














where in tensor notation a @ b := a;b;, and for a boundary edge F' € %1\ ¥ as

[u] = u* ©n" and {o(v,6)} = o(v,0)". (7)
The edge polynomial order, pr, is described as

max (pj,Pg ), if on the internal edges, F =0K ™ NIK~ € F(T),
pF = (8)
Dies if on the external edges, F =90K NoQec . F(T)\ Z(T),

where hp is the length of the edge F', and (3 is the penalty parameter for SIP DG elasticity that is
a function of the elasticity coefficients multiplied by a small number to ensure coercivity [58]. For
this problem 8 = 100F, where E is the Young’s modulus of the material. Normally a value of 10 is
sufficient [7], however here 100 is used to reduce the DG solution space and thus help the convergence
of the quasi-Newton solver. The error estimator for the elasticity problem is defined 7, with its full
form provided in [8]. It can be shown that 7, is efficient and reliable for the true DG natural norm
Il - |||7 (also provided in [8]), that is

Cullu < |||t — ||l < Cunpu, )

where ¢, and C, are constants independent of element size and polynomial order.

3.2. Phase field bilinear form

The bilinear SIP DG form for the phase field is b(H(e); on, 2, ) = I(), where ¢y, 10 € Wy, is the
trial and test function

b(H(e); dn. 1),) Z/ [<—+2’H )>w¢h+Gczw-v¢h] da
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The jumps and average operators across interior edges F' € .#; are

[l =nty —nty ad (Vo) =5 (Yot +Ve), (12
and on the boundary edges, F' € %1\ &
[¥] =nty" and {Vy}= Ve (13)

pr and hp have the same form as for the elasticity problem. The form of the penalty parameter +v can
be found through following the derivation for the SIP DG form in [58], and it has the form v = 100G.I.
The penalty is a function of only the Laplacian coefficient in Equation (2), for the proof to ensure
coercivity, and thus the coefficients in the penalty, see [58].






Like most finite element methods, SIP DG does not satisfy C' continuity across the interior edges
F € .Z1(T) and the Neumann boundary F' € .Z#xn(T). These errors are estimated using
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The above terms allow the computation of an estimate of the error on each element in the finite
element mesh. These errors can then be used to drive A and p adaptivity, as described in Section 5.

4. Incremental solution algorithm

The previous sections have provided the bilinear forms for the linear elastic and phase field prob-
lems. This section details the quasi-Newton method that is adopted to solve these coupled equations.
Coupled phase field problems typically require a high number of iterations per load step to arrive at
a solution that reasonably satisfies both sets of equations [20]. This issue is compounded by any hp-
adaptive scheme as it will be necessary to repeat load steps as the mesh is adapted. To mitigate some
of these issues, a Broyden—Fletcher—Goldfarb—Shanno (BFGS) quasi-Newton method is selected to
solve the coupled equations. This is motivated by the fact that the method has been shown to reduce
the both the number of iterations per load step and the number of times the global stiffness matrix
needs to be computed, both of which save on run-time [35]. Specifically, the Light-BFGS (L-BFGS)
method is used since it strictly avoids the formation of large dense matrices [52]. Here, similar to [65],
a line search is used to prevent the solution during a load step from diverging. Additionally, if the
load step is too large the solution to the non-linear problem can be too far away for the solver to find
a solution, hence the adaptive load-step method from [35] is used to reduce the load step size during
significant fracture development. This also improves the accuracy of reaction force with displacement
curves.

4.1. L-BFGS (Light - Broyden—Fletcher—Goldfarb—Shanno) quasi-Newton solver

In order to solve the non-linear problem using a quasi-newton method, the bilinear forms in Sections
3.1 and 3.2 need to be linearised with respect to their trial functions. When linearising the bilinear
forms the coupling terms are assumed constant, that is, for elasticity ¢ is constant with respect to
uy,, and for the phase field H is constant with respect to ¢;,. The linearised bilinear form for elasticity
about the solution @ is therefore

L*(¢n; 6un, @p) = r4(Pn; Un, v) + Dg*(¢n; Up, v)[dup] =0 (21)
and for the phase field about the solution ¢y, is
LO(H; 6m, $1) = 7, (H; bns ) + Da® (Hs $n, 1) [564] = 0 (22)

where the residuals are r}!(¢n; @p, v) = a(¢p; ap, v) —1(¢; v) and ri(’l—[, G, 10) = b(H; bn,ab) — I(H;h).
Dri¥(¢n; @p, v)[0un) and Dg? (H; gp, 1) [0¢n] are the directional derivatives of 1}, (¢n; @n, v) and ’I”Z)(H; bn,7)

in the directions [duy] and [d¢p] at up, and ¢y, respectively. The directional derivatives for the elasticity
and phase field problems are
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To solve the linearised systems of equations using finite elements, the polynomial basis and corre-
sponding coefficients are substituted into Equations (21) and (22) for all the test and trial functions,
to obtain

