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Abstract
We consider a stateless ‘amnesiac’ variant of the stateful distributed network flooding algorithm, expanding on our conference
papers [PODC’19, STACS’20]. Flooding begins with a set of source ‘initial’ nodes I seeking to broadcast a message M in
rounds, in a network represented by an undirected graph (G, E) with set of nodes G and edges E . In every round, nodes with
M send M to all neighbours from which they did not receive M in the previous round. Nodes do not remember earlier rounds,
raising the possibility that M circulates indefinitely. Stateful flooding overcomes this by nodes recording every message
circulated and ignoring M if received again. This overhead was assumed to be necessary. We show that almost optimal
broadcast can still be achieved without this overhead. We prove that amnesiac flooding terminates on every finite graph and
derive sharp bounds for termination times. Define (G, E) to be I-bipartite if the quotient graph, contracting all nodes in I to
a single node, is bipartite. We prove that, if d is the diameter and e(I ) the eccentricity of the set I , flooding terminates in e(I )
rounds if (G, E) is I-bipartite and j rounds with e(I ) < j ≤ e(I )+d+1 ≤ 2d+1 if (G, E) is non I-bipartite. The separation
in the termination times can be used for distributed discovery of topologies/distances in graphs. Termination is guaranteed if
edges are lost during flooding but not, in general, if there is a delay at an edge. However, the cases of single-edge fixed delays
of duration τ rounds in single-source bipartite graphs terminate by round 2d + τ − 1, and all cases of multiple-edge fixed
delays in multiple-source cycles terminate.
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1 Introduction

Flooding is one of themost fundamental of all graph/network
algorithms - for example, to achieve broadcast in networks
[2, 14, 23, 25, 27, 29, 30]. The algorithm that is usually imple-
mented is: (i) sources send a message to all their neighbours,
(ii) on first receipt, receiving nodes send themessage to every
neighbour fromwhich they did not receive and (iii) on subse-
quent receipts, the receiving node does not send the message
to any neighbour. This algorithm checks if the message has
been received before, to ensure termination. It requires each
node records a previous event in its state, making it a state-
ful protocol. We consider a stateless version of flooding, i.e.
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algorithms that are ‘amnesiac’ in the sense that they hold no
record or memory of any event beyond the immediate round.
The algorithm is as follows.

Definition 1 Amnesiac flooding algorithm. Let (G, E) be
an undirected graph, with vertices G and edges E (repre-
senting a network where the vertices represent the nodes of
the network and edges represent the connections between
the nodes). Computation proceeds in synchronous ‘rounds’
where each round consists of nodes receivingmessages being
sent from neighbours. A receiving node sends messages to
some neighbours in the next round. No messages are lost in
transit. The algorithm is defined by the following conditions.

(i) All nodes from a subset of sources or initial nodes I ⊆
G send a message M to all of their neighbours in round
1.

(ii) In subsequent rounds, every node that receivedM from
a neighbour in the previous round, sends M to all, and
only those, nodes from which it did not receive M .
Flooding terminates when M is no longer sent to any
node in the network.
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Hitherto, it was not known whether a stateless flooding
algorithm exists that terminates on every graph. In this paper,
we show that amnesiac flooding is itself such an algorithm.
If e and d are the eccentricity of g0 and diameter of (G, E)

respectively, the termination times for a single source g0 are
e rounds if (G, E) is bipartite and j rounds with e < j ≤ e+
d+1 otherwise. These times are asymptotically time optimal.
The difference in times between bipartite and non-bipartite
graphs means that a stateless algorithm can approximate the
topology or diameter/eccentricities of a network in certain
cases.

Gopal, Gopal and Kutten [14] highlighted the memory
requirement inherent in stateful flooding and its overhead
on fast networks. For example, when multiple messages are
being flooded, nodes need to keep a record of the messages
they have seen and search through their data structure when-
ever a message arrives before deciding if it can be further
flooded. This creates a bottleneck, in particular when the
transmission links are fast. Either specialised high speed
hardware has to be used for the search, or alternate flood-
ing protocols that limit the memory overhead (as they do in
their paper) have to be used. This is also a limitation for low
memory devices, e.g. sensor networks. Since amnesiac flood-
ing is stateless using no memory beyond the present round,
it does not incur this memory overhead and bottleneck. One
advantage of the stateful variant of flooding is that it can
be used to construct spanning structures, such as spanning
trees, which can be subsequently re-used for efficient com-
munication [2, 22, 27, 31]. It is not easy to maintain these
structures in dynamic conditions, i.e. when edges/nodes are
being added or removed. We show that even when edges are
being arbitrarily or adversarially removed from the graph,
amnesiac flooding will still terminate. However, termination
is not guaranteed in asynchronous models where the delivery
time of messages on edges can vary - we show this with a
non-terminating delivery schedule for the simplest of cycles.
Neither is it guaranteed for general graphs even if there is a
fixed delivery delay at only one edge.

This paper is structured as follows. The rest of this sec-
tion looks at related work. In Sect. 2, we prove that if a
message is flooded from a set I of initial nodes in round
1, all nodes receive the message at most twice and hence
amnesiac flooding terminates (Theorem 2.1). In Sect. 3, this
result is used to derive sharp time bounds for the number
of rounds it takes for flooding to terminate. As mentioned
above, in the case of a single initial node g0, flooding ter-
minates in e rounds if (G, E) is bipartite and j rounds with
e < j ≤ e+d+1 if (G, E) is not bipartite. The difference in
the time bounds rests on the absence of neighbouring nodes
(called ‘ec-nodes’ here) equidistant from the initial node g0 in
bipartite graphs. For general sets of initial nodes I , we define
I-bipartite graphs as those which do not have any neighbour-
ing nodes equidistant from the set of initial nodes I and show

that the difference in termination times between bipartite and
non bipartite graphs for single initial nodes g0 carries over to
a similar difference in termination times between I-bipartite
and non I-bipartite graphs for general I. For I-bipartite graphs
termination occurs in round e(I ) (Theorem 3.4), where e(I )
is the eccentricity of I , i.e. the furthest distance of a node
from the set I . The main theorem of the paper is for non
I-bipartite graphs, where termination is shown to occur in a
number of rounds which lies in the range between e(I ) + 1
and e(I ) + d + 1:
(Theorem 3.7) Let (G, E) be a graph that is not I-bipartite
and let d be the diameter. Then, flooding terminates in round
j where j is in the range

e(I ) < j ≤ e(I ) + d + 1.

In the case where there is more than one initial node in I ,
termination of non I-bipartite graphs is achieved at the e(I )+
1 lower bound if all nodes in I have neighbouring nodes
in I (Theorem 3.8). In Sect. 4 we provide some extensions
of synchronous amnesiac flooding to cases where message
transit along an edgemay takemore than one round.We show
that termination of amnesiac flooding is resilient to loss of
edges or vertices during the flooding process (Theorem 4.1),
but not, in general, to delays even at a single edge. However,
if the flooding is from a single source then the termination
result for bipartite graphs extends to the case where there is
a fixed delay of message transit of τ rounds at a single edge,
with the termination times more like the the non-bipartite
graph termination times with no delays:
(Theorem 4.2) Let (G, E) be a bipartite graph, g0 ∈ G be an
initial node, e = {x, y} ∈ E be an edge, and τ be an integer
greater than 1. Then flooding initiated from g0, in which a
message in transit along e takes τ rounds and 1 round along
any other edge, visits every node at most twice and completes
in not more than 2d + τ − 1 rounds where d is the diameter
of (G, E).
Amnesiac flooding from multiple sources in even or odd
cycles with any number of possibly different fixed delays
at edges, terminates:
(Theorem4.3)Let (G, E)bean edge-weighted cycle inwhich
(possibly different) positive integer edge weights represent
duration of message transit in rounds along edges and I ⊆ G
be a set of initial nodes. Then, flooding initiated from initial
nodes in I terminates in not more than the weight σ of (G, E)

number of rounds, where the weight σ of (G, E) is the sum
of the weights of the edges.
However, if the duration of message transit along an edge is
variable, as in the case of an asynchronousmodel of amnesiac
flooding, then flooding is not guaranteed to terminate even
on a cycle graph. Section 5 is the concluding section and
contains a number of open problems.
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Related work

