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Abstract
The control of nutrient availability is an essential ecological function of the host organism in host-microbe systems. Although 
often overshadowed by macronutrients such as carbohydrates, micronutrient metals are known as key drivers of host-microbe 
interactions. The ways in which host organisms control nutrient metal availability are dictated by principles in bioinorganic 
chemistry. Here I ponder about the actions of metal-binding molecules from the host organism in controlling nutrient metal 
availability to the host microbiota. I hope that these musings will encourage new explorations into the fundamental roles of 
metals in the ecology of diverse host-microbe systems.
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Earth is home to a trillion of species of microbes [1]. Some 
of these microbes associate with larger, more complex living 
organisms (hosts). These host-associated microbes (termed 
“symbionts”) include mutualists that benefit the health and 
development of their hosts, commensals that neither benefit 
nor harm the host, and parasites (or pathogens) that harm the 
host. These symbionts often establish complex communities 
on host epithelial tissues and are collectively known as the 
“microbiota”.

What is the function of the host in host-microbiota rela-
tionships? Ecological models posit that hosts construct a 
nutritional landscape that differentially affects different sym-
bionts [2, 3]. This host function is relatively well described 
for carbohydrates. For example, mammalian gut tissues pro-
duce fucosylated glycans (fucans), which are consumed by 
Bacteroides [4] (a gut mutualist) but not Salmonella [5] (a 
gut pathogen). Although Roseburia (another gut mutualist) 
cannot use fucans, it can use dietary mannans [6]. Perhaps 
it is no surprise that carbohydrates are often highlighted as 
major drivers of microbiota assembly, dynamics, and stabil-
ity [7–12].

What if different microbial symbionts use the same 
nutrient? For example, metals are used universally by all 

symbionts, since these micronutrients are needed by almost 
half of all enzymes [13], including in microbes. Mutualists, 
commensals, and pathogens all likely need Zn to carry out 
transcription [14] and translation [15]. Or, perhaps they all 
require Fe and/or Cu to respire and produce energy [16, 17]. 
Metals can and do become the limiting nutrient and thus 
drive inter-microbial competition in the host [18, 19]. How-
ever, all metals are also microbial poisons when in excess. 
Thus, shifts in the total levels of a single metal inside a host 
can differentially starve, feed, or poison different microbial 
symbionts, depending on each symbiont’s individual metal 
needs and tolerances.

A quick PubMed search reveals numerous studies involv-
ing dietary metal restriction or supplementation in human 
[20–23], animal [24–30], and even insect [31] hosts. These 
studies almost invariably conclude that changes in the host’s 
metal nutrition influence the microbiota [23, 32]. But do the 
host organisms act as mere vessels for metals and microbes? 
Or do host organisms play a role in mediating the effects of 
metals to their microbiota?

A wealth of evidence from the last half century, particu-
larly from studies with mammalian hosts, indicates that hosts 
do mediate shifts in metal levels, specifically to suppress 
pathogens. [33] In response to infection or inflammation, 
diseased hosts produce metal-binding effectors that change 
metal speciation and, thus, availability (Fig.  1A). This 
host action is, of course, known as “nutritional immunity” 
(a term first coined in 1973) [34], and it is conserved in 
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diverse hosts, including vertebrates [35], invertebrates [36], 
and plants [37].

The overall picture that has emerged over these last 
50 years is that nutritional immunity promotes micro-
bial clearance from the host. Most known host effectors 

Fig. 1   Metal availability in the host influences the health of host-
associated symbionts. A Host metal-binding effectors mediate metal 
availability in host niches. As explained in the main text, metal avail-
ability can change depending on total metal levels, total effector lev-
els, and the binding affinity of the effector to the metal. B Host metal 

availability differentially affects the health of different host-associ-
ated symbionts, depending on each symbiont’s nutritional needs and 
tolerances. The specific scenarios involving symbionts S1–S4 are 
described in the main text
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sequester metals, reduce metal availability, and starve the 
pathogen (e.g. calprotectin and Zn or Mn [35], transferrin 
and Fe). Other effectors appear to bring more metal ions 
to the site of inflammation, raise metal availability, and 
poison the pathogen (e.g. ceruloplasmin and Cu [38]).

