populated element. The squares and circles show the
analytical solution of Molstad66 for the horizontal and vertical displacements, respectively, and the ghost GIMPM results
are shown by the black lines. All of the ghost GIMPM results are in good agreement with the analytical solution. The
simulations do over estimate the vertical displacement of the beam compared to the analytical solution but this is consis-
tent with other numerical results in the literature29,30,39 and is linked to the analytical assumption that the beam does not
change in length. The red line in Figure 20 shows the non-stabilised GIMPM result with h = 0.5 m, which deviates from
the expected (analytical) response for the horizontal displacement, showing under-stiff behaviour.

The vertical normal stress, 𝜎yy, distributions at the end of the analysis for the standard, non-stabilised (left) and ghost
stabilised (right) GIMPMs with h = 0.25 m and 32 material point per initially populated background grid cell are shown in
Figure 21. The key difference in the stress distributions between the two methods is on the top and bottom surfaces of the
beams, where the standard GIMPM predicts spurious oscillations in the stress field. This variation in stress is particularly
evident around region A within the top inset figure, where a drop in the tensile stress on the top surface of the beam
is due to the poor distribution of material points within the background grid at the edge of the physical domain. This
poor distribution of material relative to the background grid results in nodal degrees of freedom with very little stiffness
and therefore their displacements can deform in a way that is not consistent with the deformation, and therefore stress
field, of the well-conditioned part of the linear system of equations. These stress oscillations are removed by the ghost
stabilisation due to the penalisation of variation in the gradient of the solution field over the boundary element edges.

5.7 Observations

This section has presented five numerical investigations for dynamic and quasi-static large deformation stress analysis
problems. The following key observations can be drawn from these numerical examples:
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COOMBS 29

F I G U R E 20 Elastic beam: Normalised force versus displacement (where the squares and circles show the analytical solution of
Molstad66 for the horizontal and vertical displacements, respectively) with 32 material points per initially populated element. The red line
shows the non-stabilised result with h = 0.5 m.

F I G U R E 21 Elastic beam: Vertical normal stress, 𝜎yy, distribution at the end of the analysis for the non-stabilised and ghost stabilised
GIMPMs with h = 0.25 m and 32 material point per initially populated background grid cell.
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(i) for explicit dynamics the ghost stabilisation technique:
(a) opens the door to the consistent mass matrix being used for practical simulations with arbitrary positioning of

the physical domain (material points) on the background grid;
(b) unlike the use of the lumped mass matrix, adopting the stabilised consistent mass matrix maintains the material

point velocity field for rigid body motions and linear deformation fields; and
(c) corrects the excessive dissipation seen when combining USL approaches with a lumped mass matrix, due to con-

sistent mapping of the nodal velocity field to the material points when determining changes in the deformation
field.

(ii) for quasi-static implicit analysis the ghost stabilisation technique:
(a) maintains the ability of the underlying numerical algorithm to converge towards problems with analytical

solutions as the stabilisation only influences a local region of the physical body near the problem domain
boundary;

(b) removes the stability uncertainty when modelling large deformation problems—without stabilisation it is
difficult to say if a analysis will converge or not even if similar analyses are stable;

(c) permits the use of lower numbers of material points whilst maintaining stability of the overall method; and
(d) significantly reduces the stress oscillations seen near the boundary of the physical domain, which are due to

small overlaps rather than cell crossing errors in non-stabilised methods.

