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Abstract
With extreme weather events becoming more common, the risk posed by sur-
face water flooding is ever increasing. In this work we propose a model, and
associated Bayesian inference scheme, for generating short-term, probabilistic
forecasts of localised precipitation on a spatial grid. Our generative hierarchical
dynamic model is formulated in discrete space and time with a lattice-Markov
spatio-temporal auto-regressive structure, inspired by continuous models of
advection and diffusion. Observations from both weather radar and ground
based rain gauges provide information from which we can learn the precipita-
tion field through a latent process in addition to unknown model parameters.
Working in the Bayesian paradigm provides a coherent framework for captur-
ing uncertainty, both in the underlying model parameters and in our forecasts.
Further, appealing to simulation based sampling using MCMC yields a straight-
forward solution to handling zeros, treated as censored observations, via data
augmentation. Both the underlying state and the observations are of moder-
ately large dimension ((104) and(103) respectively) and this renders standard
inference approaches computationally infeasible. Our solution is to embed
the ensemble Kalman smoother within a Gibbs sampling scheme to facilitate
approximate Bayesian inference in reasonable time. Both the methodology and
the effectiveness of our posterior sampling scheme are demonstrated via simula-
tion studies and by a case study of real data from the Urban Observatory project
based in Newcastle upon Tyne, UK.
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1 INTRODUCTION

Increased urbanization coupled with the effects of global climate change means that cities are becoming increasingly
susceptible to localized surface water flooding as a result of intense rainfall events (Barr et al., 2020; Kendon et al., 2014).
Such events can result in substantial damage to private properties and businesses, and cause severe disruption to inner city
transport systems and infrastructure. Recent computational advances have enabled the development of high-performance
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integrated hydrodynamic modeling systems for rainfall-induced surface water flows in urban areas (Liang & Smith, 2015;
Xia & Liang, 2018; Xing et al., 2019). Such models rely on high-dimensional spatio-temporal inputs that characterize
the amount of rainfall observed at ground level. Ground-based rain gauges are perhaps the natural choice for obtaining
information. However, it is often not practical to deploy these at sufficient spatial resolution. Thus, in practice, inputs are
typically obtained from weather radar systems, but these do not necessarily provide an accurate description of the rainfall
rates on the ground.

In what follows we propose a physically motivated spatio-temporal statistical model that is capable of jointly modeling
observations stemming from a (potentially sparse) rain gauge network and a weather radar, allowing the synthesis of these
two different data sources. The basic premise is to leverage information from the weather radar, for example where the rain
clouds are and where they are moving, and use the ground-based rain gauge information to calibrate the spatio-temporal
field of interest. Data fusion based on joint modeling of multiple spatial data sets has been considered previously in
the literature (Chatterjee et al., 2010; Chiu et al., 2013; Manzione & Castrignanò, 2019; Puttaswamy et al., 2014; Rundel
et al., 2015), but fusion in the context of spatio-temporal modeling has received much less attention, and we do not know
of previous approaches combining weather radar and rainfall gauge data for Bayesian rainfall field nowcasting. We apply
our model to real data obtained from Newcastle’s Urban Observatory project (James et al., 2014) that collects data from
a large range of sensors distributed around the North East of England. This work forms part of a wider consortium of
analytics and models developed as part of the NERC funded Flood-PREPARED (Predicting Rainfall Events by Physical
Analytics of REaltime Data) project; further details are given by Barr et al. (2020).

The analysis of spatio-temporal data has a rich history in the statistical literature and a wealth of approaches have
been proposed; in the context of applications to weather and climate, recent contributions include (Kleiber et al., 2023;
Mastrantonio et al., 2019; Mastrantonio et al., 2022; Richards & Wadsworth, 2021), and for a more detailed overview
of the field see Liu et al. (2021). The methods adopted by different authors vary substantially, since they are tailored to
the available data and the question of inferential interest. Here we appeal to the hierarchical dynamical spatio-temporal
modeling framework (Berliner, 2003; Katzfuss et al., 2020; Sigrist et al., 2012; Stroud et al., 2010; Wikle et al., 1998; Wikle
& Cressie, 1999) which we find naturally appealing for several reasons. In particular, the modelling procedure can be
decomposed into a sequence of conditional model specifications, of which the main components are a system model and
an observation model. The system model describes how the (latent) process of interest evolves over space and time. The
observations are modelled conditionally on this process, via the observation model, which provides a straightforward
framework for handling observations from numerous data sources. The direct specification of a system model can be a
rather daunting task due to the complex spatial and temporal dependencies that need to be captured. Given the physical
nature of our problem we choose to model the dynamics of the system model via a generative auto-regressive process,
loosely inspired by advection-diffusion-reaction dynamics, since that is the natural description of moisture transport in
the atmosphere. This approach avoids the need for direct specification of space-time covariance functions (which can
be difficult in practice) and gives rise to a tractable Gaussian model of vector auto-regressive (VAR) form (Cressie &
Wikle, 2015; Krainski et al., 2018).

The dimension of both the observations and the spatio-temporal field of interest are moderately large and so solving
the inference (inverse) problem is challenging. We consider an efficient Markov chain Monte Carlo (MCMC) scheme
for sampling from the posterior distribution of interest. By opting for a simulation based inference approach we are able
to straightforwardly handle both missing and zero (censored) observations by appealing to data augmentation (Tanner
& Wong, 1987). More specifically, we introduce an appropriate collection of latent variables (Heaps et al., 2015; Rundel
et al., 2015; Sansó & Guenni, 2000) that, when coupled with an appropriate prior distribution, gives rise to a tractable
dynamic linear model (DLM) for the complete data. For these types of models state inference is typically achieved via the
forwards-filtering backwards-sampling (FFBS) algorithm (Carter & Kohn, 1994; Frühwirth-Schnatter, 1994), however
the dimension of our state-space renders (exact) simulation from the joint full conditional distribution of the dynamic
states computationally infeasible. We therefore consider an MCMC algorithm in which an approximate sample from the
joint full conditional distribution of the dynamic states is obtained via the ensemble Kalman smoother (EnKS) proposed
by Evensen and Van Leeuwen (2000). The remaining unknown quantities can be sampled from their respective full con-
ditional distributions and so the resulting MCMC algorithm is effectively the Gibbs ensemble Kalman smoother (GEnKS)
outlined in Katzfuss et al. (2020), but applied to a model that is rather more complex than the examples considered in
that work.

