
Algorithmica
https://doi.org/10.1007/s00453-023-01137-9

Finding Matching Cuts in H-Free Graphs

Felicia Lucke1 · Daniël Paulusma2 · Bernard Ries1

Received: 9 October 2022 / Accepted: 24 May 2023
© The Author(s) 2023

Abstract
The well-known NP-complete problem Matching Cut is to decide if a graph has
a matching that is also an edge cut of the graph. We prove new complexity results
for Matching Cut restricted to H -free graphs, that is, graphs that do not contain
some fixed graph H as an induced subgraph.We also prove new complexity results for
two recently studied variants ofMatching Cut, on H -free graphs. The first variant
requires that the matching cut must be extendable to a perfect matching of the graph.
The second variant requires the matching cut to be a perfect matching. In particular,
we prove that there exists a small constant r > 0 such that the first variant is NP-
complete for Pr -free graphs. This addresses a question of Bouquet and Picouleau (The
complexity of the Perfect Matching-Cut problem. CoRR, arXiv:2011.03318, (2020)).
For all three problems, we give state-of-the-art summaries of their computational
complexity for H -free graphs.

Keywords Matching cut · Perfect matching · H -free graph · Computational
complexity

Mathematics Subject Classification Mathematics of computing · Graph algorithms

An extended abstract of this paper has appeared in the proceedings of ISAAC 2022 [30].

B Daniël Paulusma
daniel.paulusma@durham.ac.uk

Felicia Lucke
felicia.lucke@unifr.ch

Bernard Ries
bernard.ries@unifr.ch

1 Department of Informatics, University of Fribourg, Fribourg, Switzerland

2 Department of Computer Science, Durham University, Durham, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-023-01137-9&domain=pdf
https://orcid.org/0000-0002-9860-2928
https://orcid.org/0000-0001-5945-9287
https://orcid.org/0000-0003-4395-5547
http://arxiv.org/abs/2011.03318

Algorithmica

1 Introduction

Cut sets and connectivity are central topics in algorithmic graph theory. We consider
edge cuts in graphs that have some additional structure. The common property of these
cuts is that the edges in them must form a matching. Formally, consider a connected
graph G = (V , E). A set M ⊆ E is a matching if no two edges in M have a common
end-vertex. A set M ⊆ E is an edge cut, if V can be partitioned into sets B and R
such that M consists of all the edges with one end-vertex in B and the other one in R.
Now, M is a matching cut if M is a matching that is also an edge cut; see also Fig. 1.

In 1970, Graham [21] introduced graphs with matching cuts as decomposable
graphs to solve a problem in number theory (on cube numbering). Matching cuts
also have applications in ILFI networks [14] and graph drawing [34]. Moreover, they
are used for proving hardness of surjective graph homomorphism problems [19], and
for determining conflict graphs for WDM networks [1]. The corresponding decision
problem, which asks whether a given connected graph has a matching cut, is known
as Matching Cut.

We also consider twonatural variants ofMatching Cut. First, letG be a connected
graph that has a perfect matching M , that is, every vertex of G is incident to an edge of
M . If M contains amatching cut M ′ ofG, then M is a disconnected perfect matching of
G; see again Fig. 1 for an example. The problemDisconnected Perfect Matching

is to decide if a graph has a disconnected perfect matching. Every yes-instance of
Disconnected Perfect Matching is a yes-instance of Matching Cut, but the
reverse might not be true; for example, the 3-vertex path has a matching cut but no
(disconnected) perfect matching.

Suppose now that we search for a matching cut with a maximum number of edges,
or for a disconnected perfect matching with a matching cut that is as large as possible.
In both settings, the extreme case is when the matching cut is a perfect matching itself.
Such a matching cut is called perfect; see Fig. 1. By definition, a perfect matching cut
is a disconnected perfect matching, but the reverse might not hold: take the cycle on
six vertices which has several disconnected perfect matchings but no perfect matching
cut. The problem Perfect Matching Cut is to decide if a connected graph has a
perfect matching cut.

All three problems are known to be NP-complete, as we will explain in more detail
below. Hence, it is natural to restrict the input to some special graph class to obtain a
better understanding of the computational hardness of some problem, or some set of
problems. In particular, jumps in complexity can be large and unexpected. To give an
extreme example [32], there exist problems that are PSPACE-complete in general but
constant-time solvable for every other hereditary graph class, i.e., that is closed under
vertex deletion.

Fig. 1 The graph P6 with a matching cut that is not contained in a disconnected perfect matching (left), a
matching cut that is properly contained in a disconnected perfect matching (middle) and a perfect matching
cut (right). In each figure, thick edges denote matching cut edges

123

Algorithmica

Hereditary graph classes enable a systematic study in the computational complexity
of graph problems due to the following reasons. First of all, they capture many natural
graph classes. Second, it is readily seen that a graph class G is hereditary if and only
if it can be characterized by a (unique) setH of forbidden induced subgraphs. Hence,
it is standard practice to first consider hereditary graph classes obtained by forbidding
a single subgraph H . That is, a graph G is H-free if G does not contain H as induced
subgraph, or equivalently, if G cannot be modified into H by a sequence of vertex
deletions. Many classical graph problems and graph parameters have been studied for
classes of H -free graphs, as can not only be seen from surveys for e.g. Colouring
[17, 35] or clique-width [12], but also from extensive studies on H -free graphs for
specific graphs H , such as bull-free graphs [9] or claw-free graphs [10, 23]. We will
also focus on H -free graphs in this paper. Before presenting our results we first discuss
relevant known results.

1.1 Known Results

Out of the three problems,Matching Cut has been studiedmost extensively.Already
in the eighties, Chvátal [11] proved thatMatching Cut is NP-complete. Afterwards
a large number of complexity results were proven for special graph classes. Here,
we only discuss those results that are relevant for our context, whereas results for
non-hereditary graph classes can, for example, be found in [5, 27]. In particular, we
refer to a recent paper of Chen et al. [8] for a comprehensive overview. Similarly, we
refer to [2, 18, 20, 25, 26] for parameterized complexity results and exact algorithms
for Matching Cut. Moreover, we refer to [3, 20] for complexity results on a gen-
eralization of Matching Cut called d- Cut. In the latter problem, d ≥ 1 is some
fixed constant, and each vertex is allowed to have at most d neighbours across the cut
instead of only one (so matching cuts are 1-cuts).

On the positive side, Bonsma [4] proved that Matching Cut is polynomial-time
solvable for K1,3-free graphs and P4-free graphs. Recently, Feghali [15] proved the
same for P5-free graphs, which we extended to P6-free graphs in [31]. In the latter
paper, we also showed that ifMatching Cut is polynomial-time solvable for H -free
graphs, for some graph H , then it is so for (H + P3)-free graphs (see Sect. 2 for any
unexplained notation and terminology).

On the negative side, Matching Cut is NP-complete even for K1,4-free graphs.
This follows from the construction of Chvátal [11] (see also [4, 26]). Bonsma [4]
proved thatMatching Cut is NP-complete for planar graphs of girth 5, and thus for
Cr -free graphs with r ∈ {3, 4}. Le and Randerath [28] proved thatMatching Cut is
NP-complete for K1,5-free bipartite graphs.Hence, it isNP-complete for H -free graphs
if H has an odd cycle. Via a graph transformation of Moshi [33], NP-completeness
for H -free graphs also holds if H has an even cycle, as shown in [31]. Moshi [33]
used this graph transformation to showNP-completeness for bipartite graphswhere the
vertices in one set of the bipartition all have degree exactly 2.Consequently,Matching

Cut is also NP-complete for H∗-free graphs, where H∗ is the 6-vertex graph that
looks like the letter “H”, that is, the graph with vertices a1, a2, a3, b1, b2, b3 and
edgesa1a2, a2a3, b1b2, b2b3, a2b2. Feghali [15] proved the existence of an unspecified

123

Algorithmica

constant r such thatMatching Cut isNP-complete for Pr -free graphs; we will show
that r = 27 in his construction.

We now turn to Disconnected Perfect Matching. Even though disconnected
perfect matchings have been (implicitly) studied for cubic graphs from a graph-
structural point of view in several papers [13, 16], the decision problem itself was
only introduced recently by Bouquet and Picouleau [6]. They used a different name,
but to avoid confusion with Perfect Matching Cut, Le and Telle [29] introduced
the notion of disconnected perfect matchings, which we adapted. As observed in [6],
it follows from a result of Diwan [13] that every planar cubic bridgeless graph, except
the K4, has a disconnected perfect matching. Bouquet and Picouleau [6] proved that
Disconnected Perfect Matching is, among others, polynomial-time solvable for
claw-free graphs and P5-free graphs, but NP-complete for bipartite graphs (of diame-
ter 4), for K1,4-free planar graphs (each vertex of which has either degree 3 or 4) and
for planar graphs with girth 5.

Finally, we discuss the Perfect Matching Cut problem. Heggernes and Telle
[22] showed that it is a natural problem within their (σ, ρ)-vertex partitioning frame-
work, and they proved that this problem is NP-complete. Le and Telle [29] proved
that for every integer g ≥ 3, Perfect Matching Cut is NP-complete even for
K1,4-free bipartite graphs of girth g. The same authors showed that the problem is
polynomial-time solvable for the class of S1,2,2-free graphs (which contain the classes
of K1,3-free graphs and P5-free graphs) and for chordal graphs. As explained in [29],
the latter result generalizes a known result for interval graphs, for which a branch
decomposition of constant mim-width can be computed in polynomial time. We refer
to [29] for a brief discussion on the parameterized complexity of Perfect Matching

Cut and the first non-trivial exact algorithm for solving it.

1.2 New Results

For Matching Cut on H -free graphs, the remaining cases are when H is a P27-
free forest, each vertex of which has degree at most 3, such that H is not an induced
subgraph of P6 + s P3 or K1,3 + s P3 for some constant s ≥ 0. By modifying the
construction of Feghali [15], we prove in Sect. 3 thatMatching Cut is NP-complete
for (3P5, P15)-free graphs.

For Disconnected Perfect Matching on H -free graphs, the remaining cases
are when H contains an even cycle of length at least 6, such that every vertex of H
has degree at most 3 and H is not an induced subgraph of K1,3 or P5. Bouquet and
Picouleau [6] asked about the complexity of the problem for Pr -free graphs,with r ≥ 6.
We partially answer their question by proving NP-completeness for (3P7, P19)-free
graphs in Sect. 3 (via modifying our construction forMatching Cut for (3P5, P15)-
free graphs).

For Perfect Matching Cut on H -free graphs, the remaining cases are when H
is a forest of maximum degree 3, such that H is not an induced subgraph of S1,2,2. In
Sect. 4, we first prove that Perfect Matching Cut is polynomial-time solvable for
graphs of radius at most 2 (and thus also for graphs of diameter at most 2). We use
this result to obtain a polynomial-time algorithm for P6-free graphs. We also prove

123

Algorithmica

that if Perfect Matching Cut is polynomial-time solvable for H -free graphs, for
some graph H , then it is so for (H + P4)-free graphs.

All our results for Perfect Matching Cut are obtained by combining a number
of known propagation rules [27, 29] with new rules that we will introduce. After
applying these rules exhaustively,we obtain a graph, parts ofwhich have been allocated
to the sides B and R of the edge cut that we are looking for. We will prove that the
connected components of the remaining subgraph will be placed completely in B or
R, and that this property suffices. By doing so, we extend a known approach with our
new rules and show that in this way we widen its applicability.

The following three theorems present the state-of-art for H -free graphs. They are
obtained by combining the aforementioned results from [4, 6, 11, 28, 29, 31, 33] with
our new results. We write G ′ ⊆i G to indicate that G ′ is an induced subgraph of G;
as mentioned, recall that all undefined notation can be found in Sect. 2.

Theorem 1 For a graph H, Matching Cut on H-free graphs is

• Polynomial-time solvable if H ⊆i s P3 + K1,3 or s P3 + P6 for some s ≥ 0, and
• NP-complete if H ⊇i Cr for some r ≥ 3, K1,4, P15, 3P5 or H∗.

