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Abstract. Automatic code graders, also called Programming Online 
Judges (OJ), can support students and instructors in introduction to 
programming courses (CS1). Using OJs in CS1, instructors select prob­
lems to compose assignment lists, whereas students submit their code 
solutions and receive instantaneous feedback. Whilst this process reduces 
the instructors’ workload in evaluating students’ code, selecting problems 
to compose assignments is arduous. Recently, recommender systems have 
been proposed by the literature to support OJ users. Nonetheless, there 
is a lack of recommenders fitted for CS1 courses and the ones found 
in the literature have not been assessed by the target users in a real 
educational scenario. It is worth noting that hybrid human/AI systems 
are claimed to potentially surpass isolated human or AI. In this study, 
we adapted and evaluated a state-of-the-art hybrid human/AI recom­
mender to support CS1 instructors in selecting problems to compose 
variations of CS1 assignments. We compared data-driven measures (e.g., 
time students take to solve problems, number of logical lines of code, 
and hit rate) extracted from student logs whilst solving programming 
problems from assignments created by instructors versus when solving as­
signments in collaboration with an adaptation of cutting-edge hybrid/AI 
method. As a result, employing a data analysis comparing experimental 
and control conditions using multi-level regressions, we observed that the 
recommender provided problems compatible with human-selected in all 
data-driven measures tested.

Keywords: Hybrid systems evaluation • recommender system • intro­
ductory programming.

1 Introduction

Programming Online Judge (OJ) is an auto-grader system capable of provid­
ing instantaneous feedback about the accuracy of a code solution [30, 11, 21].
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Typically, these systems offer programming problems of different topics related 
to computer science subjects [30, 34, 11]. Computer Science 1 (CS1) instructors 
are increasingly adopting OJ to enhance the learning experience in the offer­
ings of this introductory course [15, 22, 30, 33]. For the instructor, it reduces 
the workload due to the automatic evaluation provided by the OJ [30, 20]. For 
the student, it allows them to readily correct their code errors (due to the in­
stantaneous feedback) and receive a fair assessment ([16] demonstrate that OJ 
assessment is fairer than the human one). The OJ feedback can highlight the 
strengths and weaknesses of the learners’ solutions, allowing them to improve 
their skills and knowledge.

Nonetheless, there is much room for improvement in OJ systems to support 
CS1 classes [30, 34, 20]. To illustrate, due to the wide variety of problems provided 
in these systems, it is hard for the instructors to select appropriate problems to 
compose assignments. As such, it could take much time for the instructors to 
create the assignments. In such situations (overload of options - problems), the 
combination of OJ and recommendation systems are suggested in the literature 
[32, 34, 20, 30].

Despite calls from literature [30, 28, 15, 17, 33] for research about recommend­
ing problems in OJs, only a few works have proposed methods for this task. Fur­
thermore, the few methods available are generally suitable for expert students, 
but not for novices [30, 32, 20, 34]. It is worth noting that proposing methods to 
assist instructors of CS1 is claimed to be crucial for the advancement of learning 
to program [17, 27].

In this work we replicated, adapted and validated a cutting-edge method [24] 
to help instructors select problems in a CS1 course, where the instructors submit 
a list of problems to a recommender system, which suggests similar problems 
that the instructors can use, for instance, to avoid plagiarism. The method was 
validated in a novel data-driven setting, with two conditions: one where students 
received problems generated by the instructors, and one where students receive 
problems selected by the instructors using the AI recommendations.

