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Abstract

The phase field method is becoming the de facto choice for the numerical analysis of complex problems 
that involve multiple initiating, propagating, interacting, branching and merging fractures. However, 
within the context of finite element modelling, the method requires a fine mesh in regions where 
fractures will propagate, in order to capture sharp variations in the phase field representing the 
fractured/damaged regions. This means that the method can become computationally expensive 
when the fracture propagation paths are not known a priori. This paper presents a 2D hp-adaptive 
discontinuous Galerkin finite element method for phase field fracture that includes a posteriori error 
estimators for both the elasticity and phase field equations, which drive mesh adaptivity for static 
and propagating fractures. This combination means that it is possible to reliably and efficiently 
solve phase field fracture problems with arbitrary initial meshes, irrespective of the initial geometry 
or loading conditions. This ability is demonstrated on several example problems, which are solved 
using a light-BFGS (Broyden-Fletcher-Goldfarb—Shanno) quasi-Newton algorithm. The examples 
highlight the importance of driving mesh adaptivity using both the elasticity and phase field errors 
for physically meaningful, yet computationally tractable, results. They also reveal the importance of 
including p-refinement, which is typically not included in existing phase field literature. The above 
features provide a powerful and general tool for modelling fracture propagation with controlled errors 
and degree-of-freedom optimised meshes.
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1. Introduction

The phase field model for brittle fracture originally proposed by [22, 10] describes crack propa­
gation based on Griffith’s theory. Unlike linear elastic fracture mechanics, the phase field model for 
fracture is a type of non-local continuum damage model, where the crack is defined by a diffused 
damage zone rather than a sharp (zero-thickness) discontinuity. Material failure is characterised by a 
constitutive damage relation arising from variational [10] or thermodynamic arguments [45]. Since the 
primary phase field equation approximates the fracture topology as a field, cracks naturally initiate, 
branch and merge. This is a notable advantage over discrete fracture mechanics, where the fractures 
are modelled through boundary topology, and does not naturally incorporate these features in the 
continuum framework. The algorithmic implementation, especially in 3D, of discrete crack topology 
changes, such as branching and merging, is challenging but remeshing is an option in order to capture 
the evolution of the crack topology [55]. Additionally determining when, and then how, cracks split 
and initiate is not implicit to the fundamental principle of discrete crack propagation. Thermody­
namic frameworks for discrete fracture propagation is often cast as a single crack tip, or front, [43] 
Alternatively, the phase field model is both difficult to solve, requiring many iterations per load step, 
and significant refinement along the entire damaged region, representing the crack, [9], unlike discrete 
methods where only tip refinement is required [e.g., 7], it therefore can be prohibitively expensive for 
large 3D simulations. For example, simulating fracture propagation using the phase field model in 
glaciers and ice shelves [60, 13] that are several hundred kilometres long requires metre-scale resolution 
within damage zones. Therefore in order to model phase field fracture significant manual intervention 
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is required to refine the domain based on the anticipated crack path, which can be computationally 
inefficient, or worse could miss fractures that are not expected a priori.

Mesh adaptivity has the capability to create efficient solution dependent meshes and automatically 
detect regions of crack initiation. Since the most difficult regions of the field to model are likely 
associated with phase field values associated with the crack, the field values are often used as a primary 
driver, or error indicator, in mesh adaptivity [3, 49]. For example, a commonly adopted scheme, 
[4, 25, 57, 54, 56] amongst others, is the predictor-corrector method, [27, 53], where a region around 
the damaged material is used to identify elements to refine. A similar but alternative method is to use 
threshold values for the positive strain energy as marker [33, 26, 34], or through a physical stability 
measure to refine elements which are at the onset of fracture [28]. The advantage of these methods is 
that they have the potential to refine elements before they fracture, thus minimising rerunning load 
steps. In addition to mesh adaptivity are schemes which aim to reduce the computational cost, for 
example global-local formulations exist where the phase field solution is resolved locally to the crack 
path, [54]. A similar approach is presented by Muixl et al. [50], where in regions of the crack path 
away from developing regions of the phase field an XFEM enrichment is introduced to remove the 
requirement for high levels of refinement along the complete crack path.

A posteriori error estimators have been used for a range of problems, from discrete fracture [31], 
reaction-diffusion equations [21] and phase-field fracture. There are several types of error estimators 
available which have been applied to phase-field fracture propagation. The work of [30, 41, 24] use 
a recovery type error estimator [66], where a refined, or higher order, mesh is used to estimate the 
error. Alternatively there are goal-orientated error estimators which is the estimation of the error for 
a quantity of interest using an adjoint solution on a higher order mesh. This has been applied to phase 
field fracture by [63, 38] where errors for the elastic phase field solutions, and those associated with 
the time step size, have been estimated. The error that is used here is a residual type which has the 
advantage that the error measure is a function of only the primal solution on the mesh it is solved 
on, therefore no further solutions are required to determine the error. This type of estimator was 
applied approximately by Mang et al. [40] to errors in the phase field problem, and robustly by Burke 
et al. [11, 12], Micheletti et al. [42] to the Ambrosio-Tortorelli formulation with h-adaptivity. Here 
a robust residual a posteriori hp-error estimator is applied to phase-field fracture. For an estimator 
to be defined as robust it must bound from above (reliable) and below (efficient) the true error in 
the problem’s energy norm, up to some constants independent of element size and polynomial order. 
This means the estimate is never too far away from the true error and is therefore a good measure of 
the error distribution through the computational mesh [8]. It also means the convergence rate of the 
estimate is approximately the same as the true error. This definition of robust is used throughout the 
paper. The hp-error estimator proposed in this paper is applicable to meshes which contain elements 
of arbitrary size and polynomial order. Since the error estimate bounds the error in the hp-DG energy 
norm and the solutions space for CG is a subspace of the DG solution space, the error estimator is 
directly applicable to hp-CG formulations. The error estimator methods discussed in this section and 
presented in later sections, can be wrapped around existing numerical frameworks. However, some 
methods such as the discontinuous Petrov-Galerkin (PDG) method have “a built-in error evaluator” 
[15, 14] used as an error estimator to guide refinement.

An additional difficultly is that the coupled phase field fracture problem is non-convex with respect 
to the primary displacement and phase field variables [35, 23]. However, it was recognised by [10], 
that the problem is convex when taking variations of the energy functional with respect to only one of 
the primary variables, leading to the development of the robust Alternate Minimisation (AM) scheme 
[10] and later the staggered scheme [44]. Although both are robust, the staggered scheme is highly 
dependent on the load step size and the AM scheme is slow to converge [20]. This has lead to the 
adaptation of a series of non-linear solvers to the phase field fracture framework: such as the Gauss- 
Seidel method which is an accelerated approach to the AM approach [20]; traditional Newton solvers 
with robust line searches, positive and negative search directions [23]; quasi-Newton methods which 
avoid computations of the secant matrix each step and reduce the number of iterations compared to 
AM [65, 35]; an under-relaxation arc-length method which enables larger displacement steps whilst 
accurately capturing the instantaneous crack growth [5]; and the implicit-explicit method [39] which 
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uses an implicit method before damage localisation and an explicit dynamics solver is used during 
fracture. Lastly, multigrid preconditioner methods [32], and domain decomposition preconditioners 
[61] for dynamic problems solved in parallel, have been used to reduce memory load and overall 
computational time.

Many of the above approaches use a continuous Galerkin (CG) framework, although finite differ­
ence [1] and Fast Fourier Transform [37] implementations exist. However as an alternative there are 
authors who use either discontinuous Galerkin (DG) or hybridised DG frameworks [48, 46, 49, 62]. 
The DG solution space is a broken Sobolev space, the primary variables are discontinuous between 
adjacent elements but continuous within elements. Degrees of freedom (DOF) are therefore not shared 
between adjacent elements and communication between elements is through face integrals. Here hp- 
adaptivity is used to efficiently obtain accurate solutions of the phase-field method. The DG method 
is used since any jumps in element size (with hanging nodes) and polynomial order are naturally in­
corporated in face integrals between elements, in the authors’ option this is considered algorithmically 
simpler than hp-CG methods. Compared to hp-DG methods, the hp-CG trades the computational 
effort of DG face integrals with the additional treatment to ensure conforming polynomial orders on 
the edges shared between elements in conforming meshes. However, some authors do consider it is 
algorithmically simpler to ensure that the mesh conforms [51, 29], with the additional benefit that for 
the same mesh CG requires fewer degrees of freedom. For a detailed explanation of the theoretical and 
algorithmic aspects for arbitrary elements in hp-CG please see Solin [59]. For Cartesian meshes, see 
[18] for Isogeometric Analysis hp-FEM and [17] for methods considering hanging nodes. Nevertheless 
computational cost is not purely measured on the number of DOF and the methods do have different 
solution spaces. This means for a problem one method might outperform the other for a similar cost. 
Despite the advantages and disadvantages of both methods, since the CG solution is a subspace of the 
DG solution space, all error estimators presented here are also directly applicable to CG.