Various properties of the data preclude use of simpler, off-the shelf solutions to the nowcasting problem. First, since
the data are collected at high temporal resolution, there are a large proportion of exact zeros. Note that zero includes both
“no rain” and “an unmeasurably small amount of rain”, since we are not able to distinguish these in our observations
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or our model, and the distinction is not relevant to our intended downstream application of flood forecasting. As such,
there is no transformation that we can apply to the data to make a Gaussian observation model appropriate. Second, we
are fusing point (rain gauge) data with areal (radar) data, and using the former to calibrate the latter, which necessitates
the use of a joint model for the two data streams. In order to accommodate these atypical features, along with the rel-
atively high spatial and temporal resolution of the data, the model we develop is necessarily complex and unavoidably
high-dimensional. Correspondingly, the algorithms we develop for model-fitting are highly computationally intensive.
Nevertheless, by making a number of pragmatic but principled simplifications during modeling and computational infer-
ence, we are able to describe and fit a model that generates realistic forecasts of ground-level precipitation on timescales
befitting of the nowcasting problem. The model developed in this paper falls within the class of latent Gaussian models
and so an alternative approach to that considered here might try to avoid Monte Carlo methods completely and directly
approximate the posterior using methods based on integrated nested Laplace approximations (INLA). Ruiz-Cárdenas
et al. (2012) describe a framework that allows the R-INLA software to be used to fit a variety of state space models where
the states follow a Gaussian distribution. Although a number of extensions to space-time modeling have followed, the
dimension of the the state is typically only up to a few hundred (e.g. Laurini, 2017; Sánchez-Balseca & Pérez-Foguet, 2020).
In our primary application, the dimension of the state is over a million and so fitting the model using existing INLA
software on routinely available hardware is not possible.

The remainder of the paper is structured as follows. In Section 2, we present and justify our auto-regressive system
model. The corresponding observation model is outlined in Section 3. In Section 4, we define the complete Bayesian model
together with our prior specification, and also discuss parameter identifiability. Our Bayesian approach to inference is
discussed in Section 4.2. Simulation studies illustrating the effectiveness of our posterior sampling scheme are given in
Section 4 of the supplementary material and are also summarized briefly in Section 4.2 of this paper. Section 5 illustrates
the use of our proposed model in a real data setting, where we consider observations obtained from the Urban Observatory
project based in Newcastle upon Tyne, UK. Section 6 offers some conclusions.

2 SYSTEM MODEL

We suppose that precipitation intensity at ground level is represented by a (2 + 1)-dimensional scalar-valued latent
field 𝜃(s, t) that takes values on the (unrestricted) real line. Intuitively, positive values can be thought of as a (possibly
transformed) rainfall rate, with negative values indicating no rainfall; this notion is formalised via our observation model
in Section 3. We suppose that the spatial domain of interest is described by a regular lattice of dimension N = n × n, that
is, we consider a finite collection of equally spaced locations sij = (xi, yj) ∈  for i, j = 1, … ,n. The temporal domain  is
also discretized by considering equally spaced time points and, without loss of generality, we consider t ∈ {1, 2, … ,T}.
Let 𝜃t

ij ≡ 𝜃(sij, t) be the state of the system at location sij and time t.
Since rainfall intensity is related to atmospheric moisture-content, and the natural physical model of moisture-content

transport and evolution is an advection-diffusion-reaction process, we can use a simple finite difference discretiza-
tion of an appropriate stochastic partial differential equation (SPDE) model in order to motivate the form of the
discrete time evolution equation we propose. A detailed description is provided in Sections 1 and 2 of the supple-
mentary materials. For more background on the use of SPDEs to motivate the form of discrete system evolution
equations, see the discussion in sections 6.3 and 6.4 of Cressie and Wikle (2015) and in section 5.3 and appendix D
of Wikle et al. (2019).

The resulting evolution equation is

𝜃
t+1
ij = 𝛼

[
(1 − 4𝛽)𝜃t

ij + (𝛽 − 𝜈
t
x)𝜃t

i+1,j + (𝛽 + 𝜈
t
x)𝜃t

i−1,j

+(𝛽 − 𝜈
t
y)𝜃t

i,j+1 + (𝛽 + 𝜈
t
y)𝜃t

i,j+1

]
+ St

ij + 𝜖
t
ij, (1)

for t = 1, … ,T. The quantity 𝝂t =
(
𝜈

t
x, 𝜈

t
y
)′ represents the (potentially unknown) velocity field. Given the relatively com-

pact spatial domain in our application, it is assumed to be spatially homogeneous. Both St
ij and 𝜖

t
ij in (1) result from

including auxiliary source-sink and error processes that are defined over the same spatial and temporal domains as 𝜃(s, t).
Scalar 𝛽 is a diffusion parameter controlling the degree of spatial dependence in the process, with 𝛽 = 0 corresponding
to no spatial dependence. Similarly, 𝛼 governs the temporal dependence in the process, with 𝛼 = 0 corresponding to no
temporal dependence.
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Incorporating both the source-sink and error processes is a modelling choice, as they each allow for instantaneous
injections/decay to and from the system. If both processes are assumed to be uncorrelated in time then the source-sink pro-
cess can be absorbed into the error process (𝜖(s, t) → S(s, t) + 𝜖(s, t)) and, if desired, spatially correlated injections/decay
can be achieved by imposing a spatially dependent covariance kernel on the error process; see, for example, Sigrist
et al. (2015). In our application, it is plausible to assume that injections to the system, for example the formation of a rain
cloud, are likely to be both spatially and temporally correlated. Specifically, if the rainfall rate is increasing at location s
at time t (S(s, t) > 0) then we think it is more likely that it is also increasing within the neighborhood of s and also at
time t + dt. This assumption can be embedded in the dynamics in one of two ways. First, the source-sink process could
be temporally correlated and spatially uncorrelated, with the spatial dependence instead embedded in the error process;
this approach was taken by Stroud et al. (2010) when considering the discretized advection-diffusion model. Alterna-
tively, and the approach we consider here, the source-sink process can be both spatially and temporally correlated and
coupled with a simple (spatially and temporally uncorrelated) error process. We favour this approach because it keeps the
form of the error process simple, thereby avoiding direct specification of a covariance kernel, and also allows us to moti-
vate the spatial and temporal interactions via a physical process. More specifically, motivated by similar considerations
to those already discussed, the evolution of the source-sink is inspired by a finite difference solution to the (isotropic)
diffusion-reaction process. Here we assume isotropy for reasons of parsimony and we omit an advection term because
this process is intended to capture effects independent of wind-transport. This also aids identifiability of the model. The
evolution equation corresponding to the source-sink process is then

St+1
ij = 𝛼

∗
[
(1 − 4𝛽∗)St

ij + 𝛽
∗
(

St
i+1,j + St

i−1,j + St
i,j+1 + St

i,j+1

)]
+ 𝜖

t
ij , (2)

for t = 1, … ,T, for appropriate scalar parameters 𝛼∗ and 𝛽
∗.

Together (1) and (2) specify the evolution of the system and are well defined for the majority of the points within the
spatial domain. However, issues arise along the edge of the system as not all neighboring locations exist. Thus we need to
enforce an appropriate boundary condition on the spatial domain. We consider periodic boundary conditions and, whilst
this may provoke concerns about spurious periodicity, we note that this can be alleviated by constructing the problem
such that the forecast domain of interest, say p, is relatively small in comparison to the model domain  and so the effect
of any spurious periodicity is likely to be negligible within p (Cressie, 1991; Lawson et al., 1999; Liu et al., 2021).