2 Related Work

The methods proposed in the literature to recommend problems in OJ typi­
cally investigate only shallow features based on the students’ submissions and 
attempts to perform the recommendation. For instance, Fantozzi and Laura 
[9] proposed a recommender system for expert users who are training for the 
International Collegiate Programming Contest (ICPC)8 . The method employs 
students’ attempts at an OJ and uses an autoencoder neural network to rec­
ommend problems. Similarly, Saito and Watanobe [28] proposed a recommender 
that applies a recurrent neural network to produce students’ learning paths based 
on their attempts. Yera and Martinez [32] also applied students’ attempts and 
feature engineering to create a recommender system for OJs. All these works 
[9, 28, 32] demonstrated results only in a synthetic scenario based on machine 
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learning performance metrics (e.g., F1-score). Evaluations with real users were 
not carried out. Moreover, these methods are best suited for expert learners, 
particularly those who are training for the ICPC.

Recent works [7, 20] suggest tracking log information (instead of only collect­
ing the number of attempts) when students are solving problems in an Integrated 
Development Environment (IDE) to extract fine-grained features that depict the 
effort students take to solve the problems. Carter et al. [7] explain that IDE of­
fers researchers the widest spectrum of student process data, as this is where 
learners spend a large majority of their time problem-solving. An example is 
[20], which proposed a recommender system in OJs based on the effort required 
to solve problems focused on CS1 students. The features employed were based on 
a data-driven analysis of how students solved problems whilst they were devel­
oping their code in an IDE. Despite finding satisfactory results when compared 
with a baseline, the authors pointed out limitations related to the lack of infor­
mation about the problems’ topics. That is, they observed that it was necessary 
to detect the topic of the problem and associate this information with the effort 
required to solve the problem.

In this sense, a recent work [24] extended the work proposed in [20], adding 
a topic detector and caring out a validation of the recommender with 35 CS1 in­
structors. The results surpassed the baseline (an adaptation of Yera and Martinez’s 
work [32]) in the measures experimented. The validation was carried out through 
a questionnaire in which the instructors estimated the coding effort, hit rate 
and resolution time expected to solve the automatically recommended problems 
versus questions recommended by their baseline [32]. Nonetheless, despite the 
importance of validation with instructors and their satisfactory results in a labo­
ratory setting, Fincher et al. [10] explain that it is critical to evaluate educational 
methods in real scenarios (scarcity of proposed methods evaluated in real scenar­
ios), and with students. Schwartz and Gurung [29] claim that it is imperative to 
go beyond questionnaires and validate methods available in the literature using 
data-driven evidence as well.

In this regard, de Oliveira et al. [19] evaluated whether extended feedback 
from an OJ system would improve the students’ motivation using data-driven 
evidence collected from the students’ side. Still, Quille and Bergin [26] evaluated 
how a performance prediction system associated with an OJ could impact the 
students’ outcomes. Both works performed that analysis in a controlled experi­
ment in a real educational scenario. However, there is a lack of studies evaluating 
how recommendation systems from a data-driven perspective work in a real ed­
ucational scenario with CS1 students.

Furthermore, previous works [19, 26] imply learning improvements when the 
hybrid human/AI methods were associated with instructor mediation. That is, 
the AI method might recommend options for the instructor who decides how the 
AI information should be applied to enhance the students’ outcome. Moreover, 
the instructors could also enhance the AI method capabilities. To understand 
deeply the importance of those methods, the students’ perspective must have 
been observed and analysed [13, 24]. However, to the best of our knowledge, 
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there is no work that evaluates a recommender system to support CS1 students 
from the perspective of the students, and with data-driven evidence.

3 Contributions and novelty

The study described in the current paper adapted the state-of-the-art recom­
mendation method proposed in [24] and validated it in a real scenario, with 7 
CS1 classes, and 196 students. Our proposal performs a detailed analysis of the 
recommender system under different aspects: i) employing a data-driven evalu­
ation of the method by collecting fine-grained data whilst students solved the 
recommended problems in an IDE embedded in the OJ; ii) comparing the prob­
lems recommended by the method with problems recommended by humans; and 
iii) adapting a hybrid approach for the recommendation, in which the instructor 
validates and rectifies the recommendations provided by the AI and also enhance 
the AI capabilities. As such, this study is an incremental work that represents 
a step towards validating and employing a cutting-edge method available in the 
literature, by, for the first time, to the best of our knowledge, replicating their 
work [24] using their open dataset and validating their method in a real-life 
scenario over a data-driven perspective from the students’ perspective.