Theorem 2 For a graph H, Disconnected Perfect Matching on H-free graphs
is

• Polynomial-time solvable if H ⊆i K1,3 or P5, and
• NP-complete if H ⊇i Cr for some odd r ≥ 3, C4, K1,4, P19 or 3P7.

Theorem 3 For a graph H, Perfect Matching Cut on H-free graphs is

• Polynomial-time solvable if H ⊆i s P4 + S1,2,2 or s P4 + P6, for some s ≥ 0, and
• NP-complete if H ⊇i Cr for some r ≥ 3 or K1,4.

We state a number of open problems that originate from our systematic study in
Sect. 5.

2 Preliminaries

We only consider finite undirected graphs without multiple edges and self-loops.
Throughout this section, we let G = (V , E) be a connected graph. Let u ∈ V . The set
N (u) = {v ∈ V | uv ∈ E} is the neighbourhood of u in G, where |N (u)| is the degree
of u. A graph F is a spanning subgraph of G if V (F) = V (G) and E(F) ⊆ E(G).
Let S ⊆ V . The neighbourhood of S is the set N (S) = ⋃

u∈S N (u)\S. The graph
G[S] is the subgraph of G induced by S ⊆ V , that is, G[S] is the graph obtained from
G after deleting the vertices not in S. We write G ′ ⊆i G if G ′ is an induced subgraph
of G. We say that S is a dominating set of G, and that G[S] dominates G, if every
vertex of V \ S has at least one neighbour in S. The domination number of G is the
size of a smallest dominating set of G.

Let u, v ∈ V . The distance between u and v in G is the length (number of edges) of
a shortest path between u and v in G. The eccentricity of u is the maximum distance
between u and any other vertex of G. The diameter of G is the maximum eccentricity

123

Algorithmica

over all vertices of G. The radius of G is the minimum eccentricity over all vertices
of G. If G is not a tree, then the girth of G is the length of a shortest cycle in G.

Let H be a graph. Recall that G is H -free if G does not contain H as an induced
subgraph. Let {H1, . . . , Hn} be a set of graphs. Then G is (H1, . . . , Hn)-free, if G is
Hi -free for every i ∈ {1, . . . , n}. The graph Pr is the path on r vertices. The graph Cr

is the cycle on r vertices. A bipartite graph with non-empty partition classes V1 and
V2 is complete if there is an edge between every vertex of V1 and every vertex of V2. If
|V1| = k and |V2| = �, we write Kk,�. The graph K1,� is the star on �+1 vertices. The
graph K1,3 is also known as the claw. For 1 ≤ h ≤ i ≤ j , the graph Sh,i, j is the tree
with one vertex of degree 3, whose (three) leaves are at distance h, i and j from the
vertex of degree 3. Observe that S1,1,1 = K1,3. We need the following known result
(which has been strengthened in [7]).

Theorem 4 ([37])A graph G is P6-free if and only if each connected induced subgraph
of G contains a dominating induced C6 or a dominating (not necessarily induced)
complete bipartite graph. Moreover, such a dominating subgraph of G can be found
in polynomial time.

Let G1 and G2 be two vertex disjoint graphs. The graph G1 + G2 = (V (G1) ∪
V (G2), E(G1)∪ E(G2)) is the disjoint union of G1 and G2. For a graph G, the graph
sG is the disjoint union of s copies of G. Let H∗ be the “H”-graph, which is the graph
on six vertices obtained from the 2P3 by adding an edge joining the middle vertices
of the two P3s.

A red–blue colouring of G colours every vertex of G either red or blue. If every
vertex of a set S ⊆ V has the same colour (red or blue), then S (and also G[S]) are
called monochromatic. A red–blue colouring is valid, if every blue vertex has at most
one red neighbour; every red vertex has at most one blue neighbour; and both colours
red and blue are used at least once. If a red vertex u has a blue vertex neighbour v,
then u and v are matched. See also Fig. 1.

For a valid red–blue colouring of G, we let R be the red set consisting of all
vertices coloured red and B be the blue set consisting of all vertices coloured blue (so
V = R ∪ B). Moreover, the red interface is the set R′ ⊆ R consisting of all vertices in
R with a (unique) blue neighbour, and the blue interface is the set B ′ ⊆ B consisting
of all vertices in B with a (unique) red neighbour in R. A red–blue colouring of G is
perfect, if it is valid and moreover R′ = R and B ′ = B. A red–blue colouring of a
graph G is perfect-extendable, if it is valid and G[R \ R′] and G[B \ B ′] both contain a
perfect matching. In other words, the matching given by the valid red–blue colouring
can be extended to a perfect matching in G or, equivalently, is contained in a perfect
matching in G.

We can now make the following observation, which is easy to see (the notion of
red–blue colourings has been used before; see, for example, [15, 31]).

Observation 5 Let G be a connected graph. The following three statements hold:

(i) G has a matching cut if and only if G has a valid red–blue colouring;
(ii) G has a disconnected perfect matching if and only if G has a perfect-extendable

red–blue colouring;
(iii) G has a perfect matching cut if and only if G has a perfect red–blue colouring.

123

Algorithmica

Fig. 2 The cliques S′
1 and S2

together with the variable gadget
of xi . For readability, the edges
inside S′

1 and S2 have been
omitted. Note that S′

1 consists of
all vertices of S1 and all clause
vertices

3 Our NP-Completeness Results

We prove two NP-completeness results in this section by reducing from Exact Pos-

itive 1- in- 3 SAT. This problem takes as input a pair (X , C), where X is a set of
variables and C is a set of clauses, each containing exactly three literals, all three of
which are positive. Moreover, each variable of X appears in exactly three clauses ofC .
The question is whether there exists a truth assignment, such that each clause contains
exactly one true literal.

Theorem 6 ([36]) Exact Positive 1- in- 3 SAT is NP-complete.

Theorem 7 is our first new result. Its proof follows from Feghali’s construction [15]
after making some minor modifications to it. For completeness, and since we use the
modified construction as a basis for the proof of Theorem 10, we added a detailed
proof. Recall that Feghali [15] showed that Matching Cut is NP-complete for Pr -
free graphs, for some unspecified constant r . We will show that r = 27 in [15]; see
Remark 9 below.

Theorem 7 Matching Cut is NP-complete for (3P5, P15)-free graphs.

Proof Matching Cut is in NP, since it is possible to check in polynomial time if a
given red–blue-colouring is valid or not. To proveNP-hardness, wewill use a reduction
from Exact Positive 1- in- 3 SAT, which is NP-complete by Theorem 6. Let I be
an instance of Exact Positive 1- in- 3 SAT with variable set X and clause set C .
We will build a graph GI (see also Figs. 2and 3):

• For every xi ∈ X , construct a variable gadget consisting of two disjoint cliques
of size 4, Uxi and Vxi , with vertex set

{
us

xi
, u1

xi
, u2

xi
, u3

xi

}
and

{
vs

xi
, v1xi

, v2xi
, v3xi

}
,

respectively;
• Add two cliques S1 and S2 with vertex set {s11 , . . . , s|X |

1 } and {s12 , . . . , s|X |
2 },

respectively;
• For every i ∈ {1, . . . , |X |}, add the edges si

1us
xi

, si
1v

s
xi

, si
2us

xi
, si

2v
s
xi
;

• For every c j ∈ C , construct a clause gadget on clause vertices vc j , u1
c j

, u2
c j
, and

auxiliary vertices a1
c j

, . . . , a6
c j
.

123

Algorithmica

Fig. 3 The clause gadget for clause c j = xi1 ∨ xi2 ∨ xi3

• Add edges between all clause vertices of all clause gadgets to obtain a clique and
add all edges between S1 and this clique. We call the resulting clique S′

1.• For every j ∈ {1, . . . , |C |}, add the edges u1
c j

a�
c j
, for � = 1, 2, 3 and u2

c j
a�

c j
, for

� = 4, 5, 6;
• For every xi ∈ X occurring in clauses c j1 , c j2 and c j3 , add the edges vk

xi
vc jk

, for
k = 1, 2, 3; and

• For every c j ∈ C such that c j = xi1 ∨xi2 ∨xi3 , add the edges uk
xik

ak
c j
and uk

xik
ak+3

c j
,

for k = 1, 2, 3.

We claim that I admits a truth assignment such that each clause contains exactly
one true literal if and only if GI admits a valid red–blue-colouring.

First suppose that GI admits a valid red–blue-colouring. We start with some useful
claims. ��
Claim 7.1 For any variable xi ∈ X, i = 1, . . . , |X |, both Vxi and Uxi are
monochromatic. Furthermore, S′

1 and S2 are each monochromatic.

Proof This immediately follows from the fact these sets are cliques of size at least 3.
��

Wesay that amonochromatic set has colour red or blue if all its vertices are coloured
red or blue, respectively.

Claim 7.2 It holds that S′
1 and S2 have different colours.

Proof Suppose for a contradiction that S′
1 and S2 have the same colour. We may

assume without loss of generality that S′
1 and S2 are both coloured blue. Since for

every variable xi ∈ X , i = 1, . . . , |X |, there exist vertices us
xi
and vs

xi
having each

a neighbour in both S′
1 and S2, it follows that every variable gadget is coloured blue.

Thus, both neighbours of each auxiliary vertex are blue, which forces the auxiliary
vertices to be blue themselves. It follows that all vertices in GI are coloured blue.
Hence, the colouring is not valid, a contradiction. ��

123

Algorithmica

Claim 7.3 For every variable xi ∈ X, i ∈ {1, . . . , |X |}, Uxi and Vxi have different
colours.

Proof Suppose for a contradiction that for some variable xi ∈ X , i ∈ {1, . . . , |X |},
Uxi and Vxi have the same colour. We may assume without loss of generality that they
are both coloured blue. Since si

1 and si
2 are both adjacent to us

xi
and to vs

xi
, it follows

that they are both coloured blue. Now it follows from Claim 7.1, that S′
1 and S2 must

both be coloured blue, a contradiction to Claim 7.2. ��
Claim 7.4 For every clause c j ∈ C, exactly two neighbours of vc j outside of S′

1 have
the same colour as vc j .

Proof We may assume without loss of generality that vc j is coloured blue. Let c j =
(xi1 ∨ xi2 ∨ xi3). Without loss of generality, let v1xi1

, v2xi2
, v3xi3

be the three neighbours

of vc j outside of S′
1 and let u1

xi1
, u2

xi2
and u3

xi3
be the neighbours of the auxiliary

vertices ak
c j
, k = 1, . . . , 6. By definition of a valid red–blue-colouring, vc j has at

least two neighbours outside of S′
1 that are coloured blue. Suppose for a contradiction

that the vertices v1xi1
, v2xi2

, v3xi3
are all coloured blue. Then, it follows from Claim 7.1,

that Vxi1
, Vxi2

, Vxi3
must be coloured blue. Since vc j is coloured blue, Claim 7.1 also

implies that all vertices in S′
1, and in particular u1

c j
and u2

c j
, are coloured blue. Let A1

(resp. A2) be the set of auxiliary vertices which are adjacent to u1
c j

(resp. u2
c j
). Then,

at least two vertices in A1 and two vertices in A2 are coloured blue. Since u1
xi1

, u2
xi2

and u3
xi3

have each one neighbour in A1 and one neighbour in A2, it follows that one
of them has two blue neighbours in A1 ∪ A2, and is therefore coloured blue. We may
assume without loss of generality that this vertex is u1

xi1
. Using Claim 7.1 again, we

get that Uxi1
is coloured blue, a contradiction to Claim 7.3. ��

We continue as follows. By Claim 7.1, we may assume without loss of generality
that S′

1 is coloured blue. Then, we set every variable xi ∈ X , i ∈ {1, . . . , |X |}, to true
for which Vxi has been coloured red. We set all other variables to false. By Claim 7.4,
we know that for each clause c j ∈ C , j ∈ {1, . . . , |C |}, there exists exactly one red
neighbour of vc j . Hence, in every clause, exactly one literal is set to true. Since by
Claim 7.1, every Vxi , i ∈ {1, . . . , |X |}, is monochromatic, it follows that no variable
gets both values true and false. Thus, I admits a truth assignment such that each clause
contains exactly one true literal.