An aspect of the phase field fracture which is often overlooked is the smoothness of the phase field 
solution and the possibility of p-adaptivity being used to resolve smooth regions, [19]. In comparison 
to h-adaptivity relatively few authors consider hp-adaptivity, for instance, Muixi et al. [48] use a 
uniform hp-refined patch. This is based on a phase field marking criteria and [51, 29] use a error 
indicator identify which regions of the mesh to perform hp-adaptivity, in both 2D and 3D. However, 
an error driven hp-adaptivity method has not presented in the literature, to the best of the authors’ 
knowledge.

This paper provides a hp-adaptive DG modelling framework based on a robust hp-residual a 
posteriori based error estimator for the phase field solution and uses the hp-residual a posteriori error 
estimator for elasticity from [8]. The error estimator for phase field is new since it can consider meshes 
which contain elements of arbitrary size and polynomial order. The arbitrary polynomial order will 
be shown to be particularly useful to reduce the required element size along the crack path leading to 
a reduction in computational time and the number of degrees of freedom added. The error estimator 
can be used to determine the error for meshes which are heterogeneous in polynomial order and size, 
this means h and p-refinement can occur based on the smoothness of the solution field, leading to 
exponential convergence of the error with increasing DOF.

Numerical examples are used to show that hp-adaptivity significantly outperforms h-adaptive 
methods for the phase field solution in terms of the error value as a function of DOF. An hp a pos­
teriori residual-based error estimator is also considered for the elasticity problem which is shown 
to be necessary for strongly coupled instantaneous crack propagation, and accurate fracture predic­
tion in general. The hp-adaptive DG framework for the coupled problem is solved using a Light- 
Broyden-Fletcher-Goldfarb-Shanno quasi-Newton (L-BFGS) solver [35, 65]. The BFGS method is 
used since it is relatively simple to implement as it only requires variations of the energy functional 
with respect to each primary variable separately. It has also been shown to achieved fast convergence 
compared to AM schemes. The combination of the BFGS solver with an hp-adaptive DG framework 
creates a method which is efficient in terms of both DOF and number of iterations to obtain a solution 
whilst being able to capture instantaneous fracture propagation. A key advantage of the proposed 
method is that it predicts accurate, self correcting, fracture propagation networks irrespective of the 
initial mesh and the user’s knowledge of the expected fracture paths.
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2. Phase field fracture

Phase field fracture models couple elasticity and a phase field that characterises the crack. Here 
the problem is solved in a two-dimensional polygonal domain Q C R2, whose boundary is given by 
dQ C R2. The strong form for elasticity is,

V • ct(u, 0) = 0 in Q
ct(u, 0) • n = gNu on dQNN

u = gDu on dQuD

(1)

where the superscript u denotes a function, or set, for the elasticity problem. In (1) u G [H1 (Q)]2 is 
the displacement vector, following the hybrid phase field ideology of [2] the Cauchy stress tensor is 
defined as

ct = [(1 — 0)2 + k]D : e where e(u) = - (Vu + VuT) ,

D is the fourth order material tensor for elasticity, 0 is the phase field and 0 < k <C 1 is a stabili­
sation term [44]. Additionally n = (nx,ny) is the outward normal to dQ, and gN G [L2(dQN)]2 and 
gD G [H 1/2(dQD)]2 are Neumann and Dirichlet boundary conditions, respectively. The union of the 
Neumann boundary, dQNN C R2, and the Dirichlet boundary, dQD C R2, form the domain’s boundary 
dQN U dQp = dQ, where dQNN n dQD = 0.

The strong form for the phase field, 0, can be expressed as 

Gc
——+ 2H(e) ) 0 — Gcl A0 = 2H(e) in Q

V0 • n = gN on dQN

0 = gp on dQp

(2)

where l is the length scale, the superscript 0 denotes a function or set for the phase field problem and 
H(e) G [L2(Q)] is the history field functional (explained below). gN G L2(dQN) and gp G H 1/2(dQD) 
are respectively the Neumann and the Dirichlet boundary conditions on dqN C R2 and dQp C R2 

where, dqN U dQp = dQ and dQN n dQD = 0. For all the problems considered here the boundary 
is only homogeneous Neumann (gN = 0), however the functions gN and gp are provided here for 
completeness.

The phase field is coupled to the elastic displacement field through H. In this paper, H is taken as 
the maximum positive strain energy density field 0+ (e) over the set of the total time t G T C R+, such 
that the history at a point is H = maxteT(0+ (e)). The positive strain energy follows the decomposition 
of Miehe et al. [44] where 0+(e) is defined as

0+(e) = 2htr(e+ )i2 + ^tr(e+ • e+), (3)
where e+ is the tensile strain tensor

d

e+ = heiimimi>

i

d is the number of dimensions, i is the eigenvalue number, e is the eigenvalue, m is the normalised 
eigenvector and 0 = (| • | + 0/2 denotes positive Macaulay brackets. Lastly, A and ^ are the Lame 
parameters of the undamaged elastic solid, where the Young’s modulus and Poisson’s ratio are respec­
tively defined as

X3A + 2^) A
E = .. and v =2(a+S.

3. Discontinuous Galerkin discretisation and error estimator

This paper uses error driven hp-adaptivity to achieve accurate solutions for the phase-field fracture 
with no a priori knowledge of the fracture path, or more generally where refinement is required 
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throughout the domain to achieve an accurate solution. As discussed in the Introduction, both hp- 
CG and hp-DG have a range of advantages and disadvantages when considering meshes that contain 
elements of arbitrary size and polynomial order. The hp-CG method is already being used in the 
literature with an error indicator for the phase-field [29]. A hp-DG scheme is used here since it is 
perceived that it is algorithmically simpler to allow the face integral terms to naturally handle the 
hanging nodes and jumps in polynomial order. However, since the DG space solution space contains 
the CG solution space, the error estimators presented here for hp-DG are also directly applicable to 
hp-CG. To solve the coupled problem using DG finite elements, the continuous polygonal domain Q 
is subdivided by triangular elements K to form an unstructured mesh T. Each element, K , has a 
polynomial order pK with Lobatto basis functions outlined in [59]. The same discretisation is used for 
the elasticity and phase field equations. We also define the vector p = {pk : K G T} for elements in 
T. The mesh will, in general, be heterogeneous in its polynomial order and will have hanging nodes. 
Each element K G T has three edges. If there is an intersection between two elements, K+ and K-, 
then the interior edge F = dK + A dK- exists, the edge F then is in the set of all interior edges is F. 
Additionally for the element K+ and K - their corresponding variables and functions are given the 
corresponding + or — superscript. If an edge dK+, of K+, does not intersect with another element 
then the edge exists on the boundary of the domain, i.e. F = dK AdQ. For problem (1), a face F along 
the boundary is either contained in FDu or FNu , respectively the sets of edges forming the Dirichlet 
and Neumann portions of the boundary. Similarly, for problem (2), a face F along the boundary is 
either contained in Fd or F^. F is the set of all edges in the mesh. The functional space for the hp- 
Symmetric Interior Penalty (SIP) DG method is defined as Wh = {w G L2(Q) : VK, w|k G PpK(K)}, 
where the elementwise approximation of u and 0 are respectively defined as Uh G [Wh]2 and 0h G Wh.

For both the elasticity and phase field solutions a robust residual based hp a posteriori error 
estimator is defined to drive mesh adaptivity (see [8] for details of the elasticity error estimator). To 
ensure reliability and efficiency a constraint on the mesh is required, neighbouring elements can only 
have a difference of 1 in their polynomial order and only 1 hanging node can exist along an edge [8]. 
Here error estimators are defined for both the phase field and elasticity solutions separately and used 
to drive the hp adaptivity as the phase field evolves through the computational domain. The error 
estimators are also used as stopping criteria to determine when the solution provided by a mesh for 
the elasticity or phase field is sufficiently accurate.

3.1. Elasticity bilinear form and error estimator

The bilinear SIP DG form for elasticity and the corresponding error estimator were initially pre­
sented, with full derivations, in [8], both are only stated here for readability. The bilinear form for the 
elasticity problem is now introduced as a(0; uh, v) = l(v), where uh , v G [Wh]2 is the trial and test 
function

and

a(0; uh, v)=X 
K eT JK

a(uh,0h) : e(v)dx

+ X [ f-{^(uh,0h)} : JvK — JuhK : {^(v,0h)} + ^pFJuJ : Jvf) dx 

F e FI uFu F ' F /

(4)

l(0; v) = X gNu • vdx
FeFNu F

+ X [ (—gDb • a(v, 0)+ • n+ + 9d

FeFDu F hF

• v dx.
(5)

where n+ is the normal vector to the boundary of element K+ . For 
notation for jumps and averages across element boundaries are defined

an interior edge F G FI the 
as

JuK = u+ 0 n+ — u 0 n+ and {ct(v,0)} = | (ct(v,0)+ + cr(v, 0) ) , (6)
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where in tensor notation a 0 b := aibj, and for a boundary edge F G Fi \ F as

JuK = u+ 0 n+ and {ct(v,^)} = ct(v,^)+. (7)

The edge polynomial order, pF , is described as

max p+K , p-K

pF =
if on the internal edges, F = dK+ 0 dK G Fi(T),

if on the external edges, F = dK+ 0 dQ G F(T) \ FI(T),
(8)

.Pk ,

where hF is the length of the edge F, and ^ is the penalty parameter for SIP DG elasticity that is 
a function of the elasticity coefficients multiplied by a small number to ensure coercivity [58]. For 
this problem ^ = 100E, where E is the Young’s modulus of the material. Normally a value of 10 is 
sufficient [7], however here 100 is used to reduce the DG solution space and thus help the convergence 
of the quasi-Newton solver. The error estimator for the elasticity problem is defined nu with its full 
form provided in [8]. It can be shown that nu is efficient and reliable for the true DG natural norm 
||| • |||t (also provided in [8]), that is

cunu < |||u -Uh|||T < Cunu, (9)

where cu and Cu are constants independent of element size and polynomial order.

