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A B S T R A C T   

The Greenland Ice Sheet covers an area of 1.7 million km2, equivalent to ~79 % of the surface of Kalaallit Nunaat 
(Greenland) and ~1.2 % of the Earth’s land surface. The macro-scale geomorphology beneath the ice can provide 
a valuable record of past ice sheet behaviour, particularly during warm periods that may serve as analogues for 
present and future climates. However, despite extensive mapping of the landscape by airborne radar surveying, 
Greenland’s subglacial geomorphology remains comparatively understudied. Here we construct an automated 
workflow to identify, extract, and quantify the morphology of valley cross-sectional profiles across Greenland, as 
observed in NASA Operation IceBridge radar data. We identify 5335 cross-sectional profiles and apply a su
pervised machine learning method to classify valleys based on their morphological similarity to those formed by 
glacial or fluvial incision elsewhere in the Northern Hemisphere. Approximately two thirds of the valleys are 
classified as ‘glacial’, some of which reflect active incision at the modern ice sheet margin, whereas others are 
situated beneath cold-based, slow-moving ice, indicating that they were incised under a different ice configu
ration earlier in Greenland’s glacial history. The presence of ‘fluvial’ valleys in the low-lying interior of northern 
Greenland and in mountainous southern Greenland suggests parts of the inherited landscape formed under ice- 
free conditions during pre- or inter-glacial times have been preserved due to negligible long-term subglacial 
erosion rates. Some low-lying catchments show hallmarks of a combination of fluvial, glacial, and glacio-fluvial 
incision, hinting at complex interplays between valley-forming processes over the history of the Greenland Ice 
Sheet.   

1. Introduction 

The Greenland Ice Sheet (GrIS; Fig. 1a) contains approximately three 
million cubic kilometres of ice, which is equivalent to ~7.4 m of global 
sea level change (Morlighem et al., 2017). Today, ice loss from the GrIS, 
driven by rising atmosphere and ocean temperatures caused by 
anthropogenic activity, is one of the largest contributors to global sea 
level rise (Cazenave et al., 2018). Mass balance calculations indicate that 
between 1992 and 2018 the GrIS lost mass at an average rate of ~140 Gt 
year− 1, which is equivalent to a global mean sea level contribution of 
~1.1 cm over this period (The Imbie Team, 2020). This mass loss has 
been driven by approximately equal contributions from increased sur
face melting and enhanced discharge from outlet glaciers (The Imbie 
Team, 2020). 

Ice sheet model ensemble experiments indicate that without a sub
stantial reduction in global greenhouse gas emissions, rates of ice mass 
loss in Greenland are likely to accelerate over the course of the current 

century (Goelzer et al., 2020). However, recent studies continue to show 
a broad range of projected GrIS contributions to sea level rise by 2100 
CE, including (for the high emissions RCP 8.5/SSP5-85 scenario) 9 ± 5 
cm (Goelzer et al., 2020), 10 ± 8 cm (Edwards et al., 2021), and 19 ± 10 
cm (Aschwanden and Brinkerhoff, 2022). These ranges reflect the 
intrinsic uncertainties in the ice models, climate models, and ocean 
forcing (Goelzer et al., 2020), as well as gaps in our understanding of 
physical processes including ice-atmosphere, ice-Earth, and ice-ocean 
interactions (Edwards et al., 2019; Noble et al., 2020; Straneo and 
Heimbach, 2013; Whitehouse et al., 2019). Reducing these uncertainties 
in future sea level projections is of especial importance for assessing 
global societal impacts and establishing successful mitigation and 
adaptation strategies. 

Uncertainties in projections of future ice sheet and sea level change 
can be reduced by improving our understanding of the past behaviour of 
the GrIS (e.g., during warmer climate intervals), which can be con
strained using geological records (e.g., Alley et al., 2010; Bierman et al., 
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2016). The (in)ability of ice sheet models to accurately reproduce these 
records of past behaviour can provide valuable constraints on model 
physics and parameter space, which in turn imparts increased confi
dence when using these models to simulate future change. 

2. Motivation 

2.1. Subglacial topography as a record of long-term ice behaviour 

Based on records from offshore sedimentary material, intensification 
of widespread glaciation of Greenland is generally believed to have 
occurred during the late Pliocene to early Pleistocene (ca. 3.6–2.4 Ma) 
(Flesche Kleiven et al., 2002; Jansen et al., 2000; Mudelsee and Raymo, 
2005). However, many uncertainties persist regarding the history of the 
GrIS prior to, during, and following this interval (e.g., Bierman et al., 
2016; DeConto et al., 2008; Eldrett et al., 2007; Schaefer et al., 2016; 
Tripati and Darby, 2018). Building an improved understanding of GrIS 
behaviour during its early development and through subsequent warm 

periods will provide valuable analogues for predicting its response to 
current and projected future atmosphere and ocean warming. Con
straining the stability, extent, and dynamics of past ice sheets in 
Greenland will also help (i) improve cryospheric boundary conditions in 
palaeoclimate and ocean modelling (Haywood et al., 2019), (ii) 
deconvolve marine records of past global ice volume, temperature, and 
sea level (Miller et al., 2020), and (iii) reduce the variance in numerical 
model simulations of past GrIS behaviour, and in turn increase confi
dence in applying such models to predict future glaciological change 
(Goelzer et al., 2020). 

However, acquiring further data-based constraints of palaeo-ice 
extent and dynamics during times of more restricted ice cover is chal
lenging given that onshore records pertaining to these intervals are 
largely obscured by the modern-day GrIS. Elsewhere in the northern 
hemisphere, an important tool for constraining the extent and behaviour 
of former ice sheets is mapping their geomorphological imprint upon the 
landscape (e.g., Bickerdike et al., 2018; Boulton and Clark, 1990; Clark 
et al., 2022; Kleman et al., 1997; Margold et al., 2013). By contrast, 

Fig. 1. Greenland Ice Sheet configuration and airborne radar data coverage. (a) Surface elevation of the Greenland Ice Sheet (Howat et al., 2022, 2014). Black 
outlines delineate the ice margin and eight first-order drainage catchments (Zwally et al., 2012). Catchment abbreviations: NO = north; NE = northeast; CE = central 
east; SE = southeast; SO = south; SW = southwest; CW = central west; NW = northwest. Land elevation outside the ice sheet margin (Morlighem et al., 2017) is 
shaded in greyscale. The 50 m/yr ice surface velocity contour (Joughin et al., 2018), an approximate threshold of the onset of fast flow, is marked by the white 
outline. Labels mark outlet glaciers referenced in the main text. (b) Coverage of radio-echo sounding (radar) data used in this study. Hillshade image of the ice surface 
elevation model (Howat et al., 2022, 2014) is shaded in greyscale; land surface topography and seafloor bathymetry (Morlighem et al., 2017) are displayed according 
to the colour scale. All elevations are relative to global mean sea level. Blue triangles mark deep ice core sites. RES survey lines used in this study: yellow = OIB 
survey flights (2010–2019), blue = legacy CReSIS flights (2000–2009) (Paden et al., 2019). 
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analysis of Greenland’s subglacial geomorphology has historically been 
limited by a lack of direct measurements of the ice sheet bed. However, 
in the past two decades the bed topography of Greenland has been 
extensively mapped using radio-echo sounding (RES) surveying, 
including >800,000 line-km of data acquired during NASA’s Operation 
IceBridge (OIB) mission between 2010 and 2019 (Fig. 1b) (MacGregor 
et al., 2021). Although RES-derived bed elevation data have been ana
lysed in certain regions (e.g., Cooper et al., 2016; Livingstone et al., 
2017; MacGregor et al., 2019), significant amounts of data remain 
under-utilised and systematic island-wide analyses of the subglacial 
landscape have been lacking. 