Thus, the main contribution of the paper is the practical application of an 
educational method available in the literature [24] in a real-world educational sce­
nario and testing and evaluating their effectiveness with data-driven approaches. 
This allows for refining and improving the method, and ensuring that it is ef­
fective in diverse settings and for a wide range of users. Moreover, this offers 
valuable evidence for the future of OJ systems to support CS1 instructors and 
students.

4 Educational Scenario

Introduction to Programming is offered at the Federal University of Amazonas 
as part of several undergraduate courses. The objective of the discipline is to help 
students learn to solve algorithmic problems and to offer the ability to elaborate, 
verify and implement algorithms in a high-level programming language.

Since 2020, the research developed in this area is being supported by the 
SUPER Pro ject, which has funding from Samsung, using resources from the 
Informatics Law for the Western Amazon.

These CS1 courses cover 7 topics in the CS1 assignments. As the topics are 
cumulative, content from earlier topics appears in later topics. Each assignment 
contains an average of 12 problems related to the following topics: (i) sequential 
structure; (ii) simple conditionals (if-then-else); (iii) nested conditionals (if-then- 
else nested); (iv) while loops; (v) vectors and strings; (vi) for loops; and (vii) 
matrices. Exams generally are composed of 2 questions. To avoid plagiarism in 
the assignments, the instructors create variations of assignments each semester, 
using distinct questions. The methodology (e.g., pedagogical material and notes) 
used in CS1 classes is the same, regardless of the instructor who teaches the 
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course. The assignments are carried out using the tool CodeBench9, an online 
judge system used by instructors from different universities that performs an 
automatic evaluation of the students’ code solutions. After instructors post the 
assignments to CodeBench, students solve problems in an IDE embedded into 
CodeBench. Python is used as the target programming language of the course.

9 codebench.icomp.ufam.edu.br
10 codebench.icomp.ufam.edu.br/dataset/
11 During the pandemic, the course stopped for a while and after 1 year, it was reoffered 

remotely, instead of face to face. That’s why we do not use the data during the 
pandemic, since it is in different educational conditions.

5 Recommendation Method

For the recommendation, we adapted the hypothesis presented in [24]: if students 
have solved a given problem (Target Problem (TP)) and there are problems simi­
lar to TP in terms of topic and effort required, thus these problems can be used as 
potential Recommended Problems (RPs) to replace TP in new assignments. To 
validate that hypothesis and replicate the work in [24], we used the CodeBench 
open dataset, which is described in the next section.

5.1 Dataset

CodeBench provides a freely anonymised dataset10 with fine-grained information 
on programming students’ behaviours. Whilst students are solving problems in 
an IDE embedded in the CodeBench system, the students’ logs are collected. 
In short, the dataset contains each character typed by the students and the 
timestamps. It is also possible to know such information as when the students 
stopped typing, when they pasted content in the IDE, and when they clicked 
outside the IDE.

Following the proposal given in [24], we extracted 22 features from the stu­
dents’ logs to feed the recommender system. The features include the hit rate 
students take to get problems accepted, the average lines of code per problem, 
the average time students take to solve problems, the average cyclomatic com­
plexity of the solutions per problem, etc. The entire list of features is available 
in [24].

Moreover, we used the problem descriptions to detect the problem topics 
based on the CS1 syllabus, as suggested in [24, 23]. To feed the recommender, 
we used the data from 2016 to 2019 (before the pandemic11), as can be seen 
in Table 1. Furthermore, the number of different problems from CodeBench we 
used in this work is 1,026, as shown in Table 2. The table shows the problems 
segregated by the CS1 topics. These are the problems the recommender system 
can choose from.

codebench.icomp.ufam.edu.br
codebench.icomp.ufam.edu.br/dataset/
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Table 1: CodeBench’s data set segregated by term. Assig. Probs means number 
of assignment problems, whereas Ex. Probs. means Exam problems.

