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1 Introduction

In this paper, we investigate the decision-theoretic foundations for likelihood-ratio 
dominance and (reverse) hazard-rate dominance relations. Specifically, we demon­
strate that likelihood-ratio dominance is closely related to the weighted utility the­
ory. The weighted utility theory (Chew, 1983) is an important generalization of the 
expected utility theory. By replacing the controversial independence axiom with a 
weaker one, called weak substitution axiom, one obtains the weighted utility theory, 
which accommodates various violations of the expected utility model, such as the 
Allais’ paradox. The weighted utility admits a convenient functional representation: 
there exists a weight function that assigns weights to different prizes and a monotone 
utility function over prizes such that a lottery with higher weighted utility is pre­
ferred. The weight function could be used to capture a decision maker’s perceptive 
distortion of the likelihood of different prizes when confronted with risk.

We find that for two lotteries F and G, F is preferred to G under every weighted 
utility if and only if, F likelihood-ratio dominates G. The prize space can be either 
continuum or finite. The result provides a behavioral interpretation of the well- 
known likelihood-ratio dominance relation. Our result contributes to the literature 
that studies the connection between utility theory and stochastic dominance. Early 
literature (e.g., Quirk & Saposnik, 1962; Hadar & Russell, 1969) focuses on the first­
and second-order stochastic dominance and expected utility. However, the behav­
ioral foundation of the likelihood-ratio order has not been studied until Mihm & Siga 
(2021). In Mihm & Siga (2021), the authors provide a different characterization of 
the likelihood-ratio order using the betweenness preference relation (Dekel, 1986). 
They show that two lotteries F and G over a finite set of prizes satisfy F likelihood­
ratio dominates G if and only if, F is preferred to G under every betweenness pref­

erence relation. It is known that the weighted utility theory generates a strictly 
smaller class of preferences than the betweenness preferences. In relation to Mihm 
& Siga (2021), our result implies that one can guarantee likelihood-ratio dominance 
by using a strictly smaller class of preferences. Moreover, weighted utility allows for 
a more explicit functional representation than the betweenness preferences.

Weighted utility theory also provides a framework in which optimism/pessimism 
of the decision maker (henceforth, DM) concerning risk can be conveniently modeled. 
According to Karni & Schmeidler (1991), a DM is optimistic/pessimistic if he/she 
has an increasing/decreasing weight function over prizes. It means that when faced 
with a risky prospect (i.e., a lottery), an optimistic/pessimistic DM subjectively 
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distorts the chances of different prizes, and bases his/her decision on the distorted 
lottery. The weight function may capture such a distortion: an optimistic DM 
overestimates the chances of good prizes and underestimates those of the bad prizes. 
A pessimistic DM would distort the chances in the opposite way.

The second subject we discuss is how optimism and pessimism relate to stochastic 
orders. We find that every optimistic (resp., pessimistic) DM prefers one lottery F 
to another one G if and only if, F hazard-rate dominates (resp., reverse hazard­
rate dominates) G. The former statement is phrased in behavioral terms, while 
the latter in probabilistic ones. Our result connects these different notions and 
therefore provides a behavioral foundation for certain types of stochastic dominance, 
such as (reverse) hazard-rate order. Hazard-rate dominance and reverse hazard­
rate dominance are stronger than first-order stochastic dominance and weaker than 
likelihood-ratio dominance. To the best of our knowledge, the behavioral aspect of 
hazard-rated dominance and reverse hazard-rate dominance has not been studied in 
the previous literature.

Optimism and pessimism have been considered in other settings as well. Re­
lated to our approach, the rank-dependent expected utility theory (Quiggin, 1982; 
Yaari, 1987) provides a different way to model optimism and pessimism. Instead of 
focusing on the weight function, the rank-dependent expected utility theory focuses 
on the transformation functions that apply directly to the CDFs of lotteries. In 
the rank-dependent expected utility framework, pessimism and optimism refer to 
the convexity and concavity of the transformation function, respectively. Generally 
speaking, convex/concave transformations of CDFs do not preserve the likelihood­
ratio dominance relation and (reverse) hazard-rate dominance relation.1 By con­
trast, optimism/pessimism defined via the weight function does have the property 
of preserving the likelihood-ratio dominance relations.