3.2. Phase field bilinear form

The bilinear SIP DG form for the phase field is b(H(e); ^h,^,) = I(-0), where ^h,^ G Wh is the 
trial and test function

and

Gb(H(e);^,) = V y + 2H(e) ^^h + GJW • V
KT Jk L V 1 /

+ X J -—Gcl{^^} • J^hK 

F eFi UFD

dx

2
— GJ • {VM + 0-F M • W )dx 

hF

I(H(e); ^) = X [ 2H(e)^dx + X [ gN^dx 
KF

K eT f eFN

2
+ X — GciJgD K W + ; gD y dx.

F hF
F tF^

The jumps and average operators across interior edges F G Fi are

J^K = n+^+ — n+^ and {W} = 1 (W+ + W-) ,

and on the boundary edges, F G Fi \ F

J^K = n+^+ and {V^} = V^+.

(10)

(11)

(12)

(13)

Pf and hF have the same form as for the elasticity problem. The form of the penalty parameter 7 can 
be found through following the derivation for the SIP DG form in [58], and it has the form 7 = 100Gc1. 
The penalty is a function of only the Laplacian coefficient in Equation (2), for the proof to ensure 
coercivity, and thus the coefficients in the penalty, see [58].
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3.3. Phase field error estimator

Here a robust hp-error estimator for phase-field fracture is defined. This error estimator for the 
phase-field has not yet been presented in the literature. It can be applied to hp-finite elements, is 
robust, and utilises the primary solution fields on the current mesh to compute the error.Therefore, no 
further systems of equations need to be solved. Both the elasticity and phase field problems are elliptic. 
The elasticity error estimator from [8] therefore provides a useful framework for the development of 
a phase field error estimator. This is however an the additional reaction term, 0, in the phase field 
strong form (2), that also appears in the energy norm. Due to these similarities and the derivation 
being beyond the scope of this paper, the error estimator is presented in a similar form to that in [8] 
and is shown numerically to reliable and efficient for the true error up to some constants in Section 
7.1.

The error estimator for the phase field, n^, should provide a measure of the error in the energy 
norm of the DG phase field formulation, which is defined as

IIHIIt := ( X k(Gcl)1/2Wk0,K + X k(Gc/l + 2H«/2<k+ 
\KeT K eT

1/2 (14)
22

X YPFiij*,f + X YPFi* I
feFlt) hF FeFD(T)hF )

where k • ko^ is the L2 norm. For an error estimator to be useful it is necessary that it is never too far 
away from the true error in the natural norm, this is defined as the error estimator bounding the true 
error from below and above by some constants c^ and C^, the constants c^ and C^ are independent of 
the element size, polynomial order and problem constants. The error estimator is respectively efficient 
and reliable

<W> <|||0 - ^Ht < C^nF (15)
Equation (15) ensures as the error estimate convergences the true error will converge at a similar rate.

Similar to the elasticity error estimator [8], the global phase field error estimator n^ is defined as

n^ = Jn
KeT

nR2 ,K + nJ2,K + nF2 ,K E nK.*

KeT
(16))=/

where a single element error estimate is

nK .0 = nR .K + J.K + nF.K. (17)

This element error measure is also used to mark the elements with the highest errors for refinement. 
The first component of the element error estimator is an area integral defined as

h2 ii /G„ \ h2

nR,K = PpJ \T + 2H) ' - GclA0h - 2Hil0K,
(18)

where hK is the inner diameter of element K . This term measures how well the strong form of the 
phase field equation (the first equation in (2)) has been satisfied by the weak finite element formulation.As DG methods do not satisfy C0 continuity across elements, jumps in phase field exist between 

elements on the segment F G F(T). As the Dirichlet boundary conditions are also imposed weakly, 
jumps in the phase field boundary condition will also exist between the phase field solution on the 
element boundary and the boundary condition imposed on them. Since the true solution for phase 
field should be continuous across these boundaries, the error in the jump in phase field on the edge 
F G FI(T) and the Dirichlet boundary F G FD(T) are measured as

J = 2 X

F e.F ndK

Y 2 pF 
hF Gcl

iWL+ X

F eFD ndK

Y 2 pF 

hF Gcl
(19)^(^h - gD)|0.F•
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Like most finite element methods, SIP DG does not satisfy C1 continuity across the interior edges 
F G Fi(T) and the Neumann boundary F G Fn (T). These errors are estimated using

nF,K = 2 X phGi hnMC, F + X G IG1 (W- - gN )|0 

FeFIndK Fb c , feFN ^k F c ,

(20)

The above terms allow the computation of an estimate of the error on each element in the finite 
element mesh. These errors can then be used to drive h and p adaptivity, as described in Section 5.

4. Incremental solution algorithm

The previous sections have provided the bilinear forms for the linear elastic and phase field prob­
lems. This section details the quasi-Newton method that is adopted to solve these coupled equations. 
Coupled phase field problems typically require a high number of iterations per load step to arrive at a solution that reasonably satisfies both sets of equations [20]. This issue is compounded by any hp- 

adaptive scheme as it will be necessary to repeat load steps as the mesh is adapted. To mitigate some 
of these issues, a Broyden-Fletcher-Goldfarb—Shanno (BFGS) quasi-Newton method is selected to 
solve the coupled equations. This is motivated by the fact that the method has been shown to reduce 
the both the number of iterations per load step and the number of times the global stiffness matrix 
needs to be computed, both of which save on run-time [35]. Specifically, the Light-BFGS (L-BFGS) method is used since it strictly avoids the formation of large dense matrices [52]. Here, similar to [65], 

a line search is used to prevent the solution during a load step from diverging. Additionally, if the 
load step is too large the solution to the non-linear problem can be too far away for the solver to find 
a solution, hence the adaptive load-step method from [35] is used to reduce the load step size during 
significant fracture development. This also improves the accuracy of reaction force with displacement 
curves.

4.1. L-BFGS (Light - Broyden-Fletcher—Goldfarb—Shanno) quasi-Newton solver
In order to solve the non-linear problem using a quasi-newton method, the bilinear forms in Sections 3.1 and 3.2 need to be linearised with respect to their trial functions. When linearising the bilinear 

forms the coupling terms are assumed constant, that is, for elasticity oh is constant with respect to 
Uh, and for the phase field H is constant with respect to ^h. The linearised bilinear form for elasticity 
about the solution U is therefore

lu(^e; Suh u h) = ruC^h; Uh, v) + DqU(^h; u h, v)[5uh] = 0 (21)

and for the phase field about the solution oh is

L^(H; S^h, = 4(H; <k^) + Dq^CH; <^h, ^h] = 0 (22)

where the residuals are rU(^h; Uh, v) = a(^h; Uh, v) —1(^; v) and r^(H, <^h, "0) = b(H; <^h, ^) — I(H; ^). 
DrU(^h; Uh, v)[SUh] and Dq^(H; 0h, ^)[S0h] are the directional derivatives of rU(^h; Uh, v) and rh^H; <f>h,^) 
in the directions [SUh and [S^h] at Uh and oh respectively. The directional derivatives for the elasticity 
and phase field problems are

DqU(^h; Uh, v)[SUh = V / ^(SUh,^h): e(v)dx
KeT K

+ X (—{CT(SUh, ^h)} : JvK — JSUhK : {&(v, ^h)} + hK- JSUhK : Jv]|) dx

and

Dq^(H; <^h,^)[S^h]= X /

KeT K

G
-+ + 2H j ^5^h + GdV^ • VS^h dx

2
+ X JF (—GdW} • JS^h] — GJ • {VS^} + YPF J^] • JS^hf) dx.

(23)

(24)
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To solve the linearised systems of equations using finite elements, the polynomial basis and corre­
sponding coefficients are substituted into Equations (21) and (22) for all the test and trial functions, 
to obtain

{rU} = —[Kuu]{6uh} and {r’} = — [K”}^} (25)

where the subscript h denotes the finite element approximation, {•} is a vector where the rows cor­
respond to DOF numbers, [•] is a matrix where the rows and columns both refer to DOF numbers, 
and [Kuu] and [K’’] are the tangent matrices for the two equations. The complete linear system of 
equations, with the subscript h dropped for readability, is written as

J {ru} 1 
I {r’} J

[Kuu]
0

0 inj {^u} r+1 
[K’’] J l W} J (26)-

where n is the iteration step number, {£•} = ({^n+1 — {^}n). The linearised system can subsequently 
be condensed down to

{r}n = —[K0]{z}n+1, (27)

where the form of the linearised system of equations (27) is the robust alternate minimisation (AM) 
form for solving the phase field fracture problem for a load increment [10].

mi t '/'i n <11 • , • r i i i i ■ tt • r 7^1 , i , i i iThe L-BFGS method uses an approximation of the problem’s Hessian [K] to solve the problem,

{r}n = —[K„]{z}"+1, (28)

but instead of computing the Hessian exactly it is updated using the secant equation, 

[Kn+1] = [Kn] —

~ ~ —I—
([Kf„ ]{z})([K „]{.})>

_ ~
{z}>[Kn]{z}

{Ar}{Ar}> 
{z}T{Ar}

(29)

with the change in residual {Ar} = {r}n+1 — {r}n, solution {z} and previously approximated Hessian 
[Kn]. For the first solve the uncoupled matrix is used [K1] = [K0].