Term Students Assig. Probs Ex. Probs. Code Attempts
2016-1 471 681 124 30140 154163
2016-2 172 447 110 9501 38933
2017-1 463 1278 163 38304 119370
2017-2 177 556 103 10942 27613
2018-1 465 1550 182 47969 148775
2018-2 180 893 107 13458 46765
2019-1 489 1559 176 38417 140537
2019-2 297 1116 138 28348 36632
Total 2714Table 2:8D08e0scription o1f1C03odeBench 2T1o7p0i7c9s. 712788

5.2 Recommendation steps

Topic Description N
sequential structure arithmetic operations and use of variables 157
if-then-else conditional structure 136
if-then-else (nested) nested conditionals structure 161
while-loop loops using the structure while 114
for-loop loops using the structure for 117
vectors and strings unidimensional vectors and string operations 207
matrices bidimensional matrices operation 134
Total 1,026

Figure 1 shows how the recommendation is performed by this recommender 
method. To summarise, the instructor defines the TP that will be used as a 
reference problem to perform the recommendation. In practice, the TP is a 
given problem previously used by the instructor in an assignment provided by 
classes from previous semesters. The recommender first detects the topic of the 
TP, based on the CS1 syllabus (see Table 2). The method then recommends an 
RP that is associated with the same topic as the TP and that requires a similar 
effort to be solved. For example, if the TP is associated with the conditional 
structure (if-then-else), then the recommender suggests a conditional structure 
problem as well that requires a similar effort to be solved.

To detect the topic of problems, we use the pipeline proposed in [23], which 
combines Natural Language Processing (NLP) techniques with shallow and deep 
machine learning models (a similar NLP pipeline was effectively used in other 
cutting-edge works [3, 4]). As a result, the best model (which was a Convolutional 
Neural Network) reached 90% F1-score. In this case, the need to use a predictive 
model is that most questions from OJs are not annotated with the CS1 topics.

6 Experimental Study

The focus of this paper is to evaluate the method presented in section 5 in a real 
scenario, using data-driven evidence from the students’ perspective, instead of 
applying a questionnaire for instructors. This evaluation was divided into two
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Fig. 1: How the recommendation is performed.

steps: i) the instructors’ selection of the problems in collaboration with the AI 
recommender system (detailed in section 6.2); and ii) the data-driven evalua­
tion of the students’ logs when solving the recommended problems, versus when 
solving problems selected manually by the instructors (detailed in section 6.3).

The data utilised for this data-driven evaluation was collected during the 
first term of 2021. The course methodology aligns with the pattern outlined in 
section 4. It is important to note that we have two distinct sources of log data: 
i) to support the functioning of the recommender system, which was collected 
between 2016 and 2019 (Section 5.1); ii) to conduct the data-driven evaluation 
from the students’ perspective, which was gathered specifically during the first 
term of 2021.

6.1 Conditions (Controlled vs Experimental)

The instructors of the CS1 courses that participated in this experiment created 
seven assignments for the course, one assignment for each topic (see the seven 
topics in section 4). For the controlled condition, we used the assignments com­
posed by these instructors. For the experimental condition, we used the problems 
recommended by the method specified in section 5, as illustrated in Figure 1. 
The assignment lists used in the control condition contained 12 problems. For 
the sake of simplicity, we adopted the first six problems in these lists to be used 
as TPs. In this way, the recommender selected the nearest neighbour of each 
TP to compose the first six problems in the assignment lists in the experimental 
condition.