1More precisely, let F and G be the CDFs of two lotteries, and let ^ : [0,1] ^ [0,1] be an 
increasing convex function. If F likelihood-ratio dominates G, then it is not necessarily true that 
^(F) likelihood-ratio dominates ^(G). See Section 4 for further discussions.

Preserving the likelihood-ratio dominance relation is a desirable property in the 
study of conditioning and belief updating. This is because if two prior beliefs satisfy 
the likelihood-ratio dominance relation, then any posterior beliefs conditional on an 
event with positive probability (such as a history of noisy signals about the state of 
nature) will also satisfy the same relation. This property ensures that the process 
of updating beliefs does not result in a preference reversal. For more examples of 
the applications of this likelihood-ratio dominance preservation property, refer to 
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Bikhchandani et al. (1992) and Section 5 of our working paper version Lehrer & 
Wang (2022).

The remaining part of the paper is organized as follows. Section 2 discusses 
several useful and well-known properties of likelihood-ratio dominance and (reverse) 
hazard-rate dominance. In Section 3, we provide a decision-theoretic foundation 
for likelihood-ratio dominance by establishing its connection to the weighted utility 
theory. We then demonstrate in Section 4 that hazard-rate and reverse hazard-rate 
dominance relations are related to optimistic and pessimistic attitudes towards risk, 
respectively. Section 5 concludes. Omitted proofs can be found in the Appendix.

2 A Background on Stochastic Dominance

Likelihood-ratio Dominance. Consider two random variables on R and let F 
and G be their cumulative distribution functions (CDF). We say that F likelihood­

ratio dominates G, and write F ^Lr G, if the probability measures induced by F 
and G have densities f and g (Radon-Nikodym derivatives), respectively, w.r.t. some 
dominating measure (not necessarily the Lebesgue measure) such that f (x1)g(x2) > 

f(x2)g(x1), for any x1 > x2.
Note that this definition applies not only to continuous or discrete distributions, 

but also to general distributions that might have atoms. In fact, if we let PF and 
PG be the probability measures induced by F and G, respectively, then they are 
absolutely continuous2 w.r.t. PF + PG (Proposition 3.11, Folland, 1999). It is 
well-known that likelihood-ratio dominance is stronger than first-order stochastic 
dominance (FOSD).

2A measure v is absolutely continuous w.r.t. another measure ^ if for any measurable set A, 
^(A) = 0 implies v(A) = 0.

The following proposition gives a few well-known conditions that are equivalent 
to likelihood-ratio dominance, expressed in terms of CDFs. They are used subse­
quently to derive some key results (e.g., Proposition 4).

Proposition 1. [Whitt, 1980; Shaked & Shanthikumar, 2007]. The following con­
ditions are equivalent to F ^LR G:

1. [F (x1 ) - F(x2 )][G(x1 ) - G(x3)] > [F (x1 ) - F(x3)][G(x1 ) - G(x2 )] for any 
x1 > x2 > x3;
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2. F|A ^FOSD G|A for any measurable set A with a positive probability w.r.t. 
both F and G;

Condition 1 allows us to express LRD in terms of distribution functions. It 
implies a graphical property of the likelihood-ratio dominance: If F ^LR G, then 
there is a convex function ^ : [0,1] ^ [0,1] such that F can be obtained from G via 
the convex transformation ^, i.e., F = ^ ◦ G. Figure 1 depicts the graph of such a 
transformation ^. Convexity implies that if we take any two points A and B on the 
graph of ^, then the line segment that connects A and B lies above ^. Condition 2 
is the well-known uniform conditional stochastic order due to Whitt (1980).