In this paper the L-BFGS algorithm is employed in the computation of [Kn], this is because the 
update of the [Kn ] in (29) will produce a dense matrix which becomes very memory intensive for any 
reasonably sized finite element problem. To solve (28) without computing [Kn] the two loop recursion 
algorithm for the L-BFGS method is employed, which exploits the recursive natural of the secant 
matrix update, (29), to solve Equation (28). The algorithm is explained in full in [52] and is provided 
here with Algorithm 1 using notation consistent with [52], where

{W}> = {{u}>{^}>}.

and the remaining pi, ai and {q} are temporary storage variables with their mathematical definition 
provided in [52].

The update avoids the use of dense matrices by storing n times the residual and solution. To 
prevent floating point numerical errors in the update of approximate Hessian matrix, the number 
of secant matrix updates, n, is set as nlimit = 10, [65]. Once this limit is reached the matrix [K0] 
is recomputed using the current solution, Equation (26), and the solution variables, residual and 
increment number are reset: {un+1} ^ {u1}; {^n+1} ^ {^1}; {rn+1} ^ {r1}; and n =1.

4.2. Line search

A quasi-Newton method is typically globally convergent when accompanied by a line search [16, 65]. 
However, in the case of the BFGS method with phase field fracture, Kristensen et al. [35] found that 
line searches may not be necessary. However when a poor mesh was used, which was often the case 
with adaptivity, and no line search was employed, the L-BFGS method was found often to diverge. To 
prevent this, an energy minimisation line search is used [23]1, but only called when the problem was

1 Other more robust methods for determine the step size exist, such as the Wolfe line search, which also considers the 
updated residual [16].
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Algorithm 1: L-BFGS algorithm solving for {z}n+1

{q} ^ {r}n-i;
for i = (n - 1) : -1 : 1 do

Pi = 1/({W}i+i - W}i}>{ri+i - ri});
ai = Pi{{u^}i+i - {u^}i}>q;
{q} = {q} - ai{{r}i+1 - {r}i};

end
{z} = [K0]-1{q};
for i = 1 : 1 : (n - 1) do

Pi = Pi{{r}i+i - {r}i}>{z};

{z} = {z} + {{u^}i+i - {up}i}(ai - Pi);
end
{z} = -{z};

considered to be diverging, which was determined by a suitably high residual value of |{r}| > 10-2. 
While it is generally more robust to perform a line search each iteration, a limit on the residual value 
was found to be sufficient.

When a line search is used, a scaling factor sf G (0,1] is applied to the update, determined using 
a backward line search algorithm based on energy minimisation [23]. The line search employed here 
is coarse, limited to sf G A = {0.5, 0.01, 0.001}, and simply written as

sf = arg min En(sf, z, Un), 
sf eA

where En is the total energy of the system [23].

4.3. Adaptive load stepping

The algorithm for step adaptivity from [35] is used to determine if the load step, AgD, is too 
large and thus too far away for the solver to find a solution. When this is the case the load step, 
|AgDu |, needs to be decreased and the solution algorithm restarted. Therefore in order to enable large 
load steps when the solution is only slightly non-linear, and small load steps to ensure convergence 
when the solution is highly non-linear, the simple and robust adaptive load step algorithm from [35] 
is employed and is detailed in Algorithm 2. The algorithm loops over all integration points in the 
mesh for current iteration n. If an integration point i undergoes a large jump in phase field value, 
A^i > 0.5, and its previous value was relatively low, ^n-1 < 0.7, the step size is reduced by a factor 
of 10. To prevent continuous reductions in the step size during instantaneous crack propagation, the

Algorithm 2: Rerun check
For any integration point i;
if <-1 < 0.7 AND A^i > 0.5 then

Rerun load increment and set AgD ^ 0.1AgD.; 
end

load increment is only allowed to decrease once during the load step and reset to the maximum value 
at the beginning of the next step.

4.4. Single increment solution algorithm
In the preceding sections the components for the incremental solution algorithm were provided, in 

this section they are combined into Algorithm 3 which can be divided into several three key sections:

1. Using the history field from the previous converged solution, H, obtain {^}1 and subsequently 
{u}1 by performing a linear solve. Compute the corresponding residual {r}1.
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2. Enter the first while loop and determine the first update to the solution, compute the matrix 
[Ko], using {^}1 and {u}i, as the first approximation to the Hessian [K]; and

3. A system of nested while loops is employed, inside which the L-BFGS algorithm is used along 
with a series of exit conditions for the main, and nested, while loops.

The exit conditions are an important aspect of the solver since they control when the L-BFGS 
solver has to be reset and when the load increment size needs to be reduced. They also flag when to 
stop the algorithm once a sufficient tolerance in the residual is reached or the step size, AgD, needs 
to be reduced. The exit condition to reset the L-BFGS solver is initiated when the iteration count, n, 
for the L-BFGS solver reaches its limit nlimit .

Algorithm 3: Solution for current load step i
Use the staggered scheme to solve for {^}1 and {u}1 using the previous converged history 

field Hi-i and total load Agu,i-i;D

Set the Dirichlet boundary condition for elasticity as gDu,i = gDu,i-1 + AgDu,i ;
while main exit flag is false do

Set n = 1, and sub loop exit flag to false;
Compute [Ko];
while sub loop exit flag is false do

{z}n+1 ^ from Algorithm 1;
{u^}n+1 = {u^}n + {z}n+1;

Compute the history field H and subsequently {r}n+1;
if k{r}n+1 ko > 10-2 & n > 2 then

Sf = argminsf. a En(a,z,Un);
{u^}n+1 = {u^}n + Sf {z}n+1;
Recompute the history field H and {r}n+1;

end
if n > 2 then

if AgDu,i larger than minimum its value AND (k{r}n+1 ko > tol) then
| Check Algorithm 2, if step size reduced set all exit flags to true.;

end
if (k{r}n+1ko < tol) then

| set all exit flags to true;
else if n > niimit then

set sub loop exit flag to true;
{u^}1 ^ {u^}n+1;

end
end
n=n+1;

end
end
return {u}, {^} ^ {u$}n and H;

5. Adaptivity

There are several motivators for using mesh adaptivity when modelling a phase field fracture 
problem, specifically: (i) adaptivity provides a means to obtain an accurate representation of the 
stress field and associated fracture growth; (ii) adaptivity is efficient in terms of the number of DOF 
required to solve the problem in that hp refinement is performed only where necessary to obtain a 
solution to a desired accuracy; and (iii) adaptivity removes the requirement to know a priori how the 
solution will evolve, thus allowing non-trivial problems to be solved with minimal initial input, or, 
significant computational power used through significant global refinement of the finite element mesh.
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For efficiency, p-refinement should only be performed in smooth parts of the solution, and h in 
nonsmooth regions [19]. Therefore in order to achieve the maximum decrease in the global error with 
minimal increases in the number of DOF, the elements with the highest error need to be identified as 
well as an estimate of their solution smoothness.

The algorithms in this paper assume triangular elements but the methods can be applied to other 
elements. When a triangular element is refined in h it is refined homogeneously, as in Figure 1. 
The parent element, K, is split into four new child triangle elements {K1, K2, K3, K3}, all of which 
are similar to their parent. Each child will have polynomial order of their parent minus one, e.g. 
pK1 = pK - 1 for child K1 . Additionally a projection of the history field from the parent to the child 
elements is required (see Section 5.2).

5.1. Adaptive strategy

The adaptive strategy is controlled by the error estimators for the phase field and elasticity problem. 
Adaptivity occurs if either error estimate, nu or n^, Equation (16), is greater than their respective 
user defined tolerances, TOLu and TOL^, Bird et al. [8]. An error estimate for a field is only used 
to mark elements for refinement if its corresponding value is greater than a tolerance. Additionally 
there is a limit on the minimum size and maximum polynomial order of the elements, therefore when 
computing the errors

n^ = y X ,* and nu = y X Jk,u (30)

the subsets TR,^ C T and TR,u C T are used, with nKu defined in [8]. The subsets are determined 
by inspecting the smoothness, size and polynomial orders of an element. For the element K , if for 
a field the solution is smooth and K is of maximum polynomial order, pK = pmax , or if it is not 
smooth and of minimum size, h < hmin, it is not in the set Tr,. since it cannot be refined further. 
The smoothness of an element is found by pro jecting its solution to an orthogonal triangular basis of 
the same polynomial order [19]. If the coefficients of the basis decays exponentially with increasing 
polynomial order the element is considered smooth, otherwise it is non-smooth. The definition of the 
orthogonal basis, projection and proof for smoothness identification can all be found in [19].