2.2. Study objectives 

In this study, we seek to make use of the full OIB RES dataset to carry 
out a systematic continental-scale analysis of geomorphological features 
within Greenland’s subglacial landscape. Specifically, we use OIB 
MCoRDS (Multi-Channel Coherent Radar Depth Sounder) Level 2 pre- 
processed ice thickness and bed elevation measurements (Paden et al., 
2019), together with legacy CReSIS (Center for Remote Sensing and 
Integrated Systems) survey data collected between 2000 and 2009 
(Fig. 1b). Given the size and extent of this dataset, which contains >30 
million bed elevation datapoints along >800,000 line-km, a large-scale 
geomorphological analysis using traditional manual mapping tech
niques would be highly laborious. Instead, we aim to develop automated 
techniques to enable time-efficient mapping and classification of large 
numbers of macro-scale geomorphological features. Such methods have 
been employed in the classification of subaerial landforms (Allred and 
Luo, 2016; Brigham and Crider, 2022; Robb et al., 2015) and subglacial 
geological domains (Li et al., 2022), but have not been previously 
applied to the subglacial landscape of Greenland. 

Here we focus specifically on subglacial valleys, which have been 
documented in multiple regions of Greenland (Bamber et al., 2013; 
Cooper et al., 2016; Dam et al., 2020; Livingstone et al., 2017; Paxman 
et al., 2021). The reasons for focussing on this particular type of land
form are: (i) RES survey lines provide a cross-sectional (2D) view of 
topography; valleys are more readily discerned in cross-section than 
other landforms, (ii) valley cross-profile morphology can be used to 
differentiate between different styles of erosion (e.g., Harbor and 
Wheeler, 1992), and (iii) no unified framework currently exists for 
comparing patterns of valley extent and morphology across Greenland. 
As well as helping constrain the geological, erosional, and climatological 
history of a landscape (Cooper et al., 2016; Franke et al., 2021; Paxman 
et al., 2021), subglacial valleys can also exert a significant control on 
contemporary ice flow and stability (Cooper et al., 2016; Morlighem 
et al., 2017). 

3. Methods 

We developed an automated workflow to identify the locations of 
subglacial valleys across Greenland and quantify the morphometry of 
their cross-profiles. We then used supervised machine learning to clas
sify subglacial valleys according to their morphological similarity with 
valleys observed elsewhere in the Northern Hemisphere that have, or 
have not, been extensively modified by Quaternary glacial erosion. An 
advantage of adopting a supervised machine learning approach is that it 
avoids the need to explicitly impose hard-to-define morphometric 
criteria to classify landforms (Jamieson et al., 2014; Livingstone et al., 
2017), instead relying on statistical comparison with the ‘training 
dataset’, which contains valleys whose origin is well understood. Our 
overarching aim is to improve understanding of the distribution and 
evolution of valley networks across Greenland, and their implications 
for past and present ice dynamics. Our workflow can be divided into four 
principal steps. 

3.1. Construction of the training dataset 

The training dataset comprises ‘labelled’ valleys against which the 
‘unlabelled’ Greenland valleys are compared and consequently assigned 
a class. It is therefore important that the training dataset captures the 
variability of the unlabelled valleys. Hence, we selected valleys with a 
well-understood mode of formation from regions with a close geological 
affinity to Greenland. This included passive margin settings in the 
Northern Hemisphere, such as northwest Europe, northwest Africa, and 
eastern North America, as well as regions with orogens that have 
experienced Cenozoic uplift, such as western North America and the 
European Alps. The training dataset therefore includes valleys from a 
range of geological and tectonic settings representative of those found in 
Greenland (Henriksen et al., 2009). Given that Greenland is not expe
riencing active tectonics, we avoided valleys from sites experiencing 
significant active continental deformation. 

Valleys in the training dataset were labelled as either ‘glacial’ or 
‘fluvial’ based on whether they possess a significant erosive imprint from 
Quaternary glaciation. Although achieving a comprehensive under
standing of the spatiotemporal evolution of even a well-mapped sub
aerial landscape is challenging, valleys from the Scottish Highlands, 
Canadian Rockies, Norwegian Caledonides, and European Alps are 
known to have experienced extensive modification by Quaternary 
glacial incision (Fig. 2) (Hall et al., 2013; Hilley et al., 2020; Penck, 
1905; Sugden, 1968), so were labelled as ‘glacial’. By contrast, valleys 
from the Atlas Mountains (Morocco), Cumberland Plateau (Appalachian 
Mountains, USA), Sierra Nevada (California, USA; only valleys below 
the mapped LGM glacial limit (Gillespie and Clark, 2011)), and Sierra 
Nevada (Spain) are recognised as being unmodified by glacial incision 
and retaining a primarily fluvial signature (Fig. 3) (Egholm et al., 2009; 
Stokes et al., 2008; Sugden, 1977; Zimmer and Gabet, 2018), so were 
labelled as ‘fluvial’. Cross-profiles were sampled orthogonal to the trend 
of the valleys at randomly selected points, and were extracted from the 
Copernicus 90 m global digital elevation model (DEM) (European Space 
Agency, 2021). 

Although there is no definitive ‘correct’ size for the training dataset, 
a common rule-of-thumb is that the number of entries in the training 
dataset should be at least 10 times the number of independent variables 
that define each entry, and conservatively at least 50 times this number 
(Alwosheel et al., 2018). In this study, each valley is defined by 4 
morphometric variables (see Section 3.2), so we selected 200 valleys to 
comprise the training dataset: 100 from the four ‘glacial’ regions and 
100 from the four ‘fluvial’ regions. 

3.2. Calculation of valley morphometric indices 

Fluvial and glacial erosion are associated with different diagnostic 
valley cross-profiles. For example, flow of glacial ice and associated 
erosion often leads to widening and deepening of a valley and the for
mation of characteristic ‘U-shaped’ or parabolic cross-profiles, as 
opposed to the more linear slopes of a ‘V-shaped’ fluvial valley (Brook 
et al., 2006; Davila et al., 2013; Harbor and Wheeler, 1992). For each 
cross-profile (z(x)) in the training dataset, we extracted four quantitative 
metrics that characterise valley morphology (Fig. 4). 

(i) valley depth (D), defined as the average difference in elevation 
between the two valley rims (ZR1 and ZR2) and the valley bottom (ZB) 
(Fig. 4a) 

D =
ZR1 + ZR2

2
− ZB. (1) 

(ii) valley top (ridge-to-ridge) width (Wtop), defined as the horizontal 
distance between the two valley rims (XR1 and XR2) (Fig. 4c) 

Wtop = |XR2 − XR1|. (2) 

(iii) the V-index (V), which is defined as the ratio between the valley 
cross-sectional area (Ax) and the area of an idealised V-shaped valley 
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with the same rim and floor co-ordinates (Av) (Zimmer and Gabet, 2018) 

V =
Ax

Av
− 1. (3) 

For an idealised V-shaped valley, Ax will be equal to Av, and the V- 
index will be equal to zero. For valleys that are increasingly U-shaped, 

the area of the cross-section will increase, such that the ratio defined in 
Eq. (3) will increase above zero. To avoid an influence from low-angle 
and/or convex slopes near the rims of the valley, which may not have 
been subject to glacial erosion (Zimmer and Gabet, 2018), the V-index is 
calculated for a truncated section of the cross profile below 80 % of the 
full relief on each side of the valley (Fig. 4e). 

Fig. 2. Locations of glacial valley training data. These regions contain valleys that have experienced significant modification by Quaternary glaciation. Elevations are 
taken from the Copernicus 90 m global digital elevation model (European Space Agency, 2021). (a) Scottish Highlands, (b) Canadian Rockies, (c) Norwegian 
Caledonides, (d) European Alps. Note that the elevation scale in panel a differs from the other panels. Top: map shows the locations of the four panels. 
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(iv) the ratio (C) between the curvature (second spatial derivative) of 
two second-order polynomials: one fitted to the central 20 % of the 
valley cross-sectional profile (κ20) and the second to the central 80 % of 
the valley cross-sectional profile (κ80). 

C = 1 −
κ20

κ80
. (4) 

For an idealised V-shaped valley, the concavity of the inner (20 %) 
sub-section will be approximately equal to that of the outer (80 %) sub- 
section. For valleys that are increasingly U-shaped, the concavity of the 

inner sub-section will be lower than that of the outer sub-section, such 
that the ratio defined in Eq. (4) will increase above zero. The inner sub- 
section was defined as the section of the cross-profile below 20 % of the 
total relief and the outer sub-section as the section of the cross-profile 
below 80 % of the total relief (Fig. 4g). 