{ri} = —[Kwl{oun} and {r}} = —[Kas){6¢s} (25)

where the subscript h denotes the finite element approximation, {-} is a vector where the rows cor-
respond to DOF numbers, [-] is a matrix where the rows and columns both refer to DOF numbers,
and [K,,] and [K4y] are the tangent matrices for the two equations. The complete linear system of
equations, with the subscript A dropped for readability, is written as

{r*} 0 [Kggl {00} ’
where n is the iteration step number, {§-} = ({-}*"* — {-1"). The linearised system can subsequently
be condensed down to

{r}" = —[Kol{z}"", (27)

where the form of the linearised system of equations (27) is the robust alternate minimisation (AM)
form for solving the phase field fracture problem for a load increment [10].
The L-BFGS method uses an approximation of the problem’s Hessian [K] to solve the problem,

{r}" = —[Ku{z}""", (28)
but instead of computing the Hessian exactly it is updated using the secant equation,

= e UKl DKW= {ArHAry T

with the change in residual {Ar} = {ryntt —Ir}n, solution {z} and previously approximated Hessian
[K,,]. For the first solve the uncoupled matrix is used [K1] = [Ky]. .
In this paper the L-BFGS algorithm is employed in the computation of [K,,], this is because the

update of the [K,] in (29) will produce a dense matrix which becomes very memory intensive for any
reasonably sized finite element problem. To solve (28) without computing [K,,] the two loop recursion
algorithm for the L-BFGS method is employed, which exploits the recursive natural of the secant
matrix update, (29), to solve Equation (28). The algorithm is explained in full in [52] and is provided

here with Algorithm 1 using notation consistent with [52], where

{ug} ' = {{u} "{o}"}.

and the remaining p;, a; and {gq} are temporary storage variables with their mathematical definition
provided in [52].

The update avoids the use of dense matrices by storing n times the residual and solution. To
prevent floating point numerical errors in the update of approximate Hessian matrix, the number
of secant matrix updates, n, is set as nym;r = 10, [65]. Once this limit is reached the matrix [Kj]
is recomputed using the current solution, Equation (26), and the solution variables, residual and
increment number are reset: {upi1} — {ur}; {1} = {1} {rn1} = {1} and n=1.

4.2. Line search

A quasi-Newton method is typically globally convergent when accompanied by a line search [16, 65].
However, in the case of the BFGS method with phase field fracture, Kristensen et al. [35] found that
line searches may not be necessary. However when a poor mesh was used, which was often the case
with adaptivity, and no line search was employed, the L-BFGS method was found often to diverge. To
prevent this, an energy minimisation line search is used [23]', but only called when the problem was

LOther more robust methods for determine the step size exist, such as the Wolfe line search, which also considers the
updated residual [16].



Algorithm 1: L-BFGS algorithm solving for {z}""!
T} < (o
fori=(n—-1):-1:1do
pi =1/ ({{ud}irr — {ud}i} {ries —ri});
ai = pi{{udliv1 — {ug}i} '¢;
{a} ={d} — as{{r}tisr — {r}i}s
end
{2} = [Kol a};
fori=1:1:(n—1)do
Bi = pil{r}ics — {r}i} "{zh;
{2} = {2} + {{udtivs — {udti}(ai — Bi);
end

{z} = —{z};

considered to be diverging, which was determined by a suitably high residual value of [{r}| > 1072.
While it is generally more robust to perform a line search each iteration, a limit on the residual value
was found to be sufficient.

When a line search is used, a scaling factor sy € (0, 1] is applied to the update, determined using
a backward line search algorithm based on energy minimisation [23]. The line search employed here
is coarse, limited to s; € A = {0.5,0.01,0.001}, and simply written as

5p = arg g}aé% En{ss, z,Uy),

where En is the total energy of the system [23].

4.8. Adaptive load stepping

The algorithm for step adaptivity from [35] is used to determine if the load step, Ag}, is too
large and thus too far away for the solver to find a solution. When this is the case the load step,
|Ag?|, needs to be decreased and the solution algorithm restarted. Therefore in order to enable large
load steps when the solution is only slightly non-linear, and small load steps to ensure convergence
when the solution is highly non-linear, the simple and robust adaptive load step algorithm from [35]
is employed and is detailed in Algorithm 2. The algorithm loops over all integration points in the
mesh for current iteration n. If an integration point ¢ undergoes a large jump in phase field value,
Adg¢; > 0.5, and its previous value was relatively low, qﬁ?*l < 0.7, the step size is reduced by a factor
of 10. To prevent continuous reductions in the step size during instantaneous crack propagation, the

Algorithm 2: Rerun check
For any integration point ¢;
if ¢7' < 0.7 AND A¢; > 0.5 then
‘ Rerun load increment and set Ag¥, < 0.1Ag%.;
end

load increment is only allowed to decrease once during the load step and reset to the maximum value
at the beginning of the next step.