The elements are marked based on a mean criteria [19], if an element’s error is greater than the 
mean error for the respective field, multiplied by a factor R, then it is marked for refinement. The 
logic statement for an element to be refined is

[(nK> Rn^)AND(w > TOL^)]OR[(nK,u > Rnu)AND(nu > TOLu)] (31)

where the averages nu and n^ are respectively

n^ = ZL nK,^/\TR,phi\ and nu = nK,J\Tr,u\.

If an element is marked for both h and p, it is refined in h to ensure that both errors will decrease for 
this element. The adaptive strategy is called if one of the error estimates is not below its tolerance. 
With these premises the adaptivity strategy can be defined,
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1. For both u and 0 solutions determine whether the solution space within each element is smooth 
or nonsmooth using the method presented in ;[19]

2. Determine the subsets TR,^ C T and TR,u C T;
3. Compute the n^ and nu using the summation definitions in ;(30)
4. If nu > TOLu or n^ > TOL^ then the mesh is refined;
5. Use (  to mark elements for refinement;31)
6. Mark additional elements for refinement to ensure only 1 hanging node per face and a polynomial 

order difference of 1 between neighbouring elements (mesh smoothing step); and
7. Finally refine to get the new mesh T.

5.2. History projection
The history functional is the only solution dependent property that has to be mapped between 

different meshes; all other material properties are uniform across the mesh. The mapping occurs each 
time an element is refined in either h or p. When an element is refined in p the mapping is relatively 
simple since the domain of the element K remains unchanged. However, when the element is h-refined, 
K is divided into four child elements, Kc where c G [1,4], where the union of the childrens’ domains 
forms the parent’s domain, see Figure 1.

The history function is assumed to at best H G L2(K) with an additional constraint of always 
being greater than 0. Hence a nearest neighbour mapping is used to always ensure values greater 
than 0. The mapping occurs at the Gauss point level, where the location of a child’s Gauss point is 
xn,c G Kc A K, where n G N is the Gauss point number and N is the set of all Gauss point numbers in 
Kc. xn,c takes the value equal to the value of the nearest parent Gauss point xm G K, where m G M 
is the Gauss point number and M is the set of all Gauss points numbers in K. For Gauss point n, 
the history is assigned as,

H(xn,c) = H(xm) where m = arg min (|xn,c - xm|). (32)

6. Complete fracture algorithm

The previous two sections have described the algorithms for determining the incremental solution 
and adapting the mesh. In this section the algorithms are combined to form Algorithm 4, for the 
complete fracture problem for a total boundary displacement of gDu ,max. The algorithm is controlled 
by a pair of nested while loops. The outer loop checks whether the current load displacement gDu ,i 

is greater than the maximum load displacement gDu ,max . If not the nested while loop is called which 
solves for the current increment i. The L-BFGS method is used to solve for the current load gD,i+1 = 
gD,i + AgD,i using Algorithm 3. If the solution is found the algorithm exists, otherwise either the step 
size is too big, AgD,i, it is reduced (see Section 4.3) or the mesh is refined.

If the increment is too large, the load step is reduced, and Algorithm 3 is reattempted. If the 
solution is found the errors for both fields are checked. If they are sufficiently low the total load step 
is updated, the history field is stored and i is increased. However, if either error is too large the 
history field for the current mesh is stored, the mesh is refined (see Section 5.1) to get the new mesh 
T and the new history field is projected onto the elements in the new mesh. Since the errors are too 
high the increment load step is reattempted, this loop will continue until the errors nu and n^ are less 
than their respective tolerances. The last condition is the check check restart condition, this condition 
restarts the algorithm and only occurs once, resetting all values apart from the mesh data when the 
phase field obtains a value of 1 in the solution. This is necessary since when the algorithm first starts 
the mesh is poor, refinement on the boundary therefore causes large oscillations in the recorded load 
with applied displacement.

7. Numerical examples

Now that the hp-adaptive DG framework for phase field fracture, and the solution method, have 
been presented, it is necessary to show its efficiency and accuracy in solving a range of benchmark 
problems. Each benchmark problem will test a different aspect of the method and demonstrate its 
ability to solve a range of problems accurately. Four problems are considered:
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Algorithm 4: main algorithm
Create mesh T;
Set load step counter i = 1;
while gDu ,i < gDu ,max do

reset AgD i to its maximum value (Section 4.3);
while nu > TOLu AND nt > TOLt do

Compute the solution {u}, {^} and H0 using, Algorithm 3 and H.;
Determine the error estimates nt and nu (see Equation (30));
Check restart condition;
if adaptive load step size is required (Section 4.3) then

| AgD,i ^ Agp^lO;
else

if nu < TOLu AND nt < TOLt then
gD,i+1 = gD,i + AgD,i ;
Store converged history solution H = H0 (Section 5.2);
i =i+1;

else
Define the history field as H;
Refine the mesh to get the new mesh T (Section 5.1);
Using a nearest point projection get H ^ H (Section 5.2); 

end
end

end
end

1. Error estimator verification: to demonstrate the reliability and efficiency of the phase field error 
estimator, confirming that the error estimator provides a meaningful representation of the true 
error with h and hp-adaptive refinement for both boundary condition- and history field-driven 
problem .s2

2. Single crack mode-I uniaxial tension test : to demonstrate the ability of the proposed method 
to predict accurate mode-I fracture propagation starting from a very coarse initial mesh; and to 
the quantify the impact of the model parameters on the obtained results.

[44]

3. Single crack subjected to shear load: to demonstrate the ability of the proposed method to 
capture the correct fracture propagation path for starting from a very coarse initial mesh; and 
to highlight the importance of including error estimation for both the phase field and the linear- 
elasticity solutions.

4. Double crack uniaxial tension test: to demonstrate the ability of the method to represent multiple 
interacting cracks with adaptive mesh refinement whilst maintaining symmetry of the physical 
problem; and to highlight the importance of phase field and elasticity-driven mesh refinement.

2 Note that the reliability and efficiency of the linear elasticity error estimate is demonstrated by [8, 6] and is therefore 
not repeated here.

The first test is to demonstrate reliability and efficiency. The method of manufactured solutions 
(MMSs)is used to create an analytical solution for a phase field problem. The MMS is compared 
against the numerical solution which allows the true error in the DG norm to be calculated and 
compared with the error estimate. The remaining tests examine the phase field fracture problem. 
Each problem showcases the method’s ability to solve a variety of problems. The solution to problem 
2 is an approximately instantaneous crack propagation [35], in that total failure of the specimen occurs 
over a single load step. Problem 3 is shear loaded and has a more complicated response, comprising 
instantaneous crack propagation and gradual propagation with gradual load increase. The shear crack 
problem will be used to demonstrate that this more complicated response can be captured by the 
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proposed approach. Problem 4 involves the interaction, and instantaneous propagation, of two cracks, 
making this a particularly difficult problem to model with mesh adaptivity, since the mesh both 
determines the interaction of the stress field between the two cracks and also influences where the 
cracks will propagate. This example will demonstrate the robustness of the residual a posteriori error 
estimate-based adaptive method.

Alongside the demonstration of the method’s ability to model a range of propagation problems with 
different characteristics, the parameters which control mesh adaptivity and the limits on the smallest 
element size will be explored. The solution field of the phase field problem and the load-displacement 
response are examined and compared to benchmark results in the literature. The parameters that will 
be varied are: the minimum allowable element size, hmin , the linear elastic error estimate threshold, 
and the phase field error estimate threshold.

For all numerical examples the Young’s modulus, E = 210GPa, the Poisson’s ratio, v = 0.3, and 
the Griffith failure energy is Gc = 270N/m; the phase field length value l is varied between numerical 
simulations. The parameter R, which determines the proportion of elements to be refined, based on 
the average value as discussed in Section 5, is set at 2. As discussed by [19], to accurately determine 
whether an element should be refined in h or p using the smoothness criteria the element needs a 
polynomial order of at least 3, therefore for all meshes pk ^K = 3. The maximum polynomial 
order that an element can have is set to 6, it was generally observed that this polynomial order was 
sufficiently high to have large elements compared to the phase field length scale whilst also obtaining 
accurate results.

7.1. Error estimator Verification, problem 1

Section 3.3 presented the error estimator for the phase field problem. This section will show 
numerically that the phase field error estimator bounds the true error in the energy norm up to 
some arbitrary constants independent of element polynomial order and size and is an effective method 
to identify elements for hp-refinement achieving exponential convergence in the true error for the 
phase-field. In this section two problems are considered over the same unit domain, initial meshes, 
hp-adaptive scheme and using the same parameters. Only the phase field equations are solved for the 
problems in this section. The assumed solution to the problems are:

d = e-x/l : Dirichlet analysis
d = e-75x : History analysis

(33)

where l = 0.01 and the applied history field and, Dirichlet and Neumann boundary conditions, are 
determined with the method of manufactured solutions. The first problem is the 1D solution to the 
phase field problem and in the numerical simulation a Dirichlet boundary condition of d = 1 is weakly 
imposed at x = 0 [45]. This problem will test the ability of the error estimator and the hp-adaptive 
method to efficiently refine to capture phase field distributions that represent a regularised crack 
geometry, however since the phase field is driven by a boundary condition rather than a history field 
the second problem is needed to fully verify the DG solver. The second problem is driven by the history 
field, and is used to show the error estimate is reliable and efficient for problems where the history 
field is non-zero. For both solutions the smoothness of the solution increases as x increases, hence 
near x = 0 it is expected that the solution will be sufficiently non-smooth to require hp-refinement, 
and away from x = 0 mostly only p-refinement will occur.