Now suppose thatI admits a truth assignment such that each clause contains exactly
one true literal. For every variable xi ∈ X , i ∈ {1, . . . , |X |}, that is set to true, we
colour Vxi red and Uxi blue; for every other variable xi ∈ X , we colour Vxi blue and
Uxi red. It follows that every vertex vc j , for c j ∈ C and j ∈ {1, . . . , |C |}, has exactly
one red and two blue neighbours outside of S′

1, since the truth assignment is such that
each clause contains exactly one true literal. Thus, we colour S′

1 blue. If we consider a
clause c j = (xi1 ∨ xi2 ∨ xi3), we know that exactly one of Uxi1

, Uxi2
, Uxi3

is blue and
the other ones are red. Assume without loss of generality thatUxi1

is blue and consider

a1
c j

, a4
c j
, the neighbours of u1

xi1
∈ Uxi1

. We then colour a1
c j

, a4
c j

blue, since they have

two blue neighbours (u1
xi1

and u1
c j

resp. u2
c j
). To obtain a valid red–blue colouring

123

Algorithmica

Fig. 4 The given valid
red–blue-colouring of the clause
gadget for c j (Color figure
online)

of GI , we have to colour one of the vertices a2
c j

, a5
c j

blue and the other one red, and

similarly, one of the vertices a3
c j

, a6
c j
blue and the other one red. Since u1

c j
, u2

c j
are both

coloured blue and each of them can have at most one red neighbour, we colour a2
c j

, a6
c j

blue and a3
c j

, a5
c j
red (see also Fig. 4). Finally, the only vertices that remain uncoloured

are the vertices in S2. The cliques S′
1 and S2 are coloured differently. Hence, as S′

1 is
coloured blue, we must colour S2 red. This gives us a valid red–blue-colouring of GI .

To complete the proof, it remains to show that GI is (3P5, P15)-free. We first prove
that GI is P15-free. Let P be a longest induced path in GI . Then P can contain at most
two vertices from a same clique, since otherwise P would not be induced. Moreover,
if P contains two vertices from a clique, then these two vertices must be consecutive
in P . Let W1 and W2 be two disjoint cliques in

{
Uxi , Vxi | xi ∈ X

}
. By construction,

every path from a vertex in W1 to a vertex in W2 contains at least one vertex from one
of the cliques S′

1 or S2. Hence, P can intersect at most three cliques belonging to some
variable gadgets. Moreover, in the case where P intersects three cliques belonging to
some variable gadgets, P intersects each of the cliques S′

1 and S2 as well. Assume that
P intersects W1, S′

1 and W2 in this order. Then P may contain at most one auxiliary
vertex between intersecting W1 and S′

1 and at most one between intersecting S′
1 and

W2; see Fig. 5 for an example. Hence, P contains at most 14 vertices. As P was a
longest path in GI , we conclude that GI is P15-free.

We now prove that G is 3P5-free. Let P be an induced P5 in GI . First suppose
that P does not contain any vertex of the cliques S′

1 and S2. Then P only contains
vertices from variable gadgets and auxiliary vertices. By the same arguments as above,
P can contain at most two vertices from a clique, and every path from a vertex in W1
to a vertex in W2, where W1 and W2 are two distinct cliques in

{
Uxi , Vxi | xi ∈ X

}
,

contains at least one vertex from one of the cliques S′
1 or S2. Hence, P can contain

at most four vertices, a contradiction. We conclude that every induced P5 in GI must
intersect at least one of the cliques S′

1 or S2. Hence, GI is 3P5-free. ��
Remark 8 It can be verified that the (3P5, P15)-free graphGI in the proof ofTheorem7
is not (P14 + s P4)-free for any s ≥ 1; see also Fig. 5, which displays an induced
P14 + 4P4.

Remark 9 In the graphGI from the proof ofTheorem7, no vertex ofUxi is adjacent to a
vertex of Vxi , for any xi ∈ X . In Feghali’s construction [15], there is an edge between

123

Algorithmica

Fig. 5 An induced P14 + 4P4, where the induced P14 is displayed in red and the four induced P4s are in
blue (Color figure online)

any two such cliques. This implies that an induced path can use four consecutive
vertices inside the same variable gadget. Via similar arguments as in our proof, one
can show that Feghali’s construction has an induced P26, but no induced P27 (and thus
it is P27-free).

We now modify the construction in the proof of Theorem 7 to obtain the follow-
ing result for Disconnected Perfect Matching, which addresses a question of
Bouquet and Picouleau [6].

Theorem 10 Disconnected Perfect Matching is NP-complete for (3P7, P19)-
free graphs.

Proof We first note that Disconnected Perfect Matching belongs to NP, as we
can verify in polynomial time if a given perfect-extendable red–blue-colouring is valid
or not.

In order to prove NP-hardness, we reduce from Exact Positive 1- in- 3 SAT,
which is NP-complete by Theorem 6. Let I be an instance of Exact Positive 1-

in- 3 SAT with variable set X and clause set C . We build a graph GI similarly to the
graph in Theorem 10 (see also Figs. 6and 7):

• For every xi ∈ X , construct a variable gadget consisting of two disjoint cliques
of size 7, Uxi and Vxi , with vertex set

{
us

xi
, u1

xi
, . . . , u6

xi

}
and

{
vs

xi
, v1xi

, . . . , v6xi

}
,

respectively;
• Add two cliques S1 and S2 with vertex set {s11 , . . . , s|X |

1 } and {s12 , . . . , s|X |
2 },

respectively;

123

Algorithmica

Fig. 6 The cliques S′
1 and S2,

together with the variable gadget
of xi . For readability, the edges
inside S′

1 and S2 have been
omitted. Note that S′

1 consists of
all vertices of S1 and all clause
vertices

Fig. 7 The clause gadget for the clause c j = xi1 ∨ xi2 ∨ xi3 . The vertices v1c j
, v2c j

, u1c j
, . . . , u4c j

belong

to clique S′
1; for readability, we omitted the edges between v1c j

, v2c j
and u1c j

, . . . , u4c j
. Moreover, coloured

edges of the same colour belong to the same clique Uxi j
, for j = 1, 2, 3 (again, for readability) (Color

figure online)

• For every i ∈ {1, . . . , |X |}, add the edges si
1us

xi
, si

1v
s
xi

, si
2us

xi
, si

2v
s
xi
;

• For every c j ∈ C , construct a clause gadget on clause vertices
v1c j

, v2c j
, u1

c j
, u2

c j
, u3

c j
, u4

c j
, and auxiliary vertices a1

c j
, . . . , a12

c j
.

• Add edges between all clause vertices of all clause gadgets to obtain a clique and
add all edges between this clique and S1. We call the resulting clique S′

1.• For every j ∈ {1, . . . , |C |}, add the edges u1
c j

a�
c j
, for � = 1, 2, 3, u2

c j
a�

c j
, for

� = 4, 5, 6, u3
c j

a�
c j
, for � = 7, 8, 9 and u4

c j
a�

c j
, for � = 10, 11, 12. Add also the

edges a�
c j

a�+6
c j

, for � = 1, . . . , 6;

• For every xi ∈ X occurring in clauses c j1 , c j2 and c j3 , add the edges vk
xi

v1c jk
and

vk+3
xi

v2c jk
, for k = 1, 2, 3; and

• For every c j ∈ C such that c j = xi1 ∨ xi2 ∨ xi3 , add the edges
uk

xik
ak

c j
, uk

xik
ak+3

c j
, uk+3

xik
ak+6

c j
and uk+3

xik
ak+9

c j
, for k = 1, 2, 3.

We claim that I has a truth assignment such that each clause contains exactly one
true literal if and only if GI has a perfect-extendable red–blue-colouring.

123

Algorithmica

First suppose that GI admits a valid perfect-extendable red–blue-colouring. We
start with some useful claims, the first three have the same proof as Claims 7.1, 7.2,
7.3 in the proof of Theorem 7. ��
Claim 10.1 For any variable xi ∈ X, i = 1, . . . , |X |, both Vxi and Uxi are
monochromatic. Furthermore, S′

1 and S2 are also monochromatic.

Claim 10.2 It holds that S′
1 and S2 have different colours.

Claim 10.3 For every variable xi ∈ X, i ∈ {1, . . . , |X |}, the cliques Uxi and Vxi have
different colours.

Claim 10.4 For every clause c j ∈ C, j ∈ {1, . . . , |C |}, exactly two neighbours of v1c j

(resp. v2c j
) outside of S′

1 have the same colour as v1c j
(resp. v2c j

).

Proof We may assume without loss of generality that v1c j
(resp. v2c j

) is coloured blue.

By symmetry, it is enough to prove the claim for v1c j
. Let c j = (xi1 ∨ xi2 ∨ xi3).

Without loss of generality, let v1xi1
, v2xi2

, v3xi3
be the three neighbours of v1c j

outside

of S′
1 and let u1

xi1
, u2

xi2
and u3

xi3
be the neighbours of the auxiliary vertices ak

c j
, k =

1, . . . , 6. By definition of a perfect-extendable red–blue-colouring, v1c j
has at least

two neighbours outside of S′
1 that are coloured blue. Suppose for a contradiction that

the vertices v1xi1
, v2xi2

, v3xi3
are all coloured blue. Then, it follows from Claim 10.1 that

Vxi1
, Vxi2

, Vxi3
must be coloured blue. Since v1c j

is coloured blue, Claim 10.1 also

implies that all vertices in S′
1, in particular u1

c j
and u2

c j
are coloured blue. Let A1 (resp.

A2) be the set of auxiliary vertices which are a neighbour of u1
c j

(resp. u2
c j
). Then, at

least two vertices in A1 and two vertices in A2 are coloured blue. Since u1
xi1

, u2
xi2

and

u3
xi3

have each one neighbour in A1 and one neighbour in A2, it follows that one of
them has two blue neighbours in A1 ∪ A2, and is thus coloured blue. We may assume
without loss of generality that this vertex is u1

xi1
. Using Claim 10.1 again, we get that

Uxi1
is coloured blue, a contradiction to Claim 10.3.

Since v1c j
and v2c j

are both in S′
1, using Claim 10.1 we get that they are both blue.

For each neighbour of v1c j
there is a neighbour of v2c j

in the same clique and vice versa.
Hence, they have the same number of blue neighbours. ��

We continue as follows. By Claim 10.1, we may assume without loss of generality
that S′

1 is coloured blue. We set every variable xi ∈ X for which Vxi has been coloured
red to true. We set all other variables to false. By Claim 10.4, we know that for each
clause c j ∈ C , j ∈ {1, . . . , |C |}, there is exactly one red neighbour of v1c j

(resp.

v2c j
). Hence, in every clause, exactly one literal is set to true. Since by Claim 10.1,

every Vxi , i ∈ {1, . . . , |X |}, is monochromatic, it follows that no variable is both true
and false. Thus, I admits a truth assignment such that each clause contains exactly
one true literal.