The proof of termination in Sect. 2 of this paper appeared
as a conference brief announcement by Hussak and Trehan
in PODC 2019 [15]. The proof of separate time bounds for
termination in bipartite and non-bipartite graphs in the case
of a single initial node appeared in STACS 2020 [17]. This
paper is an extended version of the two conference papers,
generalizing the previous results to the case of a set I of mul-
tiple initial nodes, with a structural characterization in terms
of certain quotient ‘I-bipartite’ graphs of where the corre-
sponding separation of time bounds occurs. We also show
sharpness of the bounds for the time to termination. Further
extensions and also negative results are given in this paper on
termination of amnesiac flooding in which there are delays
of message transit along edges. Another study byHussak and
Trehan [16] considers amnesiac flooding with different mes-
sages being simultaneously flooded under various different
forwarding rules when messages are received at nodes.

Flooding-based algorithms (or flooding protocols) appear
in areas ranging fromGPUs, high performance, sharedmem-
ory and parallel computing, to mobile ad-hoc networks
(MANETs), Mesh Networks, Complex Networks etc [30].
Rahman et al [28] show that flooding can even be adopted as
a reliable and efficient routing scheme, comparable to sophis-
ticated point-to-point forwarding schemes, in some ad-hoc
wireless mobile network applications.

There are numerous applications of flooding as a dis-
tributed algorithm. It is often used to set up spanning trees
[2, 22, 27, 31] and for solving various distributed computing
problems such as leader election. For example, the time-
optimal leader election of Peleg [26] builds on a variant of
flooding which also does not check previously received mes-
sages to detect termination. The algorithm does continuous
flooding of node I Ds to determine the node in the network
with the highest I D while using either the knowledge of the
graph diameter or a condition on the node I Ds to achieve
and detect termination. Kutten et al. [20], on the other hand,
use controlled stateful flooding and resulting spanning trees
and structures for deterministic and randomised efficient time
and message leader election.

Statelessness has always been a desirable property and
stateless algorithms have been developed in various contexts.
Adamek, Nesterenko, Robinson, Tixeuil [1] and Karp and
Kung [18] offer stateless (flooding and other) solutions for
routing. Adamek et al. provide the first known stateless geo-
cast algorithms. One of these is based on flooding itself and
also permits converting previous controlled flooding solu-
tions to be stateless. Awerbuch and Khandekar developed
stateless solutions for multi-commodity flows [3]. They also
developed a framework for distributed and stateless solutions
for packing and covering linear programs by multiple coop-
erating but uncoordinated agents [4] . In these, they list a

number of desirable properties of statelessness (especially in
this context): i) Self-stabilization: recovery from adversarial
‘hard’ crashes, ii) Incremental and Local adjustment: easily
adjusts locally to changes, and iii) Allows asynchrony (in
their context).

In [11], Dolev, Erdmann, Lutz, Schapira, and Zair, pro-
pose a model of stateless computation in which nodes have
no internal state, receive external inputs and compute a
global function purely on the basis of the inputs they receive
from neighbours connected via directed links. They then dis-
cuss self-stabilization in this model and also the power of
stateless computation proving that stateless computation is
sufficiently powerful to solve a nontrivial range of compu-
tational manners in a resilient manner with small message
lengths.

Note that amnesiac flooding uses rules that avoid for-
warding to the most recently chosen nodes - similar ideas
have been used before in distributed computing, e.g. in social
networks [10] and broadcasting [12]. Processes such as ran-
dom walks [8, 9, 13, 20, 21] and their deterministic variant
Rotor-Router (or Propp) machine [7, 19] can also be seen
as restricted variants of flooding. Finally, in some models
such as population protocols, the low memory makes termi-
nation very difficult to achieve leading to research that tries
to provide termination e.g. [24]. Like population protocols,
amnesiac flooding is a very simple and natural algorithm - it
would be interesting to investigate if there are processes in
nature close to amnesiac flooding.

Since our results on amnesiac flooding [15–17], there have
been a number of follow-up works by various researchers. In
a series of works by Turau [32–35], proofs of termination for
non-bipartite graphs work with the bipartite graph (called the
‘auxiliary’ graph) that is obtained by taking two copies of the
given non-bipartite graph minus edges connecting ec-nodes,
and creating edges between the different copies of pairs of
ec-nodes. So, a message is received once by each copy of a
node in the auxiliary graph rather than twice in the original
graph. In [33], Turau provides a simple extension to reduce
termination time in non-bipartite graphs by sending the ini-
tial broadcastmessage in two consecutive rounds (though this
now requires the initiators to remember, in round 2, the mes-
sage and their state of round 1). In [32, 33], the ‘k-flooding
problem’ is posedwhich aims to find a set S of size k such that
amnesiac flooding when started concurrently by all nodes of
S terminates in the least number of rounds. This problem
is shown to be NP-Hard and bounds on approximation are
given. The possibility of modifying the message to achieve
termination in asynchronous networks is also discussed.

Bayramzadeh, Kshemkalyani, Molla and Sharma [5, 6]
consider the variants of simultaneous flooding of multiple
different messages that we suggest in [16]. They propose
a variant of amnesiac flooding that is ‘weak’ in the sense
that the nodes have the knowledge of the diameter of the
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network and use that knowledge to achieve termination in one
of the variants we show to be non-terminating in our original
amnesiac flooding with simultaneous different messages.

2 Termination

Throughout this paper,we assume that graphs are finite, undi-
rected and connected. In keeping with the papers by Hussak
and Trehan [15] and [17] we shall refer to graphs (G, E)

rather thanG = (V , E) and talk of ‘nodes’ g ∈ G rather than
‘vertices’ v ∈ V . Terminology regarding paths and cycles is
standard. A walk differs from a path in that nodes (vertices)
may be visited more than once. A closed walk is a walk
whose start and end nodes are the same. By ‘flooding’ we
will implicitly mean the amnesiac flooding of Definition 1.
In this section we prove that (amnesiac) flooding initiated
from any set of initial nodes I ⊆ G, all at once, terminates.

Definition 2 Let (G, E) be the graph and I ⊆ G a set of
initial nodes. The round-sets R0, R1, . . . are defined as:

R0 is the set I of initial nodes,
Ri is the set of nodes receiving a message in round i

(i ≥ 1).

Clearly, if R j = ∅ for some j ≥ 0, then Ri = ∅ for all i ≥ j .
Flooding terminates in round j if R j �= ∅ and Ri = ∅ for all
i > j .

Theorem 2.1 Any node g ∈ G is contained in at most two
distinct round-sets.

Proof DefineR to be the set of finite sequences of consecu-
tive round-sets of the form:

R = Rs, . . . , Rs+d , where s ≥ 0, d > 0

and Rs ∩ Rs+d �= ∅. (1)

In (1), s is the start-point s(R) and d is the duration d(R)

of R. Note that, a node g ∈ G belonging to Rs and Rs+d

may also belong to other Ri in (1). If a node g ∈ G occurs in
three different round-sets Ri1 , Ri2 and Ri3 , then at least one
of the durations between Ri1 and Ri2 , Ri2 and Ri3 or Ri1 and
Ri3 will be even. Consider the subset Re of R of sequences
of the form (1) where d is even. To prove that no node is in
three round-sets, it suffices to prove that Re is empty.

We assume that Re is non-empty and derive a contradic-
tion. LetRe

min be the subset ofRe comprising sequences of
minimum (even) duration d̂, i.e.

