
Evaluation of a hybrid AI-human recommender
for CS1 instructors in a real educational scenario

Filipe Dwan Pereira1,5, Elaine Oliveira3 , Luiz Rodrigues4, Luciano Cabral5,6 ,
David Oliveira3 , Leandro Carvalho3 , Dragan Gasevic7, Alexandra Cristea2 ,

Diego Dermeval4, and Rafael Ferreira Mello5,7

1 Federal University of Roraima filipe.dwan@ufrr.br
2 Durham University

3 Federal University of Amazonas
4 Federal University of Alagoas

5 CESAR School
6 Federal Institute of Pernambuco

7 Monash University

Abstract. Automatic code graders, also called Programming Online
Judges (OJ), can support students and instructors in introduction to
programming courses (CS1). Using OJs in CS1, instructors select prob­
lems to compose assignment lists, whereas students submit their code
solutions and receive instantaneous feedback. Whilst this process reduces
the instructors’ workload in evaluating students’ code, selecting problems
to compose assignments is arduous. Recently, recommender systems have
been proposed by the literature to support OJ users. Nonetheless, there
is a lack of recommenders fitted for CS1 courses and the ones found
in the literature have not been assessed by the target users in a real
educational scenario. It is worth noting that hybrid human/AI systems
are claimed to potentially surpass isolated human or AI. In this study,
we adapted and evaluated a state-of-the-art hybrid human/AI recom­
mender to support CS1 instructors in selecting problems to compose
variations of CS1 assignments. We compared data-driven measures (e.g.,
time students take to solve problems, number of logical lines of code,
and hit rate) extracted from student logs whilst solving programming
problems from assignments created by instructors versus when solving as­
signments in collaboration with an adaptation of cutting-edge hybrid/AI
method. As a result, employing a data analysis comparing experimental
and control conditions using multi-level regressions, we observed that the
recommender provided problems compatible with human-selected in all
data-driven measures tested.

Keywords: Hybrid systems evaluation • recommender system • intro­
ductory programming.

1 Introduction

Programming Online Judge (OJ) is an auto-grader system capable of provid­
ing instantaneous feedback about the accuracy of a code solution [30, 11, 21].

mailto:filipe.dwan@ufrr.br

2 Pereira et al.

Typically, these systems offer programming problems of different topics related
to computer science subjects [30, 34, 11]. Computer Science 1 (CS1) instructors
are increasingly adopting OJ to enhance the learning experience in the offer­
ings of this introductory course [15, 22, 30, 33]. For the instructor, it reduces
the workload due to the automatic evaluation provided by the OJ [30, 20]. For
the student, it allows them to readily correct their code errors (due to the in­
stantaneous feedback) and receive a fair assessment ([16] demonstrate that OJ
assessment is fairer than the human one). The OJ feedback can highlight the
strengths and weaknesses of the learners’ solutions, allowing them to improve
their skills and knowledge.

Nonetheless, there is much room for improvement in OJ systems to support
CS1 classes [30, 34, 20]. To illustrate, due to the wide variety of problems provided
in these systems, it is hard for the instructors to select appropriate problems to
compose assignments. As such, it could take much time for the instructors to
create the assignments. In such situations (overload of options - problems), the
combination of OJ and recommendation systems are suggested in the literature
[32, 34, 20, 30].

Despite calls from literature [30, 28, 15, 17, 33] for research about recommend­
ing problems in OJs, only a few works have proposed methods for this task. Fur­
thermore, the few methods available are generally suitable for expert students,
but not for novices [30, 32, 20, 34]. It is worth noting that proposing methods to
assist instructors of CS1 is claimed to be crucial for the advancement of learning
to program [17, 27].

In this work we replicated, adapted and validated a cutting-edge method [24]
to help instructors select problems in a CS1 course, where the instructors submit
a list of problems to a recommender system, which suggests similar problems
that the instructors can use, for instance, to avoid plagiarism. The method was
validated in a novel data-driven setting, with two conditions: one where students
received problems generated by the instructors, and one where students receive
problems selected by the instructors using the AI recommendations.

2 Related Work

The methods proposed in the literature to recommend problems in OJ typi­
cally investigate only shallow features based on the students’ submissions and
attempts to perform the recommendation. For instance, Fantozzi and Laura
[9] proposed a recommender system for expert users who are training for the
International Collegiate Programming Contest (ICPC)8 . The method employs
students’ attempts at an OJ and uses an autoencoder neural network to rec­
ommend problems. Similarly, Saito and Watanobe [28] proposed a recommender
that applies a recurrent neural network to produce students’ learning paths based
on their attempts. Yera and Martinez [32] also applied students’ attempts and
feature engineering to create a recommender system for OJs. All these works
[9, 28, 32] demonstrated results only in a synthetic scenario based on machine

8 icpc.global

Title Suppressed Due to Excessive Length 3

learning performance metrics (e.g., F1-score). Evaluations with real users were
not carried out. Moreover, these methods are best suited for expert learners,
particularly those who are training for the ICPC.