Figure 1: The transformation ^ s.t. F(x) = ^(G(p)) when F ^LR G

F ^LR G also implies a certain absolute continuity relation between the proba­
bility measures PF and PG. Let x := inf{x G R|F(x) > 0} and let D := (x, +to).

Proposition 2. If F ^Lr G, then Pg(^|D) is absolutely continuous w.r.t. PF(-|D). 
Moreover, the Radon-Nikodym derivative dPG^D) is non-increasing, except on a set 
of measure 0 w.r.t. PF(-|D).

The proposition holds when x is finite and when x = —to. The proposition 
implies that if F ^Lr G, then in the interior of the support3 of F, an atom of G 
must also be an atom of F. For instance, in Figure 1, x0 is an atom of both F and 
G. There are examples where G has an atom at or before x, which is not an atom 

3The support of a probability measure is the smallest closed set with measure 1.
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of F. For instance, consider F and G with support [0,1], where F(x) = x, x G [0,1] 
{1 if = 0

2’+ 2x, if x e«i, 1].

(Reverse) Hazard-Rate Dominance. Consider two CDFs F, G, and let f , 
g be their Radon-Nikodym derivatives w.r.t. some common dominating measure, 
not necessarily the Lebesgue measure (cases in which F and G have atoms are 
also included). We know that F hazard-rate dominates G (written F ^Hr G) if 
fx < 1 gG(x). Similarly, F reverse hazard-rate dominates G (written F ^RHR G) 
if f(x) > g(x) if F(x) — G(x).

Similar to LRD, hazard-rate dominance (HRD) and reverse hazard-rate dom­
inance (RHRD) also have equivalent conditions phrased in terms of CDFs. The 
following result, which is the counterpart of Proposition 1, presents two such equiv­
alent conditions.

Proposition 3. [Shaked & Shanthikumar, 2007]. The following conditions are 
equivalent to F ^HR G (resp., F ^RHR G).

1. for any x1 > x2, [1 — F(xi)][1 — G(x2)] — [1 - G(x1)][1 — F(x2)] (resp., 
F(xi)G(x2) — G(xi)F(x2) );

2. for any x such that PF((x, to)) > 0 and PG((x, to)) > 0, F| (p, to) ^fosd 
G|(p, to) (resp., when PF((—to, x]) > 0 andPg((—to, x]) > 0, F|(—to, x] ^FOSD 

G|(—to, x]).

It is important to note that the second condition of Proposition 3 imposes addi­
tional restrictions on the sets being considered compared to Proposition 1. Conse­
quently, the property of HRD does not imply the property of RHRD, and vice versa. 
In fact, both HRD and RHRD, individually or together, are weaker conditions than 
likelihood ratio dominance (LRD).

3 Weighted Utility and LRD

Famous stochastic dominance relations, such as FOSD and second-order stochastic 
dominance (SOSD), admit behavioral equivalent conditions expressed in terms of 
utility theory. It is well known that FOSD is related to the expected utility theory: 
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Quirk & Saposnik (1962) and Hadar & Russell (1969) show that a lottery F first- 
order stochastically dominates another lottery G, if and only if, under every expected 
utility function, F is preferred to G. In other words, F ^FosD G if and only if, 
EF (u) > Eg(u) for any increasing function u. Similarly, SOSD is related to risk 
aversion: A lottery F second-order stochastically dominates another lottery G if 
and only if, for every risk averse DM, F is preferred to G. More recently, Mihm & 
Siga (2021) made the insightful discovery that LRD is related to the betweenness 

preference developed by Chew (1983) and Dekel (1986). Specifically, they show that 
F ^LR G if and only if, F is preferred to G for every betweenness preference.

In this section, we show that Whitt (1980)’s uniform conditional stochastic order 
(condition 2 of Proposition 1) conveniently implies the following characterization of 
the LRD order that can be interpreted as comparison of wealth distributions in 
terms of weighted utility in Chew (1983).4 The proof is relegated to the Appendix.