6 CONCLUSION

This article has proposed a new stabilisation technique for explicit dynamic and implicit quasi-static MPMs that resolves
the vast majority of the stability issues encountered by the method, whilst not damaging their underlying properties. The
technique introduces a bound on the condition number of the linear system of equations being solved independent of the
position of the physical body being modelled at the expense of additional computations over the boundary of the body
and the introduction of a non-physical penalty parameter. However, unlike other methods available in the literature, the
stabilisation technique proposed here is relatively insensitive to the penalty parameter, which can be linked to the density
or stiffness of the bulk material being modelled. The method has the additional benefit of reducing stress oscillations
at the boundary of the body due to small interactions between the material points and the background grid for both
explicit and implicit analysis. For implicit analyses the method permits the use of lower numbers of material points whilst
maintaining a stable simulation. For explicit analysis it means that the consistent mass matrix can be adopted with USF,
USL, or MUSL algorithms without excessive energy dissipation, albeit with increased computational cost compared to
using a lumped mass matrix. Although this article has focused on explicit dynamic and implicit quasi-static analyses, the
approach can be applied to all MPM variants, including implicit dynamics, without requiring an explicit description of
the boundary of the problem. The technique offered in this article is one step on the road to the MPM becoming a usable
tool for practical engineering analyses.
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ENDNOTES
∗Note, there are several reasons why MPM implementations adopt a lumped mass matrix, such as computational efficiency as the inversion
of a lumped (diagonal) matrix is trivial compared to inversion of the consistent mass matrix, even if it is well posed.
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†It is worth mentioning that some of the issues identified by Ma et al.13 are linked to the used of linear shape functions as identified by Steffen
et al.16 It should be noted that the analysis of Steffen et al.16 was restricted to one-dimension, which removes many of the practical issues
faced in general two and three-dimensional analysis.
‡In the MPM literature this stage is often referred to as the convection step, or that the material points are convected to their new positions.
Convected is an erroneous choice of word to describe this stage of the analysis as it has nothing to do with convection (especially in solid
materials), it is simply saying that the material point positions are updated based on their displacements within the current time/load step.

§AMPLE adopts the same formulation as implemented in the generalised interpolation approach of Charlton et al.30

¶[∇xSvp] is essentially the same as the conventional strain-displacement [B]matrix found in finite element literature and [Svp] is the equivalent
of the shape function matrix, often denoted [N].
#In this case, the assembly operator, A, is simply stating to perform this calculation at for each material point and sum their contributions
to the background grid nodes.
||FLIP41 increments the material point velocity field using the change in the vertex velocities over the time step, rather than using the total
vertex velocities to overwrite the material point velocity field as with a Particle In Cell (PIC)42 update.

∗∗The analysis presented in this section raises a question regarding what is reasonable in terms of the condition number of a linear system of
equations. The answer to this question is related to: the precision of the computational framework being used and the method being used to
solve the system of equations. In all cases, a condition number approaching the reciprocal of the precision of the machine being used will
cause accuracy problems.

††The term reduced is referring to a matrix where the rows and columns associated with constrained degrees of freedom have been removed.
‡‡Adopting the lumped mass matrix removes the need to invert the consistent mass matrix in explicit time stepping approaches, replacing

it with the inversion of a diagonal matrix, which is trivial. However, the use of a lumped mass matrix introduces additional numerical
dissipation.21,23 It also does not remove the possibility of spuriously large acceleration values due to very small mass matrix entries.

§§The definition of the positive element, K+, and the negative element, K−, associated with a face is arbitrary and swapping the the positive
and negative elements will not change of the nature of the stabilisation. Simply one of the the elements connected to the face is labelled as
positive and the other as negative.

¶¶Note that the dark grey shaded elements and the boundary element edges are different in Figures 4C and 5 as Figure 4C describes elements
cut by the boundary rather than the MPM approach described in this section.

##The value of this penalty parameter will be discussed later in the section.
||||The term skeleton, often used in discontinuous Galerkin finite element methods, refers to the boundaries between elements.
∗∗∗Determining the active/inactive elements is required for MPMs without stabilisation.
†††The positions, volume, mass and so forth of all of the material points for all of the analysis presented in the article are provided as VTK files

within the supplementary data associated with the article. See https://doi.org/10.15128/r1x920fw91n for details.
‡‡‡The PIC approach42 uses the total nodal velocities to overwrite the material point velocity field, assuming that the velocity through the

domain varies according to the vertex values and their associated basis functions.
§§§These properties are similar to those used by Pretti et al.25 in order to focus on the bulk response of the beam rather than high frequency

stress oscillations.
¶¶¶The distribution coefficient algorithm for small mass nodes of Ma et al.13 redistributes the residual force associated with nodes with small

mass to surrounding nodes in order to avoid spurious large acceleration predictions. The force is distributed to the surrounding nodes pro-
portional to the square root of the nodal mass. The 4% threshold is arbitrary and has been selected based on the value used in Ma et al.13 See
Ma et al.13 for details.