Recent works [7, 20] suggest tracking log information (instead of only collect­
ing the number of attempts) when students are solving problems in an Integrated
Development Environment (IDE) to extract fine-grained features that depict the
effort students take to solve the problems. Carter et al. [7] explain that IDE of­
fers researchers the widest spectrum of student process data, as this is where
learners spend a large majority of their time problem-solving. An example is
[20], which proposed a recommender system in OJs based on the effort required
to solve problems focused on CS1 students. The features employed were based on
a data-driven analysis of how students solved problems whilst they were devel­
oping their code in an IDE. Despite finding satisfactory results when compared
with a baseline, the authors pointed out limitations related to the lack of infor­
mation about the problems’ topics. That is, they observed that it was necessary
to detect the topic of the problem and associate this information with the effort
required to solve the problem.

In this sense, a recent work [24] extended the work proposed in [20], adding
a topic detector and caring out a validation of the recommender with 35 CS1 in­
structors. The results surpassed the baseline (an adaptation of Yera and Martinez’s
work [32]) in the measures experimented. The validation was carried out through
a questionnaire in which the instructors estimated the coding effort, hit rate
and resolution time expected to solve the automatically recommended problems
versus questions recommended by their baseline [32]. Nonetheless, despite the
importance of validation with instructors and their satisfactory results in a labo­
ratory setting, Fincher et al. [10] explain that it is critical to evaluate educational
methods in real scenarios (scarcity of proposed methods evaluated in real scenar­
ios), and with students. Schwartz and Gurung [29] claim that it is imperative to
go beyond questionnaires and validate methods available in the literature using
data-driven evidence as well.

In this regard, de Oliveira et al. [19] evaluated whether extended feedback
from an OJ system would improve the students’ motivation using data-driven
evidence collected from the students’ side. Still, Quille and Bergin [26] evaluated
how a performance prediction system associated with an OJ could impact the
students’ outcomes. Both works performed that analysis in a controlled experi­
ment in a real educational scenario. However, there is a lack of studies evaluating
how recommendation systems from a data-driven perspective work in a real ed­
ucational scenario with CS1 students.

Furthermore, previous works [19, 26] imply learning improvements when the
hybrid human/AI methods were associated with instructor mediation. That is,
the AI method might recommend options for the instructor who decides how the
AI information should be applied to enhance the students’ outcome. Moreover,
the instructors could also enhance the AI method capabilities. To understand
deeply the importance of those methods, the students’ perspective must have
been observed and analysed [13, 24]. However, to the best of our knowledge,

4 Pereira et al.

there is no work that evaluates a recommender system to support CS1 students
from the perspective of the students, and with data-driven evidence.

3 Contributions and novelty

The study described in the current paper adapted the state-of-the-art recom­
mendation method proposed in [24] and validated it in a real scenario, with 7
CS1 classes, and 196 students. Our proposal performs a detailed analysis of the
recommender system under different aspects: i) employing a data-driven evalu­
ation of the method by collecting fine-grained data whilst students solved the
recommended problems in an IDE embedded in the OJ; ii) comparing the prob­
lems recommended by the method with problems recommended by humans; and
iii) adapting a hybrid approach for the recommendation, in which the instructor
validates and rectifies the recommendations provided by the AI and also enhance
the AI capabilities. As such, this study is an incremental work that represents
a step towards validating and employing a cutting-edge method available in the
literature, by, for the first time, to the best of our knowledge, replicating their
work [24] using their open dataset and validating their method in a real-life
scenario over a data-driven perspective from the students’ perspective.

Thus, the main contribution of the paper is the practical application of an
educational method available in the literature [24] in a real-world educational sce­
nario and testing and evaluating their effectiveness with data-driven approaches.
This allows for refining and improving the method, and ensuring that it is ef­
fective in diverse settings and for a wide range of users. Moreover, this offers
valuable evidence for the future of OJ systems to support CS1 instructors and
students.

4 Educational Scenario

Introduction to Programming is offered at the Federal University of Amazonas
as part of several undergraduate courses. The objective of the discipline is to help
students learn to solve algorithmic problems and to offer the ability to elaborate,
verify and implement algorithms in a high-level programming language.

Since 2020, the research developed in this area is being supported by the
SUPER Pro ject, which has funding from Samsung, using resources from the
Informatics Law for the Western Amazon.

These CS1 courses cover 7 topics in the CS1 assignments. As the topics are
cumulative, content from earlier topics appears in later topics. Each assignment
contains an average of 12 problems related to the following topics: (i) sequential
structure; (ii) simple conditionals (if-then-else); (iii) nested conditionals (if-then-
else nested); (iv) while loops; (v) vectors and strings; (vi) for loops; and (vii)
matrices. Exams generally are composed of 2 questions. To avoid plagiarism in
the assignments, the instructors create variations of assignments each semester,
using distinct questions. The methodology (e.g., pedagogical material and notes)
used in CS1 classes is the same, regardless of the instructor who teaches the

Title Suppressed Due to Excessive Length 5

course. The assignments are carried out using the tool CodeBench9, an online
judge system used by instructors from different universities that performs an
automatic evaluation of the students’ code solutions. After instructors post the
assignments to CodeBench, students solve problems in an IDE embedded into
CodeBench. Python is used as the target programming language of the course.