2.1 Spatial dependence structure

For a particular location (i, j) the relationship between the value of the processes at time t + 1 and that at the previous
time point, t, that is, the evolution defined between the square braces ([]) of (1) and (2), can be conveniently expressed by
the five-point stencils (Milne, 1953)

⎡
⎢⎢⎢⎣

− 𝛽 − 𝜈
t
y −

𝛽 + 𝜈
t
x 1 − 4𝛽 𝛽 − 𝜈

t
x

− 𝛽 + 𝜈
t
y −

⎤
⎥⎥⎥⎦

and
⎡
⎢⎢⎢⎣

− 𝛽
∗ −

𝛽
∗ 1 − 4𝛽∗ 𝛽

∗

− 𝛽
∗ −

⎤
⎥⎥⎥⎦
, (3)

respectively. These stencils highlight the first-order spatial neighborhood structure; this evolution is akin to that defined
by a (first-order) STAR(11) model (Cressie, 1991; Garside & Wilkinson, 2003; Pfeifer & Deutsch, 1980). Of course, higher
order neighborhoods could also be considered. For example, assuming anisotropic diffusion would introduce dependence
on the second-order (corner) neighbors, at the cost of additional unknown parameters. Further, an arbitrary number
of spatial neighbors could be introduced by considering higher order (spatial) approximations in the finite difference
solution.

A natural approach to determining the spatial order would be to pose this as a model selection problem, but this
approach is not straightforward. Solving the inference problem is challenging, especially in the Bayesian paradigm, and
requires a bespoke approach for each different model. Thus, rather than considering a collection of models, we instead
propose to address the issue indirectly by considering the system model given by (1) and (2) and “imputing time-steps”
between the observation times. Put another way, the latent processes (potentially) operate on a different temporal scale
to the observed process. The basic premise is that increasing the number of imputed time-steps is akin to considering
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a larger spatial neighborhood when viewed marginally from the observation times. For example, with observations at
time t and t + 1, from (1) we have that the process at time t + 1 is spatially dependent on the first order neighborhood
at time t (neighbors no more than one grid square from the node of interest). However, if we introduce an intermediate
time t + 1

2
, then propagate 𝜃t → 𝜃t+ 1

2
→ 𝜃t+1 via (1), keeping the same first-order neighborhood structure for each imputed

time point, then information from higher order spatial neighbors is passed from time t to time t + 1 via the intermediate
time t + 1

2
(so the node of interest will now be influenced by neighbors no more than two grid squares away). As a result,

increasing the number of imputed time-steps allows for the process to transition across numerous grid squares between
the observation times; without imputation the first-order neighborhood structure (3) would only allow for transitions
across a single grid square per time-step. The benefit of considering imputed time-steps as opposed to a collection of
different models/evolution stencils is that this approach has minimal impact on our solution to the Bayesian inference
problem, is parsimonious (does not introduce additional dependence parameters), and exhibits desirable behavior such
as the decaying influence of a node on the node of interest with spatial distance. It is therefore straightforward to consider
varying levels of imputation and use standard model selection methods to determine which model is best; this is discussed
further in Section 5.

2.2 State space representation

The evolution Equations (1) and (2) can be straightforwardly rewritten as vector autoregressive relationships. Let
𝜽t =

(
𝜃

t
11, … , 𝜃

t
n1, 𝜃

t
12, … , 𝜃

t
n2, … , 𝜃

t
1n, … , 𝜃

t
nn
)′ denote the state of the process at time t, with St, 𝝐t and 𝝐∗t similarly

defined. We can then construct evolution matrices G(𝝂t) and G∗, where row i contains the neighbor weights (for loca-
tion i) as prescribed by the stencils (3) for 𝜽t (left) and St (right). We also allow autocorrelation in the time series for the
velocity vector 𝝂 via a first-order (vector) autoregression. Finally, subject to certain restrictions on the parameter values
(e.g., 𝛼 ∈ (0, 1)) that we impose via the prior distribution, the system has a steady state solution. It follows that as t →∞
the forecast function tends to its marginal mean, which is zero. The assumption of a zero-mean process is not physically
justifiable and so we also introduce an additional (spatially and temporally homogeneous) mean parameter 𝜇.

The dynamics of the system can then be expressed as

𝜽t − 𝜇1N = G(𝝂t−1)(𝜽t−1 − 𝜇1N) + St−1 + 𝝐t,

St = G∗St−1 + 𝝐∗t ,
𝝂t = 𝛼v𝝂t−1 + 𝝐𝜈t , (4)

for t = 1, … ,T, where 1N is an N-length column vector containing ones. The initial value/condition of the system 𝜽0,S0
and 𝝂0 is assumed to be unknown and assigned a prior distribution; full details are given in Section 4.

3 THE OBSERVATION MODEL

In general, we suppose that all quantities in (4) are unknown and conduct inference based on observed data. We suppose
that both the radar and rain gauges provide noisy and potentially biased observations of the latent rain field. Further,
both of these observation sources provide readings in units of mm/h and are therefore bounded below at zero. We
therefore suppose that these data provide censored (at zero) observations of the latent precipitation intensity field (that
exists on the real line). The relationship between the observations and the latent process is modeled via a (Type I) Tobit
model (Tobin, 1958) where, for a zero-censored variable, if Y ∼ Tobit(𝜇, 𝜙) then Y has a mixed discrete-continuous dis-
tribution with likelihood contribution 𝜋(Y |𝜇, 𝜙) = [√

𝜙 𝜑
{√

𝜙(y − 𝜇)
}]I(Y>0)[1 − Φ{√𝜙(𝜇 − 0)

}]I(Y=0). Here 𝜑 denotes
the standard normal probability density function and Φ is the corresponding cumulative distribution function. This
approach to modelling rainfall using an exceedance over a threshold of a latent Gaussian process is a well established
technique in the literature (Allard & Bourotte, 2015; Allcroft & Glasbey, 2003; Mastrantonio et al., 2022). In what
follows we parameterize the relationship between the observations and the latent field of interest (𝜃) in a general
framework. Full details about the transformations and how these data are acquired for our application are given in
Section 5.
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3.1 Information provided by the gauges

We suppose that we have observations from Ng rain gauges, where gauge g provides a single observation Gtg ≥ 0 at each
time t. Let g = {Gtg; g = 1, … ,Ng

, t = 1, … ,T} denote the collection of observed gauge data. These observations are
censored at zero and typically exhibit a long right tail; let Ỹ g

tg =(Gtg) denote a suitably transformed observation, where
 ∈  is from the set of functions  = {f ∶ R≥0 → R≥0 s.t f (0) = 0}. Yeo and Johnson (2000) propose a family of power
transformations of the form

(x; 𝜆) =

{
log(x + 1) 𝜆 = 0,
((x + 1)𝜆 − 1)∕𝜆 otherwise.

For our application we choose parameter 𝜆 = 0, and so(x) = log(x + 1).
Each gauge is located within a single cell of our regular lattice grid. Let 𝓁g ∈ {1, … ,N} denote the location of gauge g

for g = 1, … ,Ng and note that several gauges may reside at the same location, that is we may have 𝓁g = 𝓁g′ for g ≠ g′.
Conditional on the quantities in (4), we assume

Ỹ g
tg|⋅ ∼ Tobit(𝜃t𝓁g , 𝜙g) (5)

for g = 1, … ,Ng and t = 1, … ,T, where 𝜙g = 𝜎
−2
g is a (potentially) unknown precision parameter governing the

observation error.