Re
min = {R ∈ Re : ∀ R′ ∈ Re.d(R′) ≥ d(R) = d̂} (2)

Clearly, ifRe is non-empty then so isRe
min . Let R

∗ ∈ Re
min

be the sequence with earliest start-point ŝ, i.e.

R∗ = Rŝ, . . . , Rŝ+d̂ (3)

where

∀ R′ ∈ Re
min . s(R′) ≥ s(R∗) = ŝ (4)

By (1), there exists g ∈ Rŝ ∩ Rŝ+d̂ . Choose node g′ which
sends a message to g in round ŝ + d̂ . As g′ is a neighbour
of g, either g′ sends a message to g in round ŝ or g sends
a message to g′ in round ŝ + 1. We show that each of these
cases leads to a contradiction.
Case (i) g′ sends a message to g in round ŝ
In this case, either round ŝ − 1 is round 0 and g′ is an initial
node in I , or g′ received a message in round ŝ − 1. Thus, the
sequence

R∗′ = Rŝ−1, Rŝ, . . . , Rŝ+d̂−1,

where g′ ∈ Rŝ−1 ∩ Rŝ+d̂−1, (5)

has d(R∗′
) = (ŝ + d̂ − 1) − (ŝ − 1) = d̂ which is even and

so R∗′ ∈ Re
min . As R

∗′ ∈ Re
min , by (4)

s(R∗′
) ≥ s(R∗) (6)

But, from (5), s(R∗′
) = ŝ − 1 and, from (4), s(R∗) = ŝ.

Thus, by (6),

ŝ − 1 = s(R∗′
) ≥ s(R∗) = ŝ

which is a contradiction.
Case (ii) g sends a message to g′ in round ŝ + 1
By the definition ofRe, the smallest possible value of d̂ is 2.
However, it is not possible to have d̂ = 2 in this case as then

R∗ = Rŝ, Rŝ+1, Rŝ+2

and g sends a message to g′ in round ŝ+1. As we chose g′ to
be such that g′ sends a message to g in round ŝ + d̂ = ŝ + 2
this cannot happen because g cannot send amessage to g′ and
g′ to g in consecutive rounds by the definition of flooding.
So,

R∗ = Rŝ, Rŝ+1, . . . , Rŝ+d̂−1, Rŝ+d̂

where ŝ + 1 < ŝ + d̂ − 1. Consider the sequence

R∗′′ = Rŝ+1, . . . , Rŝ+d̂−1 (7)

As g′ receives a message from g in round ŝ + 1 and g′ sends
a message to g in round ŝ + d̂, it is clear that g′ ∈ Rŝ+1 ∩
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Rŝ+d̂−1. Thus, R
∗′′ ∈ R. As d̂ is even, so is (ŝ + d̂ − 1) −

(ŝ + 1) = d̂ − 2 and therefore R∗′′ ∈ Re. Now, R∗ ∈ Re
min

and so, as R∗′′ ∈ Re, we have, by (2),

d(R∗′′
) ≥ d(R∗) (8)

As d(R∗′′
) = d̂ − 2 from (7) and d(R∗) = d̂ from (3), we

have, by (8),

d̂ − 2 = d(R∗′′
) ≥ d(R∗) = d̂

This contradiction completes the proof. �

Definition 3 Given g ∈ G, we use a superscript 1 to indi-
cate that g belongs to a round-set for the first time, and a
superscript 2 to indicate that it belongs to a round-set for the
second time, i.e.

g1 ∈ R j

means that

g ∈ R j and g /∈ Ri for all i with 0 ≤ i < j,

and

g2 ∈ R j

means that

g ∈ R j and g ∈ Ri for some i with 0 ≤ i < j .

Theorem 2.1 implies that Ri = ∅ for i ≥ 2|G|, where |G|
is the number of vertices of (G, E), and therefore flooding
always terminates. In the next section we give sharp bounds
for the number of rounds to termination, in termsof the eccen-
tricity of the set of initial nodes and the diameter of (G, E).

3 Time to termination

The question of termination of flooding is non-trivial when
cycles are present in (G, E). The simple cases when (G, E)

is an even cycle and when (G, E) is an odd cycle, as in Fig. 1
(where an arrow indicates a message received by a node in
the given round), have quite different termination behaviours.
The even cycle terminates remotely from the initial node g0,
after round e where e is the eccentricity of g0 in (G, E). On
the other hand, flooding on the odd cycle returns a message
to the initial node g0 and terminates after round 2e + 1 =
e + d + 1 resulting in a longer flooding process than the
even cycle despite having fewer nodes and a smaller value
of e. In this section, we show that these observations can

Fig. 1 Flooding in even and odd cycles

in a certain way be generalized to arbitrary graphs. In the
previous section we showed that messages can be received
at most twice. Observe that in the even cycle every node
receives the message only once, whereas in the odd cycle
every node receives themessage twice. In general graphs, this
difference is due to the absence or presence of neighbouring
nodes that are equidistant from the set of initial nodes I ,
called ‘ec-nodes’ below. In this section, by considering the
BFS layers around the initial set I , we show that in graphs
that have no ec-nodes, the message just travels once forward
through the BFS layers in e(I ) rounds, where e(I ) is the
‘eccentricity’ of I, i.e. the largest distance of a node from the
set I. These are the bipartite graphs in the case of I being a
single node (Lemma 3.3), and so we call them ‘I-bipartite’
graphs for general I. They terminate in round e(I ) and non
I-bipartite graphs terminate no sooner than in round e(I )+1
(Theorem 3.4). In graphs that have ec-nodes the message
will have a one round bounce back through ec-nodes in the
same BFS layer, and then the whole process will terminate
within an additional diameter number of rounds, as nodes
adjacent to a node receiving the message for the second time
will receive the message for the second time in an adjacent
round (Lemma 3.5). Hence the e(I ) + d + 1 upper bound
for graphs that are not I-bipartite (Theorem 3.7). The lower
e(I ) + 1 bound for termination of non I-bipartite graphs is
sharp and is achieved if all nodes in I have neighbours in I
(Theorem 3.8).

Definition 4 Let (G, E) be a graph with vertex set G and
edge set E and let I ⊆ G be a set of initial nodes. We will
use the following definitions.

(i) For each j ≥ 0, the distance set Dj will denote the set
of points which are a distance j from I . i.e.

Dj = {g ∈ G : δ(I , g) = j},

where, for any g ∈ G,

δ(I , g) = min{δ(g0, g) : g0 ∈ I }

and δ denotes the usual graph distance function for
graph (G, E).
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(ii) A node g ∈ G is an equidistantly-connected node,
abbreviated ec-node, iff it has a neighbour g′ equidis-
tant from I , i.e. iff there exists g′ ∈ G such that
δ(I , g) = δ(I , g′) and {g, g′} ∈ E . The set of ec-nodes
in G is denoted Gec.

(iii) The eccentricity of I , denoted e(I ), is defined as

e(I ) = max{δ(I , g) : g ∈ G}

(iv) The graph (G, E) is I-bipartite iff (G, E) has no
ec-nodes. Equivalently, (G, E) is I-bipartite iff the
quotient graph of (G, E), in which the nodes of I are
contracted to a single node, is bipartite.

Note that neighbouring initial nodes g0, g′
0 ∈ I are ec-nodes

as they are both a distance 0 from I . We have the following
basic properties of distance sets Dj and ec-nodes.

Lemma 3.1 Let (G, E) be a graph and I ⊆ G be a set of
initial nodes.

(i) For all j ≥ 0 and i > j , D j ⊆ R j and R j ∩ Di = ∅.
(ii) For all j ≥ 0, g ∈ Dj and g′ ∈ Dj+1 such that g and

g′ are neighbours, g sends a message to g′ in round
j + 1, i.e. all nodes at a distance j from I send to all
their neighbours which are a distance j + 1 in round
j + 1.

(iii) If j ≥ 0 and g ∈ Dj is an ec-node, then g2 ∈ R j+1.