9 codebench.icomp.ufam.edu.br
10 codebench.icomp.ufam.edu.br/dataset/
11 During the pandemic, the course stopped for a while and after 1 year, it was reoffered

remotely, instead of face to face. That’s why we do not use the data during the
pandemic, since it is in different educational conditions.

5 Recommendation Method

For the recommendation, we adapted the hypothesis presented in [24]: if students
have solved a given problem (Target Problem (TP)) and there are problems simi­
lar to TP in terms of topic and effort required, thus these problems can be used as
potential Recommended Problems (RPs) to replace TP in new assignments. To
validate that hypothesis and replicate the work in [24], we used the CodeBench
open dataset, which is described in the next section.

5.1 Dataset

CodeBench provides a freely anonymised dataset10 with fine-grained information
on programming students’ behaviours. Whilst students are solving problems in
an IDE embedded in the CodeBench system, the students’ logs are collected.
In short, the dataset contains each character typed by the students and the
timestamps. It is also possible to know such information as when the students
stopped typing, when they pasted content in the IDE, and when they clicked
outside the IDE.

Following the proposal given in [24], we extracted 22 features from the stu­
dents’ logs to feed the recommender system. The features include the hit rate
students take to get problems accepted, the average lines of code per problem,
the average time students take to solve problems, the average cyclomatic com­
plexity of the solutions per problem, etc. The entire list of features is available
in [24].

Moreover, we used the problem descriptions to detect the problem topics
based on the CS1 syllabus, as suggested in [24, 23]. To feed the recommender,
we used the data from 2016 to 2019 (before the pandemic11), as can be seen
in Table 1. Furthermore, the number of different problems from CodeBench we
used in this work is 1,026, as shown in Table 2. The table shows the problems
segregated by the CS1 topics. These are the problems the recommender system
can choose from.

codebench.icomp.ufam.edu.br
codebench.icomp.ufam.edu.br/dataset/

6 Pereira et al.

Table 1: CodeBench’s data set segregated by term. Assig. Probs means number
of assignment problems, whereas Ex. Probs. means Exam problems.

Term Students Assig. Probs Ex. Probs. Code Attempts
2016-1 471 681 124 30140 154163
2016-2 172 447 110 9501 38933
2017-1 463 1278 163 38304 119370
2017-2 177 556 103 10942 27613
2018-1 465 1550 182 47969 148775
2018-2 180 893 107 13458 46765
2019-1 489 1559 176 38417 140537
2019-2 297 1116 138 28348 36632
Total 2714Table 2:8D08e0scription o1f1C03odeBench 2T1o7p0i7c9s. 712788

5.2 Recommendation steps

Topic Description N
sequential structure arithmetic operations and use of variables 157
if-then-else conditional structure 136
if-then-else (nested) nested conditionals structure 161
while-loop loops using the structure while 114
for-loop loops using the structure for 117
vectors and strings unidimensional vectors and string operations 207
matrices bidimensional matrices operation 134
Total 1,026

Figure 1 shows how the recommendation is performed by this recommender
method. To summarise, the instructor defines the TP that will be used as a
reference problem to perform the recommendation. In practice, the TP is a
given problem previously used by the instructor in an assignment provided by
classes from previous semesters. The recommender first detects the topic of the
TP, based on the CS1 syllabus (see Table 2). The method then recommends an
RP that is associated with the same topic as the TP and that requires a similar
effort to be solved. For example, if the TP is associated with the conditional
structure (if-then-else), then the recommender suggests a conditional structure
problem as well that requires a similar effort to be solved.

To detect the topic of problems, we use the pipeline proposed in [23], which
combines Natural Language Processing (NLP) techniques with shallow and deep
machine learning models (a similar NLP pipeline was effectively used in other
cutting-edge works [3, 4]). As a result, the best model (which was a Convolutional
Neural Network) reached 90% F1-score. In this case, the need to use a predictive
model is that most questions from OJs are not annotated with the CS1 topics.

6 Experimental Study

The focus of this paper is to evaluate the method presented in section 5 in a real
scenario, using data-driven evidence from the students’ perspective, instead of
applying a questionnaire for instructors. This evaluation was divided into two

Title Suppressed Due to Excessive Length 7

Fig. 1: How the recommendation is performed.

steps: i) the instructors’ selection of the problems in collaboration with the AI
recommender system (detailed in section 6.2); and ii) the data-driven evalua­
tion of the students’ logs when solving the recommended problems, versus when
solving problems selected manually by the instructors (detailed in section 6.3).

The data utilised for this data-driven evaluation was collected during the
first term of 2021. The course methodology aligns with the pattern outlined in
section 4. It is important to note that we have two distinct sources of log data:
i) to support the functioning of the recommender system, which was collected
between 2016 and 2019 (Section 5.1); ii) to conduct the data-driven evaluation
from the students’ perspective, which was gathered specifically during the first
term of 2021.

6.1 Conditions (Controlled vs Experimental)

The instructors of the CS1 courses that participated in this experiment created
seven assignments for the course, one assignment for each topic (see the seven
topics in section 4). For the controlled condition, we used the assignments com­
posed by these instructors. For the experimental condition, we used the problems
recommended by the method specified in section 5, as illustrated in Figure 1.
The assignment lists used in the control condition contained 12 problems. For
the sake of simplicity, we adopted the first six problems in these lists to be used
as TPs. In this way, the recommender selected the nearest neighbour of each
TP to compose the first six problems in the assignment lists in the experimental
condition.