3.2 Information provided by the radar

For the purpose of model specification we suppose that the radar provides observations of rainfall intensity (mm/h) at each
location within our spatial domain; further details about how these data are obtained are provided in our case study in
Section 5. Following Section 3.1, we letr = {Rti; i = 1, … ,N, t = 1, … ,T} denote the collection of observed radar data
where Rti ≥ 0 is the radar observation from location i at time t and Ỹ r

ti =(Rti) denotes the corresponding transformed
observation. Similarly, conditional on the quantities in (4), we assume

Ỹ r
ti|⋅ ∼ Tobit(𝜃ti + 𝜇r, 𝜙r) (6)

for i = 1, … ,N and t = 1, … ,T. Here an additional bias parameter 𝜇r ∈ R is introduced to allow for potential miscali-
bration of the radar and 𝜙r = 𝜎

−2
r is a (potentially) unknown precision parameter governing the observation error.

4 THE BAYESIAN FORMULATION

We are now in a position to define our complete Bayesian model that combines the observation models (5) and (6) together
with the system model (4). More specifically

Ỹ g
tg|⋅ ∼ Tobit(𝜃t𝓁g , 𝜙g), g = 1, … ,Ng

,

Ỹ r
ti|⋅ ∼ Tobit(𝜃ti + 𝜇r, 𝜙r), i = 1, … ,N,

𝜽t − 𝜇1N = G(𝝂t−1)(𝜽t−1 − 𝜇1N),+St−1 + 𝝐t,

St = G∗St−1 + 𝝐∗t ,
𝝂t = 𝛼v𝝂t−1 + 𝝐𝜈t , (7)

for t = 1, … ,T. As noted in Section 2, given that both spatial and temporal dependence are allowed for in the source-sink
process (S), we propose to keep the form of the errors simple. In particular we assume (i.i.d) zero-mean Gaussian innova-
tion errors and so 𝝐t

indep∼ NN(0, 𝜙−1
𝜃

IN) and 𝝐∗t
indep∼ NN(0, 𝜙−1

s IN) for t = 1, … ,T. Similarly we take the innovation error

on the “velocities” to be 𝝐𝜈t
indep∼ N2(0, 𝜙−1

𝜈 I2) for t = 1, … ,T. These assumptions, coupled with an appropriate prior
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distribution for the initial values of the dynamic states (𝜽0,S0, 𝝂0) and the unknown static quantities of interest, will allow
an appropriate collection of latent variables to be introduced that in turn facilitate the full conditional distributions for
all unknown quantities to be written down in closed form.

4.1 Prior specification

The problem of specifying a suitable prior distribution has been given considerable attention in the Bayesian literature
(Bernardo & Smith, 1994). Given the Gaussian form of our observation model and, with tractability in mind, we choose
to place Gaussian distributions over the initial values of the system. More specifically we take 𝜽0|𝜇 ∼ NN(𝜇1N ,C𝜃),S0 ∼
NN(ms,Cs) and 𝝂0 ∼ N2(m𝜈 ,C𝜈), where the mean vectors (m⋅) and covariance matrices (C⋅) are specified a priori. The
static mean and bias parameters are also assumed to follow Gaussian distributions 𝜇 ∼ N(m𝜇, v𝜇) and 𝜇r ∼ N(m𝜇r , v𝜇r ).
Our prior specification is completed by choosing appropriate distributions for the static parameters in the evolution
matrix Gt; we take 𝛽 ∼ N(m𝛽 , v𝛽) where, to encourage positive evolution coefficients, m𝛽 and v𝛽 are to be chosen so that
Pr(𝛽 ∈ (0, 0.25)) ≃ 1 a priori. To ensure a stationary solution we take 𝛼 ∼ TN(m𝛼, v𝛼, 0, 1), that is, a truncated Gaussian
distribution ensuring 𝛼 ∈ (0, 1).

The remaining static quantities in (7) are considered to be fixed (known) constants, although we note that this is not a
limitation of our approach. For example, appropriate (Gamma) prior distributions could also be placed on the innovation
precision parameters (𝜙𝜃, 𝜙s, 𝜙𝜈), though we found that these parameters are only weakly identified in practice. Similar
issues arise for the observation precision parameters 𝜙r and 𝜙g. This is further complicated given that, in our applica-
tion, the radar provides a much larger number of observations (and therefore, information) in comparison to the rain
gauges (N ≫ Ng). It follows that, with 𝜙g unknown, there is a potential risk of the gauge observations being explained
by large observation error (𝜙g ≃ 0), and this is not desirable given that the gauges provide the most accurate information
about the precipitation intensity field at ground level; this issue can be alleviated by an appropriate choice of 𝜙g ≫ 𝜙r. Of
course, choosing suitable values for these static quantities poses its own challenge, although such choices can be guided
by inspection of the prior predictive distribution. The choice of state innovation error𝜙𝜃 from a finite set of possible values
is posed as a model selection problem.

4.2 Posterior computation

The Tobit likelihood(s) together with the prior distribution given in Section 4.1 leads to a posterior distribution that is not
available in closed form. We therefore propose a simulation based inference approach, specifically MCMC, to obtain draws
from the posterior distribution of interest. The design of the sampling algorithm can be simplified by the introduction of
appropriate latent variables that give rise to tractable full conditional distributions (FCDs) for all unknown quantities of
interest. However, the dimension of our state-space renders (exact) simulation from the joint full conditional distribution
of the dynamic states computationally infeasible. A potential, relatively straightforward, solution to this issue would be to
sample each of the latent states one-at-a-time from its full conditional distribution. Unfortunately this approach is likely to
lead to poor mixing in the MCMC scheme and therefore require an infeasible number of iterations to obtain a reasonable
number of near uncorrelated posterior draws. Of course, samples from the posterior distribution could be obtained via
Metropolis-Hastings (MH) steps within an MCMC scheme. However, whilst it is fairly straightforward to conceive of a
sensible proposal distribution for the static parameters, it is less clear how to construct a suitable joint proposal for the
dynamic states. In particular, the high-dimension of the state-space is likely to lead to low acceptance rates, which is not
appealing. We therefore propose to use the ensemble Kalman smoother (EnKS) to obtain an approximate sample from the
joint full conditional distribution of the dynamic states. The EnKS sampling step is embedded within a Gibbs sampling
algorithm (in place of its exact counterpart) to facilitate approximate posterior sampling in reasonable time. Section 4.3
introduces an appropriate collection of latent variables and the resulting complete data model is given in Section 4.4. The
EnKS algorithm is outlined in Section 4.5 and a discussion of our sampling algorithm is given in Section 4.6.