The second-order polynomial that best fits a valley profile in the 
least-squares sense is given as 

f(x) = ax2 + bx+ c, (5) 

Fig. 3. Locations of fluvial valley training data. These regions contain valleys that have not experienced significant modification by Quaternary glaciation. Elevations 
are taken from the Copernicus 90 m global digital elevation model (European Space Agency, 2021). (a) Atlas Mountains, (b) Cumberland Plateau (Appalachians), (c) 
Sierra Nevada, California (only valleys outside of the labelled LGM glacial limit (Gillespie and Clark, 2011)), (d) Sierra Nevada, Spain. Note that the elevation scale in 
panel b differs from the other panels. Top: map shows the locations of the four panels. 
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Fig. 4. Valley morphometric indices. Left panels illustrate the four metrics used to quantify valley cross-profile morphology. Right panels show the distribution of 
each metric across the fluvial and glacial valleys in the training dataset; boxplot marks the median, interquartile range, and 5th and 95th percentiles. (a, b) Valley 
depth (D). (c, d) Valley top width (Wtop). (e, f) V-index (V). Dark shaded region in panel e is the cross-sectional area of the valley at 80 % of the total relief; pale 
shaded region is the cross-sectional area of an idealised V-shaped valley. (g, h) Curvature ratio (C). Coloured lines in panel g are second-order polynomials fitted to 
the valley cross-section at 20 % (green) and 80 % (purple) of the total relief. 
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where a, b, and c are constants. The curvature is then computed as 

κ =
d2f
dx2 = 2a. (6) 

The curvature for each valley sub-section was normalised by multi
plying by the width of the sub-section, such that curvature is scale- 

independent and governed solely by valley shape (Prasicek et al., 
2014). This allows for direct comparison between curvatures measured 
at different spatial scales. 

In the training dataset, glacial valleys on average exhibit greater 
depths, widths, V-indices, and C ratios than fluvial valleys (Fig. 4). For 
glacial valleys, the median depth = 885 m, width = 3.63 km, V-index =

Fig. 5. Flow diagram for extracting subglacial valley cross-profiles from radio-echo sounding data. Symbology: ovals = start and end points; arrows = direction of 
movement; parallelograms = inputs; rectangles = processes; diamonds = decisions. Input datasets: 1 = NSIDC OIB bed picks (Paden et al., 2019); 2 = BedMachine 
bed elevation and geoid correction (Morlighem et al., 2017); 3 = isostatic response to modern GrIS removal (Paxman et al., 2022); 4 = correction for systematic 
underestimation of valley depth and width (Bartlett et al., 2020). An example radar echogram and extracted valley cross-profile are shown for illustration. 
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0.222, and C ratio = 0.436, whereas for fluvial valleys the median depth 
= 438 m, width = 2.02 km, V-index = 0.007, and C ratio = 0.021. 
Although the median values are distinct, there is overlap between the 
glacial and fluvial valley populations for all four metrics (Fig. 4). 
However, when valleys are plotted in multi-dimensional feature space, 
greater morphometric separability emerges (Fig. A1), highlighting the 
value of using multiple morphometric variables to classify valleys. 
Glacial valleys encompass a broader interquartile range of depths and 
widths than fluvial valleys, whereas the interquartile ranges for the V- 
index are comparable and for the C ratio fluvial valleys exhibit greater 
variance (Fig. 4). 

For each cross-profile, we also computed two additional metrics: the 
exponent of a power law curve fitted to the valley cross-profile (Harbor 
and Wheeler, 1992; Pattyn and Van Huele, 1998) and the ratio between 
the top width and the valley width at 20 % of the total relief (Bull and 
McFadden, 1977). However, these metrics correlated very strongly with 
the V-index and/or C ratio and did not generate greater morphometric 
separability between glacial and fluvial valleys. We therefore limited 
our analysis to the four morphometrics illustrated in Fig. 4. 

3.3. Automated extraction of Greenland valleys and their morphometrics 
from RES data 

We identified subglacial valleys across Greenland using profiles of 
bed elevation derived from RES line data rather than from a continent- 
wide DEM such as BedMachine (Morlighem et al., 2017). This was 
because much of the smaller-scale geomorphological detail from the 
original RES data is lost or obscured during the DEM gridding process. In 
addition, significant artefacts can be introduced in the interpolation 
scheme that could be erroneously interpreted as real geomorphological 
features, especially in regions where survey line coverage is sparse or 
irregular. The strong spatial heterogeneity of the survey data used to 
construct BedMachine also causes the effective spatial resolution to vary 
significantly (Morlighem et al., 2017), which is unsuitable for geo
statistical (machine learning) techniques. A limitation of using profiles 
of bed elevation from RES data alone is that features can only be 
detected where they intersect the flight tracks, which are often widely 
spaced and therefore do not provide a fully three-dimensional view of 
the topography. However, this issue was circumvented to a certain 
extent by focussing exclusively on subglacial valleys, which can be 
identified by, and classified according to, their cross-sectional profiles. 

To automatically extract valleys and their morphometrics, we first 
applied a series of corrections (Fig. 5) to the pre-processed OIB MCoRDS 
Level 2 (2010–2019) and legacy CReSIS (2000–2009) bed pick data 
(Paden et al., 2019). CReSIS RES data were also acquired between 1993 
and 1999, but the quality of these data is mixed, with significantly lower 
spatial resolution and greater bed elevation uncertainty than more 
recent datasets owing to less advanced radar systems (Gogineni et al., 
2001). Given these issues and the limited spatial coverage of these 
survey years, we opted to omit them from our analysis. Although OIB 
RES profile data have a relatively consistent along-track resolution of 
~20–30 m, all lines were resampled to a horizontal spacing of 100 m to 
ensure uniform resolution across the dataset and to closely align with 
the resolution of the training dataset valley profiles obtained from the 
Copernicus DEM. Bed elevations were then shifted from the WGS84 
ellipsoid to the EIGEN-6C4 geoid (i.e., mean sea level) using the Bed
Machine geoid correction grid (Morlighem et al., 2017), and isostatically 
adjusted for the complete removal of the modern GrIS (Paxman et al., 
2022) to correct for the exaggeration of relief caused by differential ice 
loading across valleys. 

To extract valleys from the resampled and elevation-corrected line 
data, valley floors were identified as local topographic minima within a 
20 km-wide moving window. When a 10 km window was used, more 
than double the number of ‘valleys’ were extracted, but most of these 
extra features were shallow (<100 m deep), reflecting smaller-scale bed 
roughness rather than distinct valleys. By contrast, use of a 40 km 

window recovered relatively few valleys, with visual inspection of RES 
survey lines revealing that numerous valleys had been omitted due to 
proximity (<40 km) to deeper valleys. A value of 20 km was chosen as a 
trade-off between these competing factors. Following the identification 
of the valley floors, we located the valley rims by examining the cur
vature of the topography on either side of the valley floor. Specifically, 
we fitted a second order polynomial (Eq. (5)) to a sub-section profile 
centred on the valley floor. The width of the sub-section was incre
mentally increased, and we computed the curvature of the polynomial 
fitted to each successive sub-section (Eq. (6)). For a typical valley, the 
curvature will increase as the width of the sub-section increases, up to 
the point where the scale of investigation increases beyond the rims of 
the valley, whereupon the curvature will begin to decrease (Hilley et al., 
2020; Prasicek et al., 2014). We therefore defined the valley rims as the 
points at the edges of the sub-section with the maximum curvature. 

Since airborne geophysical surveys are not necessarily flown opti
mally relative to the orientation of subglacial topographic features, 
valley cross-sectional profiles viewed in RES data may be oblique to the 
ideal orthogonal profile. To correct for this effect, we estimated valley 
orientations using the rebounded BedMachine Greenland v.5 DEM 
(Morlighem et al., 2017; Paxman et al., 2022). For each valley, we 
determined the angular difference between the azimuth of the flight line 
and the valley strike (perpendicular to the valley orientation) and used a 
trigonometric correction to adjust the horizontal co-ordinates of the 
valley as if the survey line had been flown orthogonal to the valley 
orientation. If the azimuth of the flight line was highly oblique (>60◦) to 
the valley strike, the valley was discarded since the true valley width 
would be overestimated by a factor of >2 and there is greater potential 
for distortion of the profile shape. 