Conversely, assume now that I admits a truth assignment such that each clause
contains exactly one true literal. For every variable xi ∈ X , i ∈ {1, . . . , |X |}, that

123

Algorithmica

is set to true, we colour Vxi red and Uxi blue; for every other variable xi ∈ X ,
we colour Vxi blue and Uxi red. It follows that every vertex vk

c j
, c j ∈ C and j ∈

{1, . . . , |C |}, k = 1, 2, has exactly one red and two blue neighbours outside of S′
1,

since the truth assignment is such that each clause contains exactly one true literal.
Thus, we colour S′

1 blue. If we consider a clause c j = (xi1 ∨ xi2 ∨ xi3), we know that
exactly one ofUxi1

, Uxi2
, Uxi3

is blue and the other ones are red. Assume, without loss

of generality, that Uxi1
is blue and consider a1

c j
, a4

c j
, the neighbours of u1

xi1
∈ Uxi1

and

a7
c j

, a10
c j
, the neighbours of u4

xi1
∈ Uxi1

. We then colour a1
c j

, a4
c j

, a7
c j

, a10
c j

blue, since

they have two blue neighbours ({u1
xi1

, u1
c j

}, {u1
xi1

, u2
c j

}, {u4
xi1

, u3
c j

} resp. {u4
xi1

, u4
c j

}).
To obtain a perfect-extendable red–blue colouring of GI , we have to colour one of the
vertices a2

c j
, a5

c j
blue and the other one red, and similarly, one of the vertices a3

c j
, a6

c j

blue and the other one red. Since u1
c j

, u2
c j

are both coloured blue and each of them

can have at most one red neighbour, we colour a2
c j

, a6
c j
blue and a3

c j
, a5

c j
red. With the

same arguments we colour a8
c j

, a12
c j

blue and a9
c j

, a11
c j

red. Finally, the only vertices
that remain uncoloured are the vertices in S2. The cliques S′

1 and S2 are coloured
differently. Hence, as S′

1 is coloured blue, we must colour S2 red. This gives us a valid
red–blue-colouring of GI .

We must still verify that this valid red–blue-colouring is perfect-extendable. First,
consider the vertices si

j , for i ∈ {1, . . . , |X |} and j ∈ {1, 2}. We know that each vertex

si
j has two neighbours vs

xi
and us

xi
outside of S′

1 ∪ S2. Since the red–blue-colouring is

valid, it follows that exactly one of si
1, si

2 and exactly one of vs
xi
and us

xi
is blue. So

every vertex si
j has a neighbour of the opposite colour and hence, can be matched with

it. The same holds for the vertices vs
xi

, us
xi
, for all xi ∈ X .

Next, consider a clause c j ∈ C , such that c j = xi1 ∨ xi2 ∨ xi3 . It follows from
the construction of our valid red–blue-colouring that we may assume without loss of
generality that Vxi1

, Uxi2
, Uxi3

are coloured red and Vxi2
, Vxi3

, Uxi1
are coloured blue.

Since every clause vertex is coloured blue and has exactly one red neighbour, it follows
that all clause vertices in the clause gadget of c j can be matched and the same holds

for the vertices in Vxi1
\

{
vs

xi1

}
. The auxiliary vertices which are adjacent to vertices

in Uxi2
∪ Uxi3

have exactly one neighbour of the opposite colour and thus, they can
be matched with either clause vertices or vertices in Uxi2

∪ Uxi3
(see also Fig. 8). The

auxiliary vertices a1
c j

, a4
c j

, a7
c j
and a10

c j
, which are neighbours of Uxi1

, are all coloured

blue. In this case, we consider the edges a1
c j

a7
c j

and a4
c j

a10
c j

as matching edges.
The only vertices that remain unmatched are vertices in variable gadgets of variables

xi ∈ X , i ∈ {1, . . . , |X |}, which are set to false. Since all vertices vs
xi

and vs
ui

are
already matched, for all xi ∈ X , i ∈ {1, . . . , |X |}, there remains an even number of
unmatched vertices in each clique of these variable gadgets, all coloured with the same
colour. We can easily find matching edges inside these cliques. We conclude that our
valid red–blue-colouring is indeed perfect-extendable.

To complete the proof, it remains to show that GI is indeed (3P7, P19)-free. To
show that it is P19-free, we follow the same arguments as in the proof of Theorem
10, where we showed that the corresponding graph was P15-free. Let P be a longest

123

Algorithmica

Fig. 8 A perfect-extendable red–blue-colouring of the clause gadget. Notice that vertices
v1c j

, v2c j
, u1c j

, . . . , u4c j
belong to the clique S′

1, but for the sake of readability, we omitted the edges between

vertices v1c j
, v2c j

and vertices u1c j
, . . . , u4c j

(Color figure online)

Fig. 9 A path intersecting a
clause gadget and containing
four auxiliary vertices

induced path in GI . It holds that P can contain at most two vertices from each clique,
else P would not be induced. Also, if P contains two vertices from the same clique,
then these two vertices are necessarily consecutive in P . Let W1, W2 be two disjoint
cliques in

{
Uxi , Vxi | xi ∈ X

}
. Every path from a vertex inW1 to a vertex inW2 contains

at least one vertex from one of the cliques S′
1 and S2. Hence, P can intersect at most

three cliques belonging to some variable gadgets. Moreover, in the case where P does
intersect three cliques belonging to some variable gadgets, then P intersects each of
the cliques S′

1 and S2 as well. Directly before intersecting S′
1 the path P may contain

up to two auxiliary vertices (see also Fig. 9). Similarly, directly after intersecting
S′
1, the path P may contain another two auxiliary vertices. Moreover, the first two,

respectively the last two, vertices in P may correspond to auxiliary vertices. Hence,
P contains at most 18 vertices, and thus, GI is indeed P19-free.

We now prove that GI is 3P7-free. Let G ′ = G[V (GI)\(V (S′
1) ∪ V (S2)]. The

graph G ′ consists of two types of connected components: (i) every Vxi , for xi ∈ X ,

123

Algorithmica

Fig. 10 A connected component
of type (ii) obtained from the
removal of S′

1 and S2. A longest
path in this connected
component is shown in red
(Color figure online)

corresponds to a clique of size 7; (ii) every Uxi , for xi ∈ X , together with some
auxiliary vertices corresponds to a connected component as shown in Fig. 10 . Any
induced path contains at most two vertices of the same clique. Also observe that any
induced path contains at most six vertices from a connected component containing a
cliqueUxi (see Fig. 10). Hence, every induced path with length at least 7 has to contain
a vertex in one of the cliques S′

1 and S2. It immediately follows that GI is 3P7-free. ��
Remark 11 Just like we showed in Remark 8 that the gadget in the proof of Theorem 7
is not (P14 + s P4)-free for any integer s ≥ 0, it can be verified that the (3P7, P19)-free
graph GI in the proof of Theorem 10 is not (P18 + s P6)-free for any s ≥ 1.

4 Our Polynomial Results

In Sect. 4.5 we show that Perfect Matching Cut is polynomial-time solvable for
graphs of radius at most 2, for P6-free graphs and for (H + P4)-free graphs should
Perfect Matching Cut be polynomial-time solvable for H -free graphs. The proofs
of these results are all based on a common approach. This approach is described in
Sects. 4.1–4.4, but we give an outline of it below.

Outline. We prove the above results via a common approach. First, in Sect. 4.1, we
deal with the case where the input graph G has a small dominating set. This case can
be dealt with by using brute force. Now suppose that we find a dominating set D of
G that is not small. In Sect. 4.1, we also show that we can test in polynomial time
whether G has a perfect red–blue colouring in which D is monochromatic.

Due to the above it remains to check if G has a perfect red–blue colouring in which
the dominating set D that we found is not monochromatic. We branch by essentially
guessing an edge whose end-vertices are coloured with different colours. We then
exhaustively apply, in Sect. 4.2, a number of rules due to which more vertices will
be coloured either red or blue. So this leads to a partial red–blue colouring of G. We
prove that the rules are safe, that is, each of the coloured vertices received their correct
colour (assuming G has a perfect red–blue colouring that coincides with our original
guess). We then show that the connected components of the subgraph of G induced by
the uncoloured vertices must be monochromatic in every perfect red–blue colouring
extension of the partial red–blue colouring of G. This allows us to apply a number
of new rules given in Sect. 4.3 that exploit this property. Afterwards, more vertices
will be coloured, and we show in Sect. 4.4 that we can check in polynomial time (by

123

Algorithmica

a reduction to 2-SAT) whether the partial red–blue colouring can be extended to a
perfect red–blue colouring of the whole graph G.

4.1 Small or Monochromatic Dominating Sets

We start with two lemmas. Note that the first lemma shows that Perfect Matching

Cut is in XPwhen parameterized by the domination number of a graph. The proofs of
the two lemmas are similar to the proofs for valid but not necessarily perfect red–blue
colourings; see, for example, [15] or [31].

Lemma 12 For every integer g, it is possible to find in O(2gng+2)-time a perfect red–
blue colouring (if it exists) of a graph with n vertices and with domination number g.

Proof Let g ≥ 1 be an integer, and let G be a graph with domination number at most g.
Hence,G has a dominating set D of size atmost g.We consider all options of colouring
the vertices of D red or blue; note that this number is 2|D| ≤ 2g . For every red vertex of
D with no blue neighbour, we consider all O(n) options of colouring exactly one of its
neighbours blue (and thus, all of its other neighbours will be coloured red). Similarly,
for every blue vertex of D with no red neighbour, we consider all O(n) options of
colouring exactly one of its neighbours red (and thus, all of its other neighbours will
be coloured blue). Finally, for every red vertex in D with already one blue neighbour
in D, we colour all its yet uncoloured neighbours red. Similarly, for every blue vertex
in D with already one red neighbour in D, we colour all its yet uncoloured neighbours
blue.

As D is a dominating set, the above means that we guessed a red–blue colouring
of the whole graph G. We can check in O(n2) time if a red–blue colouring of a graph
with n vertices is perfect. Moreover, the total number of red–blue colourings that we
must consider is O(2gng). ��
Lemma 13 Let D be a dominating set of a connected graph G. It is possible to check in
polynomial time if G has a perfect red–blue colouring in which D is monochromatic.

Proof Consider a perfect red–blue colouring c of G, in which D is monochromatic,
say every vertex of D is coloured red. Let F1, . . . , Fr , for some integer r ≥ 1, be the
connected components of G − D.

We claim that every Fi is monochromatic. This follows from the same argument
as the one for valid red–blue colourings that are not necessarily perfect (see [31])
and we give it for completeness. For a contradiction, assume that, say, F1 is not
monochromatic. This means that F1 contains an edge uv where u is coloured red
and v is coloured blue. As D is a dominating set of G, we have that v also has a
neighbour in D, which is coloured red. Hence, c is not valid and thus not perfect
either, a contradiction.

Now suppose that some vertex u in Fi is coloured red. By the above claim, every
vertex of Fi is coloured red. The neighbours of u outside Fi are all in D and thus, are
coloured red as well. Hence, u has no blue neighbour, meaning that c is not perfect, a
contradiction. We conclude that every vertex in G − D must be coloured blue.

123

Algorithmica

Hence, in order to check if G has a perfect red–blue colouring in which D is
monochromatic, we can do as follows. Colour every vertex in D red and colour
every vertex in G − D blue. Then, check in polynomial time if the resulting red–blue
colouring is perfect. ��

4.2 Partial Red–Blue Colourings: Applying General Rules

To handle “partial” red–blue colourings that we want to extend to perfect red–blue
colourings, we introduce the following terminology. Let G = (V , E) be a connected
graph and S, T , X , Y ⊆ V be four non-empty sets with S ⊆ X , T ⊆ Y and X ∩Y = ∅.
A red–blue (S, T , X , Y)-colouring of G is a red–blue colouring where

• Every vertex of X is coloured red and every vertex of Y is coloured blue;
• The blue neighbour of every vertex in S belongs to T and vice versa; and
• The blue neighbour of every vertex in X \ S and the red neighbour of every vertex
of Y belong to V \ (X ∪ Y).

For a connected graph G = (V , E), let S′ and T ′ be two disjoint subsets of V , such
that (i) every vertex of S′ is adjacent to at most one vertex of T ′, and vice versa, and
(ii) at least one vertex in S′ is adjacent to a vertex in T ′. Let S′′ consist of all vertices
of S′ with a (unique) neighbour in T ′, and let T ′′ consist of all vertices of T ′ with a
(unique) neighbour in S′ (so, every vertex in S′′ has a unique neighbour in T ′′, and vice
versa). We call (S′′, T ′′) the core of starting pair (S′, T ′); note that |S′′| = |T ′′| ≥ 1.

We colour every vertex in S′ red and every vertex in T ′ blue. Propagation rules will
try to extend S′ to a set X and T ′ to a set Y by finding new vertices whose colour must
always be either red or blue. That is, we place new red vertices in the set X , which
already contains S′ and new blue vertices in the set Y , which already contains T ′. If a
red and blue vertex are matched to each other, then we add the red one to a set S ⊆ X
and the blue one to a set T ⊆ Y . So initially, S := S′′, T := T ′′, X := S′ and Y := T ′.
We let Z := V \ (X ∪ Y).