4.3 Latent variables

The inference problem can be made more tractable by appealing to data augmentation (Tanner & Wong, 1987). The basic
idea is to introduce an appropriate collection of latent observations such that the complete data likelihood, that is the joint

 1099095x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2824 by T

est, W
iley O

nline L
ibrary on [17/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8 of 17 JOHNSON et al.

distribution of the latent observations and the observed data, is of a convenient form. An equivalent way to arrive at the
observation model (7) is to directly define (partially) latent vectors that denote the complete data, Yg

t and Yr
t , and assume

Y g
tg|⋅ ∼ N(𝜃t𝓁g , 𝜙g) and Y r

ti|⋅ ∼ N(𝜃ti + 𝜇r, 𝜙r) for g = 1, … ,Ng, i = 1, … ,N and t = 1, … ,T. Then, conditional on the
complete data (and all other unknown quantities), we can let the observed data Ỹ g

tg = Y g
tiI
(

Y g
ti > 0

)
and Ỹ r

ti = Y r
tiI
(

Y r
ti > 0

)
,

from which it follows that the observed data likelihood contributions, for example 𝜋
(

Ỹ g
tg
|| ⋅

)
= ∫ 𝜋

(
Ỹ g

tg|Y g
tg
)
𝜋(Y g

tg|⋅)dY g
tg,

are as outlined in Section 3. Note that, given a collection of observed radar and gauge observations  = {g
,

r}, the
full conditional distributions of the quantities in the (partially) latent vectors are straightforward to obtain and are
Y g

tg|g
, ⋅ ∼ TN(𝜃t𝓁g , 𝜙g,−∞, 0) if ỹg

tg = 0 and Y g
tg = ỹg

tg otherwise; similarly Y r
ti|r

, ⋅ ∼ TN(𝜃ti + 𝜇r, 𝜙r,−∞, 0) if ỹr
tr = 0 and

Y r
ti = ỹr

ti otherwise.
Let Yt =

(
Yr

t ,Yg
t
)

be the (N + Ng)-length complete data vector that contains the positive (radar and gauge) obser-
vations when available, and the latent (truncated Gaussian) variables otherwise. Further, for notational simplicity, let
𝝆 = (𝜇, 𝜇r, 𝛼, 𝛽) denote the unknown static quantities and q1∶t ≡ {q1, … ,qt} for any vector valued quantity q. From above
it follows that the complete data likelihood 𝜋(Y1∶T|𝜽0∶T ,S0∶T , 𝝂0∶T ,𝝆) is a T × (N + Ng)-dimensional multivariate Gaus-
sian density. Crucially this allows us to write down a dynamic linear model for the complete data from which the full
conditional distributions of all remaining unknown quantities can be straightforwardly derived; this is the topic of the
next section.

4.4 Complete data model

The complete data model is given by our original state model coupled with that for the latent observations Y1∶T . With
notational simplicity in mind, let xt = (𝜽′t ,S′t)′ denote the joint vector containing both of the dynamic processes at time t.
It follows that the unknown quantities of interest are Y1∶T , x0∶T , 𝝂0∶T and 𝝆 and the density of all stochastic quantities is
𝜋(,Y1∶T , x0∶T , 𝝂0∶T ,𝝆) = 𝜋(|Y1∶T)𝜋(Y1∶T|x0∶T , 𝝂0∶T ,𝝆)𝜋(x1∶T|x0, 𝝂0∶T ,𝝆)𝜋(x0|𝝆)𝜋(𝝂0∶T)𝜋(𝝆), from which the full condi-
tional distributions can be obtained in closed form. Note that the full conditional distributions for the latent variables Y1∶T
are those outlined in Section 4.3. Conditional on the latent observations (and the observed data), we can then construct
the conditional distribution 𝜋(x0∶T , 𝝂0∶T ,𝝆|Y1∶T ,) ∝ 𝜋(Y1∶T|x0∶T , 𝝂0∶T ,𝝆)𝜋(x1∶T|𝝂0∶T ,𝝆)𝜋(x0|𝝆)𝜋(𝝂0∶T)𝜋(𝝆). Crucially,
given the prior specification outlined in Section 4.1 and the velocities, 𝝂0∶T , this is simply the density corresponding to
the dynamic linear model (DLM),

Yt = Fxt + 𝜇rLr + vt, vt ∼ NN+Ng (0,V),
(xt − 𝜇L) = G̃t(xt−1 − 𝜇L) +wt, wt ∼ N2N(0,W),

𝝂t = 𝛼v𝝂t−1 + 𝝐𝜈t , (8)

for t = 1, … ,T. Here L = (1′N , 0
′
N)
′ and Lr = (1′N , 0

′
Ng)′ are indicator vectors that map the mean and bias parameters to

the respective process and observation layer. The matrices are of the form

F =

[
IN 0N×N


g 0Ng×N

]
, G̃t =

[
G(𝝂t−1) IN

0N×N G∗

]
,V =

[
𝜙
−1
r IN 0N×Ng

0Ng×N 𝜙
−1
g INg

]
and W =

[
𝜙
−1
𝜃

IN 0N×N

0N×N 𝜙
−1
s IN

]
,

where g maps the latent rain field (𝜃) at location 𝓁g to the observation from gauge g; specifically an (Ng × N) dimensional
matrix where row g contains a 1 in column 𝓁g and zeros otherwise.

The full conditional distributions for x0∶T , 𝝂0∶T and 𝝆 can now straightforwardly be derived from
𝜋(x0∶T , 𝝂0∶T ,𝝆|Y1∶T ,). In particular, since the joint distribution of x0∶T and Y0∶T can be expressed through a
dynamic linear model, it follows that a joint sample from 𝜋(x0∶T|⋅) can be obtained via the FFBS algorithm
(Frühwirth-Schnatter, 1994). Thus, in principle, it is straightforward to construct a Gibbs sampler in which we draw a
joint sample of the dynamic states (via the FFBS algorithm) and then proceed to draw from the full conditional distribu-
tions of the remaining parameters (including the latent observations) in turn. Whilst this strategy is naturally appealing,
unfortunately the FFBS algorithm becomes computationally infeasible in large state dimension. In our application xt
has length 2N = 2 × 722 = 10368 and so analytically computing the moments of the required (Gaussian) distributions is
challenging; in particular the required covariance matrices are of dimension 10368 × 10368. Our solution to this problem
is to instead use the EnKS to obtain an approximate draw from 𝜋(x0∶T|⋅); this is the topic of the next section.
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JOHNSON et al. 9 of 17

4.5 State sampling via the ensemble Kalman smoother

The EnKS is a method for obtaining approximate draws from 𝜋(x0∶T|⋅). In essence, rather than analytically computing
the moments of the required (Gaussian) distributions (as is done in the FFBS algorithm), we instead consider an ensem-
ble of Ne (equally weighted) particles that are draws from the distributions of interest. These particles are propagated
and sequentially updated as observations “arrive”, where the (cross-)covariance matrices required to compute the update
are approximated from the ensemble. For dynamic linear models this method provides an exact sample from 𝜋(x0∶T|⋅)
in the limit Ne → ∞ (Katzfuss et al., 2020). The EnKS is a generalisation of the more well known ensemble Kalman
filter (EnKF) and numerous variants of the smoother can be found in the literature (Bocquet & Sakov, 2014; Evensen
& Van Leeuwen, 2000; Khare et al., 2008). Here we consider the EnKS of Evensen and Van Leeuwen (2000); the basic
idea is that the smoothed states can be obtained by applying the standard EnKF update to the augmented state that
includes all the previous history. It follows that, at each time t, the entire state history (x0, … , xt) is updated to incor-
porate the information in the observations yt; see Katzfuss et al. (2020) for further details. In what follows, the notation
xn|m represents a draw from the distribution 𝜋(xn|Y1∶m, ⋅), that is, a sample of the state vector at time n given observa-
tions up to and including at time m. For the model given by (8), an approximate sample x0∶T|T from 𝜋(x0∶T|⋅) is obtained
as follows.