4.4. Single increment solution algorithm

In the preceding sections the components for the incremental solution algorithm were provided, in
this section they are combined into Algorithm 3 which can be divided into several three key sections:

1. Using the history field from the previous converged solution, #, obtain {¢}' and subsequently
{u}! by performing a linear solve. Compute the corresponding residual {r}*.
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2. Enter the first while loop and determine the first update to the solution, compute the matrix
[Ko], using {#}1 and {u};, as the first approximation to the Hessian [K]; and

3. A system of nested while loops is employed, inside which the L-BFGS algorithm is used along
with a series of exit conditions for the main, and nested, while loops.

The exit conditions are an important aspect of the solver since they control when the L-BFGS
solver has to be reset and when the load increment size needs to be reduced. They also flag when to
stop the algorithm once a sufficient tolerance in the residual is reached or the step size, Ag,, needs
to be reduced. The exit condition to reset the L-BFGS solver is initiated when the iteration count, n,
for the L-BFGS solver reaches its limit 75,

Algorithm 3: Solution for current load step ¢

Use the staggered scheme to solve for {¢}! and {u}' using the previous converged history

field H*~! and total load Ag%lil;
Set the Dirichlet boundary condition for elasticity as g%’i = g%’i*l + Ag%’i;
while main exit flag is false do
Set n = 1, and sub loop exit flag to false;
Compute [Ky];
while sub loop exit flag is false do
{2}"" « from Algorithm 1;
{ud} ™t = {us}™ + {z}"
Compute the history field H and subsequently {r}"";
if |{r}")lo > 1072 & n > 2 then
sy = argming,c4 En(a, z,Up);
{ugh™ L = {ughn + 5p{z}"H;
Recompute the history field H and {r}""!;
end
if n > 2 then
if Agy' larger than minimum its value AND (||[{r}"*|o > tol) then

‘ Check Algorithm 2, if step size reduced set all exit flags to true.;
end
if (J[{r}""|lo < tol) then

set all exit flags to true;
else if n > nymi then
set sub loop exit flag to true;

{ud}'  {ug}™™;
end
end
n=n+1;
end

end
return {u},{¢} « {ug}™ and H;

5. Adaptivity

There are several motivators for using mesh adaptivity when modelling a phase field fracture
problem, specifically: (i) adaptivity provides a means to obtain an accurate representation of the
stress field and associated fracture growth; (ii) adaptivity is efficient in terms of the number of DOF
required to solve the problem in that Ap refinement is performed only where necessary to obtain a
solution to a desired accuracy; and (iii) adaptivity removes the requirement to know a priori how the
solution will evolve, thus allowing non-trivial problems to be solved with minimal initial input, or,
significant computational power used through significant global refinement of the finite element mesh.
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Algorithm 4: main algorithm

Create mesh T;
Set load step counter i = 1;
while 9D < 9D max do
reset Agp; to its maximum value (Section 4.3);
while 1, > TOL, AND n, > TOL, do
Compute the solution {u}, {¢} and H' using, Algorithm 3 and H.;
Determine the error estimates 74 and 7, (see Equation (30));
Check restart condition;
if adaptive load step size is required (Section 4.3) then
| Agp, < Agp,i/10;
else
if n, < TOL, AND 1, < TOL, then
gp,i+1 = 9gp, + Agpy;
Store converged history solution H = #H' (Section 5.2);
1 =14 1;
else
Define the history field as #;
Refine the mesh to get the new mesh 7 (Section 5.1);
Using a nearest point projection get H «— H (Section 5.2);

end

end
end

end

1. Error estimator verification: to demonstrate the reliability and efficiency of the phase field error
estimator, confirming that the error estimator provides a meaningful representation of the true
error with i and Ap-adaptive refinement for both boundary condition- and history field-driven
problems?.

2. Single crack mode-I uniaxial tension test [44]: to demonstrate the ability of the proposed method
to predict accurate mode-I fracture propagation starting from a very coarse initial mesh; and to
the quantify the impact of the model parameters on the obtained results.

3. Single crack subjected to shear load: to demonstrate the ability of the proposed method to
capture the correct fracture propagation path for starting from a very coarse initial mesh; and
to highlight the importance of including error estimation for both the phase field and the linear-
elasticity solutions.

4. Double crack uniaxial tension test: to demonstrate the ability of the method to represent multiple
interacting cracks with adaptive mesh refinement whilst maintaining symmetry of the physical
problem; and to highlight the importance of phase field and elasticity-driven mesh refinement.