We now present seven propagation rules for finding perfect red–blue (S, T , X , Y)-
colourings. Rules R1 and R2 hold for finding red–blue colourings in general and
correspond to the five rules from [27]. Rules R3-R7 are for finding perfect red–blue
colourings; some of them are in a slightly different form in [29].

R1. Return no (i.e., G has no red–blue (S, T , X , Y)-colouring) if a vertex v ∈ Z is

(i) Adjacent to a vertex in S and to a vertex in T , or
(ii) Adjacent to a vertex in S and to two vertices in Y \ T , or
(iii) Adjacent to a vertex in T and to two vertices in X \ S, or
(iv) Adjacent to two vertices in X \ S and to two vertices in Y \ T .

R2. Let v ∈ Z .

(i) If v is adjacent to a vertex in S or to two vertices of X \ S, then move v from
Z to X . If moreover v is also adjacent to a vertex w in Y , then add v to S and
w to T .

123

Algorithmica

(ii) If v is adjacent to a vertex in T or to two vertices of Y \ T , then move v from
Z to Y . If moreover v is also adjacent to a vertex w in X , then add v to T and
w to S.

R3. Let v ∈ (X ∪ Y) \ (S ∪ T).

(i) If v ∈ X \ S and v is adjacent to a vertex w in Y , then add v to S and w to T .
(ii) If v ∈ Y \ T and v is adjacent to a vertex w in X , then add v to T and w to S.

R4. Return no if

(i) a vertex x ∈ X has no neighbours outside X or is adjacent to two vertices of
Y , or

(ii) a vertex y ∈ Y has no neighbours outside Y , or is adjacent to two vertices of
X .

R5. Let v ∈ Z , and let w ∈ Z be a vertex with NG(w) = {v}.
(i) If v is adjacent to a vertex in X and to a vertex in Y , then return no.
(ii) If v is adjacent to a vertex in X but not to a vertex in Y , then put v in X and

w in Y , and also add v to S and w to T .
(iii) If v is adjacent to a vertex in Y but not to a vertex in X , then put v in Y and

w in X , and also add v to T and w to S.

R6. Let v ∈ Z be in a connected component F of G[Z] such that F contains C4 as
a spanning subgraph.

(i) If v is adjacent to a vertex in X but not to a vertex in Y , and F contains a
vertex not adjacent to a vertex in X , then move v from Z to X .

(ii) If v is adjacent to a vertex in Y but not to a vertex in X , and F contains a
vertex not adjacent to a vertex in Y , then move v from Z to Y .

R7. Let v ∈ Z be in a connected component F of G[Z] such that {v} dominates F .
Let F − v have a vertex w with only one neighbour w′ in X ∪ Y .

(i) If w′ ∈ X , then put v in Y .
(ii) If w′ ∈ Y , then put v in X .

A propagation rule is safe if the input graph has a perfect red–blue (S, T , X , Y)-
colouring before the application of the rule if and only if it has so after the application
of the rule.

Lemma 14 Rules R1–R7 are safe.

Proof Let G be a connected graph with a perfect red–blue (S, T , X , Y)-colouring.
First recall that, by definition, vertices in X will be coloured red by every red–blue
(S, T , X , Y)-colouring, whilst vertices of Y will be coloured blue, and moreover that
every (red) vertex in S has exactly one (blue) neighbour in T , and vice versa. The
colour of the vertices in Z still has to be decided.

Rule R1-(i) is safe. A vertex adjacent to both a red vertex that already has a blue
neighbour and to a blue vertex that already has a red neighbour can be coloured neither

123

Algorithmica

red nor blue. Rule R1-(ii) is safe, as a vertex that is adjacent to a red vertex that already
has a blue neighbour must be coloured red, so it cannot also be adjacent to two blue
vertices. For the same reason, R1-(iii) is safe. Finally, R1-(iv) is safe, as a vertex that
is adjacent to two red vertices must be coloured red, so it cannot also be adjacent to
two blue vertices.

Rule R2-(i) is safe. Any vertex adjacent to a red vertex that already has a blue
neighbour or to two red vertices must be coloured red. If such a vertex is adjacent to a
vertex coloured blue already, it will have its blue neighbour and thus must be added to
S, whilst its blue neighbour must be added to T . For the same reason, R2-(ii) is safe
as well.

Rule R3-(i) is safe. Every red vertex must have a (unique) blue neighbour, and vice
versa. For the same reason, R3-(ii) is safe.

Rule R4-(i) is safe. In the first case, x will only have red neighbours in G (as x is
coloured red, x needs a blue neighbour as well). In the second case, x will have two
blue neighbours, while x is coloured red. This is not possible. For the same reason,
R4-(ii) is safe as well.

Rule R5-(i) is safe. As v will be adjacent to a blue and red neighbour, w cannot be
its matching neighbour. As w has degree 1, we find that w cannot be matched. Rule
R5-(ii) is safe as well. For a contradiction, suppose that we would put v in Y . Then
the matched neighbour of v is the neighbour of v that belongs to x . Hence, again we
find that w does not have a matched neighbour. So we must put v in X , and then v and
w will be matched to each other. For the same reason, R5-(iii) is safe.

Rule R6-(i) is safe. Suppose that we put v in Y , that is, v will be coloured blue.
Consequently, v has its matching neighbour in X . This means that the neighbours of v

in F will be coloured blue. As F has a cycle on four vertices as a spanning subgraph,
v has at most one non-neighbour in F , and this non-neighbour will get colour blue as
well. By assumption, F contains a vertex that is not adjacent to a vertex in X . This
vertex is coloured blue, but will not have a red neighbour. We conclude that v must be
put in X . For the same reason, R6-(ii) is safe as well.

Rule R7-(i) is safe. Suppose that we put v in X , so v will be coloured red, just like
w′. Hence, w is adjacent to two red vertices, and must be coloured red as well. As w′
is the only neighbour of w in X ∪ Y , we find that every other neighbour of w is in F .
As {v} dominates F , this means that such a neighbour of w is adjacent not only to w

but also to v, and hence must be coloured red. This means that w will not have any
blue neighbour. We conclude that v must be put in Y . For the same reason, R7-(ii) is
safe as well. ��

Assume that exhaustively applying rules R1–R7 on a starting pair (S′, T ′) did
not lead to a no-answer but to a 4-tuple (S, T , X , Y). Then we call (S, T , X , Y) an
intermediate 4-tuple. We prove the following lemma.

Lemma 15 Let G be a connected graph with a starting pair (S′, T ′) with core
(S′′, T ′′) and a resulting intermediate 4-tuple (S, T , X , Y). Then G has a per-
fect red–blue (S′′, T ′′, S′, T ′)-colouring if and only if G has a perfect red–blue
(S, T , X , Y)-colouring. Moreover, (S, T , X , Y) can be obtained in polynomial time.

123

Algorithmica

Fig. 11 A red–blue (S, T , X , Y)-colouring of a graph with an intermediate 4-tuple (S, T , X , Y). In this
example, G[Z] consists of a single connected component isomorphic to P4 (Color figure online)

Proof The first part of the lemma follows from Lemma 14 and our initialisation. To
prove the running time statement, we first note that each application of R1–R7 takes
polynomial time. For each rule we can also check in polynomial time if it can be
applied. Moreover, after each application of a rule we either find a no-answer or
reduce the size of at least one of the sets X , Y , Z . Hence, we obtained (S, T , X , Y) in
polynomial time. ��

We now describe the structure of a graph with an intermediate 4-tuple (S, T , X , Y);
see Fig. 11for an example.

Lemma 16 Let G be a connected graph with an intermediate 4-tuple (S, T , X , Y).
Then:

(i) Every vertex in S has exactly one neighbour in Y and that neighbour belongs to
T ;

(ii) Every vertex in T has exactly one neighbour in X and that neighbour belongs to
S;

(iii) Every vertex in X \ S has no neighbour in Y ;
(iv) Every vertex in Y \ T has no neighbour in X;
(v) Every vertex in V \ (X ∪ Y) has no neighbour in S ∪ T , at most one neighbour in

X \ S and at most one neighbour in Y \ T .

Proof Let Z = V \ (X ∪ Y). We prove the five statements one by one.
Proof of (i).For a contradiction, first assume that somevertexu in S has noneighbour

in T . Then u has no neighbour inY \T either, elsewewould have appliedR3.However,
now we would have applied R4 (and returned a no-answer). Hence, every vertex in S
has a neighbour in T ⊆ Y . If a vertex in S has more than one neighbour in Y , then we
would have applied R4 as well.

Proof of (ii). Statement (ii) follows by symmetry: we can use the same arguments
as in the proof of (i).

Proof of (iii). Let u ∈ X \ S. If u has a neighbour in Y , then we would have applied
R3. Hence, u has no neighbours in Y .

Proof of (iv). Statement (iv) follows by symmetry: we can use the same arguments
as in the proof of (iii).

Proof of (v). Let u ∈ Z . If u is adjacent to a vertex in S ∪ T , then we would have
applied R2. If u is adjacent to two vertices in X \ S or to two vertices in Y \ T , then
we would also have applied R2 as well. ��

123

Algorithmica

4.3 Partial Red–Blue Colourings: ExploitingMonochromaticity

Let (S, T , X , Y) be an intermediate 4-tuple of a connected graph G. Let Z = V \
(X ∪ Y). A red–blue (S, T , X , Y)-colouring of G is monochromatic if all connected
components of G[Z] are monochromatic. Rules R8-R11 preserve this property; some
of them were also used in [27, 29].

R8. Let v ∈ Z . If v is not adjacent to any vertex of X ∪ Y , then return no.

R9. Let v ∈ Z be a vertex in a connected component F of G[Z] such that v has only
one neighbour w in X ∪ Y .

(i) If w ∈ X , then put every vertex of F in Y and also add every vertex of F to
T and every neighbour of every vertex of F in X to S.

(ii) If w ∈ Y , then put every vertex of F in X and also add every vertex of F to
S and every neighbour of every vertex of F in Y to T .

R10. Let v ∈ (X ∪ Y) \ (S ∪ T) and F be a connected component of G[Z] such that
v has two neighbours in F .

(i) If v ∈ X \ S, then put every vertex of F in X , and also add every vertex of
F to S and every vertex of every neighbour of F in Y \ T to T .

(ii) If v ∈ Y \ T , then put every vertex of F in Y , and also add every vertex of F
to T and every vertex of every neighbour of F in X \ S to S.

R11. Let v ∈ (X ∪ Y) \ (S ∪ T) and F be a connected component of G[Z] such that
v has one neighbour in F that is the only neighbour of v in Z .

(i) If v ∈ X \ S and v is not adjacent to Y , then put every vertex of F in Y , and
also add every vertex of F to T and every vertex of every neighbour of F in
X \ S to S.

(ii) If v ∈ Y \ T and v is not adjacent to X , then put every vertex of F in X , and
also add every vertex of F to S and every vertex of every neighbour of F in
Y \ T to T .

A propagation rule is mono-safe if the input graph has a (monochromatic) perfect
red–blue (S, T , X , Y)-colouring before the application of the rule if and only if it has
so after the application of the rule. We prove the following lemma.

Lemma 17 Rules R8–R11 are mono-safe.

Proof Let G be a connected graph with a monochromatic perfect red–blue
(S, T , X , Y)-colouring. First recall that, by definition, vertices in X will be coloured
red by every red–blue (S, T , X , Y)-colouring, whilst vertices of Y will be coloured
blue, and moreover that every (red) vertex in S has exactly one (blue) neighbour in T ,
and vice versa. The colour of the vertices in Z still has to be decided.

Rule R8 is mono-safe. Let F be the connected component of G[Z] that contains
v. Then all neighbours of v belong to F , which must be monochromatic. Thus the
neighbours of v are coloured either all red or all blue. Hence, v will not have the
required neighbour with a different colour than itself.