Proof For (i), clearly every node at a distance j from I
receives a message in round j and so Dj ⊆ R j . Further-
more, every message received in round j will have travelled
at most j edges away from I and so could not have reached a
node which is at a distance i > j from I . Thus, R j ∩Di = ∅.

For (ii), we note that the only circumstance in which a
node g in Dj (⊆ R j by (i)) does not send to a neighbour
g′ in Dj+1 in round j + 1 is if g sent a message to g′ in
round j . This would need g to be in the round-set R j−1, i.e.
g ∈ R j−1 ∩ Dj+1 which contradicts (i) which has R j−1 ∩
Dj+1 = ∅ as j + 1 > j − 1.

For (iii), if j ≥ 0 and g ∈ Dj is an ec-node, then by
Definition 4(ii) there is an point g′ equidistant from I , i.e.
g′ ∈ Dj such that g and g′ are neighbours. If j = 0 then
g, g′ ∈ D0(= I ⊆ R0) and send a message to each other in
round 1 and so g, g′ ∈ R1. This means that g2 ∈ R1, as g
is an initial node and g1 ∈ R0. If j ≥ 1 then, by (i) of this
lemma, Dj ⊆ R j and so both g and g′ receive messages in
round j . Also, by (i), neither sends a message in round j as
R j−1 ∩ Dj = ∅. Thus, g and g′ send messages to each other
in round j + 1. As this will be the second time they receive
a message we have that g2 ∈ R j+1. �

All nodes in a graph without ec-nodes, belong to at most one
round-set.

Lemma 3.2 Let (G, E) be a graph and I ⊆ G be a set of ini-
tial nodes. Then (G, E) has an ec-node if and only if (G, E)

has a node that is in two round-sets.

Proof Suppose that (G, E) has no ec-nodes. Assume, on the
contrary, that (G, E) has nodes that appear in two round-sets.
Let R j ( j ≥ 1) be the earliest round which contains a node g
such that g2 ∈ R j and h ∈ R j−1 be a neighbour of g which
sends to g in round j , so that h1 ∈ R j−1. Then, h ∈ Di for
some i ≥ 0 and h1 ∈ Ri by Lemma 3.1 (i). Thus, i = j − 1
and so g2 ∈ Ri+1. As g is a neighbour of h, g ∈ Di , Di+1,
or Di−1. If g ∈ Di then g and h are ec-nodes contrary to
our supposition that (G, E) has no ec-nodes. If g ∈ Di+1

then g1 ∈ Ri+1 by Lemma 3.1 (i), which is contrary to the
assertion that g2 ∈ R j = Ri+1. If g ∈ Di−1 then g ∈
Ri−1, by Lemma 3.1(i), and so g1 ∈ Ri−1 as g2 ∈ Ri+1.
By Lemma 3.1 (ii), g sends to h in round i = j − 1. This is
contrary to h sending to g in round j . Thus, our assumption
that (G, E) has nodes that appear in two round-sets is false.

Conversely, suppose that (G, E) has an ec-node g, g ∈ Dj

(⊆ R j by Lemma 3.1 (i)) say where j ≥ 1. Then g2 ∈ R j+1

by Lemma 3.1 (iii). �

In the case of a single initial node, bipartite graphs do not
have any ec-nodes.

Lemma 3.3 Let (G, E) be a graph and suppose that I con-
tains a single initial node g0 . Then, (G, E) is bipartite iff it
has no ec-nodes.

Proof It is easy to see that nodes equidistant from the initial
node g0 must belong to the same partite set. A graph is bipar-
tite iff no edge connects two such nodes, and this is the case
iff (G, E) has no ec-nodes by Definition 4 (ii). �

From Lemma 3.2 we see that nodes in graphs without ec-
nodes only receive a message once. For these graphs the time
to termination is the number of rounds taken for the message
to reach the most distant points from the set of initial nodes
I . This is just the eccentricity of I , e(I ).

Theorem 3.4 Let (G, E) be a graph and I ⊆ G be a set of
initial nodeswith eccentricity e(I ). Then, flooding terminates
in round e(I ) if and only if (G, E) is I-bipartite

Proof

(G, E) is I-bipartite
implies (G, E) has no ec-nodes (by Definition 4(iv))
implies no node appears in 2 round-sets (by Lemma 3.2)
implies furthest nodes get message last
implies Re(I ) is the last non-empty round-set
(by Lemma 3.1(i)).

The converse is also true. If flooding terminates in round e(I ),
then the furthest nodes will receive the message for the first
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and only time in that round. Thus, (G, E) has no ec-nodes by
Corollary 3.6 (proved below independently of this theorem)
and is I-bipartite. �

To find the time to termination in general graphs we need to
find a bound on when nodes can belong to a round-set for the
second time. As nodes can only belong to at most two round-
sets, by Theorem 2.1, this will give a bound for termination
of flooding in general graphs. The following lemma shows
that nodes adjacent to a node receiving the message for the
second time will receive the message for the second time in
an adjacent round.

Lemma 3.5 Let (G, E) be a graph and I ⊆ G a set of initial
nodes. If h ∈ G and h2 ∈ R j for some j ≥ 1, and if g is a
neighbour of h, then

g2 ∈ R j−1 or g2 ∈ R j or g2 ∈ R j+1

Proof Let i be the distance of h from I , i.e. h ∈ Di . Then,
as h2 ∈ R j , j > i by Lemma 3.1 (i). As g is a neighbour of
h, g ∈ Di or g ∈ Di−1 or g ∈ Di+1.
Case g ∈ Di .
As h, g ∈ Di are neighbours they are both ec-nodes. Thus,
by Lemma 3.1 (iii), h2 ∈ Ri+1 and g2 ∈ Ri+1. Therefore,
j = i + 1 and g2 ∈ R j .
Case g ∈ Di−1.
If g ∈ R j which is a later round-set than Ri−1 as j > i then,
as g1 ∈ Di−1 ⊆ Ri−1 by Lemma 3.1 (i) is in the earlier
round-set Ri−1, it must be the case that g2 rather than g1

belongs to R j . If g /∈ R j and g2 /∈ R j−1 then g /∈ R j−1 as
we know that g1 ∈ Ri−1 which is an earlier round-set than
R j−1 as j > i . As h ∈ R j , h sends to g in round j + 1 and
so g ∈ R j+1 which is a later round-set than Ri−1 as j > i .
As g1 ∈ Ri−1, it must be the case that g2 ∈ R j+1.
Case g ∈ Di+1, g does not send to h in round j.
In this case, as h ∈ R j , h sends to g in round j + 1. Thus,
g ∈ R j+1 which is a later round-set than Ri+1 as j > i and
therefore, as g1 ∈ Di+1 ⊆ Ri+1 by Lemma 3.1 (i), it must
be the case that g2 ∈ R j+1.
Case g ∈ Di+1, g sends to h in round j.
In this case g ∈ R j−1. We show that g1 /∈ R j−1. Assume,
on the contrary, that g1 ∈ R j−1. Then, by Lemma 3.1 (i),
g1 ∈ Di+1 ⊆ Ri+1 and thus j − 1 = i + 1. Hence, by
Lemma 3.1 (i), h1 ∈ Di ⊆ Ri = R j−2. Also, g /∈ R j−3 as
g1 ∈ R j−1. To summarize:

g /∈ R j−3, h1 ∈ R j−2, g1 ∈ R j−1, h2 ∈ R j

So, h sends to g in round j − 1 and g sends to h in round
j by the case assumption. This is a contradiction. Thus, the
assumption that g1 ∈ R j−1 is false and, as g ∈ R j−1, it
follows that g2 ∈ R j−1. This completes the proof. �


Corollary 3.6 Let (G, E) be a graph and I ⊆ G be a set of
initial nodes. Then (G, E) has an ec-node if and only if all
nodes are in exactly two round-sets.