4 To the best of our knowledge, this characterization has not been stated and used explicitly in 
the literature. But a similar characterization for HRD and RHRD is known. It is due to Caperaa 
(1988). See Proposition 6.

5 By increasing, we mean weakly increasing.

Proposition 4. Let F and G be two distribution functions that concentrate on some 

interval J of R. Then, F ^LR G if and only if, for every continuous and strictly 
increasing function u and every continuous, positive function w on J, we have

J uw dF J uw dG 
RJ w dF — RJ w dG ,

(1)

whenever the integrals exist.

Proposition 4 requires the functions u and w to be continuous. However, it 
should be noted that the “only if” direction of the proposition can be generalized. 
Specifically, if F ^Lr G holds, then it is true that Eq. (1) holds for every in- 
creasing5 function u and non-negative w, provided that the integrals exist and the 
denominators are nonzero.

Another way to view the equivalence condition is as follows. Take any positive 
function w. Define two new CDFs, F(p) := EF' "'1,,/,p]) and G(p) := EG(W1^,p]). 

Then for any increasing and measurable function u, Ef(u) > Eg (u), or F ^FosD 

G. It means that first-order stochastic dominance is preserved under change of 
measure. In the environment of Bayesian learning, this characterization also has 
natural applications, since the posterior beliefs and conditional expectations can be 
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expressed in the form E/F^(uw)), where u and w are functions with certain properties. 
For an application, see Bikhchandani et al. (1992) and our working paper version 
Lehrer & Wang (2022).

Proposition 4 has a natural connection with the weighted utility theory (see, e.g., 
Chew, 1983; Chew, 1985) that generalizes the expected utility theory by replacing 
the independence axiom with a weaker one called “weak substitution axiom”.6 Let 
J C R be an interval (the space of prizes). Denote by A J the set of all probability 
distributions (lotteries) on J. Chew (1983) presents a representation result for a 
preference relation ^ on A J that satisfies the axioms for weighted utility theory: 
There exists a continuous function u : R ^ R that is strictly increasing on J and a 
continuous function w : R ^ R that is positive on J such that ^ can be represented 
by the functional (the weighted utility function) Vu,w : AJ ^ R defined by

6 The weak substitution axiom says that for two lotteries F and G, F ^ G implies that for any 
^ € (0,1), there exists y G (0,1) such that for any other lottery H, ^F + (1 — p)H ^ yG + (1 -y)H■

uw dF
V^w (F) = J-----  . (2)

J w dF

When w(-) is a constant, VU,w reduces to the standard expected utility function. 
Note that the functional form of the representation is exactly the same as Eq. (1). 
Hence Proposition 4 yields the main result of this section.

Theorem 1. Let F and G be two lotteries in AJ. Then F ^Lr G if and only if, 
for every weighted utility function Vu,w, Vu,w (F) > Vu,w (G).

Theorem 1 therefore provides a decision-theoretic foundation for LRD. Figure 
2 is an illustration of the connection between likelihood-ratio dominance and the 
weighted utility. Consider the case with three prizes {x1 , x2, x3}, where x1 and x3 

are the worst and best prizes, respectively. Suppose we fix a lottery F in the simplex. 
The set of lotteries that likelihood-ratio dominates F corresponds to the gray area 
above F , and the set of lotteries dominated by F in the sense of likelihood-ratio 
is the gray area beneath F . Now consider the class of weighted utility functions. 
Clearly, the indifference curves are linear. In addition, Chew (1989) shows that 
all indifference curves intersect at the same point outside the simplex. Indifference 
curves closer to x3 correspond to higher utility levels. To see why greater weighted 
utility under F implies that F ^LR G, suppose, by contradiction, that F ^LR G. 
Take any lottery G in the white region inside the simplex in Figure 2. One can 
always find a weighted utility function (the indifference curves are illustrated in the 
figure) such that G is preferred to F .
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Figure 2: A graphical illustration of Theorem 1