123

Algorithmica

Fig. 12 A red–blue
(S, T , X , Y)-colouring of a
graph with a final 4-tuple
(S, T , X , Y). In this example,
G[Z] is isomorphic to 2P1 + P2
(Color figure online)

Rule R9-(i) is mono-safe. As all vertices in F will be coloured with the same colour,
this means that w must receive a different colour than v. Hence, as w is coloured red,
we find that v, and thus all other vertices of F , must be coloured blue. As every vertex
of F only has neighbours in F and in X ∪Y , we find that all neighbours of every vertex
in F are coloured. Hence, we can identify the unique red neighbours of the vertices
of F , which in turn will be the unique blue neighbours of these vertices. For the same
reason, Rule R9-(ii) is mono-safe as well.

Rule R10-(i) is mono-safe. All vertices in F will be coloured with the same colour
and at least two of them are adjacent to v. Hence, the vertices in F must all get the same
colour as the colour of v, which is red. Just as in the previous rule, we can now identify
the unique blue neighbours of the vertices of F , which in turn will be the unique red
neighbours of these vertices. For the same reason, Rule R10-(ii) is mono-safe as well.

Rule R11-(i) is mono-safe. Letw be the neighbour of v in F . Assume that v ∈ X \S
and v is not adjacent to Y . As w is the only neighbour of v in Z , all other neighbours
of v belong to X . As all vertices in X are coloured red, this means that w must be
coloured blue. Hence, as every vertex of F will be coloured the same, every vertex
of F will be coloured blue. Just as in the previous two rules, we can now identify
the unique red neighbours of the vertices of F , which in turn will be the unique blue
neighbours of these vertices. For the same reason, Rule R11-(ii) is mono-safe. ��

Suppose that exhaustively applying rules R1–R11 on an intermediate 4-tuple
(S, T , X , Y) did not lead to a no-answer but to a 4-tuple (S∗, T ∗, X∗, Y ∗). We call
(S∗, T ∗, X∗, Y ∗) the final 4-tuple and prove the following lemma.

Lemma 18 Let G be a connected graph with an intermediate 4-tuple (S, T , X , Y)

and a resulting final 4-tuple (S∗, T ∗, X∗, Y ∗). Then G has a monochromatic per-
fect red–blue (S, T , X , Y)-colouring if and only if G has a monochromatic perfect
red–blue (S∗, T ∗, X∗, Y ∗)-colouring. Moreover, (S∗, T ∗, X∗, Y ∗) can be obtained in
polynomial time.

Proof The first part of the lemma follows from Lemma 17 and the fact that
(S∗, T ∗, X∗, Y ∗) results from (S, T , X , Y). To prove the running time statement, we
first note that each application of R1–R11 takes polynomial time. For each rule we can
also check in polynomial time if it can be applied. Moreover, after each application
of a rule we either find a no-answer or reduce the size of at least one of the sets X , Y ,
Z . Hence, we obtained (S, T , X , Y) in polynomial time. ��

Wenowdescribe the structure of a connected graphwith afinal 4-tuple (S, T , X , Y);
see Fig. 12for an example.

123

Algorithmica

Lemma 19 Let G be a connected graph with a final 4-tuple (S, T , X , Y). The following
holds:

(i) Every vertex in S has exactly one neighbour in Y , which belongs to T ;
(ii) Every vertex in T has exactly one neighbour in X, which belongs to S;
(iii) Every vertex in X \S has no neighbour in Y , at least two neighbours in V \(X ∪Y)

but no two neighbours in the same connected component of G[V \(X ∪ Y)];
(iv) Every vertex in Y \T has no neighbour in X, at least two neighbours in V \(X∪Y)

but no two neighbours in the same connected component of G[V \(X ∪ Y)];
(v) Every vertex of V \ (X ∪ Y) has no neighbour in S ∪ T , exactly one neighbour

in X \ S and exactly one neighbour in Y \ T .

Proof Let Z = V \ (X ∪ Y). We prove the five statements one by one.
Proof of (i).For a contradiction, first assume that somevertexu in S has noneighbour

in T . Then u has no neighbour inY \T either, elsewewould have appliedR3.However,
now we would have applied R4 (and returned a no-answer). Hence, every vertex in S
has a neighbour in T ⊆ Y . If a vertex in S has more than one neighbour in Y , then we
would have applied R4 as well.

Proof of (ii). Statement (ii) follows by symmetry: we can use the same arguments
as in the proof of (i).

Proof of (iii). Let u ∈ X \ S. If u has a neighbour in Y , then we would have applied
R3. Hence, u has no neighbours in Y . If u has no neighbours in V \(X ∪ Y), then
u would only have neighbours in X . In that case we would have applied R4 (and
returned a no-answer). If u only has one neighbour in Z , then we would have applied
R11. Hence, u has at least two neighbours in Z . If two neighbours of u in Z belong
to the same connected component of Z , then we would have applied R10.

Proof of (iv). Statement (iv) follows by symmetry: we can use the same arguments
as in the proof of (iii).

Proof of (v). Let u ∈ Z . If u is adjacent to a vertex in S ∪ T , then we would have
applied R2. Hence, we find that u is not adjacent to a vertex in S ∪ T . If u is adjacent
to two vertices in X \ S or to two vertices in Y \ T , then we would have applied R2
as well. If u has exactly one neighbour in X ∪ Y , then we would have applied R9. If
u has no neighbour in X \ S and no neighbour in Y \ T , then u has no neighbour in
X ∪ Y , as we already deduced that u has no neighbour in S ∪ T . However, then we
would have applied R8 (and returned a no-answer). ��

4.4 Reduction to 2-SAT

We now prove a lemma that is the cornerstone for our polynomial-time results.

Lemma 20 Let G be a connected graph with a final 4-tuple (S, T , X , Y). Then it is
possible to find in polynomial time a monochromatic perfect red–blue (S, T , X , Y)-
colouring of G or conclude that such a colouring does not exist.

Proof Let Z = V \ (X ∪ Y). Let E∗ ⊆ E be the set of edges consisting of all edges
with one end-vertex in (X ∪Y)\(S ∪ T) and the other end-vertex in Z . By Lemma 19-
(v), we find that |E∗| = 2|Z |. By Lemma 19-(iii) and (iv), we find that |E∗| ≥

123

Algorithmica

2|(X ∪ Y)\(S ∪ T)|. Hence, |Z | ≥ |(X ∪ Y)\(S ∪ T)|, and |Z | = |(X ∪ Y)\(S ∪ T)|
if and only if each vertex in (X ∪ Y) \ (S ∪ T) has exactly two neighbours in Z .

Every vertex u ∈ Z still needs their matching neighbour v. In order for G to have
a monochromatic perfect red–blue (S, T , X , Y)-colouring, v must be outside S ∪ T ,
so v belongs to X ∪ Y . By Lemma 19-(v), we find that v ∈ (X ∪ Y)\(S ∪ T). As
matching neighbours are “private”, |Z | ≤ |(X ∪ Y) \ (S ∪ T)|. We conclude that
|(X ∪ Y)\(S ∪ T)| = |Z |. Our algorithm checks this in polynomial time and returns
a no-answer if |(X ∪ Y)\(S ∪ T)| �= |Z |.

From now on, assume |(X ∪ Y) \ (S ∪ T)| = |Z |. Hence, each vertex in (X ∪ Y) \
(S ∪ T) has exactly two neighbours in Z . Just like [27], we now construct an instance
φ of the 2- Satisfiability problem (2- SAT). Our 2-SAT formula differs from the
one in [27] due to the perfectness requirement. For each connected component C of
G[Z], we do as follows. We define two variables xC and yC , and we add the clause
(xC ∨ yC) ∧ (¬xC ∨ ¬yC) to φ. For each u ∈ (X ∪ Y) \ (S ∪ T), we do as follows.
From the above we known that u has exactly two neighbours v and w in Z . Let C be
the connected component of G[Z] that contains v and D be the connected component
of G[Z] that contains w. We add the clause (xC ∨ xD)∧ (yC ∨ yD) to φ. This finishes
the construction of φ.

We claim that G has a monochromatic perfect red–blue (S, T , X , Y)-colouring if
and only if φ has a satisfying truth assignment. It is readily seen and well known that
2- SAT is polynomial-time solvable, meaning we are done once we have proven this
claim.

First suppose that G has a monochromatic perfect red–blue (S, T , X , Y)-
colouring c. By definition, the vertices in each connected component C of G[Z]
are coloured alike. We define a truth assignment τ as follows. We let xC be true if
and only if the vertices of C are coloured red. We let yC be true if and only if the
vertices of C are coloured blue. As exactly one of these options holds, the clause
(xC ∨ yC) ∧ (¬xC ∨ ¬yC) is satisfied.

Now consider a clause (xC ∨ xD) ∧ (yC ∨ yD) corresponding to a vertex u ∈
(X ∪ Y) \ (S ∪ T) that has a neighbour in each of the connected components C
and D of G[Z]. Then, by Lemma 19-(iii) and (iv), C and D are different connected
components ofG[Z]. First assume that u ∈ X\S. ByLemma19-(iii), we find that u has
no neighbour in Y and thus its blue neighbour must either be in C or in D. If it is in C ,
then the neighbour of u in D is coloured blue, and vice versa. As c is monochromatic,
this means that either all vertices of C are coloured red and all vertices of D are
coloured blue, or the other way around. Hence, the clause (xC ∨ xD) ∧ (yC ∨ yD) is
satisfied. If u ∈ Y\T , we can use exactly the same arguments. We conclude that τ is
a satisfying truth assignment.

Now suppose that φ has a satisfying truth assignment τ . For every connected com-
ponent C of G[Z], we colour the vertices of C red if xC is true and we colour the
vertices of C blue if yC is true. As τ satisfies (xC ∨ yC) ∧ (¬xC ∨ ¬yC), exactly one
of xC or yC is true. Hence, the colouring of the vertices of Z is well defined.

We also colour all vertices of X red and all vertices of Y blue. We let c be the
resulting colouring. By construction, it is monochromatic. Hence, it remains to show
that c is a perfect red–blue (S, T , X , Y)-colouring. We will do this below.

123

Algorithmica

First, it follows from the definition of a core (S′′, T ′′) that S′′ and T ′′ are non-empty.
Moreover, before applying the reduction rules, we first do an initiation, from which it
follows that S′′ ⊆ S and T ′′ ⊆ T . Hence, at least one vertex of G is coloured red and
at least one vertex of G is coloured blue.

By Lemma 19-(i), every vertex in S has exactly one neighbour in Y . By Lemma 19-
(ii), every vertex in T has exactly one neighbour in X . By Lemma 19-(v), no vertex
of S ∪ T is adjacent to a vertex of Z . Hence, the vertices in S ∪ T have exactly one
neighbour of opposite colour.

By Lemma 19-(v), every vertex z ∈ Z has exactly one neighbour in X \ S, which is
coloured red, and exactly one neighbour in Y \ T , which is coloured blue; moreover, z
is not adjacent to any vertex in S ∪ T . Let C be the connected component of G[Z] that
contains z. As c is monochromatic, all vertices of C receive the same colour. Hence,
the vertices in Z have each exactly one neighbour of opposite colour.

Finally, we must verify the vertices in (X ∪Y)\(S ∪ T). Let u ∈ (X ∪Y)\ (S ∪ T).
First assume that u ∈ X \ S, so u is coloured red. We recall that u has exactly two
neighbours v and w in Z . Let C be the connected component of G[Z] that contains
u, and let D be the connected component of G[Z] that contains w. Hence, τ contains
the clause (xC ∨ xD) ∧ (yC ∨ yD). By Lemma 19-(iii), we find that C and D are
two distinct connected components of G[Z]. As τ satisfies (xC ∨ xD) ∧ (yC ∨ yD),
the vertices of one of C , D are coloured red, while the vertices of the other one are
coloured blue. By Lemma 19-(iii), we find that u has no (blue) neighbour in Y . Hence,
u has exactly one blue neighbour. If u ∈ Y \ T , we can apply the same arguments.
We conclude that also the vertices in (X ∪ Y) \ (S ∪ T) have exactly one neighbour
of the opposite colour.