Proof Follows from Lemmas 3.2 and 3.5. �

We can now give bounds for time to termination of flooding
for graphs that have ec-nodes.

Theorem 3.7 Let (G, E) be a graph that is not I-bipartite
and let d be the diameter. Then, flooding terminates in round
j where j is in the range

e(I ) < j ≤ e(I ) + d + 1. (9)

Proof To show (9),we show that flooding terminates in round
j where

e(I ) < j ≤ min{δ(I , gec) + d + 1 : gec ∈ Gec}. (10)

If (G, E) is not I-bipartite it has an ec-node gec, by Def-
inition 4 (iv). By Lemma 3.1 (iii), g2ec ∈ Rk where k =
δ(I , gec) + 1. Let h be an arbitrary node in G other than gec.
Then, there is a path

h0 = gec −→ h1 −→ . . . −→ hl = h

where l ≤ d. By repeated use of Lemma 3.5,

h21 ∈ R j1 where k − 1 ≤ j1 ≤ k + 1,
h22 ∈ R j2 where j1 − 1 ≤ j2 ≤ j1 + 1,
. . .

h2l ∈ R jl where jl−1 − 1 ≤ jl ≤ jl−1 + 1.

Thus,

h2l ∈ R jl where k − l ≤ jl ≤ k + l (11)

Put j = jl . From (11), as k = δ(I , gec) + 1 and as l ≤ d,

h2l ∈ R j where j ≤ δ(I , gec) + d + 1

and, as gec is any ec-node,

h2l ∈ R j where j ≤ min{δ(I , gec) + d + 1}

As (G, E) is not I-bipartite, j > e(I ) by Theorem 3.4 and so
(10) holds. Then, (9) follows from (10) easily as δ(I , gec) ≤
e(I ) by Definition 4 (iii). �

Figure 2 shows that the bounds are sharp. Sharpness of the
upper bound is shown by the graph on the left in which
I = {g0}, there are k − 1 nodes between g0 and gk , k − 2
nodes between g′

1 and g′
k and between g′′

1 and g′′
k . The graph

terminates in 3k + 1 = k + 2k + 1 = e(I ) + d + 1 rounds
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Fig. 2 Sharpness of bounds

for all k ≥ 1. The slightly more complicated graph on the
right in which I = {g0}, there are k − 1 nodes between h0
and hk , h′

0 and h
′
k , g0 and gk and between g0 and g

′
k , demon-

strates sharpness of the lower bound and shows that flooding
can terminate in a non-bipartite graph before round d. For all
k ≥ 1, e(I ) = 2k + 2, d = 3k + 3 and flooding terminates
in 2k + 3 rounds and so e(I ) + 1 = 2k + 3 < d.

Theorem 3.8 Let (G, E) be a graph and I ⊆ G be a set of
initial nodes such that every node in I has a neighbour in I .
Then, flooding terminates in round e(I ) + 1.

Proof As all nodes in I have neighbours in I they are all ec-
nodes. Let h be an arbitrary node in G. Then, by Definition 4
(iii), there is a path

h0 = gec −→ h1 −→ . . . −→ hl = h, (12)

where 0 ≤ l ≤ e(I ), from some node gec ∈ I to h. By
Lemma 3.1 (iii), g2ec ∈ Rk where k = δ(I , gec) + 1 =
0 + 1 = 1. By repeated use of Lemma 3.5, arguing as in
Theorem 3.7 putting k = 1 in (11), we have that

h2 = h2l ∈ R jl where jl ≤ k + l ≤ 1 + e(I ). (13)

Thus, termination occurs in round e(I ) + 1 at the latest. If
h is a node that is a distance e(I ) from I , h1 ∈ Re(I ) and
so we can infer from (13) that h2 ∈ Re(I )+1. It follows that
termination occurs in round e(I ) + 1 precisely. �

The condition that all nodes in I have neighbours in I , in
Theorem 3.8, for termination in the lower bound (for non
I-bipartite graphs) number of rounds e(I ) + 1 is useful for
identifying possible examples of interest such as when the
subgraph induced by I is connected. Whilst sufficient, the
condition is not necessary. In the graph on the left in Fig. 3,
I = {g0, g2k, h0} and there are 2k−1 nodes between g0 and
g2k and h0 and h2k . Clearly, g2k does not have a neighbour
in I yet flooding terminates in 2k + 1 = e(I ) + 1 rounds for
all k ≥ 1. However, relaxing the connectedness condition to
I only having a pair of neighbouring nodes is not, in general,
sufficient for round e(I ) + 1 termination. The graph on the
right in Fig. 3 has I = {h0, h1, g0} and 2k nodes between g0
and g2k+1. Flooding terminates in round2k+3, but e(I )+1 =
(k + 1) + 1 = k + 2 for all k ≥ 0.

The clear separation in the termination times of bipartite
and non-bipartite graphs, in the case of a single initial node,

Fig. 3 Conditions for round e(I ) + 1 termination

does not carry over directly to the general case ofmultiple ini-
tial nodes. For the general case, it is the presence or otherwise
of ec-nodes that is the distinguishing property and we have
defined I-bipartite graphs for this purpose. Unlike the single
node case, having ec-nodes or not in the multiple initial node
case cuts across the bipartite/non-bipartite boundary, i.e. I-
bipartite graphsmay not be bipartite and bipartite graphsmay
not be I-bipartite. Theworkon thek-floodingproblem in [32],
looking at finding a set of sources of size k that minimizes
termination time, offers a different perspective on amnesiac
flooding termination times.

4 Loss of edges and delays at edges

4.1 Loss of edges

In the case where edges and nodes are lost during flooding,
a message transiting along an edge may never arrive at its
target node. The termination result Theorems 2.1 assumes
that the graph (G, E) is fixed. Termination still holds if the
graph loses edges and nodes.

Theorem 4.1 Suppose that

(G0, E0), (G1, E1), . . . , (Gi , Ei ), (Gi+1, Ei+1), . . .

where Gi ⊇ Gi+1, Ei ⊇ Ei+1 for all i ≥ 0. (14)

is a sequence of graphs where nodes or edges may be lost
over time expressed in terms of rounds. If I ⊆ G0 is a set of
initial nodes from which flooding is initiated in round 0 and
progresses in subsequent rounds along the operational nodes
and edges, and round-sets are defined as in Definition 2, then
any node g ∈ G0 is contained in at most two distinct round-
sets.

Proof The proof of Theorem 2.1 for fixed (G, E) assumes
the contrary of the theorem, and infers a contradiction by
examining a node in a round-set which had an occurrence
in a previous round-set. The proof requires that the edges
present in the later round were present in the earlier round.
So, the proof of Theorem 2.1 is also valid for the case that
edges are lost, i.e.

(G, E0), (G, E1), . . . , (G, Ei ), (G, Ei+1), . . .

where E0 ⊇ E1 ⊇ . . . ⊇ Ei ⊇ Ei+1 ⊇ . . .
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Allowing loss of nodes follows easily. Given a graph (G, Ei )

and a node g ∈ Gi , let E
g
i be the edges in Ei not incident with

g. Then, (G \ {g}, Eg
i ) is the subgraph of (G, Ei ) induced

by the subset of nodes G \ {g} and (G, Eg
i ) is the subgraph

of (G, Ei ) in which g is isolated, i.e. with the same nodes
as (G, Ei ) but with edges incident with g removed. Clearly,
flooding terminates on the sequence of graphs with mono-
tonically decreasing sets of edges:

(G, E0), (G, E1), . . . , (G, Eg
i ), (G, Eg

i+1), . . .

if and only if it terminates on the sequence of graphs where
the isolated g is removed:

(G, E0), (G, E1), . . . , (G \ {g}, Eg
i ), (G \ {g}, Eg

i+1), . . .

It follows, by inductively removing multiple nodes that
become isolated, that flooding terminates on any sequence
of graphs of the form (14). �

It is worth noting that the proof of Theorem 4.1 does not
require the graph to remain connected, so flooding terminates
in all parts of the graph if edge loss results in a graph that
becomes disconnected. Of course, in that case, some parts of
the graph may not receive the message at all.