Initialize: draw xj
0|0

indep∼ N(m0,C0) for j = 1, … ,Ne. Then, for t = 1, … ,T,

1. Forecast step: for j = 1, … ,Ne,
2. Let xj

t|t−1 = G̃t
(

xj
t−1|t−1 − 𝜇L) + 𝜇L +wj

t where wj
t

indep∼ N(0,W).

(a) Smoothing step: for j = 1, … ,Ne,
(b) Generate pseudo-observations ŷj

t|t−1 = Fxj
t|t−1 + 𝜇rLr + vj

t where vj
t

indep∼ N(0,V).
(c) For 𝓁 = 0, … , t, compute (the smoothed state) xj

𝓁|t = xj
𝓁|t−1 + K̂𝓁t(yt − ŷj

t|t−1).

A sample of the state vector is obtained by drawing j ∈ {1, … ,Ne} uniformly at random and letting x0∶T|T = xj
0∶T|T .

Here K̂𝓁t = Σxy
𝓁t|t−1

(
Σyy

tt|t−1

)−1
is an approximation of the optimal Kalman gain computed from the ensemble. More specif-

ically Σxy
𝓁t|t−1 = Cov(𝓁|t−1,t|t−1) is the sample cross-covariance of the ensemble of states 𝓁|t−1 = (x1

𝓁|t−1, … , xNe

𝓁|t−1)
and pseudo observations t|t−1 = (ŷ1

t|t−1, … , ŷNe

t|t−1); similarly Σyy
tt|t−1 is the sample covariance of the ensemble of pseudo

observations t|t−1.
From a practical standpoint, updating (smoothing) the entire state history in Step 2 is computationally burdensome,

even for modest length time-series. Thus in practice it is typically only feasible to consider a “fixed-lag smoother” in
which only the states at the previous 𝜏 time points are updated given the observations at each time t. More formally, to
only consider 𝓁 = t∗, … , t, where t∗ = max(0, t − 𝜏) in Step 2 of the algorithm above; the EnKF is a special case and is
recovered by taking 𝜏 = 0. Finally, we note that if there are no observations available at time t, for example if xt is the
state vector at an imputed time-step, then the smoothing step (Step 2) becomes trivial and we simply let xj

𝓁|t = xj
𝓁|t−1 for

𝓁 = 0, … , t and j = 1, … ,Ne.
Key to the successful implementation of the EnKS algorithm is the effective estimation of the (cross-)covariance

matrices required to compute K̂𝓁t, especially when the ensemble size (Ne) is small relative to the dimen-
sion of the states and/or observations. Several methods have been proposed for improving the accuracy of the
covariance approximations in this setting, most commonly covariance tapering (Houtekamer & Mitchell, 2001)
and covariance inflation (Anderson & Anderson, 1999). However there is little guidance on how to choose
an appropriate tapering function and/or inflation factor. The approach we favor, and also that which we
find works well in practice, relies on approximating the matrices from the so-called deterministic ensembleand
then using analytic results to obtain the required matrix. More specifically we introduce x̃j

t|t−1 = G̃txj
t−1|t−1 in

Step 1 of the EnKS algorithm and let xj
t|t−1 = x̃j

t|t−1 +wj
t for j = 1, … ,Ne. The Kalman gain matrix can then

be written as

K̂𝓁t =

{
Σ̃𝓁t|t−1F′

(
FΣ̃tt|t−1F′ + FWF′ + V

)−1
, for 𝓁 < t,(

Σ̃tt|t−1 +W)F′t
(

FΣ̃tt|t−1F′ + FWF′ + V
)−1

, for 𝓁 = t.
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10 of 17 JOHNSON et al.

Here Σ̃tt|t−1 is the sample covariance of the deterministic ensemble ̃ t|t−1 = (x̃1
t|t−1, … , x̃Ne

t|t−1) and Σ̃𝓁t|t−1 is the
cross-covariance matrix computed from the ensembles 𝓁|t−1 and ̃ t|t−1. Additional discussion is provided in Section 3
of the supplementary material and further guidance on the practical implementation of these algorithms is given by
Evensen (2003).

4.6 MCMC sampling algorithm

With all full conditional distributions available in closed form we can straightforwardly implement a Gibbs sampling
scheme to obtain draws from the desired posterior distribution (Geman & Geman, 1984; Smith & Roberts, 1993; Tier-
ney, 1994). Our MCMC algorithm is effectively the Gibbs ensemble Kalman smoother (GEnKS) algorithm outlined in
Katzfuss et al. (2020) applied to our data fusion model. In particular we draw a joint sample of the dynamic states x0∶T via
the EnKS algorithm outlined in Section 4.5, then proceed to draw a sample of each quantity in 𝝆 is from its corresponding
(univariate) FCD. Samples of the latent observations (Y1∶T) are drawn from their FCDs given in Section 4.3 and finally the
“velocity” parameters are sampled from 𝜋(𝝂t|⋅) for t = 0, … ,T. The latent variable method of Damien and Walker (2001)
is used to facilitate numerically stable sampling from truncated (Gaussian) distributions. A joint sample of 𝝂0∶T could be
obtained via the FFBS algorithm which may promote better mixing of the MCMC chain. However, in general we find that
our chains mix well, and so do not consider this here.

Although Gibbs samplers are inherently serial algorithms, the total execution time can often be reduced by appeal-
ing to parallel computing in each of the sampling steps. In particular, many of the computations required within the
EnKS algorithm can be effectively performed in parallel; see, for example, Houtekamer et al. (2014). Further, the large
matrix operations, including those required to compute the moments of the full conditional distributions, can be straight-
forwardly computed in parallel, for example via routines from the Eigen library (Guennebaud & Jacob, 2010). All
computations described here can be carried out on routinely available hardware (standard Linux servers with at least
16GB RAM). The full MCMC algorithms run in a few hours on a reasonable processor (e.g., an Intel i7), and nowcasting
based on inferred parameters can be carried out in a few seconds, allowing practical application to the intended down-
stream flood forecasting application. C++ code to run our algorithm can be found at the GitHub repository https://github.
com/srjresearch/BayesianRainfallModelling.

4.7 Simulation study

To investigate the effectiveness of the posterior sampling scheme outlined in Section 4.6, we analyze several synthetic
datasets for which the values of the underlying parameters are known. Details of the data generating mechanism and
additional discussion is given in Section 4 of the supplementary material. The synthetic datasets considered closely
resemble that used in our real data application, which follows in Section 5, and consider an N = 72 × 72 spatial grid
with Ng = 15 rain gauges over T = 72 observation times. The choice of ensemble size and the length of the smoothing
window to consider are primarily limited by computational resource. From a practical standpoint we would like to be
able to make inferences in a reasonable amount of time (hours as opposed to days) and to this end we let Ne = 100 and
consider two different choices of smoothing window; in Analysis 1 we back smooth the latent states up to and including
the previous 𝜏 = 3 observation times. Analysis 2 considers a larger smoothing window with 𝜏 = 6. In both analyses the
number of imputed time-steps is fixed at 𝜏 = 4.