From the above we conclude that c is monochromatic and perfect. ��

4.5 Applications of Our Approach

We first apply the approach described in the previous subsections to graphs of radius
at most 2. Our proof is similar but more involved than the one forMatching Cut on
graphs of radius at most 2 [31].

Theorem 21 Perfect Matching Cut is polynomial-time solvable for graphs of
radius at most 2.

Proof Let G be a graph of radius r at most 2. If r = 1, then G has a vertex that is
adjacent to all other vertices. In this case G has a perfect matching cut if and only
if G consists of two vertices with an edge between them. From now on, assume that
r = 2. Then G has a dominating star H as a subgraph, say H has centre u and leaves
v1, . . . , vs for some s ≥ 1. We can find H in polynomial time, as finding a dominating
star in a graph is equivalent to finding a vertex u with the property that every non-
neighbour of u is adjacent to a neighbour of u. By Observation 5 it suffices to check
if G has a perfect red–blue colouring.

We first check if G has a perfect red–blue colouring in which V (H) is monochro-
matic. By Lemma 13 this can be done in polynomial time. Suppose we find no such
red–blue colouring. Then we may assume without loss of generality that a perfect

123

Algorithmica

red–blue colouring of G (if it exists) colours u red and exactly one of v1, . . . , vs blue.
That is, G has a perfect red–blue colouring if and only if G has a perfect red–blue
({u}, {vi }, {u}, {vi })-colouring for some i ∈ {1, . . . , s}. We consider all O(n) options
of choosing which vi is coloured blue.

For each option we do as follows. Let vi be the vertex of v1, . . . , vs that we coloured
blue. We define the starting pair (S′, T ′) with core (S′, T ′), where S′ = {u} and
T ′ = {vi }. We now apply rules R1–R7 exhaustively. The latter takes polynomial time
by Lemma 15. If this exhaustive application leads to a no-answer, then by Lemma 15
wemaydiscard the option. Supposeweobtain an intermediate 4-tuple (S, T , X , Y). By
again applying Lemma 15, we find that G has a perfect red–blue ({u}, {vi }, {u}, {vi })-
colouring if and only if G has a perfect red–blue (S, T , X , Y)-colouring. By R2-(i)
and the fact that u ∈ S′ ⊆ S we find that {v1, . . . , vs}\{vi } belongs to X .

Suppose that G has a perfect red–blue (S, T , X , Y)-colouring c such that G[V (G)\
(X ∪ Y)] has a connected component D that is not monochromatic. Then D must
contain an edge uv, where u is coloured red and v is coloured blue. Note that v cannot
be adjacent to vi , as otherwise v would have been in Y by R3 (since vi ∈ T ′ ⊆ T). As
H is dominating, this means that v must be adjacent to a vertex w ∈ V (H)\{vi } =
{u, v1, . . . , vs}\{vi }. As u ∈ S′ ⊆ S ⊆ X and {v1, . . . , vs}\{vi } ⊆ X , we find that
w ∈ X by R2-(i) and thus will be coloured red. However, now v being coloured blue
is adjacent to two red vertices (namely u and w), contradicting the validity of c.

From the above we conclude that every perfect red–blue (S, T , X , Y)-colouring
of G is monochromatic. We now apply rules R1–R11 exhaustively. The latter takes
polynomial time by Lemma 18. If this exhaustive application leads to a no-answer,
then by Lemma 18 we may discard the option. Suppose we obtain a final 4-tuple
(S∗, T ∗, X∗, Y ∗). By again applying Lemma 18, we find that G has a monochro-
matic perfect red–blue (S, T , X , Y)-colouring if and only if G has a monochromatic
perfect red–blue (S∗, T ∗, X∗, Y ∗)-colouring. We can now apply Lemma 20 to
find in polynomial time whether or not G has a monochromatic perfect red–blue
(S∗, T ∗, X∗, Y ∗)-colouring. The correctness of our algorithm follows from the above
arguments. As we branch O(n) times and each branch takes polynomial time to
process, the total running time of our algorithm is polynomial. ��

We now consider P6-free graphs. As a consequence of Theorem 4, a P6-free graph
either has a small domination number, in which case we use Lemma 12, a monochro-
matic dominating set, in which case we use Lemma 13, or it has radius at most 2, in
which case we use Theorem 21.

Theorem 22 Perfect Matching Cut is polynomial-time solvable for P6-free
graphs.

Proof Let G be a connected P6-free graph. By Theorem 4, we find that G has a
dominating induced C6 or a dominating (not necessarily induced) complete bipartite
graph Kr ,s . By Observation 5 it suffices to check if G has a perfect red–blue colouring.

If G has a dominating induced C6, then G has domination number at most 6. In
that case we apply Lemma 12 to find in polynomial time if G has a perfect red–blue
colouring. Suppose that G has a dominating complete bipartite graph D with partition
classes {u1, . . . , ur } and {v1, . . . , vs}. We may assume without loss of generality that
r ≤ s.

123

Algorithmica

Fig. 13 The decomposition of a graph G into the graphs G′, which is isomorphic to H , the neighbourhood
graph N (G′) of G′, which is induced by all vertices not in G′ but that have one or more neighbours in G′,
and the graph G∗ induced by the remaining vertices of G

If r ≥ 2 and s ≥ 3, then any starting pair of the form ({ui }, {v j }), ({ui }, {u j }) (if
ui and u j are adjacent) or ({vi }, {v j }) (if vi and v j are adjacent) yields a no-answer.
Hence, V (D) is monochromatic for any perfect red–blue colouring of G. This means
that we can check in polynomial time by Lemma 13 if G has a perfect red–blue
colouring.

Now assume that r = 1 or s ≤ 2. In the first case, G has a (not necessarily induced)
dominating star and thus G has radius at most 2, and we apply Theorem 21. In the
second case, r ≤ s ≤ 2, and thus G has domination number at most 4, and we apply
Lemma 12. Hence, in both cases, we find in polynomial time whether or not G has a
perfect red–blue colouring. ��

For our last result we again apply our approach.

Theorem 23 Let H be a graph. If Perfect Matching Cut is polynomial-time
solvable for H-free graphs, then it is so for (H + P4)-free graphs.

Proof Assume that Perfect Matching Cut can be solved in polynomial time for
H -free graphs. Let G be a connected (H + P4)-free graph. Say, G has an induced
subgraph G ′ that is isomorphic to H ; else we are done by our assumption. Let G∗ be
the graph obtained from G after removing every vertex that belongs to G ′ or that has a
neighbour in G ′. As G ′ is isomorphic to H and G is (H + P4)-free, G∗ is P4-free. See
Fig. 13for an example of this decomposition of G, where we have chosen H = S1,2,2.

We use Observation 5-(iii) and search for a perfect red–blue colouring. We define
n = |V (G)| and m = |E(G)|. Following our approach, we need a starting pair
(S′, T ′) with core (S′′, T ′′). By definition, |S′′| = |T ′′| ≥ 1. Hence, we consider all
O(m) options of choosing an edge uv from E(G), one of whose end-vertices we
colour red, say u (so u ∈ S′′) and the other one, v, blue (so v ∈ T ′′). Afterwards,
for each (uncoloured) vertex in G ′ we consider all options of colouring it either red
or blue. As G ′ is isomorphic to H , the number of distinct options is a constant,
namely 2|V (H)|. Now, for every red (blue) vertex of G ′ with no blue (red) neighbour,
we consider all O(n) options of colouring exactly one of its neighbours blue (red).
Hence, afterwards each vertex of V (G ′) ∪ N (V (G ′)) is either coloured red or blue.
This leads to O(m2|V (H)|n|V (H)|) options (branches), which we handle one by one.

123

Algorithmica

Fig. 14 An example of a reducible connected component F of a graph G with an intermediate tuple
(S, T , X , Y). For readability only edges with at least one end-vertex in F are drawn. Note that F − {u, v}
consists of three single-vertex components and that F − {u, v} becomes a K3 after our algorithm has
processed F

Consider an option as described above. Let S′ consist of u and all red vertices of
V (G ′)∪ N (V (G ′)), and let T ′ consist of v and all blue vertices of V (G ′)∪ N (V (G ′)).
In this way we obtain a starting pair (S′, T ′)with core (S′′, T ′′). We apply rules R1-R7
exhaustively. If we find a no-answer, thenwe can discard the option by Lemma 15. Else
we found in polynomial time an intermediate 4-tuple (S, T , X , Y), such that G has
a perfect red–blue (S′′, T ′′, S′, T ′)-colouring if and only if G has a perfect red–blue
(S, T , X , Y)-colouring.

Consider a connected component F of G − (X ∪Y), for which the following holds:

1. F contains two adjacent vertices u and v, each with no neighbours in X ∪ Y and
moreover, v is dominating F ; and

2. Every vertex in F − {u, v} has both a neighbour in X and a neighbour in Y .

We say that F is a reducible connected component of G − (X ∪ Y), as after
processing F in the way described below we either found that G has no perfect red–
blue (S, T , X , Y)-colouring, or we have reduced the size of G. See Fig. 14 for an
example.

Wewill now describe howwe process a reducible component F . As G is connected,
the fact that u and v have no neighbours in X ∪Y implies that F −{u, v} is non-empty.
As every vertex in F − {u, v} has both a neighbour in X and a neighbour in Y , their
matching neighbour is not in F in every perfect red–blue (S, T , X , Y)-colouring of G.
As v dominates F , all vertices of F − {u, v} are adjacent to v. Hence, we find that
in every perfect red–blue (S, T , X , Y)-colouring of G, all vertices of F − {u, v} have
the same colour as v, that is, all vertices of F −{u} are coloured alike. If u is adjacent
to a vertex in F − {u, v}, this means that u will receive the same colour as every other
vertex in F including v and hence, u will not have a matching neighbour. So, in this
case, G has no perfect red–blue (S, T , X , Y)-colouring.

Now suppose that u is not adjacent to any vertex of F − {u, v}. Then u is only
adjacent to v in G. We now remove u and v and we add any missing edge between two
vertices of F − {u, v} such that in the end F − {u, v} has become a complete graph.

The above operation is safe to do, as in any perfect red–blue (S, T , X , Y)-colouring
of the new graph (if it exists) the vertices of F −{u, v} will all be coloured alike. This
is because the matching neighbour of every vertex of F − {u, v} belongs to X ∪ Y
and we have modified F − {u, v} into a complete graph. We can now give v the same
colour as the vertices of F − {u, v} and u the opposite colour. In this way we obtain a
perfect red–blue (S, T , X , Y)-colouring of G. Similarly, as we argued above, a perfect

123

Algorithmica

red–blue (S, T , X , Y)-colouring of G gives all the vertices of F −{u} the same colour
and makes u the matching neighbour of v. Hence, such a colouring (if it exists) will
correspond to a perfect red–blue (S, T , X , Y)-colouring of the new graph.

We will also process any other reducible connected components of G − (X ∪ Y)

in the same way. Then either we found that the original graph G has no perfect red–
blue (S, T , X , Y)-colouring and we discard the option, or we found a new graph that
has a perfect red–blue (S, T , X , Y)-colouring if and only if G has a perfect red–blue
(S, T , X , Y)-colouring. Assume that we are in the latter situation. We continue with
the new graph and denote it by G again (note that the new graph is the same graph as
G if G had no reducible connected components). We now prove the following claim.

��
Claim Every connected component of G − (X ∪ Y) in every perfect red–blue
(S, T , X , Y)-colouring of G is monochromatic.

Proof In order to see this claim, let F be a connected component of G − (X ∪ Y).
If F corresponds to some reducible connected component in the original graph then,
as we argued above, F will be monochromatic in any perfect red–blue (S, T , X , Y)-
colouring of G.