We then computed the four morphometrics (Fig. 4) for each valley 
using the adjusted distance-elevation co-ordinates. RES-derived bed 
elevation measurements have a typical vertical uncertainty of ~20 m 
(Paden et al., 2019), although RES data have a systematic bias towards 
underestimating valley depth and width by an average of ~30 m and ~ 
560 m respectively due to off-nadir bed returns from the valley sides 
(Bartlett et al., 2020). We therefore applied a simple correction to each 
measured valley depth and width by adding these average offsets. Errors 
can also arise due to inaccurate picking of the bed reflection, although 
these are more difficult to quantify, not systematic, and unlikely to have 
a major impact on first-order valley morphology. 

Finally, we carried out a series of quality control steps (Fig. 5). 
Valleys located <10 km from the ends of a flight line were discarded to 
remove potential artefacts. Strongly asymmetric features (where the 
height of the lower rim above the valley floor is less than one third of 
that of the higher rim) were also discarded. We permitted a minimum 
valley depth of 100 m, a minimum top width of 1000 m (after trigo
nometric adjustment), and a maximum width-to-depth ratio of 50. The 
minimum width value was selected to ensure that valleys were resolved 
by at least 10 co-ordinates. The depth and width-to-depth ratio thresh
olds were used to avoid sampling small-scale bed undulations or broad 
shallow depressions. The depth and width lower thresholds also match 
the lowest values recorded in the training data (Fig. 4), ensuring that the 
dataset of Greenland valleys does not contain features with dimensions 
beyond the training dataset range, thus avoiding extrapolation and 
spurious classifications. 

3.4. Classification of Greenland valleys using supervised machine learning 

To assign the valleys in Greenland to one of the two categorical 
classes used to label the training data (i.e., ‘glacial’ or ‘fluvial’), we used 
random forest classification (Breiman, 2001). As a supervised machine 
learning algorithm, the random forest predictive model was first trained 
using the morphometrics of the labelled valleys in the training dataset 
(Sections 3.1 and 3.2) and subsequently used to classify unlabelled 
valleys in Greenland (Section 3.3) based on the statistical similarity of 
their morphometrics to those of the training data. 
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A random forest comprises multiple individual decision trees, each 
built of a series of binary questions formulated from the independent 
variables (i.e., morphometrics) in the training data. For any valley with 
its combination of four morphometrics, the answers to the series of 
questions that form the tree will dictate its classification. A single tree is 
easy to construct, visualise, and interpret, but comprises only one per
mutation of the myriad possible sequences of binary questions and by 
necessity is often highly complex to accommodate the full variance of 
the training dataset. This ‘overfitting’ means the tree usually does not 
generalise well to the unlabelled dataset, leading to classification errors. 
A random forest circumvents this issue by using an ensemble of unique 
decision trees to add flexibility that results in improved classification 
accuracy. To ensure variation across the trees, bootstrap aggregation 
was used to draw (with replacement) a randomised set of valleys from 
the training dataset for each tree. Furthermore, every tree is grown using 
a random subset of morphometrics for each split, which results in more 
variation and less correlation between trees. The benefit of this approach 
is, by using many unique trees, potential outliers are smoothed out and 
the final decision structure is less variable and more reliable than a 
single decision tree. 

Selecting the number of trees to use in the random forest is a trade-off 
between increased robustness and increased computation time, coupled 
with the diminishing rate of increased effectiveness as more trees are 
added. To determine the appropriate number of trees we computed the 
‘out-of-bag’ classification error — the proportion of training samples 
that are misclassified having not been selected during the bootstrap 
aggregation process — as a function of the number of grown trees. We 
conservatively used 1000 trees in our ensemble and found that the error 
became relatively insensitive to the number of decision trees beyond 200 
(Fig. A2). To further test the performance of the random forest classifier, 
we performed ten-fold cross validation on the training data. This tech
nique involves randomly assigning all the training data into 10 equally 
sized bins; the random forest model is trained on nine of the bins, and 
then the trained model is used to classify the valley profiles in the 
remaining 10th (testing) bin. This process is repeated 10 times (‘folds’), 
such that each bin has been utilised as the testing bin. The classes 
assigned to the test data are compared to their true labels, and the results 
are aggregated to produce an overall prediction error. 

After model training and cross validation, we passed each unlabelled 
Greenland valley through the ensemble of 1000 trees in the random 
forest. Each tree ‘votes’ for a classification of ‘fluvial’ or ‘glacial’ and the 
result is aggregated from each of the individual predictions, with each 
valley assigned a predicted class based on the majority ‘vote’ across all 
1000 trees. For any given valley, the number of trees predicting each of 
the two classes gives a measure of classification probability or likeli
hood, while the out-of-bag classification error and cross validation error 
are indicators of the overall model classification accuracy. 

4. Results 

When describing spatial patterns in valley locations, morphometrics, 
and classification across Greenland, we refer primarily to the eight 
major GrIS drainage basins (Zwally et al., 2012) labelled in Fig. 1a and 
subsequent figures. These catchments are abbreviated as follows: NO =
north; NE = northeast; CE = central east; SE = southeast; SO = south; 
SW = southwest; CW = central west; NW = northwest. 

4.1. Spatial distribution and morphometrics of subglacial valleys 

Across Greenland, we extracted the morphometrics of 5335 valley 
cross-profiles that met our quality control criteria (Fig. 5). The spatial 
distribution of mapped valleys across the island is strongly heteroge
neous; valleys are most frequently observed in near-coastal regions, and 
are comparatively rare in the interior, particularly in inland areas of the 
NO, NE, and NW catchments (Fig. 6). This distribution primarily reflects 
the heterogeneity in RES data coverage, which shows a bias towards 

oversampling near-coastal areas and undersampling interior areas 
relative to the distribution of land across Greenland as a whole (Fig. 6f, 
g). However, RES data coverage is sufficient (Fig. 1b) to exclude the 
possibility of extensive valley systems being undetected in the interior. 

Around the margins, valleys are widespread in the chain of moun
tainous terrain that runs along the eastern margin of the CE, SE, and SO 
catchments, as well as along the lower lying margins of the NO, NE, SW, 
CW, and NW catchments (Fig. 6), which are drained by major outlet 
glacier systems including Humboldt, Petermann, NEGIS, and Ilulissat 
(Jakobshavn) (Fig. 1a; A3). While some of these valley networks have 
been mapped using regional-scale geophysical analysis and are readily 
visible in the BedMachine DEM, e.g., in the NO and CW catchments 
(Cooper et al., 2016; Livingstone et al., 2017; Morlighem et al., 2017), 
others have not previously been documented and are less conspicuous in 
BedMachine. These omissions may in part be due to large and irregular 
gaps between RES survey lines (Fig. 1b) and because valley scale and 
orientation may be inconsistent with the modern ice velocity, meaning 
both mass conservation and streamline diffusion techniques will omit or 
not fully resolve many of these features. Valleys are widespread across 
southern Greenland but comparatively sparse in the interior of northern 
Greenland (Fig. 6); the valleys in this region are likely linked to the 
Petermann ‘mega-canyon’ and its inland tributary network (Bamber 
et al., 2013; Paxman et al., 2021). The first-order spatial distribution of 
valleys is reflected in the subglacial topographic roughness, which is 
elevated in regions of high valley density (e.g., the eastern highlands and 
the western margin), and lowest in the interior of central and northern 
Greenland (Cooper et al., 2019). 