More formally, we were interested to assess whether the variation assignments
(let us call them List B) were equivalent to the Master List in terms of the effort
required to solve the lists and the topic of the problems. Let us call Master Lists,
the assignments created by CS1 instructors. Our intention, thus, was to assess
whether a List B, which is a variation of a Master List, in which the problems
from both (Master List and List B) must be equivalent in terms of the topic asso­
ciated and the effort required to solve the problems. To illustrate, if the first six
problems from the Master List are Lmaster = {TP1 , TP2, TP3, TP4, TP5, TP6}
then List B must contain the problems LB = {RP10 , RP20 , RP30 , RP40 , RP50 , RP60 },
where each pair of questions (T Pi , RPi0), i varying from 1 to 6, must require a
similar effort and topic to be solved by the students.

8 Pereira et al.

6.2 Hybrid Human/AI Recommendation

Attending a call from the literature [13, 8, 1], we adapted the method from [24],
to employ the concept of hybrid intelligence, where we combine instructor knowl­
edge with our AI method, to collaboratively create assignments in real classes
of CS1.In total, 7 instructors participated in this study. The instructors were
responsible for the courses of the control and experimental condition. Following
the recommendation steps presented in section 5, the instructors evaluated the
problems provided by the recommendation method according to the following
criteria: i) if the topics of both problems (TP vs RP) were equivalent; ii) if the
estimated time for the resolution of both (TP vs RP) were equivalent; iii) if the
estimated coding effort for the resolution of both (TP vs RP) were equivalent;
iv) if the estimated hit rate for the resolution of both (TP vs RP) were equiv­
alent; and v) whether the instructors thought the problems (TP vs RP) were
interchangeable. These criteria were defined in line with the work of [24]. The
criteria under ii) to v) were employed to estimate the effort required to solve the
problems and their equivalence, as suggested in [24]. The last criterion (v) was
central to the instructor’s decision to keep the problem on the assignment list.
In total, 10 problems were replaced by the instructors, 5 of them because the
pair of problems were from different topics, and 5 because of incompatibility in
terms of effort required to solve the problems (one of the items from i) to iv)).

In case of the instructor not accepting the AI method recommendation, a
justification is given by the instructor, explaining the reason why the RP was
not kept on the assignment list. The justification is given based on the above five
criteria (i-v). The justification is then used to adjust the recommender, i.e., to
improve the AI. For example, a source of error for the recommender is when the
topic detector misclassifies a given problem (this occurs 10% of the time since
the model is 90% accurate). When this happens, the instructor can adjust the
AI, by relabelling the problems with the correct topic , so that the next time,
this RP will be associated with the correct topic. Notice that after the instructor
not accepting the RP, a new recommendation is performed.

Regarding criteria i-iv, the system recommends the i-th closest neighbour of
the TP, starting the variable i from 2 (that is, from the second nearest neigh-
bour12) and increasing this value if the substitution was not accepted by the in­
structor (for more information about the recommendation process itself, please
check [24]). In case of a not accepted recommendation here, the instructor does
not rectify the AI-method recommendation. We just use the following nearest
neighbour of the TP as the RP. The proposal of instructor adjustments of the
AI, in this case, will be made in future work.

12 Notice that the first nearest neighbour of a given TP is itself and that is why we
start i from the number 2.

As such, human/AI collaboration is performed in three sequential steps: i)
the instructor provides as input an assignment (we call it, as said, the Master List
- controlled condition), ii) the AI method returns one or several recommended
problem(s) for each problem of that Master List to be used in the assignment
variation(s) (List B - experimental condition), iii) the instructor validates each

Title Suppressed Due to Excessive Length 9

recommendation and decides whether they can be used in the assignment/exam
variation(s), and iv) AI is adjusted in case of RP replacement (for topic incom­
patibility).

6.3 Evaluation with students

For the method evaluation, we collected fine-grained data from the students
(during the first term of 2021) whilst they were solving the assignment problems
of the controlled (Master Lists) and experimental conditions (Lists B). An ex­
ample of the fine granularity data collected is given in Figure 2, when a student
was writing a print command.