The domain is defined as Q G [0,1]2 with dQ = d^D U d^N, and the domain and corresponding 
initial mesh for both problems is shown in Figure 2a. The variation of the ratio between the true and 
estimated error with hp-refinement step is shown in Figure 2b. Figure 2b shows numerically that n^ 

is efficient for the true error, this is shown by the oscillations in the ratio which are similar to those 
observed in [8]; this demonstrates n^ can reliably be used as an accuracy threshold for the phase field 
solution.

The convergence of the true and estimated error with the square root of the number of DOF for 
both problems with hp- and h-adaptivity is shown in Figure 3. Figure 3 shows that only with hp- 
adaptivity is continued exponential convergence achieved whilst h-adaptivity plateaus with increasing 
NDOF. This means that an error threshold is more obtainable, with fewer DOF, with hp adaptivity
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(a) (b)

Figure 2: Verification: (a) Initial mesh and boundary conditions and (b) error efficiency.

compared to h-adaptivity only which becomes computationally onerous to achieve the same error. The 
final mesh distributions for the Dirichlet driven and history driven hp-adaptive solutions are shown 
in Figures 4a and 4b, respectively. The elements with the highest error have automatically been 
identified by the error estimate, causing significant hp-refinement to occur near x = 0.

The final aspect to investigate is how the error is distributed through the domain, and whether it 
is actually worthwhile to consider high order elements to reduce the error in the phase field solution, 
particularly near the crack where the solution is the least smooth. To do this, a comparison is made 
between the 1D fracture solution, d = e-|x|/l, when using hp- and h-refinement schemes. To do 
this a comparison is made between the meshes used to generate the smallest error in Figure 3 for 
the respective adaptivity schemes. This corresponds to the hp-mesh provided in Figure 4a and the 
h-refined mesh shown in Figure 5a where pk = 3 V K. For the h-adapted mesh in Figure 5a, the 
smallest elements are located near x = 0 with side lengths of 2-9 m, whereas the hp-adapted mesh had 
elements with side lengths 2-7. Additionally, the distributed error in Figure 5b shows that despite the 
elements being 4 times larger at the least smooth region, x = 0, the error is consistently 1-to-2 orders 
of magnitude smaller for hp-refined mesh, which has elements of order 6 and 7 at the 1D crack. The 
global benefit of including p-adaptivity is also demonstrated in Figure 3, where smaller errors for the 
hp-adaptivity are computed for fewer DOFs.

7.2. Mode I edge crack, problem 2

The mode-I crack problem is the de facto benchmark problem in the literature for instantaneous 
fracture propagation, [45]. The problem is difficult to solve with traditional fully-coupled Newton 
solvers as nearly all the phase field development occurs in one step; however the work of [23] details 
a Newton solver with positive and negative line search direction. The other alternative is solving 
with the AM algorithm, which is expensive due to the high iteration number and computation of the 
stiffness matrix each iteration [20].

This problem investigates how the accuracy of the fracture problem is influenced by the toler­
ance values for nu and n^ and the minimum element size. Controlling the minimum element size 
will demonstrate that high order elements reduce the requirement for small elements about the phase 
field fracture. As shown in Figure 3, convergence of the phase field error with hp-adaptivity is ex­
ponential, suggesting that fewer DOF are required to achieved the same accuracy compared to the 
non-exponential h-adaptivity. This potentially indicates that the high polynomial order is reducing the 
need for very small elements around the phase field-represented fractures. The parameters that were 
varied over the five numerical experiments with their values are given in Table 1. The experiments are 
referred to by letter to improve the reading and formatting of graphs, tables, and referencing within
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Figure 3: Verification: convergence of the error estimate and the error in the DG norm, where n^ is the phase field error 
estimator. The final log-log convergence rate on this log-linear plot (estimated with the last 3 points) using hp-adaptivity 
is 9.7, History, and 9.6, Dirichlet, for h-adaptivity the convergence is 2.02, Dirichlet.

(a) (b)

Figure 4: Verification: final meshes for (a) Dirichlet- (d = e-x/l) and (b) history- (d = e-100x) driven problems.

the text. The initial mesh of the problem is designed to be as coarse as possible to demonstrate the 
robustness of Algorithm 4, and show that that the initial element distribution, shown in Figure 6, 
is arbitrary when solving fracture problems. Figure 6 also shows the boundary conditions, the top 
boundary has a non-zero displacement applied to it whereas the bottom is always fixed. The initial 
mesh for all problems is constructed from six elements with pK = 3 VK.

Figure 7 summarises the global results from the Mode I crack investigation, starting with the overall 
load-displacement response for the five analyses in Figure 7a which agree well with the benchmark
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(a)

Figure 5: Verification: final meshes for (a) h-adaptivity Dirichlet- (d = e-x/l ) and (b) a comparison of the phase-field 
error distribution along the line (x,y) = [0,1] X [0.5] for the hp- and h-adaptive schemes.

Table 1: Mode I crack: simulation identifiers and corresponding parameters.

Simulation l hmin n^ nu Rel. Comp. time NDOF
A 0.025 0.5l 3.0 x 10-3 0.05 1 65,775
B 0.025 0.5l 3.0 x 10-3 inf 0.98 57,387
C 0.025 0.5l 5.0 x 10-3 inf 0.78 52,329
D 0.025 1.0l 3.0 x 10-3 inf 0.23 29,925
E 0.025 1.5l 3.0 x 10-3 inf 0.12 15,696

Figure 6: Mode I crack: initial mesh with the initial crack edge shown in red.

set by Miehe et al. [44], which all show very similar behaviour (the inset figure provides more detail 
on the peak load-displacement response). The Dirichlet boundary conditions on the top and the 
bottom of the plate are applied to match the boundary conditions from Miehe et al. [44] so that a 
validation of the method can be performed. This creates corner singularities in the domain which the 
adaptive method is able to capture, see the top and bottom corners, on the right, in Figure 7d. This 
is necessary since the damage experienced at the corners will change the load-displacement response.
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Figure 7: Mode I crack: (a) load vs displacement response for all simulations and for Simulation A: (b) the number of 
BFGS iterations with displacement, (c) final phase field distribution and (d) final mesh.

Applying a roller boundary condition to the top of the domain would remove the corner singularities 
on the top face, however the singularities at the bottom corners would still exist and influence result. 
See Williams [64] for a discussion on singularities at corners at the interface between a homogeneous 
Neumann and homogeneous Dirichlet boundary condition.

Figure 7b shows how the iteration number, and total load, varies with load step. The load step size 
is indicated by the width of the bars in the bar chart. The graph shows that the step size algorithm 
from [35] works well, with the decrease in step size coinciding with the instantaneous fracture. As 
expected the largest number of iterations occurs during fracture and this stage has both has the highest 
number of refinement loops and highest iterations per attempted load step.

In order to investigate the time associated with performing extra iterations with the adaptive 
scheme, a comparison is made between the adaptivity algorithm and an algorithm where no adaptivity 
is present. The non-adaptive analysis uses the final mesh of the adaptive scheme using Simulation A 
parameters, where the fixed mesh is shown in Figure 7d. The fixed mesh was 6.8 times faster than 
the adaptive scheme, with 1, 560 and 12, 272 iterations, respectively. Nevertheless, on average each 
iteration is computationally cheaper for the adaptive scheme. This is also a very severe comparison 
for the hp-adaptive scheme as in reality such a heavily optimised mesh would not be assumed for 
a fixed mesh analysis. For this problem with same length scale typical degree of freedom numbers 
are « 25e3 — 150e3 DOF [35]. To a perform a less harsh comparison, a mesh with uniform element 
size and polynomial is considered for a timing test. It has pk = 3 VK G T and is the result of 6
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uniform h-refinements of the mesh in Figure 6 so the shortest element side lengths are « 0.0156 m, 
corresponding to hmin = 0.5l. The uniform mesh simulation only required 858 iterations but took 
10 times longer than Simulation A, demonstrating the increased speed from an hp-adaptivity method 
when the crack path is unknown.3

3All timing was performed on a single core of a Intel Xeon Gold 6230 CPU @2.10 GHz with 384Gb RAM.

x position

Figure 8: Mode I crack: expanded view of phase field distribution and final mesh for Simulations A-E.

phase-field
0.0 0.2 0.4 0.6 0.8 1.0

The final investigation for this problem is how the parameters from Table 1 affect the phase field 
distribution, shown in Figure 8. The first observation is that when hmin = 0.5l, for Simulations A-C, 
the phase field crack is well formed, with the decrease in error tolerance only causing more refinement 
away for the crack. The second observation is that even when hmin = 1.5l for Simulation E, the 
phase field is relatively well formed and demonstrates the effect that the higher polynomial is having 
compared to the polynomial orders typically used in the literature. It is also clear from Figure 7a 
that the variation in the parameters has little impact on the global force-displacement response. It 
clearly shows results that would be unobtainable with the same mesh size and elements for pK = 1, 
moreover it presents a question beyond the scope of this paper; what is the maximum size with 
arbitrary polynomial order that can achieve an accurate solution of the phase field?