The deepest valleys, with relief of up to 2.5 km, are located primarily 
within the highlands of the CE catchment (Fig. 6a). Valleys with depths 
exceeding 1 km are also found in the highlands of the SE, SO, and NO 
catchments, as well as parts of the SW, CW, and NW catchments that are 
close to the ice margin (Fig. 6a). Valleys across the interior are typically 
characterised by lower relief, with depths often <400 m (Fig. 6a). The 
widest valleys, with widths of >8 km, are typically found in the high
lands of the CE and SE catchments (Fig. 6b). Large valley widths are also 
observed in the lower-lying CW catchment; many of these valleys are 
comparatively shallow (Fig. 6a), implying a greater width-to-depth ratio 
than valleys in CE and SE regions. The NE and NW catchments are 
characterised by the narrowest valleys, commonly <4 km across 
(Fig. 6b). Regions containing valleys with a high V-index (>0.4) include 
the highlands of the CE, SE, and NO catchments, as well as parts of the 
CW margin (Fig. 6c). Valleys with a lower V-index are observed in the 
NW catchment and in lower-lying interior areas of all northern catch
ments (Fig. 6c). Valleys with a high curvature ratio (>0.6) are found in 
many near-coastal areas, with a general trend towards smaller curvature 
ratios predominating further into the continental interior (Fig. 6d). 

4.2. Subglacial valley classification 

Of the 5335 mapped valleys, the random forest model classified 3676 
as ‘glacial’ and 1659 as ‘fluvial’ (Fig. 7a). Each valley was scored be
tween 0 and 1, where 0 reflects a valley that is classified as ‘fluvial’ by all 
decision trees in the random forest, 1 reflects a valley that is classified as 
‘glacial’ by all trees, and (e.g.) 0.5 reflects a valley classified as ‘glacial’ 
by half the trees and ‘fluvial’ by the other half. The score is therefore a 
measure of the likelihood of a valley being ‘glacial’ in origin. To aid 
interpretation, we differentiate between ‘high probability’ and ‘low 
probability’ valleys, with ‘high probability’ valleys having a score of 
<0.25 (‘fluvial’) or >0.75 (‘glacial’) and ‘low probability’ valleys having 
scores of between 0.25 and 0.50 (‘fluvial’) or 0.50 and 0.75 (‘glacial’) 
(Fig. 7). These thresholds are somewhat arbitrary but help differentiate 
between valleys which lie distinctly inside the morphometric space of 
fluvial/glacial valleys within the training dataset and those which plot 
in regions of morphometric overlap or in morphometric space that is not 
strongly represented in the training dataset (see Section 5). 

Across Greenland, clusters of high probability ‘glacial’ valleys are 
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Fig. 6. Valley morphometrics across Greenland. Circles marking the subglacial valleys are coloured according to the four selected morphometrics. (a) Valley depth, 
(b) valley width, (c) V-index, (d) curvature ratio. In areas of dense valley coverage, overlapping circles are overlain in ascending numerical order for each metric. (e) 
Table of mean valley morphometrics for each ice sheet catchment. (f) Frequency distribution of the distance of valleys from the coast. Black line shows the outline of 
the frequency distribution for all RES survey datapoints. (g) Frequency distribution of the distance of all RES-derived bed elevation measurements from the coast. 
Black line shows the outline of the frequency distribution for all land in Greenland. 
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observed in the high elevation terrain found in the NO, CE, SE, and SO 
catchments, as well as marginal areas in the lower-lying CW and SW 
catchments (Fig. 7b). These high probability ‘glacial’ valleys can be seen 
to correspond to regions characterised by elevated D, W, V, and C values 
(Fig. 6). By contrast, low probability ‘glacial’ valleys are more broadly 
distributed across Greenland, with moderate clustering in the SW and 
CW catchments (Fig. 7c). High probability ‘fluvial’ valleys are most 
commonly located in the CW, NW, and NO catchments, with a number of 
high and low probability ‘fluvial’ valleys distributed across the low-lying 
continental interior (Fig. 7d,e). Clusters of ‘fluvial’ valleys are also 
located along the spine of the high topography that runs north-to-south 
in the SE catchment (Fig. 7e). 

Geographically, the regions with the highest (i.e., most ‘glacial’) 
average valley scores are the highlands located in the NO, CE, SE, and SO 
catchments, as well as areas proximal to the ice margin along western 
Greenland (Fig. 8a,b). While ‘glacial’ valleys are universally more 
common than ‘fluvial’ valleys (Fig. 8c), the frequency of ‘fluvial’ valleys 
relative to ‘glacial’ valleys is highest in the NO, NE, CW, and NW 
catchments (Fig. 8c). Indeed, the lowest (i.e., most ‘fluvial’) average 
valley scores are observed in the interior of the northern half of 
Greenland, as well as in parts of the SE catchment (Fig. 8a,b). These 
catchments exhibit mean valley scores close to 0.5 (Fig. 8d), but with a 
broad interquartile range that reflects the high degree of short- 
wavelength variability in the regional average (Fig. 8b). 

Regarding random forest model performance, we found a ten-fold 

cross validation error rate of 0.06 for the training data, corresponding 
to a classification accuracy of 94 %. We also found that the classification 
of out-of-bag training samples in the full dataset (i.e., those not selected 
during bootstrap aggregation) levelled out at ~0.06 for >200 trees 
(Fig. A2). Out-of-bag errors also provide an opportunity to assess the 
relative importance of each of the four morphometric variables 
(Grömping, 2009) (i.e., how much ‘influence’ each variable has upon 
valley classification). We found that valley width (Wtop) had the greatest 
feature importance, with the other three variables (D, V, and C) having 
high and approximately equal importance (80–84 % of that of Wtop; 
Fig. A2), underlining the value of incorporating all four metrics. The 
intercorrelation between the four valley morphometrics across the full 
dataset is generally low, with the strongest inter-variable correlation 
coefficients observed between D and Wtop (0.53) and V and C (0.66) 
(Fig. A2). Given that depth and width measure valley scale, while the V- 
index and curvature ratio measure valley shape, these positive inter- 
correlations are to be expected (Fig. A1) but are sufficiently low that 
each of the four metrics retains a high importance and therefore adds 
value to the classification (Fig. A2). 

Due to the nature of the OIB mission, certain valleys are sampled by 
repeat survey tracks flown during multiple field seasons (MacGregor 
et al., 2021). This provides a further opportunity to assess the reliability 
of our valley extraction algorithm and random forest classification 
model by comparing the class and score of valleys that are sampled 
multiple times. Across all repeat-sampled valleys (defined as a valley 

Fig. 7. Valley classification using random forest. (a) Spatial distribution of valleys classified as ‘glacial’ (red circles) or ‘fluvial’ (blue circles) using the random forest 
model. Circle radii are scaled to the probability of each valley belonging to its assigned class. Bed elevations are relative to mean sea level and are isostatically 
adjusted for the removal of the modern ice load (Morlighem et al., 2017; Paxman et al., 2022). (b) High probability ‘glacial’ valleys (score > 0.75). (c) Low 
probability ‘glacial’ valleys (0.50 < score < 0.75). (d) Low probability ‘fluvial’ valleys (0.25 < score < 0.50). (e) High probability ‘fluvial’ valleys (score < 0.25). 
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located within 100 m of any other), we found a classification mismatch 
rate of 0.16 (i.e., the same valley, when sampled multiple times, 
received the same classification 84 % of the time). However, the median 
‘swing’ in valley score was 0.06, implying that repeat-surveyed valleys 
that received different classifications typically had small majorities, 
with a small shift in the proportion of trees ‘voting’ for each class suf
ficient to change the overall result. We therefore advise that caution 
should be taken to avoid overinterpretation of the classification of 

valleys whose score is close to 0.5. 

5. Discussion 

In this section, we aim to examine the first-order relationships be
tween valley distribution and morphology and contemporary glacial 
dynamics, and the implications for the mode(s) and relative timing of 
formation of valley networks across Greenland. 