More formally, we were interested to assess whether the variation assignments 
(let us call them List B) were equivalent to the Master List in terms of the effort 
required to solve the lists and the topic of the problems. Let us call Master Lists, 
the assignments created by CS1 instructors. Our intention, thus, was to assess 
whether a List B, which is a variation of a Master List, in which the problems 
from both (Master List and List B) must be equivalent in terms of the topic asso­
ciated and the effort required to solve the problems. To illustrate, if the first six 
problems from the Master List are Lmaster = {TP1 , TP2, TP3, TP4, TP5, TP6} 
then List B must contain the problems LB = {RP10 , RP20 , RP30 , RP40 , RP50 , RP60 }, 
where each pair of questions (T Pi , RPi0), i varying from 1 to 6, must require a 
similar effort and topic to be solved by the students.
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6.2 Hybrid Human/AI Recommendation

Attending a call from the literature [13, 8, 1], we adapted the method from [24], 
to employ the concept of hybrid intelligence, where we combine instructor knowl­
edge with our AI method, to collaboratively create assignments in real classes 
of CS1.In total, 7 instructors participated in this study. The instructors were 
responsible for the courses of the control and experimental condition. Following 
the recommendation steps presented in section 5, the instructors evaluated the 
problems provided by the recommendation method according to the following 
criteria: i) if the topics of both problems (TP vs RP) were equivalent; ii) if the 
estimated time for the resolution of both (TP vs RP) were equivalent; iii) if the 
estimated coding effort for the resolution of both (TP vs RP) were equivalent; 
iv) if the estimated hit rate for the resolution of both (TP vs RP) were equiv­
alent; and v) whether the instructors thought the problems (TP vs RP) were 
interchangeable. These criteria were defined in line with the work of [24]. The 
criteria under ii) to v) were employed to estimate the effort required to solve the 
problems and their equivalence, as suggested in [24]. The last criterion (v) was 
central to the instructor’s decision to keep the problem on the assignment list. 
In total, 10 problems were replaced by the instructors, 5 of them because the 
pair of problems were from different topics, and 5 because of incompatibility in 
terms of effort required to solve the problems (one of the items from i) to iv)).

In case of the instructor not accepting the AI method recommendation, a 
justification is given by the instructor, explaining the reason why the RP was 
not kept on the assignment list. The justification is given based on the above five 
criteria (i-v). The justification is then used to adjust the recommender, i.e., to 
improve the AI. For example, a source of error for the recommender is when the 
topic detector misclassifies a given problem (this occurs 10% of the time since 
the model is 90% accurate). When this happens, the instructor can adjust the 
AI, by relabelling the problems with the correct topic , so that the next time, 
this RP will be associated with the correct topic. Notice that after the instructor 
not accepting the RP, a new recommendation is performed.

Regarding criteria i-iv, the system recommends the i-th closest neighbour of 
the TP, starting the variable i from 2 (that is, from the second nearest neigh- 
bour12) and increasing this value if the substitution was not accepted by the in­
structor (for more information about the recommendation process itself, please 
check [24]). In case of a not accepted recommendation here, the instructor does 
not rectify the AI-method recommendation. We just use the following nearest 
neighbour of the TP as the RP. The proposal of instructor adjustments of the 
AI, in this case, will be made in future work.

12 Notice that the first nearest neighbour of a given TP is itself and that is why we 
start i from the number 2.

As such, human/AI collaboration is performed in three sequential steps: i) 
the instructor provides as input an assignment (we call it, as said, the Master List 
- controlled condition), ii) the AI method returns one or several recommended 
problem(s) for each problem of that Master List to be used in the assignment 
variation(s) (List B - experimental condition), iii) the instructor validates each 
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recommendation and decides whether they can be used in the assignment/exam 
variation(s), and iv) AI is adjusted in case of RP replacement (for topic incom­
patibility).

6.3 Evaluation with students

For the method evaluation, we collected fine-grained data from the students 
(during the first term of 2021) whilst they were solving the assignment problems 
of the controlled (Master Lists) and experimental conditions (Lists B). An ex­
ample of the fine granularity data collected is given in Figure 2, when a student 
was writing a print command.