Now suppose that F was not obtained from some reducible connected component.
By construction, F is not reducible. If |V (F)| = 1, then F will be monochromatic.
Assume |V (F)| ≥ 2. As V (G ′) ∪ N (V (G ′)) ⊆ S′ ∪ T ′ and S′ ⊆ X and T ′ ⊆ Y , we
find that V (F) belongs to G∗. Since G∗ is P4-free, F is P4-free. It is well-known (see
e.g. Lemma 2 in [24]) that every connected P4-free graph has a spanning complete
bipartite subgraph Kk,� for some integers 1 ≤ k ≤ �.

If k ≥ 2 and � ≥ 3, then F must be monochromatic. Now suppose that k = � = 2,
so F contains a C4 as a spanning subgraph. If F contains a vertex u that has both a
neighbour in X and a neighbour in Y , then the matching neighbour of u will be in
X ∪ Y , so it is not in F . Hence, the two neighbours u′ and u′′ of u on the C4 in F must
receive the same colour as u. The latter means that the fourth vertex u∗ of F must also
receive the same colour as u (if u∗ is not adjacent to u, then u∗ will be adjacent to u′
and u′′, as the vertices u, u′, u′′, u∗ form a spanningC4 of F). So F is monochromatic.

We conclude that every vertex of F is adjacent to at most one vertex of X ∪ Y . As
G is connected, F has at least one vertex v with a neighbour w in X ∪ Y , say without
loss of generality that w ∈ X . Then the other three vertices of F must also have a
neighbour in X (and thus no neighbour in Y), else we would have applied R6. The
only way we can extend the red–blue (S, T , X , Y)-colouring to a perfect red–blue
colouring of G is by colouring each vertex of F blue, so F is monochromatic.

It remains to consider the case where k = 1 and � ≥ 1. In this case F contains a
vertex v such that {v} dominates F . Then every vertex in F−v has either no neighbours
in X ∪ Y , or it has both a neighbour in X and a neighbour in Y ; else we would have
applied R7. Let U be the set of vertices in F − v with no neighbour in X ∪ Y . As {v}
dominates F , every connected component of F − v is monochromatic. So, v is the
matching neighbour of every vertex of U . Hence, if |U | ≥ 2, then G has no perfect
red–blue (S, T , X , Y)-colouring so the claim is true. If |U | = 0, then the vertices
in F − v all have a neighbour both in X and Y . So, they do not have their matching
neighbour in F and thuswill receive the same colour as v. Hence, F is monochromatic.

123

Algorithmica

Assume that |U | = 1, say U = {u} for some vertex u of G. As v is the matching
neighbour of u, we find that v is adjacent to at most one vertex of X ∪ Y .

We now have that F contains two adjacent vertices u and v, where u has no neigh-
bours in X ∪ Y and moreover, v is dominating F , and every vertex in F − {u, v} has
both a neighbour in X and a neighbour in Y . Recall that F is not reducible. Hence,
v is adjacent to exactly one vertex w of X ∪ Y . Then u has at least one neighbour
in F − v; else we would have applied R5. Let u′ be an arbitrary neighbour of u in
F − v. As both u and u′ are adjacent to v, it follows that u, u′, v are coloured alike.
Hence, u has no matching neighbour. This means that G has no perfect red–blue
(S, T , X , Y)-colouring and the claim is true. ��

We now apply rules R1–R11 exhaustively. This takes polynomial time by
Lemma 18. If this leads to a no-answer, then by Lemma 18 we may discard the option.
Supposewe obtain a final 4-tuple (S∗, T ∗, X∗, Y ∗). By Lemma 18, G has amonochro-
matic perfect red–blue (S, T , X , Y)-colouring if and only if G has a monochromatic
perfect red–blue (S∗, T ∗, X∗, Y ∗)-colouring. We apply Lemma 20 to find in poly-
nomial time if the latter holds. If so, we are done by the Claim, else we discard the
option.

The correctness of our algorithm follows from its description. As the total number
of branches is O(m2|V (H)|n|V (H)|) and we can process each branch in polynomial
time, the total running time of our algorithm is polynomial. Hence, we have proven
the theorem. ��

5 Conclusions

We found new results on H -free graphs for three closely related edge cut problems:
the classical Matching Cut problem and its variants, Disconnected Perfect

Matching andPerfect Matching Cut.We summarized all known and new results
for H -free graphs in Theorems 1–3. We finish our paper with two open questions.

First, as can be noticed from Theorems 1–3, our knowledge on the complexity
of the three problems is different. In particular, does there exist a constant r such
that Perfect Matching Cut is NP-complete for Pr -free graphs? For the other two
problems such a constant exists. ForMatching Cutwe improved the previous value
r = 27 [15] to r = 15 and for Disconnected Perfect Matching we showed that
we can take r = 19, addressing a question in [6].

Second, is there a graph H for which the problems behave differently on H -free
graphs? The graph H = 3P5 is a candidate graph should it be possible to generalize
Theorem 23 from (H + P4)-free graphs to (H + P5)-free graphs.

Acknowledgements We thank three anonymous reviewers for their helpful comments. In particular, we
thank one referee for suggesting a change in our hardness gadgets that made it possible to prove Theorem 7
for (3P5, P15)-free graphs instead of (4P5, P19)-free graphs and Theorem 10 for (3P7, P19)-free graphs
instead of (4P7, P23)-free graphs.

Author Contributions All authors contributed to the paper.

123

Algorithmica

Data Availability Data sharing not applicable to this article as no datasets were generated or analysed during
the current study.

Declarations

Conflict of intetrest The authors have no competing interests as defined by Springer, or other interests that
might be perceived to influence the results and/or discussion reported in this paper.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Araújo, J., Cohen, N., Giroire, F., Havet, F.: Good edge-labelling of graphs. Discrete Appl. Math. 160,
2502–2513 (2012)

2. Aravind, N.R., Kalyanasundaram, S., Kare, A.S.: Vertex partitioning problems on graphs with bounded
tree width. Discrete Appl. Math. 319, 254–270 (2022)

3. Aravind, N.R., Saxena, R.: An FPT algorithm forMatching Cut and d-Cut. Proc. IWOCA 2021, LNCS
12757, 531–543 (2021)

4. Bonsma, P.S.: The complexity of the Matching-Cut problem for planar graphs and other graph classes.
J. Graph Theory 62, 109–126 (2009)

5. Borowiecki, M., Jesse-Józefczyk, K.: Matching cutsets in graphs of diameter 2. Theor. Comput. Sci.
407, 574–582 (2008)

6. Bouquet, V., Picouleau, C.: The complexity of the Perfect Matching-Cut problem. CoRR,
arXiv:2011.03318, (2020)

7. Camby, E., Schaudt, O.: A new characterization of Pk -free graphs. Algorithmica 75, 205–217 (2016)
8. Chen, C.-Y., Hsieh, S.-Y., Le, H.-O., Van Le, B., Peng, S.-L.: Matching Cut in graphs with large

minimum degree. Algorithmica 83, 1238–1255 (2021)
9. Chudnovsky, M.: The structure of bull-free graphs II and III—A summary. J. Comb. Theory Series B

102, 252–282 (2012)
10. Chudnovsky, M., Seymour, P.: The structure of claw-free graphs. Surveys in Combinatorics, London

Mathematical Society Lecture Note Series 327, 153–171 (2005)
11. Chvátal, V.: Recognizing decomposable graphs. J. Graph Theory 8, 51–53 (1984)
12. Dabrowski, K.K., Johnson, M., Paulusma, D.: Clique-width for hereditary graph classes. Proc. BCC

2019, London Mathematical Society Lecture Note Series 456, 1–56 (2019)
13. Diwan, A.A.: Disconnected 2-factors in planar cubic bridgeless graphs. J. Comb. Theory Series B 84,

249–259 (2002)
14. Farley, A.M., Proskurowski, A.: Networks immune to isolated line failures. Networks 12, 393–403

(1982)
15. Feghali, C.: A note on Matching-Cut in Pt -free graphs. Inf. Process. Lett. 179, 106294 (2023)
16. Funk, M., Jackson, B., Labbate, D., Sheehan, J.: 2-Factor hamiltonian graphs. J. Comb. Theory Series

B 87, 138–144 (2003)
17. Golovach, P.A., Johnson, M., Paulusma, D., Song, J.: A survey on the computational complexity of

colouring graphs with forbidden subgraphs. J. Graph Theory 84, 331–363 (2017)
18. Golovach, P.A., Komusiewicz, C., Kratsch, D., Van Le, B.: Refined notions of parameterized enu-

meration kernels with applications to matching cut enumeration. J. Comput. Syst. Sci. 123, 76–102
(2022)

19. Golovach, P.A., Paulusma, D., Song, J.: Computing vertex-surjective homomorphisms to partially
reflexive trees. Theor. Comput. Sci. 457, 86–100 (2012)

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2011.03318

Algorithmica

20. Gomes, G., Sau, I.: Finding cuts of bounded degree: complexity, FPT and exact algorithms, and
kernelization. Algorithmica 83, 1677–1706 (2021)

21. Graham, R.L.: On primitive graphs and optimal vertex assignments. Ann. New York Acad. Sci. 175,
170–186 (1970)

22. Heggernes, P., Telle, J.A.: Partitioning graphs into generalized dominating sets. Nord. J. Comput. 5,
128–142 (1998)

23. Hermelin, D., Mnich, M., van Leeuwen, E.J., Woeginger, G.J.: Domination when the stars are out.
ACM Trans. Algorithms 15, 25:1-25:90 (2019)

24. Kern, W., Paulusma, D.: Contracting to a longest path in H -free graphs. Proc. ISAAC 2020, LIPIcs
181, 22:1–22:18 (2020)

25. Komusiewicz, C., Kratsch, D., Van Le, B.: Matching Cut: kernelization, single-exponential time FPT,
and exact exponential algorithms. Discrete Appl. Math. 283, 44–58 (2020)

26. Kratsch, D., Van Le, B.: Algorithms solving the Matching Cut problem. Theor. Comput. Sci. 609,
328–335 (2016)

27. Le, H., Van Le, B.: A complexity dichotomy for Matching Cut in (bipartite) graphs of fixed diameter.
Theor. Comput. Sci. 770, 69–78 (2019)

28. Le, V.B., Randerath, B.: On stable cutsets in line graphs. Theor. Comput. Sci. 301, 463–475 (2003)
29. Le, V.B., Telle, J.A.: The perfect Matching Cut problem revisited. Theor. Comput. Sci. 931, 117–130

(2022)
30. Lucke, F., Paulusma, D., Ries, B.: FindingMatching Cuts in H -free graphs. Proc. ISAAC 2022, LIPIcs

248, 22:1–22:16 (2022)
31. Lucke, F., Paulusma, D., Ries, B.: On the complexity of Matching Cut for graphs of bounded radius

and H -free graphs. Theor. Comput. Sci. 936, 33–42 (2022)
32. Martin, B., Paulusma, D., Smith, S.: Hard problems that quickly become very easy. Inf. Process. Lett.

174, 106213 (2022)
33. Moshi, A.M.: Matching Cutsets in graphs. J. Graph Theory 13, 527–536 (1989)
34. Patrignani, M., Pizzonia, M.: The complexity of the Matching–Cut problem. Proc. WG 2001, LNCS

2204, 284–295 (2001)
35. Randerath, B., Schiermeyer, I.: Vertex colouring and forbidden subgraphs—A survey. Graphs Comb.

20, 1–40 (2004)
36. Schmidt, T.: Computational complexity of SAT, XSAT and NAE-SAT for linear and mixed Horn CNF

formulas. PhD thesis, Universität zu Köln, (2010)
37. Van ’t Hof, P.: A new characterization of P6-free graphs. Discrete Appl. Math. 158, 731–740 (2010)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Finding Matching Cuts in H-Free Graphs
	Abstract
	1 Introduction
	1.1 Known Results
	1.2 New Results

	2 Preliminaries
	3 Our NP-Completeness Results
	4 Our Polynomial Results
	4.1 Small or Monochromatic Dominating Sets
	4.2 Partial Red–Blue Colourings: Applying General Rules
	4.3 Partial Red–Blue Colourings: Exploiting Monochromaticity
	4.4 Reduction to 2-SAT
	4.5 Applications of Our Approach

	5 Conclusions
	Acknowledgements
	References