###The convergence criteria used in the implicit quasi-static MPM implementation adopted in this article is the same as that used by,29 where
the residual out of balance force (the difference between the internal force and the external actions), normalised by the magnitude of the
external actions is checked until it converges below a given tolerance. The only change for this article is that the residual force equation now
includes a contribution from the ghost stabilisation, as explained in Section 3.4.
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56. Kadapa C, Dettmer W, Perić D. A stabilised immersed boundary method on hierarchical b-spline grids for fluid–rigid body interaction

with solid–solid contact. Comput Methods Appl Mech Eng. 2017;318:242-269.
57. Coombs W. Finite Deformation of Particulate Geomaterials: Frictional and Anisotropic Critical State Elasto-Plasticity. PhD Thesis. Durham

University; 2011.
58. González Acosta JL, Vardon PJ, Hicks MA. Development of an implicit contact technique for the material point method. Comput Geotech.

2021;130:103859.
59. Bardenhagen SG, Guilkey JE, Roessig KM, Brackbill JU, Witzel WM, Foster JC. An improved contact algorithm for the material point

method and application to stress propagation in granular material. Comput Model Eng Sci. 2001;2(4):509-522.
60. Ma J, Wang D, Randolph M. A new contact algorithm in the material point method for geotechnical simulations. Int J Numer Anal Methods

Geomech. 2014;38(11):1197-1210.
61. Chen ZP, Zhang X, Qiu XM, Liu Y. A frictional contact algorithm for implicit material point method. Comput Methods Appl Mech Eng.

2017;321:124-144.
62. Huang P, Zhang X, Ma S, Huang X. Contact algorithms for the material point method in impact and penetration simulation. Int J Numer

Methods Eng. 2011;85(4):498-517.
63. Bardenhagen S, Brackbill J, Sulsky D. The material-point method for granular materials. Comput Methods Appl Mech Eng.

2000;187(3):529-541.
64. Homel MA, Herbold EB. Field-gradient partitioning for fracture and frictional contact in the material point method. Int J Numer Methods

Eng. 2017;109(7):1013-1044.
65. Gao L, Guo N, Yang Z, Jardine R. MPM modeling of pile installation in sand: contact improvement and quantitative analysis. Comput

Geotech. 2022;151:104943.
66. Molstad T. Finite Deformation Analysis Using the Finite Element Method. PhD Thesis. University of British Columbia; 1977.

How to cite this article: Coombs WM. Ghost stabilisation of the material point method for stable quasi-static
and dynamic analysis of large deformation problems. Int J Numer Methods Eng. 2023;1-35. doi: 10.1002/nme.7332

APPENDIX A. GHOST STABILISATION MATRIX FORM

This appendix details the transitioning between the bi-linear form of the ghost stabilisation term, (20), and the matrix
expression required for numerical implementation of the method, (22). Starting with the gradient of the positive dis-
placement field projected normal to the boundary (i.e., the directional derivative of the displacement field normal to the
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34 COOMBS

positive element boundary) and writing it in terms of matrices/vectors in 2D gives

𝜕u+i
𝜕xj

nj = nx

{
𝜕u+x
𝜕x
𝜕u+y
𝜕x

}

+ ny

⎧
⎪
⎨
⎪
⎩

𝜕u+x
𝜕y

𝜕u+y
𝜕y

⎫
⎪
⎬
⎪
⎭

, (A1)

which can also be expressed as

𝜕u+i
𝜕xj

nj =

[
nx 0 0 ny

0 ny nx 0

]

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

𝜕ux
𝜕x
𝜕uy

𝜕y

𝜕uy

𝜕x

𝜕ux
𝜕y

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎭

. (A2)