The total of problems in all assignments was 42 (6 problems x 7 topics). Fine­
grained data (see an example in Figure 2) was collected from students, whilst 
they were writing their solutions in the CodeBench IDE. A total of 196 students 
participated in the study, 130 in the control group and 66 in the experimental 
group. All the data was anonymised and consent for data collection analysis and 
publication was given by all students who participated in this experiment.
1 27/5/2016@8:34:42:871:focus
2 27/5/2016@8:34:43:475:change: {"from":{"line":9/ch":8}/to":{'line':0/ch':0},"text":["p“]/removed":[""] /origin":"+input'}
3 27/5/2016@8:34:43:615:change:{"from":{"line":0,"ch":1}, ■to":{'line":6/ch":1},"text": ["r"],"removed":[""] /origin":"tinput")
4 27/5/2016@8:34:43:677:change: {"from" :{"line" :9/ch" :2}/to"':{-line":e/ch“:2}/text": [ "i"]/ removed": [""’] /origin" :"+input"}
5 27/5/2016@8:34:43:811:change:{"from" :{"line" :0, "ch" :3}/to":{'line":6/ch":3}l "text":["n"], "removed": [""] /origin" :"tinput")
6 27/5/2016@8:34:43:884: change: {"from" :{"line" :9/ch" :4}/to“ :{'line':®,"ch':4}, "text": ["t"]/removed"/origin":"+input'J
7 27/5/2016@8:34:43:884:change:{"from" :{"line":9/ch":5}/to":{'line':®/ch':5},"text": ["(J"J,"removed": [" "1 /origin" :"+input"J

Fig. 2: Logs collected when the learner was writing a print command.

From such data, we extracted the following measures to evaluate whether the 
TPs and RPs from each condition was equivalent:

— Resolution Time: time the student took to solve the question, not counting 
downtime (more than 2 minutes).

— codeEffort: whether the expected coding effort (number of lines of code, 
number of control structures used) to solve both TP and RP problems are 
equivalent.

— hitRate: if the hit rate expected to solve both TP and RP problems are 
equivalent. The hit rate is the proportion of code solutions accepted (correct) 
divided by problems attempted, for a given problem.

6.4 Data Analysis

We compared experimental and control conditions using multi-level regressions 
[14] because such regression models are aligned to our numeric measures as 
well as handle dependent data (i.e., multiple answers from the same students). 
Standard t-tests, for instance, do not handle more than two repeated measures, 
whilst ANOVAs suffer with unbalanced datasets such as ours [6] and standard 
regressions assume data points are independent [12]. Differently, multi-level re­
gression models handle dependent data because, loosely speaking, they create a 
number of standard regression models (e.g., one for each level), and then group 
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them together. In our case, for instance, the grouping factor was users. The al­
gorithm took group differences (e.g., from one person to another) into account 
by, oftentimes, having one intercept per group. These are known as the random 
coefficients [18].

Additionally, multi-level regressions calculate fixed coefficients. These can be 
seen as overall properties of the dataset that do not vary across groups but are 
calculated considering group (dis)similarities [18]. Thereby, using multi-level re­
gressions is imperative to properly reach the goal of the proposed study given our 
experimental design. Note that we were interested in understanding the overall 
effect of the recommendation method compared to human selections. Therefore, 
we focused on fixed coefficients, which provide this overall perspective while 
controlling for data dependency. Thus, we ran three multi-level regressions, one 
with each measure as dependent variable, and users as the grouping factor (i.e., 
random coefficients) and condition (control vs experimental) as the independent 
variable (i.e., fixed coefficients) for all.