Fig. 8. Valley classification scores. (a) Valleys coloured according to their ‘score’ assigned by random forest classification. The score is defined as the proportion of 
decision trees in the random forest that classified each valley as ‘glacial’ (i.e., a score of 1 indicates unanimously ‘glacial’ and 0 indicates unanimously ‘fluvial’). (b) 
Gridded scores. Valley scores were averaged over a 25 km moving window and subsequently interpolated onto a grid mesh using a tensional spline and smoothed 
using a 25 km Gaussian filter. Contour interval is 0.2. Areas >25 km from the nearest valley were masked to remove spurious extrapolation. (c) Number of ‘glacial’ 
(red) and ‘fluvial’ (blue) valleys recorded in each ice catchment. (d) Boxplots of valley classification scores in each catchment. Note that 5th and 95th percentile tails 
are not displayed since they span the entire range of possible scores in each catchment. 
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5.1. Patterns of glacial valley incision 

Continental ice sheets are capable of intensive selective erosion 
beneath fast-flowing, warm-based ice and contemporaneous preserva
tion beneath slow-flowing, cold-based ice (Jamieson et al., 2008; Sugden 
and John, 1976). To examine whether the ‘glacial’ valleys identified 
using random forest classification are consistent with erosion beneath 
the modern-day GrIS, or whether they are likely being preserved 
beneath the modern ice sheet and therefore indicative of glacial valley 
incision earlier in its history, we computed a simplistic ‘preservation 
potential’ metric of the modern GrIS at the location of each high prob
ability ‘glacial’ valley. For simplicity, we excluded the low probability 
‘glacial’ valleys, whose origin is more uncertain (see Section 4.2), from 
this analysis. 

We defined ‘preservation potential’ using the measured ice surface 
velocity (Joughin et al., 2018) and inferred likely basal thermal state of 
the ice sheet (MacGregor et al., 2022) (Fig. A3), which synthesises basal 
properties such as temperature, slip ratio, melt rate, and presence of 
liquid water, as inferred from borehole observations, radio-echo 
sounding, and ice sheet models. Although glacial erosion rates are 

likely dependent on a number of other variables including climate, 
bedrock lithology, and orientation of bed topography relative to ice 
flow, relationships between these factors and glacial erosion rates 
remain poorly quantified (Alley et al., 2019; Cook et al., 2020). Given 
these limitations, any definition of the ‘preservation potential’ will be 
somewhat arbitrary, so we delineate three simple levels:  

1. Low – either (a) basal thermal regime is likely thawed and surface 
velocity is >50 m/yr or (b) basal thermal regime is uncertain and 
surface velocity is >200 m/yr. 

2. Medium – either (a) basal thermal regime is likely thawed and sur
face velocity is <50 m/yr or (b) basal thermal regime is uncertain 
and surface velocity is between 50 and 200 m/yr.  

3. High - either (a) basal thermal regime is likely frozen or (b) basal 
regime is uncertain and surface velocity is <50 m/yr. 

When these criteria are applied, ‘glacial’ valleys with a low preser
vation potential, indicating likely modification beneath the modern 
GrIS, are primarily located beneath the warm-based, fast-flowing ice 
streams and outlet glaciers located in the SW, CW, and NE catchments, 

Fig. 9. Preservation potential of valleys beneath the Greenland Ice Sheet. (a) High probability ‘glacial’ valleys. (b) High probability ‘fluvial’ valleys. Preservation 
potential (PP) is determined according to the measured ice surface velocity and likely basal thermal state (Joughin et al., 2018; MacGregor et al., 2022). Low 
preservation potential valleys have likely been modified by the modern GrIS; high preservation potential valleys are likely preserved beneath the modern GrIS and 
reflect incision prior to, or during earlier stage(s) of, glaciation. Circle radii are scaled to the probability of each valley belonging to its assigned class. 
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as well as ice-marginal areas of the CE, SE, and NW catchments (Fig. 9a). 
This is consistent with high erosion rates that have been inferred for 
glacial catchments along the western margin of Greenland, particularly 
in low-lying regions (Cowton et al., 2012; Strunk et al., 2017). ‘Glacial’ 
valleys with a high preservation potential are concentrated in the NO, 
CE, SE, and SO catchments, most conspicuously within the chain of 
rough, mountainous terrain along the eastern margin (Fig. 9a). Since 
these valleys are primarily located in high mountainous terrain and 
currently covered by cold-based ice, we suggest that their origin may be 
related to valley incision during period(s) of Greenland’s glacial history 
when ice extent was more restricted and confined to high elevation areas 
(Dolan et al., 2015; Koenig et al., 2015; Schaefer et al., 2016; Solgaard 
et al., 2011). 

5.2. Fluvial valley preservation and modification 

Classification of a valley as ‘fluvial’ is potentially indicative of a lack 
of significant modification beneath the modern GrIS or past ice sheets. 
There are three possible scenarios that might explain the presence of 
‘fluvial’ valleys. 

The first scenario is that some of these valleys were incised by river 
systems under ice-free conditions, for example prior to large-scale ice 
growth and/or during interglacial periods where ice extent was signif
icantly reduced. These valleys would have subsequently been preserved 
beneath cold-based, non-erosive ice associated with negligible long- 
term (million-year timescale) erosion rates, as has been documented 
in Antarctica (Baroni et al., 2005; Franke et al., 2021; Rose et al., 2013) 
and using radionuclide analysis from preserved basal soil at the GISP2 
core site in central Greenland (Fig. 1b) (Bierman et al., 2014). This sit
uation most likely applies to the high preservation potential ‘fluvial’ 
valleys located in the NW and NO catchments, in the inland reaches of 
the central and southern catchments, and along parts of the highlands of 
eastern Greenland (Fig. 9b). The presence of these valleys may therefore 
be diagnostic of localised long-term preservation of pre- and/or inter- 
glacial landscapes, suggesting that average glacial conditions (Porter, 
1989) in these areas have been ice-free and/or cold-based (i.e., lacking 
in fast-flowing, warm-based ice) over the history of the GrIS. The lack of 
a clear glacial overprint in the interior of northern Greenland suggests 
that during past transitions between glacial states (e.g., local- vs. 
continental-scale), the GrIS advanced/retreated without subjecting this 
region to significant erosion, which may be indicative of a cold-based ice 
margin or a fast-advancing/retreating warm-based margin. 

The second scenario concerns the clusters of ‘fluvial’ valleys that are 
located beneath ice that is currently fast-flowing and/or warm-based 
and thus have a low preservation potential, as found along the mar
gins of the NE, SW, CW, and NW catchments (Fig. 9b). Palaeo-fluvial 
drainage networks have previously been identified in these regions, 
including the Ilulissat system in central west Greenland (Cooper et al., 
2016; Jess et al., 2020). The presence of these ‘fluvial’ valley networks is 
somewhat counterintuitive, given that the overlying glaciological con
ditions do not appear to be conducive to landscape preservation. How
ever, we note that these catchments also contain many ‘glacial’ valleys 
and a wide range of valley classification scores (Fig. 8c,d), which may 
suggest that the long-term average glacial conditions experienced by 
these valleys have facilitated selective overprinting of an inherited pre- 
glacial valley network while allowing elements of the original fluvial 
signature, including dendritic planforms, V-shaped cross-sections, and 
concave-up longitudinal profiles, to be retained (Cooper et al., 2016; 
Livingstone et al., 2017). 

Possible reasons for this partial preservation of fluvial valley net
works beneath contemporary fast-flowing, warm-based ice streams may 
include (i) the relatively distributed and topographically unconfined 
nature of the ice flow, for example along the western margin (Fig. A3), 
which may render it less capable of localised valley cross-profile modi
fication, (ii) valley alignment that is not optimal for incision; many 
valleys in the Ilulissat catchment are oriented obliquely to ice flow 

(Cooper et al., 2016; Jess et al., 2020), which may inhibit valley 
modification, and/or (iii) some ice streams may be relatively short-lived 
and/or highly temporally variable, as has been suggested for NEGIS 
(Franke et al., 2022a), such they have had a lesser integrated erosive 
impact on the landscape than would be expected if their modern dy
namics were extrapolated back in time. The pattern of ‘fluvial’ valleys 
may therefore provide insights into the timescales of existence of certain 
contemporary ice streams, although quantification of these timescales is 
beyond the scope of this study. 