Do hosts also mediate shifts in metal levels, not to 
suppress pathogens, but to support mutualists (and com-
mensals)? Despite the pathogen-centric view of host-
microbe interactions in the metals in biology literature, 
the overwhelming majority of host-microbe interactions 
is, in fact, not pathogenic. Do healthy hosts also produce 
metal-binding effectors to promote microbial colonisation 
(instead of clearance)? Instead of nutritional immunity, 
can host effectors maintain supply of metal nutrients and 
simultaneously limit metal toxicity to microbes?

It may be useful to first hypothesise what happens in 
the absence of such an effector. Consider two symbionts, 
S1 and S2. Although the general concept likely applies to 
other host niches, for simplicity, let us imagine that both 
symbionts colonise the host gut. Let us also assume that 
the basal level of a particular metal in that host gut is such 
that S1 and S2 can usually cohabit. However, S1 needs 
this metal as a nutrient to support metabolism, while S2 
does not. Without a host effector, increases in total metal 
levels and, thus, availability, which can occur during host 
feeding, can preferentially promote growth of S1, poten-
tially allowing S1 to outcompete S2 (Fig. 1B). Conversely, 
decreases in total metal levels and availability, which can 
occur during host fasting, can preferentially restrict growth 
of S1, potentially allowing S2 to grow and fill the niche 
(Fig. 1B).

For completion, let us consider two other gut sym-
bionts, S3 and S4. S3 is sensitive to metal toxicity while 
S4 is tolerant. Without a host effector, increases in metal 
levels and availability can preferentially suppress growth 
of S3, potentially allowing S4 to grow and fill the niche. 
Conversely, decreases in metal levels and availability can 
preferentially permit growth of S3, potentially allowing S3 
to outcompete S4 (Fig. 1B).

Regardless of the identity of each symbiont (whether 
mutualist, commensal, or pathogen), all scenarios above 
depict microbiota that are susceptible to disturbance. Such 
disturbances, termed “dysbiosis”, i.e. the overgrowth or loss 
of one or more symbionts (Fig. 1B), can have adverse con-
sequences to host health and development.

However, if there exists a metal-binding host effector that 
binds and buffers the metal sufficiently strongly, then such 
disturbances can be avoided. By buffering the metal, this 
effector would prevent large swings in metal availability 
upon increases or decreases in metal levels (Fig. 2A). This 
host effector would allow the microbiota (and, in turn, the 
host) to maintain homeostasis over a much wider range of 
total metal levels. In our hypothetical scenarios earlier, the 

host effector suppresses metal supply to S1 and S3 during 
host feeding, but maintains this supply during host fasting. 
This scenario now depicts a stable and healthy host micro-
biota, which is termed “eubiosis” (Fig. 1A).

The laws of thermodynamics and inorganic chemistry 
predict that metal availability varies with effector concen-
tration (Fig. 2C) and metal-binding affinity (Fig. 2D). Thus, 
a host effector that binds a metal ion with a particular affinity 
and is present at a particular concentration will, in essence, 
define the upper and lower boundaries of metal availabil-
ity in the host (Fig. 2B), within which different symbionts 
can assemble and stabilise. Any symbiont can, in principle, 
colonise the host if it possesses metal needs and tolerances 
that are compatible with metal availability in the host. If host 
metal availability is higher than what is tolerated or lower 
than what is needed by a symbiont, then that symbiont will 
fail to colonise the host.

Now consider a pathogen, whose needs and tolerances 
are, incidentally, compatible with metal availability in the 
host. In response to inflammation by this pathogen, metal 
availability can, presumably, be altered by the host (Fig. 1A). 
For example, the local effector concentration can be altered 
by varying effector expression, secretion, or degradation. Or, 
metal binding to the effector can be tightened or weakened 
by post-translational modification of the effector at or near 
the metal-binding site. These actions can either lower or 
raise metal availability beyond the normal range (Fig. 2C 
and D) and thus suppress growth of the pathogen. If this 
seems familiar, it should, because this is what happens as a 
result of nutritional immunity.

