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Abstract
The dynamic activity of stars such as the Sun influences (exo)planetary space environments
through modulation of stellar radiation, plasma wind, particle and magnetic fluxes. Ener-
getic solar-stellar phenomena such as flares and coronal mass ejections act as transient per-
turbations giving rise to hazardous space weather. Magnetic fields – the primary driver of
solar-stellar activity – are created via a magnetohydrodynamic dynamo mechanism within
stellar convection zones. The dynamo mechanism in our host star – the Sun – is manifest
in the cyclic appearance of magnetized sunspots on the solar surface. While sunspots have
been directly observed for over four centuries, and theories of the origin of solar-stellar
magnetism have been explored for over half a century, the inability to converge on the ex-
act mechanism(s) governing cycle to cycle fluctuations and inconsistent predictions for the
strength of future sunspot cycles have been challenging for models of the solar cycles. This
review discusses observational constraints on the solar magnetic cycle with a focus on those
relevant for cycle forecasting, elucidates recent physical insights which aid in understand-
ing solar cycle variability, and presents advances in solar cycle predictions achieved via
data-driven, physics-based models. The most successful prediction approaches support the
Babcock-Leighton solar dynamo mechanism as the primary driver of solar cycle variability
and reinforce the flux transport paradigm as a useful tool for modelling solar-stellar mag-
netism.

Keywords Solar magnetic fields · Sunspots · Solar dynamo · Solar cycle predictions ·
Magnetohydrodynamics

1 Introduction

The Sun’s magnetic field is the primary determinant of the electromagnetic and particulate
environment around our planet as well as the heliosphere. Solar magnetic field variability
is manifested through different spatial and temporal scales: from long-term decadal-scale
variations in open magnetic flux, 10.7 cm radio flux, and total solar irradiance to short-term
sporadic energetic events such as flares and coronal mass ejections (CMEs). While longer-
term variations depend on the distribution and evolution of the large-scale global magnetic
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field of the Sun, short-term perturbations like CMEs or flares originate primarily from lo-
calised magnetic structures of relatively smaller spatial scales. Despite the differences, solar
magnetic variability of different spatial and temporal scales can intermingle and influence
each other since all follow the same laws of physics. Ultimately, solar magnetic fields there-
fore are responsible for shaping space weather and space climate (Nandy et al. 2023).

High energy radiation and particle fluxes originating from extreme space weather events
(flares and CMEs) can damage satellites orbiting the Earth and are hazardous to astronaut
health. The impact of such events can harm critical infrastructures on the ground, resulting
in direct or cascading failures across vital services such as communications and naviga-
tional networks, electric power grids, water supply, healthcare, transportation services etc.
(Schrijver et al. 2015).

Flares and CMEs are linked to the complex magnetic field distribution on the solar sur-
face, which is dictated by the emergence of sunspots and the subsequent evolution of the
active region associated magnetic flux. Thus the frequency of short-lived energetic events de-
pends on the number of sunspots emerging within a solar cycle. Simultaneously, the slower
and longer-term evolution of the magnetic field of sunspots determines the amplitude of
open magnetic flux and the speed and structure of solar wind emanating from the Sun, in
effect, defining the space climate. It has direct consequences on the forcing of planetary at-
mospheres, the life span of orbiting satellites and planning of future space missions. Thus
understanding and predicting phenomena which governs space weather and space climate
is a scientific pursuit with immense societal relevance – in which solar cycle predictions
occupy a central role (NRC 2013; Schrijver et al. 2015; 2017; NSWSAP 2019, 2022).

The methodologies for predicting different aspects of space weather and space climate
are diverse but broadly relies upon observations, empirical methods, computational models
and consideration of the physics of the system. Here we focus primarily on the last theme,
i.e., developing our understanding of solar variability using the laws of physics towards at-
taining the goal of solar cycle predictions. Now physics-based prediction on different time
scales itself is an extensive topic, and a complete narrative is beyond the scope of this re-
view. Instead, we limit ourselves to decadal-centennial scale variability associated with the
sunspot cycle. We emphasize that physical understanding gleaned from successful solar cy-
cle prediction models also apply to other Sun-like stars with similar dynamo mechanisms.

Sunspots are understood to be the product of a dynamo mechanism operating within
the Sun’s convection zone (SCZ, hereafter) dictated by the laws of magnetohydrodynamics
(Charbonneau 2020). In the SCZ, the kinetic energy stored in the ionised plasma converts to
the magnetic energy primarily stored in the toroidal component of the magnetic field. The
toroidal field, following significant amplification, rises through the SCZ due to magnetic
buoyancy (Parker 1955) and emerges on the solar surface as strong localised magnetic field
concentrations, forming Bipolar Magnetic Regions (BMRs, primarily), of which the larger
ones are optically identified as sunspots. One of the mechanisms that contribute to poloidal
field generation is the mean-field α-effect which relies on helical turbulent convection twist-
ing rising toroidal fields whose net impact is to produce a finite poloidal component. On the
surface, observed small and large-scale plasma motion redistributes the magnetic field asso-
ciated with the BMRs, resulting in the reversal and growth of the existing global magnetic
dipole moment (poloidal component) of the Sun. This process – termed as the Babcock-
Leighton (B-L, hereafter) mechanism (Babcock 1961; Leighton 1969) – is another means to
generate the poloidal component.