The third scenario is that some ‘fluvial’ valleys may have been mis
classified due to biases present in the training dataset, for example if it is 
not fully representative of valley morphology in Greenland. If we 
compare the morphometrics of valleys in the training data to those in 
Greenland, the median Greenland V and C values are close to those of 
the glacial valleys in the training dataset (Table A1), which likely ac
counts for the dominance of valleys classified as ‘glacial’ (N = 3676) 
compared to ‘fluvial’ (N = 1659), but the training dataset appears to be 
broadly representative of the Greenlandic valleys (Fig. A4). However, 
valleys in Greenland do exhibit a wider range of V and/or C values, 
which may lead to some misclassification as supervised machine 
learning models such as random forest do not extrapolate well beyond 
the range of the training data (Elmes et al., 2020). Misclassification may 
also arise because the training dataset does not include valleys such as 
steep-sided canyons or U-shaped valleys that can be carved by rivers, 
particularly in certain lithologies (Rogers and Engelder, 2004). This 
issue may apply to the Petermann ‘mega-canyon’ in northern Greenland, 
which is believed to be of fluvial origin (Bamber et al., 2013) but is 
classified as ‘glacial’ by our random forest model; this likely reflects a 
lack of representation of canyon-like fluvial valleys in the training 
dataset. Development of more targeted training datasets in the future 
will help resolve these region-specific ambiguities. 

5.3. Role of other valley-forming processes 

The preceding section raises an important limitation regarding valley 
classification in Greenland: many valleys will likely have experienced 
erosion by a combination of ice and water and therefore binary classi
fication of valleys as either ‘glacial’ or ‘fluvial’ is oversimplistic. We also 
highlight that other processes not explicitly considered in the training 
dataset may be responsible for valley incision. For example, subglacial 
meltwater may cause steady-state incision of tunnel valleys through 
seasonal flow and/or rapid incision during abrupt stochastic flood 
events (Beaud et al., 2018; Chambers et al., 2020; van der Vegt et al., 
2012). 

Subglacial meltwater channels were not considered explicitly in the 
training dataset owing to the relative lack of consensus regarding the 
physical processes responsible for their development and the less diag
nostic nature of their cross-sectional profiles (Lelandais et al., 2016; van 
der Vegt et al., 2012). Instead, these channels tend to be most readily 
identified through their undulating longitudinal profiles and/or parallel 
planform drainage patterns that align with the ice surface gradient (Grau 
Galofre and Jellinek, 2017; Kirkham et al., 2022; Livingstone et al., 
2017; Sugden and John, 1976), which often cannot be adequately 
resolved using RES data alone, particularly where coverage is sparse. We 
emphasise therefore that since our training dataset was established with 
the aim of identifying the morphometric signatures of valley incision by 
rivers and glacial ice, a ‘fluvial’ or ‘glacial’ classification does not pre
clude a role for subglacial meltwater erosion. 

Although disentangling the imprints of erosion by glacial ice vs. 
subglacial water vs. rivers is complex, we can examine the mapped 
valley morphometrics to identify areas where subglacial meltwater is 
relatively more or less likely to have exerted an influence on valley 
morphology. To do so, we used a series of criteria to identify features 
that resemble tunnel valleys formed by subglacial meltwater. These 
criteria are: (i) a maximum depth of 500 m and a maximum width of 5 
km, based on reported upper limits (van der Vegt et al., 2012). (ii) A 
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width-to-depth ratio between 5 and 25, allowing for a typical value of 
~10 with higher values also reported (van der Vegt et al., 2012). (iii) A 
V-index and C ratio of at least one standard deviation below the 
respective mean values across Greenland (Table A1). This allows for the 
observation that tunnel valley cross profiles can take a range of forms, 
including V-shapes, U-shapes, inner gorges, and box-shapes, with U- 
shapes typically the most common (van der Vegt et al., 2012). (iv) A 
classification score of between 0.25 and 0.75, indicating that the valley 
does not fit definitively into either fluvial or glacial morphometric space, 
reflecting the observation that fluvioglacial processes and subglacial 
meltwater channels can create hybrid valley forms (Livingstone et al., 
2017). 

In addition, we compared valley locations to the predicted pattern of 
hydrological flow routing beneath the GrIS. To calculate the subglacial 
hydrological network, we computed the hydrological potential that is 
assumed to drive subglacial water flow (Shreve, 1972) 

ϕ = ρwgZb + ρig(Zs − Zb) (7)  

where ρw and ρi are the densities of water (1000 kg m− 3) and ice (917 kg 
m− 3), respectively, and g is the acceleration due to gravity (9.81 m s− 2). 
The bed (Zb) and surface (Zs) elevation were derived from BedMachine 
v.5 (Morlighem et al., 2017). All hydrological minima (sinks) in the 
hydropotential field were filled to allow continuous flow to the edges of 
the model domain. The flow direction was calculated from this filled 
hydropotential model, and the flow accumulation was computed as the 
total number of upstream cells feeding any given point. We assumed an 
arbitrary flow accumulation threshold of 1000 cells to define a hydro
logical pathway; at the 150 m horizontal resolution of the BedMachine 
DEM, this threshold corresponds to an upstream drainage area of 22.5 
km2. Finally, we did not permit any hydrological pathways in regions 
where the basal thermal state of the ice sheet is ‘likely frozen’ (Mac
Gregor et al., 2022). We imposed the condition that valleys potentially 
acting as conduits for subglacial meltwater must be located within 10 
km of the nearest hydrological pathway, which allows for uncertainty in 
the bed and surface elevation fields. 

Valleys that meet the criteria of being morphometrically consistent 

Fig. 10. Role of subglacial meltwater in valley development. (a) Valleys that meet the criteria of having been potentially incised by subglacial meltwater. Colour 
scale shows the width-to-depth ratio. Black lines mark hydrological pathways (flow accumulation >1000 upstream cells). (b) Boxplots of valley width-to-depth ratio. 
Percentages reflect the proportion of valleys in each catchment that meet the criteria of having been potentially incised by subglacial meltwater. (c) Average valley 
cross profile in the CE catchment. (d) Average valley cross-profile in the CW catchment. Horizontal and vertical co-ordinates have been normalised by the valley 
width. Average valley depth (D) and width (W) across the catchment are labelled. (e) Frequency distribution of valley width-to-depth ratio in the CW and CE 
catchments. Grey curve indicates the normal distribution associated with the training dataset. 
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with subglacial meltwater valley incision are primarily located in the 
NO, NE, SW, and CW catchments (Fig. 10a), specifically in the upstream 
areas of the Ilulissat, NEGIS, Humboldt, and Petermann outlet glaciers. 
This finding supports previous inferences of the presence of subglacial 
meltwater channels in these regions (Andrews et al., 2015; Chandler 
et al., 2018; Franke et al., 2020; Livingstone et al., 2017). By contrast 
there are very few valleys resembling tunnel valleys in CE, SE, and SO 
Greenland (Fig. 10a); these areas are characterised by the lowest 
average width-to-depth ratios (Fig. 10b). Comparing the frequency 
distribution of valley width-to-depth ratios in the CE catchment to the 
training dataset, both show a clear modal peak at around 4–5, with the 
CE catchment valleys showing a small ‘tail’ beyond the range of the 
training dataset (Fig. 10c,e). By contrast, valleys in the CW catchment 
exhibit a larger average width-to-depth ratio (Fig. 10b,d), with a modal 
peak at 8–12, which aligns well with values typical of tunnel valleys 
(van der Vegt et al., 2012), and a broad range extending well beyond 
that of the training data (Fig. 10e). This indicates that the training 
dataset is not fully representative of valleys in the CW catchment, as is 
also the case for parts of the NO, NE, and SW catchments (Fig. 10b). 