The first test is to demonstrate reliability and efficiency. The method of manufactured solutions
(MMSs)is used to create an analytical solution for a phase field problem. The MMS is compared
against the numerical solution which allows the true error in the DG norm to be calculated and
compared with the error estimate. The remaining tests examine the phase field fracture problem.
Each problem showcases the method’s ability to solve a variety of problems. The solution to problem
2 is an approximately instantaneous crack propagation [35], in that total failure of the specimen occurs
over a single load step. Problem 3 is shear loaded and has a more complicated response, comprising
instantaneous crack propagation and gradual propagation with gradual load increase. The shear crack
problem will be used to demonstrate that this more complicated response can be captured by the

*Note that the reliability and efficiency of the linear elasticity error estimate is demonstrated by [8, 6] and is therefore
not repeated here.
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7.8. Shear crack, problem 3

The shear crack problem is more complex than the uniaxial mode I tensile crack problem as it
contains both instantaneous and gradual crack propagation. This generally makes the problem more
expensive to solve since in the gradual stage there are more load steps over which small phase field
developments occur. Furthermore since the rate of crack propagation is gradual, the rate can have a
range of values and is therefore more sensitive to changes in the surrounding mesh. In the instantaneous
stage the crack either undergoes significant or zero propagation. The same initial mesh and geometry
as used in the previous problem, and shown in Figure 6, was used for the analyses in this section. For
this problem the top boundary condition is set to displace in z only such that g, = [u, 0l ony =1
and g}, = [00] on y = 0.

Table 2: Shear crack: simulation identifiers and corresponding parameters.

Simulation { Rmin ¢ 1. | Rel. Comp. time | NDOF
A 0.025 | 0.5 | 3.0x 102 | 0.05 1 139,845
B 0.025 | 0.5 | 3.0 x 1073 | inf 0.86 135,381
C 0.025 | 0.5 | 5.0 x 1073 | inf 0.59 123,348
D 0.025 | 1.0l | 3.0 x 1072 | inf 0.24 67,626
E 0.025 | 1.5 | 3.0 x 1072 | inf 0.08 36,969

Similarly to problem 2, the mode I edge crack, a range of minimum element sizes and error estimate
values were considered, as given in Table 2, with the results of the global load versus displacement
response shown in Figure 10a. The first observation is despite the range of A,,;, values, all of the results
are in good agreement. Even for the case where h,;, = 1.5, Simulation E, all the main features follow
approximately the results of Simulation A. These were: At u ~ 0.01 mm there is a small instantaneous
fracture, producing (i) of Figure 10b, followed by a gradual propagation to u & 0.017 mm, similar to
(ii) of Figure 10b, concluding with a large drop in the total load when the fracture reaches the bottom
boundary, see Figure 11a. Additionally, comparison of the phase field distribution of the crack paths
between Simulations A and E, shown in Figure 1la, demonstrate that the phase field distribution
and crack path are in close agreement with Simulation A, albeit less well defined, when considering
that the mesh is significantly more coarse, see Figure 11b. Similarly to problem 2, the shear crack
demonstrates the potential of using coarse meshes in A but with moderate refinement in p.

The variations in the load-displacement responses of the simulations is more easily observed when
considering the gradual crack propagation component shown in Figure 12a, where the differences in
Simulation A and E are more noticeable. However, Simulations A-D are very similar, with the largest
outliers being C and D, which are the simulations with the largest 74 and hp,;,. The difference in
response between Simulations A and B is small, indicating that the elasticity error estimate is not
necessary here to obtain an accurate response beyond the initial mesh adaptivity required to capture
the stress concentration caused by the mesh discontinuity. Overall, despite the range of parameters
chosen, all of the simulations provide globally similar force-displacement responses and crack paths,
suggesting that reasonable results can be obtained with loose tolerance parameter values.

The variation in the number of iterations and total load, with displacement, is shown in Figure
12b for Simulation A. The overall trend in the iterations is similar to other approaches that use
quasi-Newton methods [35, 65], with low numbers of iterations per load step during no propagation,
= 10 — 30, higher numbers of iterations for the gradual crack propagation, ~ 50 — 400, with the peaks
in the number of iterations (= 2000) at each instantaneous crack propagation.

A comparison in simulation time was made between Simulation A when using the adaptive method
and using a fixed mesh. The fixed mesh is shown in Figure 13b which is the final mesh generated by
the adaptive method for Simulation A. In contrast to the problem 2, the adaptive method for the shear
crack was 1.15 times faster despite having more iterations than the fixed mesh. The total number of
iterations for the adaptive method was 16, 073, compared to 8,194 for the fixed mesh. Although the
number of iterations for the fixed mesh is only half that of the adaptive mesh, the adaptive mesh has
far fewer DOF early on in the simulation compared to the latter stages, hence the fixed mesh is solving
the problem with far more DOF but with only half as many iterations. It is worth highlighting again
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