The strength of the magnetic dipole at the end of a solar cycle is found to be one of the
best precursors for predicting the amplitude of the following cycle. This in itself is related to
the stretching of the poloidal field through the deterministic process of differential rotation.
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However, observations, analytic theory and data-driven models of decadal-centennial scale
variability in the solar dynamo mechanism indicates that the B-L mechanism is the primary
source of variability in the poloidal field and hence in the sunspot cycle (Cameron and
Schüssler 2015; Bhowmik and Nandy 2018).

Any physics-based model aiming for solar cycle predictions must be dictated by the
laws of magnetohydrodynamics, contain the essence of the dynamo mechanism, and be
constrained by observed plasma and magnetic field properties in the solar surface and the
interior. Some recent studies (Petrovay 2020; Nandy 2021) have explored the diversity of
methods employed for sunspot cycle predictions and their credibility. Compared to these
studies, this review will primarily focus on physics-based predictions of the sunspot cycle.
Also see Jiang et al. (2023) for a comparison of cycle 25 predictions using physics-based
models.

In the following sections, we begin with a brief account of the observed distribution of
magnetic field (primarily on the solar surface) and plasma flows which serve as building
blocks and constraints for computational models (Sect. 2). This is followed by a short de-
scription of the computational models of magnetic field evolution on the solar surface and
interior which has shown great promise as predictive models of the solar cycle (Sect. 3).
Physical insights on sources of irregularities in the strength of the solar cycle and amplitude
modulation mechanisms – which are gleaned from simulations and attempts to match ob-
servations – are discussed in Sect. 4. In Sect. 5 we present a review of physics-based solar
cycle predictions limiting ourselves to data-driven modelling approaches. We conclude in
Sect. 6 with a discussion on the relevance of solar cycle predictions models for theories of
solar-stellar magnetism and end with some remarks on future prospects in the field of solar
cycle predictability.

2 Constraints from Solar Observation

Solar magnetic field observations are primarily limited to the visible layer of the Sun, i.e.,
the photosphere. Plasma flows are observed both on the surface as well as in the interior
through inference using tools of helioseismology. Computational models utilize these in-
formation for purposes of constraining and calibrating the models. The main goals driving
this synergy between observations and models are to achieve a better understanding of the
physical processes ongoing in the Sun and develop predictive models of solar activity. In
this section, we focus on observations which are relevant to surface flux transport (SFT) and
dynamo models of the solar magnetic field. For a detailed account of solar observations, see
Norton et al. (2023), this collection.

2.1 Sunspot Number

Although sunspots have been observed systematically through telescopes from the early
1600’s, in the early 1800’s solar astronomer Samuel Heinrich Schwabe began plotting the
number of sunspots as a function of time and discovered that their appearance was cyclic
with a period of about eleven years (Schwabe 1844). As new phenomena (e.g., flares, CMEs,
etc.) on the Sun were discovered, it was found that they too varied along with the sunspot
number. Solar activity is often characterized by the Monthly Sunspot Number, a count of the
number of Sunspots or Active Regions observed each month as a function of time. The offi-
cial count is maintained by the Sunspot Index and Long-term Solar Observations (SILSO) at



   40 Page 4 of 34 P. Bhowmik et al.

Fig. 1 The SILSO Sunspot Number. The smoothed SILSO Monthly mean total sunspot number (v2.0),
smoothed illustrates the rise and fall of solar activity from 1750 to the present (marked with solar cycle
numbers)

the Royal Observatory of Belgium, Brussels.1 In 2015, the sunspot number data were revised
to version 2.0, to account for changes in observers and provide a more consistent data series
throughout the historical record (Clette et al. 2014). Version 2.0 of the SILSO Monthly mean
total sunspot number, smoothed with a 13 month Gaussian filter, is illustrated in Fig. 1.

The SILSO data series now shows nearly 25 solar cycles. Each solar cycle has a period
of about 11 years and an average amplitude (v2.0) of 180, with a range of about 80 (e.g.,
Solar Cycle 5) to 280 (e.g., Solar Cycle 19). The length of the cycle correlates with the
amplitude of the cycle such that bigger cycles tend to be shorter in duration and weaker
cycles tend to be longer (Waldmeier 1935). The shape of the solar cycle approximately
appears as an asymmetric Gaussian function, with a rapid rising phase and a longer decaying
phase. However, for a better fitting with the observed sunspot cycle, combinations of power
law and exponential functions have also been utilized (Hathaway et al. 1994; Jiang et al.
2018). Shorter term variability in the cycle, on the order of about 2 years, causes many
cycles to have two or more peaks, which are often more pronounced in weaker cycles (Karak
et al. 2018). Sunspot cycles have other irregularities too, for example, the Sun entered into
a prolonged near-minimum state during 1645 – 1715 (this was pointed out by G. Spörer and
E. W. Maunder in the 1890s). This phase, known as the Maunder Minimum (Eddy 1976),
is a period where the solar activity cycle was operating at an exceptionally weak state for
several decades.