4.2 Fixed delays at edges

Here, we consider cases when messages take a fixed number
of rounds greater than 1 to transit an edge. Flooding proceeds
with respect to a global clock, the non-negative integer ticks
of which define rounds. Flooding is initiated in round 1 when
initial nodes send to all neighbours. Message transit time is
given in terms of the number of ticks of the clock taken. Such
flooding does not correspond to single-roundmessage transit
simply by adding nodes to an edge. Consider the example in
Fig. 4 below. We have weighted graphs with edges labelled
by positive integers representing a fixed message transit time
in both directions. The graph on the left has message tran-
sit along edge {g1, g2} taking 2 rounds. The graph on the
right adds a node g3 along {g1, g2} so that all edges have
message transit time of 1 round. The behaviour of flooding
in the two graphs is different - the graph on the left termi-
nates in 4 rounds whereas the graph on the right terminates
in 2. A more substantial example below shows that message
transit of more than one round along an edge may lead to
non-termination of flooding. In Fig. 5 arrowheads at nodes
indicate a message being received at a node. Arrowheads not
at nodes (as in round 4 of Fig. 5) indicate messages in tran-
sit. The arrowheaded graph in a round, which we refer to as
the ‘flooding state’, determines how flooding proceeds. As
the flooding states in rounds 3 and 8 are identical, flooding
does not terminate. The graph in Fig. 5 is not bipartite. Fig-
ure 6 gives an example of a bipartite graph with delays at

Fig. 4 Edge delay and additional nodes

Fig. 5 Non-termination of flooding with fixed edge delays

Fig. 6 Non-terminating
fixed-delay bipartite example

edges, over which flooding does not terminate. In the exam-
ple, which has two edges with delays, it can be checked that
the flooding states for rounds 5 and 13 are identical and so
flooding does not terminate. If there is only one initial node
and a delay at a single edge in bipartite graphs, flooding does
terminate.

Definition 5 Let (G, E) be an edge-weighted graph, g0 ∈ G
be an initial node, e = {x, y} ∈ E be an edge with weight
τ where τ is an integer greater than 1 and let all other edges
be of weight 1. Then, the graph (G+, E+) is obtained from
(G, E) by adding τ − 1 ticks along e as nodes, i.e.

G+ = G ∪ {t1, . . . , tτ−1},
E+ = (E \ {x, y}) ∪ {{x, t1}, {t1, t2}, . . . , {tτ−1, y}}.

So, (G+, E+) has all edges of duration 1. The distance func-
tion of (G+, E+) is denoted δ+. If g, g′ ∈ G+, clearly
δ+(g, g′) ≤ δ(g, g′)+τ −1, where δ is the distance function
of the unweighted version of (G, E). Thus, the diameter d+
of (G+, E+) is at most d + τ − 1, where d is the diameter
of unweighted (G, E).

Theorem 4.2 Let (G, E) be a bipartite graph, g0 ∈ G be an
initial node, e = {x, y} ∈ E be an edge, and τ be an integer

123



202 W. Hussak, A. Trehan

Fig. 7 Odd-delay edge e transited in one direction

Fig. 8 Odd-delay edge e transited in both directions

greater than 1. Then flooding initiated from g0, in which a
message in transit along e takes τ rounds and 1 round along
any other edge, visits every node at most twice and completes
in not more than 2d + τ − 1 rounds where d is the diameter
of (G, E).

Proof We distinguish two cases according to whether τ is
odd or even. In the figures below hollow points signify tick
nodes in (G+, E+) corresponding to ticks of the global clock
as the message travels along e.
τ odd.
Firstly, suppose that themessage arrives at the node at one end
of e and travels along e for an odd number of rounds without
encountering the message travelling in the opposite direction
as depicted in Fig. 7. Flooding corresponds to normal flood-
ing over the bipartite graph (G+, E+) obtained from (G, E)

as in Definition 5, where every node is visited once. The only
difference with flooding where messages take one round to
transit e is that the message transit along e takes an extra
τ − 1 rounds and so the time to termination may increase
from a maximum of d rounds for the bipartite (G, E) with
normal transit at e to d + τ − 1 which is less than the bound
2d + τ − 1 in the theorem statement. Secondly, suppose that
messages pass both of the end nodes of e travelling in oppo-
site directions and meet along e. The difference in the round
numbers that the message arrives for the first time at x and at
y to continue along e, is clearly odd as x and y are in different
partite sets in the bipartite (G, E). Thus, the opposing mes-
sages arrive at a tick node t along e for the first time in the
same round as in Fig. 8. In Fig. 8, the messages passes both
of the end nodes of e travelling in opposite directions, ‘meet’
at a tick t in round 3 but then continue along their journeys in
their respective directions. Thus, a tick node t behaves like an
ordinary additional node, except whenmessages travelling in
opposite directions meet at t . We call such a t in (G+, E+) a
sink-tick node. If t was an ordinary node then, as it receives
messages from both neighbours, the messages would go no
further. If t is a sink-tick node we need it to reflood the mes-

sage. So, if τ is odd, we can simulate flooding over (G, E)

as a flooding over (G+, E+) in which any sink-tick node
t refloods the message to its neighbours on receiving the
message. Then, if the first flooding emanating from a sink-
tick node t does not interact with the flooding emanating
directly from g0, flooding over (G, E) corresponds to two
floodings over (G+, E+) - that initiated from g0 and that
initiated from t . As (G+, E+) is bipartite each of these two
floodings visits a node once and terminates, and so flooding
over (G, E) delivers the message to each node twice. So,
it suffices to show that the flooding over (G+, E+) initiated
from g0 does not interact with the reflooding from a sink-tick
node t .

Let j be the round that the flooding from g0 first reaches
a sink-tick node t i , where 1 ≤ i ≤ τ −1, and assume, on the
contrary, that k > j is the first round that the reflooding from
ti interacts with the flooding from g0. Then, there are two
sequences of sends of themessage from g0 and ti respectively

g0 → g1 → . . . → gk (15)

and

g0 → h1 → . . . → h j−1 → h j → h j+1 → . . . → hk

(16)

where gk = hk , subscripts indicate the round a node receives
a message and in (16) h j = t i refloods. We note that
in (15) none of the nodes g j , . . . , gk can be a tick node
as flooding from g0 of the bipartite (G+, E+) will only
visit each node once (by Lemmas 3.2 and 3.3) and the tick
nodes are visited earlier before the first visit of the sink-tick
node. On the other hand, the reflooding from h j in (16) vis-
its tick nodes until it reaches either x or y, say x occurs
after h j . One of x or y must also occur before h j . We can
choose the sequence g0 → . . . → h j−1 such that it has x ,
i.e.

g0 → . . . → hl1 = x → . . . → h j = t i → . . .

→ hl2 = x → . . . → hk (0 < l1 < j < l2 < k) (17)

From (17), δ+(g0, gk) = δ+(g0, hk) ≤ k − (l2 − l1) < k,
where δ+ is the graph distance function of (G+, E+). But,
(G+, E+) is bipartite and flooding from g0 only visits nodes
once and so δ+(g0, gk) = k by Lemma 3.1 (i) and (15).
This contradiction means that the flooding from g0 does
not interact with the reflooding from t i and so the net
effect is two separate floodings of the bipartite (G+, E+)

each of which visits every node once and terminates. The
first flooding from g0 on the bipartite (G+, E+) takes not
more than the diameter of (G+, E+) number of rounds,
d − 1 + τ ≤ 2d + τ − 1. The reflooding from the sink-
tick t i starts after t i is reached by the first flooding from
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Fig. 9 Even-delay edge e transited in both directions

g0, which is after at most d + (τ + 1)/2 − 1 rounds, and
then takes at most the same number of rounds to reach every
node in G+, thus terminating by round 2(d + (τ + 1)/2 −
1) = 2d + τ − 1. Therefore, the theorem holds for odd
τ .
τ even.
Here, if messages pass both of the end nodes of e travel-
ling in opposite directions, as depicted in Fig. 9, they do not
meet. Thus, tick nodes in (G+, E+) act like normal nodes
and flooding terminates in the time it takes for (G+, E+) to
terminate. If no cycle in (G, E) contains e, then (G, E) is
two disjoint subgraphs induced by Gx ⊆ G and Gy ⊆ G of
G, where G = Gx ∪Gy , x ∈ Gx , y ∈ Gy and Gx ∩Gy = ∅,
connected by e. The addition of τ − 1 tick nodes along
edge e gives a bipartite graph (G+, E+) where the partite
sets of one of Gx or Gy are reversed. Flooding visits each
node once in the bipartite (G+, E+) and terminates by round
d + τ − 1.