Figure 1 shows boxplots of the marginal posterior distributions of the unknown static parameters 𝛼, 𝛽, 𝜇 and 𝜇r for
both analyses 1 and 2; the crosses (×) highlight the value from which these data were generated and the triangles, (Δ)
denote the (marginal) posterior mean. From Figure 1 (right) we see that both 𝜇 and 𝜇r are well recovered in each case, that
is there is reasonable posterior support for the synthetic values used to generate these data. Interestingly both analyses
struggle to recover the synthetic value of 𝛽 = 0.18 with E(𝛽|) = 0.213, 0.212 for Analysis 1 and 2, respectively. That said,
it is pleasing to see that the velocity components 𝝂t are generally well recovered, with the majority of the synthetic values
looking plausible under their marginal posterior distributions for both analyses. Figure 2 shows the marginal posterior
means, the 95% credible regions, and also the values of the velocity components 𝜈x (top) and 𝜈y (bottom) from which these
data were simulated for both Analysis 1 and 2, left and right, respectively.

The result of reducing the smoothing window in the EnKS step is perhaps most likely to manifest in the inferences for
the latent process 𝜽t. However, the results from Analysis 1 and Analysis 2 suggest that reducing the smoothing window
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F I G U R E 1 Boxplots of the marginal posterior distributions of the unknown static parameters for analyses 1 and 2; crosses (×)
highlight the value from which these data were simulated, triangles (Δ) denote the posterior means.
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F I G U R E 2 Marginal posterior means (- -), 95% credible regions (· · ·), and the synthetic values (–) for the velocity components 𝜈x (top)
and 𝜈y (bottom) under Analysis 1 (left) and Analysis 2 (right) for t = 1, … , T̃.

from 6 to 3 has little impact on the state inference. In particular, similar spatial clusters of positive (and negative) surface
water rates are recovered under both analyses; corresponding figures can be found in Section 4 of the supplementary
materials.

Our model (7) is governed by numerous parameters in addition to multiple layers of latent variables and this may give
rise to parameter identifiability issues. However, as discussed above, the simulation studies suggest that the underlying
parameters are identifiable and generally well recovered, despite the bias introduced by the approximation in the EnKS
step. It is perhaps unsurprising that inferences for the static parameters 𝛼 and 𝛽 that govern the system evolution are those
most affected by EnKS approximation; this may also be an artefact of information loss as these data are only partially
observed. Crucially, our simulation studies suggest that we are able to make plausible inferences about the latent process
of interest 𝜽t, with spatial clusters of positive (and negative) precipitation intensities being well recovered. Finally we
note that the observed data look plausible under their posterior predictive distribution and so, based on these simulation
studies, we suggest that we are able to make reasonable inferences given the choice of Ne = 100 and 𝜏 = 3.

5 REAL DATA APPLICATION

The Urban Observatory (James et al., 2014) collects data from a large number of sensors distributed around the North
East of England. We consider observations obtained from a WR–10X radar situated on Claremont Tower, Newcastle upon
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12 of 17 JOHNSON et al.

Tyne, UK (Lat 54.9804, Long −1.6146) in addition to a collection of tipping bucket rain gauges distributed around the
city centre. We consider a 12 h period from the August 12, 2018, when moderately large rainfall rates were observed, and
for which a reasonable amount of rain gauge data are available. Our modelling domain  is taken to be an 18 km2 area
centered at the location of the radar (Claremont Tower). This domain is discretized as outlined in Section 2 by imposing
a regular lattice grid of dimension N = 72 × 72, and so each grid cell is of dimension 500 m2.

The radar provides, at 10 min time intervals, 240 × 360 raw observations z that are given in units of dBZ (decibel
relative to Z). The corresponding rainfall rates R (mm/h) are obtained via the Marshall and Palmer (1948) relationship.
Additionally we suppose that values of z < 0 should correspond to zero rainfall and so we let the z-R relationship be
R(z) =

(
10(z∕10)∕200

)0.625
I(z > 0). Note that (1∕200)0.625 = 0.04 and so only rainfall rates less than 0.04 mm/h are truncated

to zero. The radar records observations at 150 m intervals along “beams” that are 36 km in length; 360 beams cover
azimuth angles of 1–360◦ (at an angular resolution of 1◦). It follows that these observations are irregularly spaced over the
modelling domain  and so we take Rti to be the average rainfall rate when numerous observations fall within the same
grid square; observations that fall outside of our modelling domain are discarded. Additionally we obtain observations
from Ng = 15 tipping bucket rain gauges that reside within  . Each gauge is located within a single grid square and
provides rainfall accumulations over a fixed time domain and, where appropriate, we sum over the appropriate time
domains to obtain the 10 min accumulation before converting into units of mm/h (multiplying by a factor of six). It follows
that the length of the time series is T = 72 and the number of the observations (at each time-step) is N + Ng = 5199. These
data (in units of mm/h) are reproduced in the associated GitHub repository.

Our ultimate interest lies in inferring the (latent) precipitation intensity field at ground level and we believe that the
rain gauges provide reasonably accurate information about this process (in comparison to the radar observations). Based
on our understanding of the devices, we make the specifications𝜙g = 100 and𝜙r = 2, which allows the gauge observations
to strongly influence the state inference; these values were also used in the simulation studies discussed in Section 4.7.
Although in principle 𝜙g and 𝜙r could be inferred from the data, in practice, due to the huge imbalance between the
number of radar and gauge observations, there is a tendency for the model to want to discount the gauge observations as
“noise”. We consider the prior distribution outlined in Section 4.1 with 𝜽0|𝜇 ∼ NN(𝜇1N , 22

IN), S0 ∼ NN(0, 0.52
IN), 𝝂0 ∼

N2(0, 0.12
I2), 𝜇, 𝜇r ∼ N(0, 1), 𝛼 ∼ TN(0.8, 250−1

, 0, 1) and 𝛽 ∼ N(0.1, 500−1). The parameters governing the evolution of
the source-sink process, 𝛼∗ = 0.85, 𝛽∗ = 0.15 and 𝜙s = 20, are considered fixed and were chosen via visual inspection of
the prior predictive distribution. We suppose that the components of the velocity vector 𝝂 should exhibit large temporal
dependence and, to this end, we let 𝛼𝜈 = 0.95 and 𝜙𝜈 = 2000, so that each component is modelled via a stationary AR(1)
process with stationary standard deviation of 0.07. Finally we pose the choice of the innovation precision parameter 𝜙𝜃 as
a model selection problem. More specifically, we consider multiple values of 𝜙𝜃 and select the value which gives rise to the
lowest deviance information criterion (DIC) proposed by Spiegelhalter et al. (2002); the effective number of parameters
is approximated by (two times) the sample variance of the log observed data likelihood (Gelman et al., 2014). Other
model selection methods could also be considered, however DIC is particularly appealing as it is computationally cheap
to evaluate and does not require saving the MCMC draws of all unknown quantities, which is prohibitive in large scale
applications.