But won’t nutritional immunity also adversely affect 
growth of mutualists (and commensals)? Yes, it likely will. 
Prolonged inflammation, at least in humans, is indeed asso-
ciated with dysbiosis of the microbiota [39]. It is not unlikely 
that nutritional immunity contributes to this process, by pro-
moting microbial metal starvation and/or microbial metal 
poisoning in a sustained manner.

What host molecules can act as the hypothesised effectors 
during healthy host-microbe interactions? Any extracellular 
or secreted metal-binding molecule from the host can pre-
sumably achieve this function, as long as its metal affinity is 
relatively high and its background concentrations in the rel-
evant host environment are relatively stable (cf. Figure 2C). 
Obvious candidates include components of the polydisperse 
layer of mucus that coats host epithelial tissues, on which 
symbionts typically reside. For example, mammalian gut 
mucins [40] and human salivary histatins bind Cu(II) [41]. 
Do they buffer Cu availability to the mammalian gut and 
human oral microbiota? Alternatively, the host effectors may 
be the same molecules that are already known to participate 
in nutritional immunity in diseased hosts. Perhaps healthy 
hosts secrete these molecules at much lower concentrations 
than those that promote microbial clearance. For example, 
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calprotectin is usually detected in healthy stool samples, 
indicating basal secretion of this host effector into the gut. 
In addition, there is evidence that calprotectin helps regulate 
the assembly of the gut microbiota in infants [42]—does 
this involve differential supply of Zn or Mn to different gut 
microbes? Or, given the sheer diversity of host-microbe 

systems, perhaps many of these host effectors are entirely 
novel and yet to be discovered.

To test the ideas outlined here, at least initially, my 
research group is in the process of establishing an experi-
mentally tractable microbial community, composed of 
microbes whose metal needs and tolerances differ, so that 

Fig. 2   Model for how a host metal-binding effector E buffers a nutri-
ent metal M to symbionts. The relevant reaction equilibria are shown 
for: (1) Weak and non-specific binding of metal M by ligand L. In 
this model, the metal–ligand ML complex represents the available 
(kinetically and/or thermodynamically exchangeable) pool of metal in 
the host. The identity of ligand L is unknown but is likely to com-
prise combinations of metal-binding molecules that originate from 
either the host, the symbionts, or their external environment. Levels 
of ligand L are likely undefined and subject to uncontrolled fluctu-
ations. (2) Strong and specific binding of metal M by host effector 
E. Thus, metal M that is bound in the metal-effector ME complex is 
considered less available (or less readily exchangeable). The iden-
tity of effector E is presently unknown. Unlike Ligand L, effector E 
originates from the host and thus its levels are likely better defined 

or controlled. (3) Competition between ligand L and host effector 
E for binding metal M. Only 1:1 ML and ME complexes are shown 
for simplicity, although higher order complexes (ML2, ME2, etc.) are 
possible. A Action of the host effector E as a strong metal buffer, sup-
pressing large swings in metal availability (Δ[ML]eq) in response to 
changes in total metal levels in the host (Δ[M]tot). B A host effector 
E, present at a particular total concentration and binds metal M at a 
particular binding affinity, defines the metal buffering capacity of the 
host and thus the permissive range of metal availability ([ML]eq) for 
symbionts. C Effects of increasing or decreasing the total concentra-
tions of host effector E ([E]tot) on host metal availability ([ML]eq). 
D Effects of increasing or decreasing the binding affinity of the 
host effector to metal [KME; see Eq.  (2)] on host metal availability 
([ML]eq)
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growth of each microbe is differently influenced by varying 
total metal levels. In the absence of the naturally relevant 
host effector, increasing or decreasing total metal levels 
should encourage some microbes to become dominant in 
the community, while others become diminished. However, 
addition of the host effector should allow this community 
to maintain its composition more successfully. These steps 
certainly describe an investigation in microbial ecology, but 
one that is rooted undeniably and firmly in the principles of 
bioinorganic chemistry.
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