Importantly, multi-level regressions have assumptions similar to those of stan­
dard regression [14]. Residuals normality, for instance, is one of them [12]. How­
ever, testing this and similar assumptions is subject to new assumptions and 
threads to validity as well [6]. Then, we opted to additionally conduct robust 
analyses. These are considered to address limitations of the standard approaches 
in the presence of, for instance, outliers, and yield similar results when original 
assumptions are met [31]. Therefore, we ran standard and robust multi-level anal­
yses - one pair for each measure - using the lme4 and robustlmm R libraries, 
respectively. Then, we compared the standard’s and robust’s results to identify 
possible differences among them aiming to maximise conclusion validity. We did 
not correct p-values because these tests represent a small number of compar­
isons planned apriori [5] and use 95% confidence intervals for our comparisons 
and p-values, which were calculated using the lmerTest R package.

7 Results

Table 3 and Figure 3 summarise our results. First, they show the mean and stan­
dard deviation values of each condition for all three measures. Next, they show 
the multi-level regression results, focusing on the fixed coefficient (experimental 
vs control) (see section 6.4). Specifically, the table reports the coefficient and 
its standard error, t statistic, and p-value. Finally, the table reports the 95% 
confidence intervals estimated for each condition.

As Table 3 demonstrates, all p-values were greater than the alpha level (0.05). 
Accordingly, the CIs of experimental and control groups overlapped for all mea­
sures. Hence, we could not reject the null hypothesis that the condition coefficient 
significantly affected any of the three measures. Similarly, the robust analyses 
yielded the same conclusions for hit rate (Coef = 0.01; SE = 0.03; t = 0.245; 
EXP CI: [0.36 - 0.46]; CTR CI: [0.38 - 0.46]), resolution time (Coef = 2.09; SE 
= 3.35; t = 0.624; EXP CI: [32.4 - 43.64]; CTR CI: [36.0 - 43.6), and code effort 
(Coef = 19.6; SE = 13.8; t = 1.428; EXP CI: [158 - 202]; CTR CI: [183 - 215]). 
Thus, these findings suggest that the recommendation method recommended
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Table 3: Results summary for all measures. Condition shows descriptive statis­
tics as Mean (Standard Deviation) for experimental (EXP) and control (CTR) 
groups. Multi-level Regressions shows the condition coefficient (Coef) and its 
standard error (SE), t statistic, p-value, and conditions’ Confidence Intervals.

Condition Multi-level Regressions
Measure EXP CTR Coef (SE) t stat p-val CI Exp CI Ctr
Hit Rate 0.39 (0.22) 0.43 (0.26) 0.02 (0.03) 0.47 0.63 [0.37 - 0.47] [0.40 - 0.47]

Fig. 3: Outcomes of measures comparing the experimental setting versus the 
control setting.

problems that required resolution times and coding efforts, as well as led to hit 
rates, similar to those of problems selected by instructors.

8 Pedagogical Implications

Here we provide an important step towards the employment of a method pro­
vided in the literature [24], which is crucial [15, 25] since many AI methods 
provided in conference and journal papers end up not being used in real educa­
tional scenarios. Indeed, our study provides advantages in terms of employing 
a practical application of an AI method to allow for testing and evaluation of 
their effectiveness in real-world situations critical for refining and improving this 
method, and ensuring that they are effective in diverse settings and for a wide 
range of users. Still, our study enables instructors to tailor and adapt the AI 
method validated to meet the unique needs of their learners and their specific 
context. The original work [24] provided general guidelines and principles for 
the use of their method. However, the implementation of their method requires 
customisation and adaptation for different contexts, learners, and learning goals. 
As such, our work allows for such customisation and adaptation, leading to more 
effective implementation of that educational method.

We strongly believe that the practical application of educational methods 
available in the literature in real-world educational scenarios is critical for im­
proving educational practice and ensuring that learners receive high-quality and 
effective education.
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Furthermore, a practical implication of our findings is the reduction of in­
structors’ workload in the problem selection task, to compose assignments lists 
using OJs. That is, save the instructors time and effort by filtering through a 
vast amount of programming problems and presenting them with only the most 
relevant ones. This makes room for freeing the instructors’ time, enhancing their 
methodological and pedagogical planning, and reducing the high failure rates 
that are common in CS1 classes [15, 27].