The total of problems in all assignments was 42 (6 problems x 7 topics). Fine­
grained data (see an example in Figure 2) was collected from students, whilst
they were writing their solutions in the CodeBench IDE. A total of 196 students
participated in the study, 130 in the control group and 66 in the experimental
group. All the data was anonymised and consent for data collection analysis and
publication was given by all students who participated in this experiment.
1 27/5/2016@8:34:42:871:focus
2 27/5/2016@8:34:43:475:change: {"from":{"line":9/ch":8}/to":{'line':0/ch':0},"text":["p“]/removed":[""] /origin":"+input'}
3 27/5/2016@8:34:43:615:change:{"from":{"line":0,"ch":1}, ■to":{'line":6/ch":1},"text": ["r"],"removed":[""] /origin":"tinput")
4 27/5/2016@8:34:43:677:change: {"from" :{"line" :9/ch" :2}/to"':{-line":e/ch“:2}/text": ["i"]/ removed": [""’] /origin" :"+input"}
5 27/5/2016@8:34:43:811:change:{"from" :{"line" :0, "ch" :3}/to":{'line":6/ch":3}l "text":["n"], "removed": [""] /origin" :"tinput")
6 27/5/2016@8:34:43:884: change: {"from" :{"line" :9/ch" :4}/to“ :{'line':®,"ch':4}, "text": ["t"]/removed"/origin":"+input'J
7 27/5/2016@8:34:43:884:change:{"from" :{"line":9/ch":5}/to":{'line':®/ch':5},"text": ["(J"J,"removed": [" "1 /origin" :"+input"J

Fig. 2: Logs collected when the learner was writing a print command.

From such data, we extracted the following measures to evaluate whether the
TPs and RPs from each condition was equivalent:

— Resolution Time: time the student took to solve the question, not counting
downtime (more than 2 minutes).

— codeEffort: whether the expected coding effort (number of lines of code,
number of control structures used) to solve both TP and RP problems are
equivalent.

— hitRate: if the hit rate expected to solve both TP and RP problems are
equivalent. The hit rate is the proportion of code solutions accepted (correct)
divided by problems attempted, for a given problem.

6.4 Data Analysis

We compared experimental and control conditions using multi-level regressions
[14] because such regression models are aligned to our numeric measures as
well as handle dependent data (i.e., multiple answers from the same students).
Standard t-tests, for instance, do not handle more than two repeated measures,
whilst ANOVAs suffer with unbalanced datasets such as ours [6] and standard
regressions assume data points are independent [12]. Differently, multi-level re­
gression models handle dependent data because, loosely speaking, they create a
number of standard regression models (e.g., one for each level), and then group

10 Pereira et al.

them together. In our case, for instance, the grouping factor was users. The al­
gorithm took group differences (e.g., from one person to another) into account
by, oftentimes, having one intercept per group. These are known as the random
coefficients [18].

Additionally, multi-level regressions calculate fixed coefficients. These can be
seen as overall properties of the dataset that do not vary across groups but are
calculated considering group (dis)similarities [18]. Thereby, using multi-level re­
gressions is imperative to properly reach the goal of the proposed study given our
experimental design. Note that we were interested in understanding the overall
effect of the recommendation method compared to human selections. Therefore,
we focused on fixed coefficients, which provide this overall perspective while
controlling for data dependency. Thus, we ran three multi-level regressions, one
with each measure as dependent variable, and users as the grouping factor (i.e.,
random coefficients) and condition (control vs experimental) as the independent
variable (i.e., fixed coefficients) for all.

Importantly, multi-level regressions have assumptions similar to those of stan­
dard regression [14]. Residuals normality, for instance, is one of them [12]. How­
ever, testing this and similar assumptions is subject to new assumptions and
threads to validity as well [6]. Then, we opted to additionally conduct robust
analyses. These are considered to address limitations of the standard approaches
in the presence of, for instance, outliers, and yield similar results when original
assumptions are met [31]. Therefore, we ran standard and robust multi-level anal­
yses - one pair for each measure - using the lme4 and robustlmm R libraries,
respectively. Then, we compared the standard’s and robust’s results to identify
possible differences among them aiming to maximise conclusion validity. We did
not correct p-values because these tests represent a small number of compar­
isons planned apriori [5] and use 95% confidence intervals for our comparisons
and p-values, which were calculated using the lmerTest R package.

7 Results

Table 3 and Figure 3 summarise our results. First, they show the mean and stan­
dard deviation values of each condition for all three measures. Next, they show
the multi-level regression results, focusing on the fixed coefficient (experimental
vs control) (see section 6.4). Specifically, the table reports the coefficient and
its standard error, t statistic, and p-value. Finally, the table reports the 95%
confidence intervals estimated for each condition.

As Table 3 demonstrates, all p-values were greater than the alpha level (0.05).
Accordingly, the CIs of experimental and control groups overlapped for all mea­
sures. Hence, we could not reject the null hypothesis that the condition coefficient
significantly affected any of the three measures. Similarly, the robust analyses
yielded the same conclusions for hit rate (Coef = 0.01; SE = 0.03; t = 0.245;
EXP CI: [0.36 - 0.46]; CTR CI: [0.38 - 0.46]), resolution time (Coef = 2.09; SE
= 3.35; t = 0.624; EXP CI: [32.4 - 43.64]; CTR CI: [36.0 - 43.6), and code effort
(Coef = 19.6; SE = 13.8; t = 1.428; EXP CI: [158 - 202]; CTR CI: [183 - 215]).
Thus, these findings suggest that the recommendation method recommended

Title Suppressed Due to Excessive Length 11

Table 3: Results summary for all measures. Condition shows descriptive statis­
tics as Mean (Standard Deviation) for experimental (EXP) and control (CTR)
groups. Multi-level Regressions shows the condition coefficient (Coef) and its
standard error (SE), t statistic, p-value, and conditions’ Confidence Intervals.