Introducing the finite element approximation for the displacement field

{u+} = [N+]{d+} =

[
N+

1 0 … N+
n 0

0 N+
1 … 0 N+

n

]

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

(u+x )1
(u+y )1
⋮

(u+x )n
(u+y )n

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎭

, (A3)

where [N] is the matrix of shape functions and {d} a vector containing the nodal displacement components, where n is
the number of nodes associated with the element. Combing (A3) with (A2) gives

𝜕u+i
𝜕xj

nj =

[
nx 0 0 ny

0 ny nx 0

]
⎡
⎢
⎢
⎢
⎢
⎢
⎣

N+
1 ,x 0 … N+

n ,x 0
0 N+

1 ,y … 0 N+
n ,y

0 N+
1 ,x … 0 N+

n ,x

N+
1 ,y 0 … N+

n ,y 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

(u+x )1
(u+y )1
⋮

(u+x )n
(u+y )n

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎭

, (A4)

or compactly

𝜕u+i
𝜕xj

nj = [n]T[G+]{d+}. (A5)

Similar equations can be used to express the gradient of displacement associated with the negative element projected in
normal to the boundary under consideration. The next step is to realise that the order of the contribution of the test and
trial function in (20) is arbitrary as the resultant of the expression is a scalar, therefore (20) can be written as

j(ui,wi) =
h3

3 ∫Γ
(
𝜕w+

i

𝜕xj
nj −

𝜕w−
i

𝜕xj
nj

)(
𝜕u+i
𝜕xj

nj −
𝜕u−i
𝜕xj

nj

)

dΓ, (A6)

and introducing (A5), as well as similar expressions for the test function, and their corresponding nodal values, {dw}, and
negative element components, gives

j(ui,wi) =
h3

3 ∫Γ
{
[n]T[G+]{d+w} − [n]T[G−]{d−w}

}T {[n]T[G+]{d+} − [n]T[G−]{d−}
}

dΓ. (A7)
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COOMBS 35

Combining the nodal displacements of the positive and negative elements into a single vector allows us to write

j(ui,wi) =
h3

3 ∫Γ
{
[n]T[G]{dw}

}T {[n]T[G]{d}
}

dΓ, (A8)

where the combined [G] =
[
[G+] − [G−]

]
is defined in Equation (22) and {d}T =

{
{d+}T {d−}T}. The nodal values

are constants in terms of the integral, which gives

j(ui,wi) =
h3

3
{dw}T ∫Γ [G]

T[n][n]T
⏟⏟⏟

[m]

[G]dΓ{d}, (A9)

and, finally, the arbitrary test functions, {dw}, can be eliminated since they are nodal constants and pre-multiply all terms
of the weak form, leading to Equation (21).

APPENDIX B. THREE DIMENSIONAL GHOST STABILISATION

When moving from two to three-dimensional analysis the majority of the ghost stabilisation equations presented in this
article remain unchanged, albeit moving from line to surface integrals. The key quantities that must be modified for three
dimensional analysis are the normal matrix associated with the positive element, [n], and the matrix containing the shape
function derivatives, [G+], which must be changed to

[n]T =
⎡
⎢
⎢
⎢
⎣

nx 0 0 ny 0 nz

0 ny 0 nx nz 0
0 0 nz 0 ny nx

⎤
⎥
⎥
⎥
⎦

,

and

[G+] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

N+
1 ,x 0 0 … N+

n ,x 0 0
0 N+

1 ,y 0 … 0 N+
n ,y 0

0 0 N+
1 ,z … 0 0 N+

n ,z

N+
1 ,y N+

1 ,x 0 … N+
n ,y N+

n ,x 0
0 N+

1 ,z N+
1 ,y … 0 N+

n ,z N+
n ,y

N+
1 ,z 0 N+

1 ,x … N+
n ,z 0 N+

n ,x

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Care should also be taken when implementing the approach into axi-symmetric MPM codes, where it is important to
account for the out of plane contribution to the in-plane stabilisation terms.
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