If a cycle in (G, E) does contain e, let gt be any node
in (G, E) and let t also denote the round that gt receives
the message for a second time. We show that t ≤ 2d +
τ − 1. Let C be a cycle in (G, E) containing x and y that
is of smallest length. First of all, we construct a cycle Cgt
which contains x , y, gt and is of length at most 2d in (G, E).
Suppose that the cycle C is oriented in a clockwise fashion
thus:

C = c0(= x) → c1(= y) → . . . → cm → c0

and that δ(x, gt ) ≤ δ(y, gt ). Let

p1 = x → u1 → . . . → uk → gt (k ≥ 0)

be shortest path from x to gt in (G, E). Consider, in turn,
the shortest path from each of the nodes c1, c2, . . . to gt . For
some of these the shortest path to gt may be anticlockwise
along C back to x = c0 and then along the shortest path p1
from x to gt . Choose the least i with 1 ≤ i ≤ m − 1 which
has its own shortest path (possibly clockwise along C) p2 to
gt

p2 = ci → v1 → . . . → vl → gt (l ≥ 0, v1 �= ci−1)

The cycle Cgt is then defined as the path p1 backwards
from gt to x followed by the arc of C clockwise from
x = c0 to ci and then followed by the path p2 back to

g0. (It is possible that the paths p1 and p2 converge to
the same node earlier than gt in which case Cgt will be a
closed walk, starting at gt and returning to gt after trac-
ing all the paths, which is comprised of a cycle with a
path attached from the cycle to gt .) As the path from ci−1

to c0 = x anticlockwise along C and then along p1 to
gt is a shortest path from ci−1 to gt , it follows that this
path is of length ≤ d. The path p

2
from ci to gt is ≤ d.

The nodes ci−1 and ci are neighbours. Thus, the length of
Ggt in (G, E) is at most d + d + 1. As (G, E) is bipar-
tite the length of Cgt is ≤ 2d. So, Cgt contains x , y,
gt and is of length at most 2d in (G, E). Therefore, in
(G+, E+),

Cgt contains neighbouring ec-nodes gec and hec

and is of length ≤ 2d + τ − 1 (18)

By (18) we now construct a cycle Cg0 from two sequences
of sent messages s1 and s2:

s1 = w0(= g0) → w1 → . . . wr (= gec) → wr+1(= hec)

s2 = z0(= g0) → z1 → . . . zr (= hec) → zr+1(= gec)

and define the direction along the cycle to be clockwise if
gec is visited before hec. Let w = w j and z = z j be
nodes in s1 and s2 respectively that belong to Cgt such
that all nodes after w in s1 and z in s2 belong to Cgt .
Clearly, Cg0 is a cycle (closed walk if w = z) of length
at most 2d in (G, E) and 2d + τ − 1 in (G+, E+). Now, in
order to show that there is a sequence of sends that deliver
the message for a second time to gt no later than round
2d + τ − 1, by Theorem 3.7 it suffices to find a path from
g0 to gt that visits neighbouring ec-nodes and is of length
less than or equal to 2d + τ − 1. There are two cases to
consider:
(i) gt is nearer to gec than to hec. The two left-hand fig-
ures in Fig. 10 depict two possible subcases where gt is
between z and w and where it is not. If gt is between z
and w, an anticlockwise path from g0 along Cg0 past hec and
gec up to w and then along Cgt until gt is reached is a path
of length less than or equal to the maximum length of one
revolution of either of the cycles Cg0 or Cgt which is less
than or equal to 2d + τ − 1. This is because the arc that
is not traversed of the larger cycle results in a correspond-
ing smaller arc of the smaller cycle to be traversed. (Fig. 10
suggests Cg0 is larger than Cgt but it could be drawn the
other way around.) If gt is not between z and w then an anti-
clockwise path from g0 along Cg0 past hec and gec up to gt
suffices.
(i i) gt is nearer to hec than to gec. This case is a mirror
image of (i) with clockwise instead of anticlockwise paths
being used. The right-hand figures in Fig. 10 illustrate this.

�
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Fig. 10 Even-delay edge e termination time bound

Fig. 11 Sharpness of
Theorem 4.2 bound

The 2d + τ − 1 bound in Theorem 4.2 is sharp for general
bipartite graphs, as the example in Fig. 11 has, for all k1, k2 ≥
2, k2 even, d = k1, τ = k2 and termination occurs in round
2d + τ − 1 = 2k1 + k2 − 1.
Theorem 4.2 restricts flooding to one initial node and one
delaying edge. However, if (G, E) is a cycle (not necessarily
bipartite), then flooding terminateswith any number of initial
nodes and delaying edges.

Theorem 4.3 Let (G, E) be an edge-weighted cycle in which
(possibly different) positive integer edge weights represent
duration of message transit in rounds along edges and I ⊆ G
be a set of initial nodes. Then, flooding initiated from initial
nodes in I terminates in not more than the weight σ of (G, E)

number of rounds, where the weight σ of (G, E) is the sum
of the weights of the edges.

Proof Let (G+, E+) be the cycle obtained from (G, E) by
adding tick nodes along all edges of greater weight than 1
in a similar way to Definition 5. Denote successive vertices
of G+, starting at an arbitrary vertex in I , by the integers
{0, . . . , σ −1}, where σ is the weight of the the cycle (G, E),
so thatG+ = G∪T where T is the set of tick nodes. We will
assume throughout that arithmetic is modulo σ and say that
a message sent from v ∈ G+ to v + 1 ∈ G+ is clockwise,
and one sent from v ∈ G+ to v − 1 ∈ G+ is anticlockwise.
Each initial node v ∈ I will generate a sequence of sends of
the message in clockwise and anticlockwise directions:

v → v + 1 → . . . , v → v − 1 → . . .

either of which may terminate if they encounter a sequence
in the opposite direction at a node in G in some round. Any
sequence of sent messages is defined by an initial node and
a direction. For v ∈ I , we define positively and negatively
decorated versions, v+ and v− respectively, of v and, corre-
spondingly, positively and negatively decorated versions of
subsets S ⊆ I :

S+ = {v+ : v ∈ S}, S− = {v− : v ∈ S}

Define a relation ∼ on I by:

v ∼ w iff ∃m. v + m = w − m ∧ v + m ∈ G (19)

for v,w ∈ I . Intuitively, v ∼ w means that the clockwise
sequence of sends from v and the anticlockwise sequence
fromw can terminate each other at some node in G if neither
has been terminated earlier.Note that∼ is symmetric because
if v ∼ w then v + m = w − m as in (19) and thus w +
(σ − m) = w − m = v + m(∈ G) = v − (σ − m) and
so w ∼ v. It is clearly reflexive as v + m = w − m implies
w+(−m) = v−(−m). Also, if v ∼ w andw ∼ z then there
existm′,m′′ such that v+m′ = w−m′ andw+m′′ = z−m′′.
Thus, v + (m′ + m′′) = z − (m′ + m′′) and so v ∼ z and
therefore ∼ is transitive. As such, ∼ defines an equivalence
relation on I whose set of equivalence classes we denote by
I.
Next, we define Qi for i ≥ 0:

Qi = {v+ : v ∈ I ∧ v → v + 1 → . . . → v + i}
∪ {v− : v ∈ I ∧ v → v − 1 → . . . → v − i}

to be the set of the positive (versions of) initial nodes from
which the clockwise sequence of sent messages hasn’t ter-
minated before round i , along with the negative (versions of)
initial nodes from which the anticlockwise sequence of sent
messages has not terminated. Clearly, Qi+1 ⊆ Qi . Note that,
Qi may have neither, one or both versions of a particular ini-
tial node depending on whether the corresponding oriented
sequences of sent messages has terminated by round i . How-
ever, as clockwise and anticlockwise sequences are always
terminated inpairs and correspond to initial nodes thatmaybe
different but do belong to the same equivalence class S ∈ I,
the number of positive initial nodes in Qi that belongs to S
is equal to the number of negative initial nodes, i.e.