Attempts to directly fit the model (7) to these data (with various values of 𝜙𝜃) gave rise to poor model fit and predictive
performance (results not reported here). Inspection of the radar observations reveals that rain clouds move fairly quickly
across the spatial domain, that is they transition across numerous grid squares between a single time-step. Thus, following
the discussion in Section 2.1, we insert t̃ time-steps between the observation times to allow our model to capture this
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F I G U R E 3 Marginal posterior means (–) and the 95% credible regions (- -) for the velocity components 𝜈x (left) and 𝜈y (right) for
t = 1, … , T̃. Horizontal line (- ⋅ -) drawn at 𝜈x , 𝜈y = 0.
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F I G U R E 4 Image plots of the (transformed) radar observations ỹr
t (top row), marginal posterior means E(𝜃ti|) and standard deviations

SD(𝜃ti|) of the precipitation field (second and third row, respectively). Darker shades of blue indicated higher values. Posterior probabilities
Pr(𝜃ti > 0|) (fourth row) and boxplots of the marginal posterior distributions of the precipitation field at the rain gauge locations; crosses
show the (transformed) gauge observations ỹg

t (fifth row). Note that all real data images correspond to a 36 × 36 km2 latitude-longitude-aligned
square region (North at top) centred on 54.98◦N, 1.61◦W. See Figure 5 of the supplementary materials for a map of the data locations.

behavior. This helps because the first order model implicitly assumes that velocity is small relative to the grid size and
time step. Introducing latent observations shortens the time step, making this assumption more plausible. Note that the
dynamic processes of interest are x0∶T̃ and 𝝂0∶T̃ where the length of the augmented time series is T̃ = t̃(T − 1) + T. Further,
to only introduce similar levels of stochastic noise in to the latent process between the observation times, we scale the
innovation (precision) matrix and let W−1 → W−1 × (t̃ + 1). We consider𝜙𝜃 ∈ {20, 40, 60} and t̃ ∈ {0, 1, … , 10}. Posterior
draws are obtained via the MCMC algorithm outlined in Section 4.6, where we perform 2000 iterations with the first 1000
discarded as burn-in. Convergence is assessed by monitoring the trace of the (log) complete data likelihood in addition to
the static parameters and randomly selected dynamic states.

These analyses reveal that, amongst the values of 𝜙𝜃 and t̃ considered, the model which was optimal according to
the DIC set 𝜙𝜃 = 40 and used t̃ = 7 imputed time-steps. Inspection of the marginal posterior distributions of the static
parameters reveals that there is high correlation between the latent states at successive time points with E(𝛼|) = 0.99
(SD(𝛼|) = 3.87 × 10−4); this is perhaps not surprising given the modestly large number of imputed time-steps. Interest-
ingly, we find that E(𝛽|) = 0.24 (SD(𝛽|) = 6.50 × 10−4). When coupled with the velocities 𝜈x, 𝜈y, this suggests that the
(first-order) neighbors have a large influence with relatively little weight (1 − 4𝛽) assigned to the same location at the
previous time-step. The analysis also reveals that the radar typically provides lower rainfall rates than those observed on
the ground with E(𝜇r|) = −1.09 (SD(𝜇r|) = 0.03); if the radar was calibrated with the gauge observations we would
expect to see 𝜇r ≃ 0.
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F I G U R E 5 Image plots of the (transformed) radar observations at the subsequent six observation times (top row), marginal posterior
predictive means and standard deviations of the corresponding precipitation field (second and third row, respectively). Rows four, five, and
six each show a typical predictive draw of the precipitation field.

Turning to the dynamic states, Figure 3 shows the marginal posterior means along with the 95% credible regions
for the velocity components 𝜈x (left) and 𝜈y (right) for t = 1, … , T̃. Inspection of the radar observations reveals that the
rain clouds generally drift in a north-easterly direction and so it is pleasing to see that this feature is also observed in
the inferred velocity components, with both 𝜈x and 𝜈y typically larger than zero. Figure 4, top row, shows image plots
of the (transformed) radar observations ỹr

t at observation times t ∈ {12, 24, 36, 48, 60, 72}; the corresponding plots for all
time-steps are given in Section 5 of the supplementary material. The marginal posterior means (E(𝜃ti|), i = 1, … ,N) of
the precipitation field of interest are shown in the second row of Figure 4, from which we can see that the areas in which we
expect to observe rainfall at ground level (E(𝜃ti|) > 0) correlate with the positive rainfall rates observed on the weather
radar. The third row of Figure 4 shows the marginal standard deviations of the precipitation field (SD(𝜃ti|), i = 1, … ,N)
and from this we can see the reduced uncertainty around the rain gauge locations, which is perhaps unsurprising given
the increased information at these locations. This analysis reveals that our model is able to capture the locations/times
where we are unlikely to observe any precipitation; the fourth row of Figure 4 shows Pr(𝜃ti > 0|). Finally, the bottom row
of Figure 4 contains boxplots of the marginal posterior distributions of the precipitation field at the rain gauge locations,
𝜋(𝜃t,𝓁g |) for g = 1, … , 15; crosses show the (transformed) gauge observations ỹg

t .
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Our dynamical model (7) allows us to straightforwardly generate predictions for future time-steps by applying the
model recursions; Figure 5, top row, shows image plots of the (transformed) radar observations at the next six observation
times. The second row shows the marginal expectation of the precipitation field at each location, and the corresponding
standard deviations are shown in row 3. The final three rows in Figure 5 each show a typical predictive draw of the
precipitation field. These suggest that our model is capable of producing plausible short-term forecasts (“nowcasts”) up
to around time t + 30 min; recalling that the radar typically provides lower rainfall rates than those observed at ground
level. We note in passing that forecasts are also available on a finer temporal resolution than that of the observed data
as a result of introducing the imputed time-steps. At time t + 40 min a large cluster of rain clouds form in the northern
region of our domain, which highlights the unpredictability of weather systems even at modest forecast horizons. That
our model is not able to predict that event with much certainty is perhaps not surprising, although we note that we are
able to capture an increased amount of uncertainty in the region where that event is taking place; see Figure 5, third row.
Thus, as noted by other authors, although both mid-range and long-range forecasts are straightforward to obtain, these
should be treated with caution in radar-based modelling applications as weather systems can develop (and decay) quickly.

6 CONCLUSION

We have considered the challenging problem of modelling spatio-temporal precipitation fields for short-term forecasting.
In particular we have outlined a physically motivated multi-layered auto-regressive process model. In contrast to other
approaches in the literature our observation model enables information from both ground-based rain gauges and weather
radar to be used to infer the (latent) precipitation field at ground level, which is of interest when modeling rainfall-induced
surface water flows in urban areas. Posterior sampling is achieved via an efficient MCMC scheme where the EnKS is
embedded within a Gibbs sampling scheme that facilitates inference in reasonable time. We considered a previously
unanalysed dataset from the Urban Observatory project (Newcastle upon Tyne, UK) that highlights how ground-based
rain gauges can be effectively used to calibrate radar observations to infer likely rainfall rates at ground level.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are openly available in BayesianRainfallModelling at https://github.com/
srjresearch/BayesianRainfallModelling.
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