We therefore suggest that future applications of machine learning 
approaches to subglacial landscape analysis could be expanded by 
integrating cross-profile morphometrics of glacial, fluvial, and subgla
cial tunnel valleys with valley planform characteristics (Grau Galofre 
and Jellinek, 2017). This could be applied to regions where dense spatial 
coverage of RES data allows valley planform geometry to be accurately 
quantified, for example in near-marginal areas of western or northern 
Greenland (Fig. 1b). Although data coverage is sufficient for this study, 
the valley inventory could also be expanded to other recent (non-OIB) 
RES surveys (e.g., Franke et al., 2022b). Moreover, we note that auto
mated methods of valley mapping across Greenland have other potential 
applications beyond the scope of this study. For example, geostatistical 
comparisons could be made between landscapes exposed around the 
margins of Greenland and those covered by the ice sheet, relationships 
between valley morphology and subglacial geology could be explored, 
and these methods could be applied to subglacial landscapes in 
Antarctica or on other terrestrial bodies in the solar system. Machine 
learning methods extending beyond random forest and other classifiers, 
including deep learning algorithms based on artificial neural networks, 
could potentially be employed to help address these more complex 
applications. 

6. Conclusions 

In this study, we have used a combination of automated mapping 
from RES data and random forest classification to examine patterns in 
the distribution and morphology of subglacial valleys across Greenland. 
We draw the following conclusions:  

1. We extracted 5335 subglacial valleys from the Operation IceBridge 
and legacy CReSIS RES survey data, of which 3676 were classified as 
‘glacial’ and 1659 as ‘fluvial’ based on morphometric comparison 
with the training dataset of valleys from subaerial landscapes in the 
Northern Hemisphere.  

2. Many ‘glacial’ valleys along the western margin of Greenland are 
consistent with active incision beneath modern day ice streams. By 

contrast, the high elevation terrain in eastern and southern 
Greenland contains ‘glacial’ valleys preserved beneath slow-flowing, 
cold-based areas of the contemporary GrIS; these valleys were likely 
incised beneath a different ice configuration that existed earlier in 
Greenland’s glacial history. The implications of these valleys for the 
past behaviour of the GrIS will be explored in a future study.  

3. Valleys bearing hallmarks of a fluvial origin are identified in the low- 
lying interior of northern and central Greenland and in areas of high 
subglacial terrain, indicating that negligible long-term erosion rates 
in these regions have facilitated the preservation of pre-glacial and/ 
or inter-glacial landscapes beneath the ice over timescales on the 
order of 105–106 years.  

4. The lower-lying areas of western and northeastern Greenland 
contain valley networks that exhibit a broad continuum of mor
phologies, which likely reflects a complex erosive history, involving 
interactions between fluvial valley inheritance, selective erosion by 
ice, and incision by subglacial meltwater. 
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Appendix A  

Table A1 
Descriptive statistics for morphometric indices of valleys in the training dataset and from Greenland.  

Metric Setting Count Mean Standard deviation Median 5th percentile 95th percentile 

Depth (m) Glaciated 100 919 375 885 397 1570 
Fluvial 100 506 257 438 176 946 
Greenland 5335 413 379 264 112 1300 

(continued on next page) 
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Table A1 (continued ) 

Metric Setting Count Mean Standard deviation Median 5th percentile 95th percentile 

Width (m) Glaciated 100 4260 2010 3630 2030 8290 
Fluvial 100 2290 1060 2020 972 4590 
Greenland 5335 3810 2080 3340 1410 7890 

V-index Glaciated 100 0.209 0.113 0.222 0.002 0.380 
Fluvial 100 0.019 0.091 0.007 − 0.106 0.183 
Greenland 5335 0.239 0.137 0.233 0.022 0.471 

C ratio Glaciated 100 0.394 0.184 0.436 0.028 0.599 
Fluvial 100 0.014 0.295 0.021 − 0.609 0.493 
Greenland 5335 0.436 0.265 0.469 − 0.015 0.780  

Fig. A1. Relationships between valley morphometric indices. (a) Valley top width vs. V-index. (b) Valley depth vs. C ratio. (c) Valley top width vs. depth. (d) V-index 
vs. C ratio. In panels a and b, the independent variables are poorly correlated, with a well-defined separation between glacial (red) and fluvial (blue) valleys in this 
feature space. In panels c and d, the independent variables are more strongly correlated; a greater degree of overlap is also apparent, although separation between 
glacial and fluvial valleys is still evident. This correlation is to be expected given that the two variables defining valley scale are plotted in panel c, and the two 
variables defining valley shape are plotted in panel d.  
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Fig. A2. Performance of the random forest classification scheme. (a) Out-of-bag (OOB) classification error for the random forest. The OOB error is the proportion of 
training samples that are misclassified having not been selected during the bootstrap aggregation process. The OOB error rate falls steeply as the number of decision 
trees in the random forest increases, and then levels off at ~0.06 after approximately 200 trees, representing an OOB classification accuracy of 94 %. Inset shows the 
intercorrelation matrix between the four valley morphometrics used for classification. (b) Normalised feature importance based on the relative influence each of the 
four valley morphometrics has on the OOB classification error when included in (or removed from) the random forest algorithm. 

Fig. A3. Greenland ice sheet dynamics. (a) Ice surface velocity (Joughin et al., 2018). The 50 m/yr contour, an approximate threshold of the onset of fast flow, is 
marked by the black outline. Selected outlet glaciers are labelled. (b) Synthesis of the likely basal thermal state of the ice sheet (MacGregor et al., 2022). White lines 
delineate major ice sheet drainage catchments (Zwally et al., 2012).  
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Fig. A4. Comparison of valley morphometrics in the training data and in Greenland. (a) Valley depth, (b) Valley top width, (c) V-index (V), (d) C ratio. Training data: 
filled circles represent valleys from fluvial (blue) or glacial (red) settings; boxplot marks the median, interquartile range, and 5th and 95th percentiles. Greenland 
data: filled circles represent valleys classified as ‘fluvial’ or ‘glacial’; solidity of the colour represents valley score (see Fig. 8). 
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Thresholds for Cenozoic bipolar glaciation. Nature 455, 652–656. https://doi.org/ 
10.1038/nature07337. 

Dolan, A.M., Hunter, S.J., Hill, D.J., Haywood, A.M., Koenig, S.J., Otto-Bliesner, B.L., 
Abe-Ouchi, A., Bragg, F., Chan, W.L., Chandler, M.A., Contoux, C., Jost, A., 
Kamae, Y., Lohmann, G., Lunt, D.J., Ramstein, G., Rosenbloom, N.A., Sohl, L., 
Stepanek, C., Ueda, H., Yan, Q., Zhang, Z., 2015. Using results from the PlioMIP 
ensemble to investigate the Greenland Ice Sheet during the mid-Pliocene Warm 
Period. Clim. Past 11, 403–424. https://doi.org/10.5194/cp-11-403-2015. 

Edwards, T.L., Brandon, M.A., Durand, G., Edwards, N.R., Golledge, N.R., Holden, P.B., 
Nias, I.J., Payne, A.J., Ritz, C., Wernecke, A., 2019. Revisiting Antarctic ice loss due 
to marine ice-cliff instability. Nature 566, 58–64. https://doi.org/10.1038/s41586- 
019-0901-4. 

Edwards, T.L., Nowicki, S., Marzeion, B., Hock, R., Goelzer, H., Seroussi, H., Jourdain, N. 
C., Slater, D.A., Turner, F.E., Smith, C.J., McKenna, C.M., Simon, E., Abe-Ouchi, A., 
Gregory, J.M., Larour, E., Lipscomb, W.H., Payne, A.J., Shepherd, A., Agosta, C., 
Alexander, P., Albrecht, T., Anderson, B., Asay-Davis, X., Aschwanden, A., 
Barthel, A., Bliss, A., Calov, R., Chambers, C., Champollion, N., Choi, Y., 
Cullather, R., Cuzzone, J., Dumas, C., Felikson, D., Fettweis, X., Fujita, K., Galton- 
Fenzi, B.K., Gladstone, R., Golledge, N.R., Greve, R., Hattermann, T., Hoffman, M.J., 
Humbert, A., Huss, M., Huybrechts, P., Immerzeel, W., Kleiner, T., Kraaijenbrink, P., 
Le Clec’h, S., Lee, V., Leguy, G.R., Little, C.M., Lowry, D.P., Malles, J.-H., Martin, D. 
F., Maussion, F., Morlighem, M., O’Neill, J.F., Nias, I., Pattyn, F., Pelle, T., Price, S.F., 
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