The final mesh, see Figure 7d, has small and high polynomial order elements along the crack path 
and high order elements away from the crack in smooth regions of the solution, such as along the top 
edge of the domain. These corner singularities have tensile strain components creating values of « 0.2 
in the phase field, which smoothly vary away from the corner. This smooth and non-zero region of 
the phase field solution had sufficiently high errors to require p-refinement. Additionally, despite the 
apparent smoothness, the intermediate solutions, where the global error was deemed too large, can 
have a very poor phase-field distribution. This could cause h- and/or p-adaptivity in areas where not 
entirely necessary. In these cases it is likely that if a derefinement scheme was used these elements 
would derefine. However it is not trivial to apply p-derefinement to problems where there is data 
that needs to be preserved, i.e., the history field. When derefining an element, it is desired that the 
Gauss quadrature is also reduced, however this will prevent the history field distribution from being
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Figure 9: Mode I crack: The cross section of the phase-field description of the crack at x = n/4 for the 1D solution for 
an infinite plate as a reference.

conserved. It is currently unclear what projection should be used to minimise the loss in history field 
information. Furthermore, if the Gauss quadrature is maintained such that a low order element has 
higher than necessary quadrature there is uncertainty in the effect in the runtime. If the runtime has 
a high dependence on the Gauss quadrature, there may be no advantage to derefine, especially since 
a higher order element would decrease the global error.

Non-symmetric adaptivity is also observed for this symmetric problem despite having an initially 
symmetric mesh. This is particularly noticeable on the left hand side of the domain, Figure 7d, where 
an element has p = 4 and its symmetric counterpart has p = 5. The reason for this difference is that 
although the intial element topology in the mesh is symmetric, see Figure 6, the Gauss integration is 
not symmetric. This, in particular, affects the calculation, influence and storage of the history field. 
Since high order triangular elements are used, a convenient integration scheme is the non-optimal 
Gauss quadrature presented by Solin [59]. This involves prescribing a square element with the desired 
Gauss quadrature order, and then mapping this quadrature to the triangular element by moving one 
corner of the square to its neighbour. The mapping results in Gauss points being clustered towards 
one corner of the triangle, this therefore leads to a global nonsymmetric Gauss point distribution 
unless the node number of triangles is explicitly defined. Despite this non-symmetry in the numerical 
integration, the proposed method is able to correctly capture a symmetric crack propagation path due 
to the hp adaptive scheme.

The cross section of the crack profile described by the phase field is shown in Figure 9 for simulation 
parameters from Table 1. The 1D solution on an infinite plate is also included. Around the crack 
centre all numeral results agree well with the 1D crack solutions, and since the numerical solutions 
are not on an infinite plate, the further from the crack centre, at y = 0.5 m, the further the crack 
profiles diverge. Generally for all meshes the profile is smooth and any jumps in the DG solution are 
negligible. Even for simulation E where the minimum element size is limited to 1.5, a good result 
for the phase-field profile is achieved. Only a slight discrepancy from the other numerical results 
exists between y G [0.5, 0.515] m. This demonstrates the capability of high order elements to achieve 
accurate solutions of the crack profile, reducing the necessity for small elements along the crack edges 
and tip to achieve an accurate solution.
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7.3. Shear crack, problem 3

The shear crack problem is more complex than the uniaxial mode I tensile crack problem as it 
contains both instantaneous and gradual crack propagation. This generally makes the problem more 
expensive to solve since in the gradual stage there are more load steps over which small phase field 
developments occur. Furthermore since the rate of crack propagation is gradual, the rate can have a 
range of values and is therefore more sensitive to changes in the surrounding mesh. In the instantaneous 
stage the crack either undergoes significant or zero propagation. The same initial mesh and geometry 
as used in the previous problem, and shown in Figure 6, was used for the analyses in this section. For 
this problem the top boundary condition is set to displace in x only such that gDu = [ux 0] on y = 1 
and gDu = [00] on y = 0.

Table 2: Shear crack: simulation identifiers and corresponding parameters.

Simulation l hmin n^ nu Rel. Comp. time NDOF
A 0.025 0.5l 3.0 x 10-3 0.05 1 139,845
B 0.025 0.5l 3.0 x 10-3 inf 0.86 135,381
C 0.025 0.5l 5.0 x 10-3 inf 0.59 123,348
D 0.025 1.0l 3.0 x 10-3 inf 0.24 67,626
E 0.025 1.5l 3.0 x 10-3 inf 0.08 36,969

Similarly to problem 2, the mode I edge crack, a range of minimum element sizes and error estimate 
values were considered, as given in Table 2, with the results of the global load versus displacement 
response shown in Figure 10a. The first observation is despite the range of hmin values, all of the results 
are in good agreement. Even for the case where hmin = 1.5l, Simulation E, all the main features follow 
approximately the results of Simulation A. These were: At u ~ 0.01 mm there is a small instantaneous 
fracture, producing (i) of Figure 10b, followed by a gradual propagation to u ~ 0.017 mm, similar to 
(ii) of Figure 10b, concluding with a large drop in the total load when the fracture reaches the bottom 
boundary, see Figure 11a. Additionally, comparison of the phase field distribution of the crack paths 
between Simulations A and E, shown in Figure 11a, demonstrate that the phase field distribution 
and crack path are in close agreement with Simulation A, albeit less well defined, when considering 
that the mesh is significantly more coarse, see Figure 11b. Similarly to problem 2, the shear crack 
demonstrates the potential of using coarse meshes in h but with moderate refinement in p.

The variations in the load-displacement responses of the simulations is more easily observed when 
considering the gradual crack propagation component shown in Figure 12a, where the differences in 
Simulation A and E are more noticeable. However, Simulations A-D are very similar, with the largest 
outliers being C and D, which are the simulations with the largest n^ and hmin. The difference in 
response between Simulations A and B is small, indicating that the elasticity error estimate is not 
necessary here to obtain an accurate response beyond the initial mesh adaptivity required to capture 
the stress concentration caused by the mesh discontinuity. Overall, despite the range of parameters 
chosen, all of the simulations provide globally similar force-displacement responses and crack paths, 
suggesting that reasonable results can be obtained with loose tolerance parameter values.

The variation in the number of iterations and total load, with displacement, is shown in Figure 
12b for Simulation A. The overall trend in the iterations is similar to other approaches that use 
quasi-Newton methods [35, 65], with low numbers of iterations per load step during no propagation, 
~ 10 — 30, higher numbers of iterations for the gradual crack propagation, ~ 50 — 400, with the peaks 
in the number of iterations (« 2000) at each instantaneous crack propagation.

A comparison in simulation time was made between Simulation A when using the adaptive method 
and using a fixed mesh. The fixed mesh is shown in Figure 13b which is the final mesh generated by 
the adaptive method for Simulation A. In contrast to the problem 2, the adaptive method for the shear 
crack was 1.15 times faster despite having more iterations than the fixed mesh. The total number of 
iterations for the adaptive method was 16, 073, compared to 8, 194 for the fixed mesh. Although the 
number of iterations for the fixed mesh is only half that of the adaptive mesh, the adaptive mesh has 
far fewer DOF early on in the simulation compared to the latter stages, hence the fixed mesh is solving 
the problem with far more DOF but with only half as many iterations. It is worth highlighting again
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(a) (b)

Figure 11: Shear crack: (a) local phase field distributions for Simulations A and E, and (b) corresponding local mesh.

Figure 10: Shear crack: (a) load versus displacement for all simulations and the phase field development shown in (b).

(b)

that the comparison of an adaptive algorithm with a highly optimised fixed mesh is an extremely 
onerous test on the method developed in this paper as in reality any fixed mesh-based simulation 
would be far less optimised as the solution path is unknown at the start of the analysis.

The last observation from this section is linked to the final phase field solution and corresponding 
mesh for Simulation A, shown in Figures 13a and 13b, respectively. Overall the phase field distribution 
is nicely formed with the crack also propagating along the bottom boundary. Even though the adap­
tivity is not driven by phase field values, the h-adaptivity is particularly localised to the crack path, 
varying between 2 or 4 elements wide, noting that the 2 elements width of the smallest length is the 
highest mesh localisation that is permitted. Away from the phase field crack the solution is smoother 
and so mostly p-refinement was satisfactory to support the elasticity and phase field solutions at the 
crack. Refinement in the smoother regions away from the crack is necessary so that the total field is 
represented to a sufficient accuracy to ensure that crack initiation and interaction with the problem 
boundary is accurate (for example the refinement seen at the corners of the domain not intersected 
by the crack path).
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(a)

Figure 12: Shear crack: (a) is an expanded view of the total load with displacement curves for all simulations with the 
corresponding number of iterations for simulation A shown in (b).

0 0.005 0.01 0.015
Load displacement (mm)

(b)

Figure 13: Shear crack: (a) phase field distribution and (b) final refinement mesh.