Condition Multi-level Regressions
Measure EXP CTR Coef (SE) t stat p-val CI Exp CI Ctr
Hit Rate 0.39 (0.22) 0.43 (0.26) 0.02 (0.03) 0.47 0.63 [0.37 - 0.47] [0.40 - 0.47]

Fig. 3: Outcomes of measures comparing the experimental setting versus the
control setting.

problems that required resolution times and coding efforts, as well as led to hit
rates, similar to those of problems selected by instructors.

8 Pedagogical Implications

Here we provide an important step towards the employment of a method pro­
vided in the literature [24], which is crucial [15, 25] since many AI methods
provided in conference and journal papers end up not being used in real educa­
tional scenarios. Indeed, our study provides advantages in terms of employing
a practical application of an AI method to allow for testing and evaluation of
their effectiveness in real-world situations critical for refining and improving this
method, and ensuring that they are effective in diverse settings and for a wide
range of users. Still, our study enables instructors to tailor and adapt the AI
method validated to meet the unique needs of their learners and their specific
context. The original work [24] provided general guidelines and principles for
the use of their method. However, the implementation of their method requires
customisation and adaptation for different contexts, learners, and learning goals.
As such, our work allows for such customisation and adaptation, leading to more
effective implementation of that educational method.

We strongly believe that the practical application of educational methods
available in the literature in real-world educational scenarios is critical for im­
proving educational practice and ensuring that learners receive high-quality and
effective education.

12 Pereira et al.

Furthermore, a practical implication of our findings is the reduction of in­
structors’ workload in the problem selection task, to compose assignments lists
using OJs. That is, save the instructors time and effort by filtering through a
vast amount of programming problems and presenting them with only the most
relevant ones. This makes room for freeing the instructors’ time, enhancing their
methodological and pedagogical planning, and reducing the high failure rates
that are common in CS1 classes [15, 27].

Moreover, our adaption to employ hybrid human/AI intelligence to the work
presented in [24] has opened room for enhancing instructors and AI capabilities
for the benefit of both sides. Overall, the combination of AI and human expertise
has the potential to enhance the effectiveness and efficiency of education, leading
to improved learning outcomes and increased student satisfaction. As such, hy­
brid human/AI systems are becoming increasingly important in education, and
are likely to play a major role in the future of education [13].

Moreover, another possible application for this work is the creation of a
pool of similar questions that could be used to identify students with fragile
learning [27]. Fragile learning refers to a situation where a student may have
solved an exercise by chance, without possessing all the necessary skills and
concepts needed to solve the problem, or may have found the solution online. A
more reliable way to confirm whether the student has actually acquired the skills
associated with the exercise is to ask them to solve a similar question, which is
similar in terms of topic, estimated time of resolution, and level of effort required.
If the student fails to solve a similar problem, it could be an indication of fragile
learning, which is important to detect for the evolution of the computer education
field [27, 17]. Similarly, asking students to solve similar problems could also be
used to identify signs of plagiarism, which is a common issue in CS1 classes [2].
By enabling the creation of tools for detecting fragile learning and preventing
plagiarism based on the solving of multiple similar problems, our method offers
a valuable contribution to the field.

The current study provided empirical evidence that might help computing
education researchers. The method might be also useful to design pre- and post­
tests, by creating two or more assignments that require similar effort, and reso­
lution time, and will produce similar hit rates for those with similar knowledge.
The challenge to find pairs of equivalent questions to be used in pre- and post­
tests of experiments in the area of computer education is well known. Thereby,
the method could be intuitively employed for this purpose.

9 Final Remarks

In this work, we assessed a recommendation system used in real-life classes of
CS1, to help the instructors in the selection of problems to compose assignment
lists. We demonstrated that the humanly validated recommendations (hybrid
human/AI approach) are compatible with the humanly selected problems. The
method was tested in an environment with real classes, in which students in the
control group solved the humanly selected questions, while students in the ex­
perimental group solved the selected questions through a collaboration between

Title Suppressed Due to Excessive Length 13

the instructor and the AI method. As such, it is believed that the human/AI
hybrid method can be employed in online judge systems to reduce the workload
of CS1 instructors.

As a limitation, we collected data from a single institution, which brings
external threats to the method’s validity. Moreover, we obtained the data from
our intervention from a single semester, in a teaching cycle of 14 weeks. As such,
how our intervention affects the time the instructor takes to select problems,
and if it poses more or less challenging problems for students is one aspect that
merits more investigation.

Our adaptation of the work from [24] does not provide an alternative in cases
where the recommendation is not useful, because of incompatibility between the
effort required to solve the TP and RP. In our future work, we plan to enhance
our approach by soliciting feedback (or rating) from instructors who choose not
to accept a recommendation due to the aforementioned reason (incompatibility
between the effort from TP and RP). By asking for a rating of the recommen­
dation, we can gain deeper insight into the extent of its shortcomings and make
necessary adjustments to the recommender model accordingly. Additionally, we
aspire to conduct a more extensive analysis of CS1 classes to further validate
our findings. Indeed, validating research findings with a wider sample is essential
for ensuring that the results are reliable and generalisable. By including a larger
and more diverse sample, we can improve the representativeness of our findings,
and enhance the likelihood that the results will be applicable to other contexts
and populations.