Mihm & Siga (2021) establish a different decision-theoretic foundation for LRD. 
They focus on the betweenness preference instead of the weighted utility. The be­
tweenness preference generalizes the expected utility theory by substituting the in­
dependence axiom with a weaker one called betweenness axiom. A binary relation ^ 

is a betweenness preference if it satisfies the weak order, mixture continuity and the 
betweenness axioms. Mihm & Siga (2021) show that when there is a finite number 
of prizes, two lotteries F, G satisfy F ^Lr G if and only if, for every betweenness 
preference, F is preferred to G.

Since the weighted utility theory satisfies the betweenness axiom, it generates 
a strictly smaller class of preferences than the betweenness preferences and admits 
more explicit functional representations. Hence, compared to Mihm & Siga (2021), 
our Theorem 1 shows that one can guarantee LRD by using a strictly smaller class 
of preferences. Besides, Mihm & Siga (2021)’s result requires finite support, while 
our result also covers the continuum support case.

Finally, it should be noted that this paper uses a distinct argument from the one 
presented in Mihm & Siga (2021). Specifically, the approach in Mihm & Siga (2021) 
leverages the geometric properties of the likelihood-ratio order in the probability 
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simplex. In contrast, the current paper relies on the properties of integrals under 
the likelihood-ratio order.

4 Optimism/Pessimism and (Reverse) Hazard-Rate 

Dominance

When DMs are faced with the same risk, they often exhibit different attitudes: some 
are optimistic and they tend to systematically overestimate the chance of a higher 
prize over a lower one; some are pessimistic and tend to overestimate the chance of 
lower prizes. In this subsection, we demonstrate that optimism and pessimism can 
be conveniently captured in the weighted utility framework. We also consider when 
one lottery is preferred to another by optimistic/pessimistic DMs.

Again, let J C R be the prize space. Consider the weighted utility function 
representation Eq. (2). Following Karni & Schmeidler (1991) (Section 3.3.10), one 
can define optimism and pessimism in terms of whether the weight function w in 
Eq. (2) is increasing or decreasing:8

8 To the best of our knowledge, no extant literature has investigated the connection between 
optimism/pessisim and stochastic dominance in the weighted utility theory framework, which is 
the focus of our paper.

Definition 1. A DM with weighted utility Vuw : A J ^ R is optimistic (pessimistic) 
if the weight function w is increasing (decreasing).

The weight function w captures the DM’s perceptive distortion when faced with 
risk. If F is the CDF of the true lottery, then the DM will perceive F as F, where

. ~ w . _ 
dF = RTwdF dF.

J
(3)

Since the weight function w is positive, F and F are mutually absolutely continuous. 
It means that an event has positive chance in terms of the DM’s perception if and 
only if, it has positive chance under the true lottery. When the weight function w 
is increasing (decreasing) on J, the Radon-Nikodym derivative R WdF is increasing 
(decreasing), Eq. (3) implies that for every lottery and any two prizes with positive 
probabilities, the DM will overestimate (underestimate) the chance of the higher 
prize relative to the lower one. Another implication of Eq. (3) is that for an 
optimistic DM, the perceived lottery F likelihood-ratio dominates the true lottery 
F.

9



Definition 1 generates a partial order of DMs’ levels of optimism. One DM is 
said to be more optimistic than another DM, if there exists a positive increasing 
function w on J such that the perceived lottery of the former can be obtained from 
the latter’s perceived lottery via a transformation using w, as in Eq. (3).

Definition 1 also implies that an optimistic/pessimistic DM’s perception pre­
serves LRD and HRD/RHRD relations among true lotteries.

Proposition 5. Suppose that two lotteries F and G satisfy F ^HR G (or F ^LR G). 
Then, for an optimistic DM, the perceived lotteries F and G also satisfy F ^HR G 
(or F ^LR G). Similarly, if F ^RHR G (or F ^LR G), then for a pessimistic DM, 

F ^RHR G (or F ^LR G).