Moreover, our adaption to employ hybrid human/AI intelligence to the work 
presented in [24] has opened room for enhancing instructors and AI capabilities 
for the benefit of both sides. Overall, the combination of AI and human expertise 
has the potential to enhance the effectiveness and efficiency of education, leading 
to improved learning outcomes and increased student satisfaction. As such, hy­
brid human/AI systems are becoming increasingly important in education, and 
are likely to play a major role in the future of education [13].

Moreover, another possible application for this work is the creation of a 
pool of similar questions that could be used to identify students with fragile 
learning [27]. Fragile learning refers to a situation where a student may have 
solved an exercise by chance, without possessing all the necessary skills and 
concepts needed to solve the problem, or may have found the solution online. A 
more reliable way to confirm whether the student has actually acquired the skills 
associated with the exercise is to ask them to solve a similar question, which is 
similar in terms of topic, estimated time of resolution, and level of effort required. 
If the student fails to solve a similar problem, it could be an indication of fragile 
learning, which is important to detect for the evolution of the computer education 
field [27, 17]. Similarly, asking students to solve similar problems could also be 
used to identify signs of plagiarism, which is a common issue in CS1 classes [2]. 
By enabling the creation of tools for detecting fragile learning and preventing 
plagiarism based on the solving of multiple similar problems, our method offers 
a valuable contribution to the field.

The current study provided empirical evidence that might help computing 
education researchers. The method might be also useful to design pre- and post­
tests, by creating two or more assignments that require similar effort, and reso­
lution time, and will produce similar hit rates for those with similar knowledge. 
The challenge to find pairs of equivalent questions to be used in pre- and post­
tests of experiments in the area of computer education is well known. Thereby, 
the method could be intuitively employed for this purpose.

9 Final Remarks

In this work, we assessed a recommendation system used in real-life classes of 
CS1, to help the instructors in the selection of problems to compose assignment 
lists. We demonstrated that the humanly validated recommendations (hybrid 
human/AI approach) are compatible with the humanly selected problems. The 
method was tested in an environment with real classes, in which students in the 
control group solved the humanly selected questions, while students in the ex­
perimental group solved the selected questions through a collaboration between 
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the instructor and the AI method. As such, it is believed that the human/AI 
hybrid method can be employed in online judge systems to reduce the workload 
of CS1 instructors.

As a limitation, we collected data from a single institution, which brings 
external threats to the method’s validity. Moreover, we obtained the data from 
our intervention from a single semester, in a teaching cycle of 14 weeks. As such, 
how our intervention affects the time the instructor takes to select problems, 
and if it poses more or less challenging problems for students is one aspect that 
merits more investigation.

Our adaptation of the work from [24] does not provide an alternative in cases 
where the recommendation is not useful, because of incompatibility between the 
effort required to solve the TP and RP. In our future work, we plan to enhance 
our approach by soliciting feedback (or rating) from instructors who choose not 
to accept a recommendation due to the aforementioned reason (incompatibility 
between the effort from TP and RP). By asking for a rating of the recommen­
dation, we can gain deeper insight into the extent of its shortcomings and make 
necessary adjustments to the recommender model accordingly. Additionally, we 
aspire to conduct a more extensive analysis of CS1 classes to further validate 
our findings. Indeed, validating research findings with a wider sample is essential 
for ensuring that the results are reliable and generalisable. By including a larger 
and more diverse sample, we can improve the representativeness of our findings, 
and enhance the likelihood that the results will be applicable to other contexts 
and populations.

Finally, the proposed recommender method could be applied to any program­
ming course. To understand its power of generality in-depth, future research 
should carry out new experiments in other courses other than CS1.
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