Finally, the proposed recommender method could be applied to any program­
ming course. To understand its power of generality in-depth, future research
should carry out new experiments in other courses other than CS1.

10 Acknowledgements

This research, carried out within the scope of the Samsung-UFAM Project for
Education and Research (SUPER), according to Article 39 of Decree n°10.521/2020,
was funded by Samsung Electronics of Amazonia Ltda., under the terms of Fed­
eral Law n°8.387/1991 through agreement 001/2020, signed with UFAM and
FAEPI, Brazil. This study was financed in part by Conselho Nacional de De-
senvolvimento Cientlfico e Tecnologico - Brasil - CNPq (Process 308513/2020-7)
and Fundacao de Amparo a Pesquisa do Estado do Amazonas - FAPEAM (Pro­
cess 01.02.016301.02770/2021-63). This study was financed in part by the Acuity
Insights under the Alo Grant program.

References

1. Akata, Z., Balliet, D., De Rijke, M., Dignum, F., Dignum, V., Eiben, G., Fokkens,
A., Grossi, D., Hindriks, K., Hoos, H., et al.: A research agenda for hybrid intelli­
gence: augmenting human intellect with collaborative, adaptive, responsible, and
explainable artificial intelligence. Computer 53(08), 18-28 (2020)

14 Pereira et al.

2. Albluwi, I.: Plagiarism in programming assessments: a systematic review. ACM
Transactions on Computing Education (TOCE) 20(1), 1-28 (2019)

3. Alrajhi, L., Alamri, A., Pereira, F.D., Cristea, A.I.: Urgency analysis of learn­
ers’ comments: an automated intervention priority model for mooc. In: Intelligent
Tutoring Systems: 17th International Conference, ITS 2021, Virtual Event, June
7-11, 2021, Proceedings 17. pp. 148-160. Springer (2021)

4. Alrajhi, L., Alharbi, K., Cristea, A.I., Pereira, F.D.: Extracting the language of
the need for urgent intervention in moocs by analysing text posts. In: International
Conference on Web-Based Learning. pp. 161-173. Springer (2022)

5. Armstrong, R.A.: When to use the bonferroni correction. Ophthalmic and Physi­
ological Optics 34(5), 502-508 (2014)

6. Cairns, P.: Doing better statistics in human-computer interaction. Cambridge Uni­
versity Press (2019)

7. Carter, A., Hundhausen, C., Olivares, D.: Leveraging the integrated development
environment for learning analytics. In: The Cambridge Handbook of Computing
Education Research, chap. 23, pp. 679-706. Cambridge University Press, Cam­
bridge (2019)

8. Dellermann, D., Ebel, P., Sollner, M., Leimeister, J.M.: Hybrid intelligence. Busi­
ness & Information Systems Engineering 61(5), 637-643 (2019)

9. Fantozzi, P., Laura, L.: Recommending tasks in online judges using autoencoder
neural networks. Olympiads in Informatics 14, 61-76 (2020)

10. Fincher, S., Tenenberg, J., Dorn, B., H.C., McCartney, R., Murphy, L.: Computing
education research today. In: The Cambridge Handbook of Computing Education
Research, chap. 2, pp. 40-55. Cambridge University Press, Cambridge (2019)

11. Fonseca, S.C., Pereira, F.D., Oliveira, E.H., Oliveira, D.B., Carvalho, L.S., Cristea,
A.I.: Automatic subject-based contextualisation of programming assignment lists.
International Educational Data Mining Society (2020)

12. Gelman, A., Hill, J.: Data analysis using regression and multilevel/hierarchical
models. Cambridge university press (2006)

13. Holstein, K., Aleven, V., Rummel, N.: A conceptual framework for human-ai hy­
brid adaptivity in education. In: International Conference on Artificial Intelligence
in Education. pp. 240-254. Springer (2020)

14. Hox, J.J., Moerbeek, M., Van de Schoot, R.: Multilevel analysis: Techniques and
applications. Routledge (2010)

15. Ihantola, P., Vihavainen, A., Ahadi, A., Butler, M., Borstler, J., Edwards, S.H.,
Isohanni, E., Korhonen, A., Petersen, A., Rivers, K., Rubio, M., Sheard, J., Skupas,
B., Spacco, J., Szabo, C., Toll, D.: Educational data mining and learning analytics
in programming: Literature review and case studies. ACM. Proceedings of the 2015
ITiCSE on Working Group Reports pp. 41-63 (2015)

16. Kurnia, A., Lim, A., Cheang, B.: Online judge. Computers Education 36(4), 299­
315 (2001). https://doi.org/https://doi.org/10.1016/S0360-1315(01)00018-5

17. Luxton-Reilly, A., Albluwi, I., Becker, B.A., Giannakos, M., Kumar, A.N., Ott,
L., Paterson, J., Scott, M.J., Sheard, J., Szabo, C.: Introductory programming: a
systematic literature review. In: Proceedings Companion of the 23rd Annual ACM
Conference on Innovation and Technology in Computer Science Education. pp.
55-106 (2018)