To establish the connections between optimism/pessimism and HRD/RHRD, we 
present a useful characterization of HRD and RHRD.

Proposition 6. [Caperaa, 1988]. Let F and G be two CDFs on J, J C R. Then,

F ^rhr G if and only if,
Jj uw dF Jj uw dG
J w dF J w dG

(4)

for all functions u and w for which the expectations exist and such that w is positive, 
continuous and decreasing, u is continuous and strictly increasing.

Similarly, F ^HR G if and only if, Eq. (4) holds for all functions u and w for 
which the expectations exist and such that w is positive, continuous and increasing, 
u is continuous and strictly increasing.

This result is analogous to Proposition 4. Compared to Proposition 4, the equiv­
alent conditions for HRD and RHRD impose additional monotonicity requirements 
for the function w. In Caperaa (1988), the function u is assumed to be increas­
ing instead of continuous and strictly increasing, and w is non-negative instead of 
continuous and positive. But Proposition 3, combined with a similar proof as that 
of Proposition 4, demonstrates that the equivalence result also holds under slightly 
more restrictive conditions, as in Proposition 6.

The characterization provided in Eq. (4) is useful within the Bayesian updating 
framework. Specifically, it implies that if two prior beliefs F and G satisfy F ^Hr 
G (or F ^rHr G), then the posterior beliefs will also preserve the hazard-rate 
dominance (or reverse hazard-rate dominance) relation, conditional on any event E 
whose probability increases (or decreases) with the state of nature. In other words, 
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F|E AHR G|E (or F|E ARHR G|E). For a formal proof using Proposition 6 and 
applications of the result, refer to our working paper version Lehrer & Wang (2022).

More importantly, Proposition 6 and Definition 1 provide insight into optimism 
and pessimism as follows:

Theorem 2. Let F and G be two lotteries in A J. Then F AHR G (resp. F ARHR G) 
if and only if, every optimistic (resp. pessimistic) weighted utility maximizer prefers 
F to G.

On the one hand, HRD and RHRD are purely probabilistic relations that capture 
when one probability distribution is more favorable than another; on the other hand, 
optimism and pessimism captures DMs’ behavioral attitudes when faced with risk. 
Theorem 2 establishes their connections, and therefore, it provides a behavioral 
characterization for HRD and RHRD. The theorem is the counterpart of Theorem 
1 and the result obtained by Mihm & Siga (2021) regarding LRD.

Related notions of optimism/pessimism. There are other ways to model 
pessimism and optimism when a DM faces risk, based on the rank-dependent ex­
pected utility theory (Quiggin, 1982). A rank-dependent expected utility functional 
V : A J ^ R is defined for all F G A J as V (F) = RJ u(x) d0(F (x)), where 
u : J ^ R is increasing, and 0 : [0,1] ^ [0,1] is a continuous, strictly increasing 
surjective transformation function. In one approach (e.g., Quiggin, 1993, Section 
6.2, Lemma 6.1), a DM is said to be optimistic (resp., pessimistic), if 0(y) < y 
(resp., 0(y) > y) for every y G [0,1]. In other words, when the DM is optimistic, 
0(F) AFOSD F for any F. In a different approach (e.g., Yaari, 1987, page 108; 
Diecidue & Wakker, 2001, Section 4), optimism/pessimism requires the transforma­
tion 0 to be convex/concave.9 By Proposition 1, it follows that for any lottery F, 
the transformed lottery 0(F) satisfies 0(F) ALR F for an optimistic DM.

9Related to this approach, Wakker (1990) characterizes the convexity and concavity of the 
transformation function ^ in terms of comonotonicity.