7.4. Two-crack problem, problem 4
The final problem presented in this paper considers two cracks that are symmetric in their propa­

gation and interaction with each other, where their total propagation is instantaneous. This numerical 
test is designed to stress test the algorithm, and set a benchmark in terms of adaptive capability. The 
geometry, initial mesh, and boundary conditions are presented in Figure 14a. The mesh is deliberately 
non symmetric to demonstrate the resultant crack paths are symmetric not because of mesh symmetry, 
but rather the capability of the proposed error estimator controlled adaptive propagation algorithm.

The problem is difficult to solve because all the crack propagation, and corresponding crack inter­
action, occurs in a single load step and if the accuracy of the numerical solution is inadequate the final 
solution will be non-symmetric. With an inadequate adaptive scheme two positive feedback loops will 
occur:

(i) the mesh-adaptivity could be weighted more towards one crack, increasing the refinement about 
one crack which then leads to further propagation and refinement for this crack; and

(ii) it is generally observed that in a phase field solution, a crack will propagate down a fine mesh 
over a coarse mesh, if the adaptivity is poor this will lead to incorrect positioning of the crack 
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path. A poor adaptive algorithm will struggle to recognise that the path is incorrect and the 
crack propagation will continue in an inappropriate direction.

These problems are compounded by two interacting cracks, where the mesh refinement will directly 
affect how the cracks will interact, propagate and subsequently how the mesh will be further refined. 
For this problem the phase field length l was reduced to 0.0075 mm and the minimum step size was 
set to 1 x 10-4 mm, a series of simulations were run with a range of minimum element sizes and error 
estimate values, see Table 3. Additionally a comparison of the phase-field results generated by the 
error estimate driven adaptivity is compared to a result generated by an error indicator driven scheme 
[47], where the phase-field value is used to drive the adaptivity. This is marked as Simulations E and 
F in Table 3. In terms of the hp-adaptive algorithm this requires a small change to the definition of the 
phase field error estimator. For the element K the error nK ^ is now a binary value, if K contains at 
one of its Gauss points 0 > 0* then nK ^ = 1. The global error estimator tolerance for the phase field 
is set to 0, and two phase field threshold values are considered, 0* = 0.6 (Simulation E) or 0* = 0.2 
(Simulation F). If the phase field in any element contains a value greater than 0* it is h- or p-refined, 
determined with the smoothness criteria. If no elements in the mesh can be refined further, the load 
step is considered a success if no element refinements are called.

Table 3: Two crack: simulation identifiers and corresponding parameters, .

Simulation l mm hmin n^ nu Rel. Comp. time NDOF crack length ratio
A 0.0075 0.5l 0.01 0.05 1.00 181617 0.99
B 0.0075 0.5l 0.01 inf 1.47 138027 5.31
C 0.0075 1.0l 0.01 0.05 0.74 123720 1.01
D 0.0075 1.5l 0.01 0.05 0.45 92148 1.06
E 0.0075 0.5l 0, 0* = 0.6 inf 1.39 48774 36.1
F 0.0075 0.5l 0, 0* = 0.2 inf 5.7 228954 52.6

1.0

\\\\\\\\ dQD\\\\\\\\
1.0
(a)

Load displacement (mm) x 10 3
(b)

Figure 14: Two crack: (a) initial mesh and (b) force versus displacement for all simulations.

The results for the total load with displacement are provided in Figure 14b. Of these results, 
Simulations A, C and D created almost symmetric crack propagation, simulation B failed to do this 
creating nonsymmetric cracks of different length, as shown by the crack length ratio in Table 3. Based 
on the parameters in Table 3, in order to obtain a physically reasonable crack propagation path low 
values for both n^ and nu are required. For this problem if nu is not present the simulation fails.
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For example, Simulation A creates symmetrically propagating cracks whereas Simulation B does not, 
where the only difference is that Simulation B does not include elasticity solution error driven mesh 
refinement. As discussed previously, how well the interaction between the cracks is modelled will effect 
the final solution, with the interaction influenced by both the accuracy of the phase field and the stress 
field. To explain this point, the final crack path for Simulation B is provided in Figure 15. For this 
two crack problem, the interaction between the cracks and the subsequent propagation is determined 
by the physical solution more than the previous examples. By not enforcing a sufficient accuracy in 
the displacement solution, the interaction of the stress field between the cracks is insufficient. The 
remaining simulations are all relatively similar, however the larger the minimum element size and 
phase field error estimate values, the more nonsymmetric the results become. The ratio between the 
crack lengths is computed using the integral provided by [44] and provided in Table 3, with Figure 15 
showing how Simulation A is slightly more symmetric than Simulations C and D.
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Figure 15: Two crack: local phase field distribution for Simulations A-F.

The final mesh for Simulation A is shown in Figure 16a, with an expanded view of the mesh around 
the crack tip, the region marked by the red box in Figure 16a, shown in Figure 16c. Similar to the 
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single crack problems there is some refinement away from the cracks, in addition there is also more 
refinement between the cracks compared to other similar regions away from the crack, particularly 
near the current crack tip positions, indicating that there has been some refinement associated with 
the interaction between the cracks. Additionally, the expanded view of the crack path shows that 
the refinement has been localised to the crack path, limited to 2 or 4 elements in width, highlighting 
that a nearly completely symmetric result has been obtained efficiently with respect to computational 
effort.

(c)

Figure 16: Two crack, Simulation A: (a) final mesh, (b) number of BFGS iterations and load-displacement response and 
(c) expanded view of the mesh distribution of the region highlighted by the red box in (a).

In comparison to the Simulations A, C and D, Simulations E and F do not achieve a symmetric 
crack propagation profile. When the error indicator is based on the values of the phase-field, the 
refinement is focused on the left hand crack. This is prompted by the initial mesh about the left crack 
being more refined which then leads to more crack propagation and subsequently further refinement. 
The simulation highlights that the proposed error estimator has the capability to identify where there 
should be propagating cracks, since it is able to identify both cracks with a nonsymmetric initial coarse 
mesh. In addition, particularly for competing cracks and highly interacting crack, the results show 
that an error estimator is needed for the linear elastic field and the phase field. Otherwise symmetric 
propagation is not achieved. It is remarked that if both cracks had sufficiently small elements about 
each of the crack tips, then it is more likely that the refinement based indicator for Simulations E and 
F would be more successful, however this requires some a priori knowledge of the solution which is 
not needed when using the error estimators.

Finally, Figure 16b shows a similar pattern for the number of iterations compared to the mode I 
crack in Section 7.2. Only when the cracks propagate instantaneously is a high number of iterations 
of observed. Despite the more complex nature of the problem and the smaller l compared to the mode 
I crack, it is noted that a similar number of iterations, at « 104, occur for the double and mode I 
tensile crack simulations.
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8. Conclusion

Numerous papers have been published that demonstrate the capacity of the phase field approach 
to model complex fracture propagation in a variety of materials under diverse physical conditions. 
However, most existing phase field methods rely on fixed background meshes based on the user’s 
judgement of where they expect fractures to propagate, or a universally fine mesh, both adopting a 
maximum element size of half of the phase field length parameter, l, in the fracture zones. To resolve 
this requirement for a priori knowledge, both h and hp-adaptive methods have been presented in the 
literature for phase-field fracture [28, 29] with the most popular method to determine where to refine 
driven by error indicators, based on phase-field values. This paper has presented for the first time a 
robust residual based a posteriori hp-error estimator for the phase field problem, bounding from ab ove 
and below the error in the energy norm. It is hp since it can be applied to meshes with a range of 
polynomial orders and robust as it bounds the true error from above and below up to some arbitrary 
constants. The results for a phase field problem with a known solution show that the efficiency index 
of the error estimator is about 10. It has the key benefit that no additional numerical solutions are 
required to determine the error. The advantage of an error estimator is that it will detect regions 
for refinement where there are low values in the phase-field, this is particularly important for crack 
initiation and was shown here through the consideration of initial very course meshes. There are 
methods that do consider residual a posteriori error estimators for the phase field [40], however these 
are limited to h-only. This paper demonstrated that high order elements around the crack reduce the 
need for small elements. Good solutions are achieved with side lengths of approximately 1.5l and high 
polynomial orders, up to pK = 6, significantly reducing the computational time and NDOF required.

The error estimator was then coupled with an established elasticity error estimator and an uncon­
strained optimisation numerical solver to provide an error driven hp-adaptive modelling framework. 
The numerical examples have shown that it is essential that errors are estimated for both physical 
equations if robust, initial mesh independent, phase field fracture patterns and realistic global force­
displacement responses are to be predicted. In particular it was demonstrated, with the two-crack 
problem, that when the crack propagation is highly coupled between cracks, it is essential that both 
error estimators are considered to achieve an accurate solution, otherwise a nonsymmetric crack prop­
agation occurs. Taking advantage of moderate p (up to order 6), as well as h, adaptivity allows 
element sizes in the vicinity of phase field fractures to be of the order of l whilst obtaining accurate 
results. The only other approach offering comparable element sizes in this region relies on enrichment 
[36]. Overall, the method proposed in this paper allows the adoption of arbitrary initial meshes whilst 
being confident that the final solution will be accurate and independent of the user’s knowledge of the 
expected fracture pattern.
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