18. Mirman, D.: Growth curve analysis and visualization using R. CRC press (2016)
19. de Oliveira, J., Salem, F., de Oliveira, E.H.T., Oliveira, D.B.F., de Carvalho,

L.S.G., Pereira, F.D.: Os estudantes leem as mensagens de feedback estendido
exibidas em juizes online? In: Anais do XXXI Simposio Brasileiro de Informatica
na Educacao. pp. 1723-1732. SBC (2020)

https://doi.org/https://doi.org/10.1016/S0360-1315(01)00018-5

Title Suppressed Due to Excessive Length 15

20. Pereira, F.D., Junior, H.B., Rodriguez, L., Toda, A., Oliveira, E.H., Cristea,
A.I., Oliveira, D.B., Carvalho, L.S., Fonseca, S.C., Alamri, A., et al.: A recom­
mender system based on effort: Towards minimising negative affects and max­
imising achievement in cs1 learning. In: International Conference on Intelligent
Tutoring Systems. pp. 466-480. Springer (2021)

21. Pereira, F.D., Oliveira, E.H., Oliveira, D.B., Cristea, A.I., Carvalho, L.S., Fonseca,
S.C., Toda, A., Isotani, S.: Using learning analytics in the amazonas: understanding
students’ behaviour in introductory programming. British journal of educational
technology 51(4), 955-972 (2020)

22. Pereira, F.D., Fonseca, S.C., Oliveira, E.H., Cristea, A.I., Bellhauser, H., Ro­
drigues, L., Oliveira, D.B., Isotani, S., Carvalho, L.S.: Explaining individual and
collective programming students’ behavior by interpreting a black-box predictive
model. IEEE Access 9, 117097-117119 (2021)

23. Pereira, F.D., Fonseca, S.C., Wiktor, S., Oliveira, D.B., Cristea, A.I., Benedict, A.,
Fallahian, M., Dorodchi, M., Carvalho, L.S., Mello, R.F., et al.: Toward supporting
cs1 instructors and learners with fine-grained topic detection in online judges. IEEE
Access 11, 22513-22525 (2023)

24. Pereira, F.D., Rodrigues, L., Henklain, M., Freitas, H., Oliveira, D.F., Cristea, A.I.,
Carvalho, L., Isotani, S., Benedict, A., Dorodchi, M., Oliveira, E.H.T.: Towards
human-ai collaboration: a recommender system to supp ort cs1 instructors to select
problems for assignments and exams. IEEE Transactions on Learning Technologies
pp. 1-14 (2022). https://doi.org/10.1109/TLT.2022.3224121

25. Pereira, F.D., de Souza, L.M., de Oliveira, E.H.T., de Oliveira, D.B.F., de Car­
valho, L.S.G.: Predicao de desempenho em ambientes computacionais para turmas
de programacao: um mapeamento sistematico da literatura. In: Anais do XXXI
Simposio Brasileiro de Informatica na Educacao. pp. 1673-1682. SBC (2020)

26. Quille, K., Bergin, S.: Cs1: how will they do? how can we help? a decade of research
and practice. Computer Science Education 29(2-3), 254-282 (2019)

27. Robins, A.V.: Novice programmers and introductory programming. In: The Cam­
bridge Handbook of Computing Education Research, chap. 12, pp. 327-376. Cam­
bridge University Press, Cambridge (2019)

28. Saito, T., Watanobe, Y.: Learning path recommendation system for programming
education based on neural networks. International Journal of Distance Education
Technologies (IJDET) 18(1), 36-64 (2020)

29. Schwartz, B.M., Gurung, R.A.: Evidence-based teaching for higher education.
American Psychological Association (2012)

30. Wasik, S., Antczak, M., Badura, J., Laskowski, A., Sternal, T.: A survey on online
judge systems and their applications. ACM Computing Surveys (CSUR) 51(1), 3
(2018)

31. Wilcox, R.R.: Introduction to robust estimation and hypothesis testing. Academic
press (2011)

32. Yera, R., Martinez, L.: A recommendation approach for programming online judges
supported by data preprocessing techniques. Applied Intelligence 47(2), 277-290
(2017)

33. Zhao, W.X., Zhang, W., He, Y., Xie, X., Wen, J.R.: Automatically learning topics
and difficulty levels of problems in online judge systems. ACM Transactions on
Information Systems (TOIS) 36(3), 27 (2018)

34. Zhou, W., Pan, Y., Zhou, Y., Sun, G.: The framework of a new online judge
system for programming education. In: Proceedings of ACM Turing Celebration
Conference-China. pp. 9-14. ACM (2018)

https://doi.org/10.1109/TLT.2022.3224121

IF Durham
University
Durham Research Online

To cite this article: Dwan Pereira, F., Oliveira,
E., Rodrigues, L., Cabral, L., Oliveira, D.,
Carvalho, L., ...Ferreira Mello, R. (in press).
Evaluation of a hybrid AI-human
recommender for CS1 instructors in a real
educational scenario

Durham Research Online URL: https://durham-
repository.worktribe.com/output/1718793

Copyright statement: This content can be used for non-commercial, personal
study.

https://durham-repository.worktribe.com/output/1718793
repository.worktribe.com/output/1718793