In our paper, as in the second approach, an optimistic DM’s perception also 
satisfies F ALR F, for any F. But the transformations that we consider are different 
from those in the rank-dependent utility theory. In rank-dependent utility setup, the 
transformation 0 applies directly to the CDF, while in the weighted utility setup, 
a transformation is defined via a weight function w, as in Eq. (3). To see the 
difference, note that in rank-dependent utility theory, as long as F(x) = G(x0), the 
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transformed lotteries satisfy 0(F(x)) = ^(G(x0)). But in our case, F(x) = G(x0) 
does not imply that F(x) = G(x0).10

Another difference lies in that for a convex transformation 0, we may not have 
0(F) ^LR 0(G). It means that, generally speaking, convex transformations do not 
preserve the LRD relation.11 Similarly, HRD relation is not preserved under a convex 
transformation. By contrast, optimism/pessimism defined via the weight function 
preserves the LRD and HRD relations (Proposition 5). Preservation of LRD is 
important when studying conditioning, since if two prior beliefs satisfy LRD, then 
the posteriors conditional on any event with positive probability also satisfy LRD. 
It means that updating does not lead to preference reversal. For an application of 
this property, see our working paper version Lehrer & Wang (2022).

I dx \ <P (G) ))

The second term can be made arbitrarily close to 0 by setting ^"'(G) sufficiently close to 0. 
Compare the first and the third terms. The first term is not always greater than the third, since 
the first term involves a square component.

Optimism and pessimism have also been studied in the Savage framework by 
Dillenberger et al. (2017). They consider the situation in which the probability 
distributions over states depend on the payoffs that acts generate (i.e., probabil­
ity distributions are stake-dependent). In their setup, optimism and pessimism are 
related to concavity and convexity of the transformation applied to the utility func­
tion.

5 Conclusion

In this paper, we investigate the behavioral implications of several well-known 
stochastic dominance relations that compare the magnitude or location of random 
variables in decision-theoretic framework. These stochastic dominance relations in­
clude likelihood-ratio dominance (LRD), hazard-rate dominance (HRD) and reverse

10To see an example, consider x G [0,1], w(x) = x, F(x) = x and G(x) = x2. Let x =
0.16, x0 = 0.4. Then F(x) = G(x0) = 0.16, but F(x) = R0rt w^dF(x) = (0.16)2, while G(x0) =

01 w(x)dF (x)
RO^wRxRdGx) = fn 4^3

Ro1 w(x)dG(x) (0.4) .
nTo see the reason, let ^ : [0,1] ^ [0,1] be the convex transformation s.t. F(x) = ^(G(x)). 

Assume that both ^ and ^ are twice continuously differentiable. To check whether ^(^(G)) >Lr 
^(G), it suffices to check whether ^-(^GGpG) is increasing in x. Consider the derivative of this 
expression:

sign I (^j/rrX ^1 = sign {^00(^(G))^0(G)[^0(G)]2 + ^0(V(G))^"(G)^'(G) - ^00(GM0(G(G))G0(G)} . 
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hazard-rate dominance (RHRD).
In decision-theoretic framework, we show that LRD is related to the weighted 

utility theory: A lottery F LRD another lottery G if and only if, F is preferred to 
G under every weighted utility function. This result complements a recent result by 
Mihm & Siga (2021), which establishes the connection between the LRD relation of 
lotteries and the betweenness preference relation.

Regarding HRD and RHRD, we find that they are related to DM’s optimistic and 
pessimistic attitudes toward risk in the weighted utility theory framework. When 
faced with risk, an optimistic/pessimistic DM systematically overestimates (under­
estimates) the likelihood of higher prize relative to a lower one. We provide a 
behavioral characterization for the (R)HRD relation by showing that one lottery F 
HRD/RHRD another lottery G if and only if, F is preferred to G by every opti- 
mistic/pessimistic DM.
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A Appendix

A.1 Proof of Proposition 2

By the definition of LRD, there exists a dominating measure A on R such that (i) 
ddF = f, ddG = g, (ii) there exists a subset A with A(A) = 0 such that for any x0 > x" 

in AC , we have
f (x')g(x") > f (x00Mx0). (5)