∀i ≥ 0 ∀S ∈ I. |S+ ∩ Qi | = |S− ∩ Qi | (20)

We now prove that flooding terminates by assuming that
flooding does not terminate and show that this leads to a
contradiction. If flooding does not terminate, flooding yields
a, clockwise say, sequence of sends:

v → v + 1 → . . . → v + σ(= v) (21)

that is not terminated in round σ so that v+ ∈ Qσ . By (20),
there must be a w− ∈ Qσ such that v and w are in the same
equivalence class S, i.e. v ∼ w. It follows, by the definition
of ∼ in (19), that flooding also yields sequences of sends:

v → v+1 → . . . → v+m, w → w−1 → . . . → w−m,

(22)
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Fig. 12 Varying delays at edges non-termination

where m ≤ σ and v +m = w −m and v +m ∈ G. Clearly,
the m in (22) must equal σ , else if m < σ the clockwise
sequence from v is terminated by the anticlockwise sequence
from w in round m which is earlier than round σ and so
flooding would not have yielded sequence (21). On the other
hand, if m = σ , then, by (22), clockwise flooding from v

is terminated in round σ , contrary to our assumption. This
contradiction proves termination occurs by round σ , where
σ is the weight of the graph (G, E). �


4.3 Varying delays at edges

In a general asynchronousmodel,where the delay ofmessage
transit along an edge may vary during the flooding process,
termination is not guaranteed even on the smallest cycle.
Our example is of non-termination over the triangle graph
where an adaptive adversary at a node produces an infinite
sequence of delays at the right times so as to prevent termi-
nation. The adaptive adversary is used just as an example
and non-termination over cycles can arise for any number of
different reasons. Consider the triangle graph in Fig. 12, in
which computation proceeds with respect to a global clock
whose integer ticks are the rounds and the adversary can
decide the delay of message delivery on any edge in any
round. In round 0, b has themessage as the initial node which
is then flooded. Figure 12 illustrates rounds 1-5. Both a and c
send themessage to each other in round 2. In round 3, a sends
the message to b but the adversary makes c hold the message
for one round, indicated by a circled node.After that, in round
4, b and c send the message to each other. In any given round,
the corresponding arrowheaded graph determines in which
ways flooding can proceed. As the arrowheaded graphs in
rounds 2 and 4 are equivalent (by a relation- and adversary-
preserving automorphism), flooding can proceed from round
4 in a similar way as from round 2 with the edges b and a
interchanged and the adversary acting on node c as before.
The repeated adversarial intervention prevents flooding from
terminating.

5 Conclusion

It was previously thought that the stateless version of the ter-
minating stateful synchronous flooding algorithm does not
terminate in general. We have proved that it does terminate
on all graphs and in optimal time. Thus, this amnesiac flood-
ing achieves broadcast and can be used to set up spanning

trees like stateful flooding in almost the same time without
the additional overhead of storing every message required
to achieve termination explicitly. Our work has shown that
there is a clear separation of the times to termination, corre-
sponding to whether the message is received once or twice
by all nodes, in turn depending on whether the (quotient
with respect to the set of sources) graph is bipartite or non-
bipartite. This raises the question of whether this separation
can be exploited to devise distributed procedures to detect the
topology of a graph given distance measures or vice versa.
If an upper bound D on the diameter d is known, a simple
distributed algorithm at nodes to determine whether the net-
work graph is bipartite is for the issuing source node to wait
2D+1 rounds to see if themessage returns. It might also seem
that, conversely, if the graph is known to be bipartite, a dis-
tributed algorithm for determining a bound for the diameter
d is possible given that amnesiac flooding terminates in 2d+1
bounds - a node might measure the time it takes for the mes-
sage to return. However, there are a number of problems to
be overcome. If the graph is bipartite then, for the message
to be returned to the source, the message has to be reflooded
from ‘sink’ nodes which receive the message on all edges
in a single round. This would result in the message possi-
bly being returned to the issuing source node any number of
times. Even if the graph is non-bipartite and a single return
of the message is guaranteed, the issuing node may receive
the message very early on, because of the proximity of an
ec-node, and thereby underestimate d.

When the overhead of storing messages is not a problem,
the main use of amnesiac flooding may be as a process that is
known to terminate in 2d+1 rounds which can be used with
state in distributed algorithms to obtain the diameter.
Open Problem 1. Can the diameter of a graph be obtained/
approximated by a distributed algorithm that uses amnesiac
flooding along with a limited amount of state recording cer-
tain events?

The basic termination result for amnesiac flooding is sig-
nificant for its applicability to arbitrary graphs with unknown
diameters and network topologies. For common known
bipartite topologies such as hypercubes and star networks ter-
mination is clear and the result has less significance, unless
messages take different times to transit along different links.
In the presence of delays even stateful flooding is problematic
as, although the diameter is known, it is not clear how long
messages should be stored. To this end, we have looked at
the termination problem when message transit along an edge
takes more than one round and found that if there is a delay
at only one edge in bipartite graphs then amnesiac flooding
terminates but not in non-bipartite graphs. This means that
if delays at edges do not occur often, and it is unlikely that
there are delays at two edges during a flooding, then termina-
tion will follow in bipartite graphs. Our result is for a single
source. The multi-source case is open.
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Open Problem 2. Does amnesiac flooding from multiple
sources on a bipartite graph, where there is a fixed time of
message transit greater than one round along a single edge,
terminate?
What if there can be delays at more than one edge but that
delays are short-lived? The example in Fig. 5 terminates if
the message transit time along an edge with a delay returns
to normal once the edge becomes clear of messages for the
first time.
Open Problem 3. For which class of bipartite graphs, with
fixed-delays at multiple edges, does amnesiac flooding from
a single source terminate if the message transit time along an
edge with a delay returns to normal once the edge becomes
clear of messages for the first time?
Our example with delays at edges have assumed that the
delayed transit time is in both directions. Even in the non-
bipartite example of Fig. 5, if the delay is in only one
direction, amnesiac flooding terminates.
Open Problem 4. For which class of graphs with directional
fixed-delays at edges does amnesiac flooding from a single
source terminate?
The only general multiple-source and multiple-edge fixed-
delay termination result we have is for cycles. Can this be
extended to cylinder grid graphs, i.e. products of cycles with
line graphs, or any class of tori?
Open Problem 5. Suppose that (G1, E1) is a cycle and
(G2, E2) is a line graph. Is multiple-source amnesiac flood-
ing on the product graph (G1, E1) × (G2, E2), where there
are fixed delays at multiple edges, guaranteed to terminate?
What if (G2, E2) is an acyclic graph or a cycle graph?

As a final note, one can see processes such as random
walks, coalescing random walks and diffusion as probabilis-
tic extremal variants of flooding. Are there any implications
or connections of our results on these or intermediate proba-
bilisticmodels?What about randomised variants of amnesiac
flooding?
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