We show that for any measurable set B C D such that fB f dA = 0, we have 
B gdA = 0. Suppose the claim does not hold. Then there exists a measurable set 

B C D with A(B) > 0 such that B fdA = 0, but B gdA > 0. It implies that one 
can find x0 G BQ AC (hence x0 > x) such that g(x0) > 0 and f (x0) = 0. Note that 
by definition of x, J(x x0)nAC f dA > 0, hence one can find x" G (x, x0) A AC such that 
f(x00) > 0. It follows that f (x00)g(x0) > 0, while f(x0)g(x00) = 0, which contradicts 
Eq. (5). This completes the proof that PGQD) c PF(-|D).

To show the second part, note that since PG(JD) ^ PFQD) C A, by the chain 
rule for Radon-Nikodym derivative, we have

dPG(jD) = Pg(-|D) dPF(•ID) 
dA dPF (•ID) dA .

Hence PG^D) = f, which is decreasing.

A.2 Proof of Propositions 4

To show the “only if” direction of Proposition 4, take any non-negative measurable 
function w such that EF (h) > 0 and EG(h) > 0. Consider probability measures 
F and G with dF = F dF and dG = F dG. It follows from F ^lr GEF (w) EG (w) LR

that F ^Lr G. Thus we have Ef(u) > EG.(u) for any measurable and increasing 
function u, so Eq. (1) holds. The “only if” direction also holds if we require w to 
be continuous and positive, and u to be continuous and strictly increasing.

Now we prove the “if” direction. Suppose, by contradiction, that F ^LR G. 
Then, by condition 1 of Proposition 1, there exist x1,x2,x3 in the interval J = [x, x] 
with x1 > x2 > x3 such that

[F(x1) - F(x2)][G(x1) - G(x3)] < [G(x1) - G(x2)][F(x1) - F(x3)]. (6)
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For a positive constant e, define

| Z-^+e) [x - (x2 + e)] + 1, 
u£(x) = < 1-^ [x - X2] + e,

I X2—X(x - x),

if x G (x2 + e, x], 
if x G (x2,x2 + e], 
if x G [x, x2],

<

we(x) = <

^—1 [x — (xi + e)] + e,
1,
1-^ (x — x3) + e,

if x G (xi, xi + e],
if x G (x3 + e, xi],
if x G (x3, x3 + e),
if x G [x, x3] U (x1 + e, x].

For e sufficiently small, u£ is continuous and strictly increasing, and w£ is contin­
uous and positive. As e ^ 0, u£ ^ 1(x2,x] and w£ ^ 1(x3,x1]. By assumption, for 
every e, EF(uewe)EG(we) > EG(uew£)EF(we). By the dominated convergence the­
orem, lim .0,EF(we) = F(x1) — F(x3), lim .0,EG(we) = G(x1) — G(x3), and that
lim .0, EF(u£w£) = F(x1) — F(x2), lim .0, EG(u£w£) = G(x1) — G(x2). It follows that 
[F(xi) — F(x2)][G(xi) — G(x3)] > [G(xi) — G(x2)][F(xi) — F(x3)], which contradicts 
Eq. (6).

This completes the proof of Proposition 4.

A.3 Proof of Proposition 5

We show that for an optimistic DM, F ^Hr G implies that F ^Hr G. By Definition 
1, an optimistic DM can be characterized by a continuous and increasing weight 
function w. For any positive, continuous and increasing function w0 and any con­
tinuous and strictly increasing function u measurable w.r.t. both F and G, w0w is 
positive, continuous and increasing, so by Proposition 6,

Ef (uw0) EF (uw0 w)
Ef (w0) EF (w0w)

> EG(uw'w)
— EG(w'w)

Eg (uw0) 
EG(w0) .

It follows that F ^Hr G. Similarly, by using Proposition 4, one can show that 
F ^LR G implies that F ^Lr G. The proof for pessimistic DMs is analogous.
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