2.2 Magnetic Field Observations Relevant for Solar Cycle Models

Perhaps one of the most significant solar discoveries in the twentieth century, was the real-
ization that sunspots are magnetic in nature (Hale 1908b,a). Sunspots are now known to host
very strong magnetic fields on the order of 1000 G and often appear as a collection of spots.
The magnetic counterparts of sunspots correspond to Active Regions. An Active Region, in
general, appears as a pair of spots (with opposite polarities) which are referred to as BMR.
Sunspots are the optical counterparts of active regions. Besides the spots, the background
surface field has a strength of only a few Gauss. The dynamics of the Sun’s surface magnetic
field is captured by the ‘Magnetic Butterfly Diagram’, see Fig. 2. This figure is created by
plotting the longitudinally average radial magnetic field on the Sun as a function of latitude

1https://www.sidc.be/silso/home.

https://www.sidc.be/silso/home
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Fig. 2 The magnetic butterfly diagram illustrates the evolution of magnetic flux on the Sun over several
cycles, providing observational constraints that govern models used to make solar cycle predictions. The
SOLIS/MDI/HMI magnetic field data averaged over each Carrington Rotation is plotted as a function of
latitude and time, with the positive (negative) polarity shown in yellow (blue). Figure courtesy D.H. Hathaway
via www.solarcyclescience.com

and time. This figure illustrates several properties that serve as constraints for the SFT and
dynamo models and which are tests for predictive models. The properties include:

• Sporer’s Law: Active Regions begin emerging at mid-latitudes (∼ 30 degrees). As the
cycle progresses, active regions form bands of flux that moves equator-ward (Carrington
1858).

• Joy’s Law for Tilt Angles: Active Regions tend to have a characteristic tilt such that the
angle between the local parallel of latitude and the line joining the leading polarity spot
(which appears closer to the equator) and the following polarity spot statistically increases
with increasing latitude (Hale et al. 1919).

• Hale’s Polarity Law: The relative polarity of Active Regions (between the leading and
following spots) is opposite across the equator, and this polarity changes sign from one
cycle to the next (Hale et al. 1919). Thus a complete magnetic cycle has a periodicity of
22 years.

• Polar Fields: In addition to the flux in emerging Active Regions, the Sun possesses unipo-
lar concentrations of magnetic flux near both of the poles. The polarity is opposite across
hemispheres, reverses polarity at about the time of solar cycle maximum (Babcock and
Livingston 1958) and attains its maximum amplitude around cycle minimum. This large-
scale field is known as the ‘Polar field’, and its evolution plays an important role in solar
cycle predictions. However, due to projection effects, polar field measurements suffer
from erroneous values, thus prompting the need for off-ecliptic space missions focusing
on the Sun’s poles (Nandy et al. 2022).

• Magnetic Field Surges: Streams of weak polarity flux are carried from the active lati-
tude to the poles in about 2 – 3 years. These streams are responsible for the build-up and
reversal of the polar fields (Babcock 1961). The strength of these surges reaching the
poles can vary significantly based on the associated active regions. The emergence lati-
tudes, tilt and flux of the active region, and frequency of active region emergence are all
important factors in determining how much a given active region will contribute to the
polar field evolution. The high latitudes emergence with large tilt (Yeates et al. 2015) and
long-lasting activity complexes (Wang et al. 2020) tend to generate prominent poleward
surges. However, the surges resulting from high latitude emergence usually only bring
the transient influence of polar field (Jiang et al. 2014a; Yeates et al. 2015). On the con-
trary, ‘rogue region’ (e.g., with a large area and high tilt angle) emerging at low latitudes

http://www.solarcyclescience.com
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usually cannot generate prominent surges but can influence the polar field development
significantly (Nagy et al. 2017).

The redistribution of the active regions’ magnetic flux across the solar surface and the in-
terior convection zone happens through the collective effect of small and large-scale plasma
motions which provide additional constraints on models.

2.3 Plasma Flows

Plasma flows in the solar convection zone may be divided into three categories based on
the physical role they play in the solar dynamo mechanism: convective flows, differential
rotation, and meridional circulation. The thermal flux through the solar convection zone and
consequent temperature gradient causes the plasma within the solar convection zone to rise
to upper layers, transfer or radiate their energy away and sink back down after cooling.
As a result, convective cells with a spectrum of different scales (Hathaway et al. 2015) are
formed ranging from granules (diameter ∼ 1 Mm) with lifetimes of minutes to hours, to
supergranules (diameter ∼ 30 Mm) with lifetimes of days, and to the largest convective
structures (diameter ∼ 200 Mm) with lifetimes of months. These convective motions are
turbulent in nature and effectively distribute the magnetic field in the entire convection zone,
including the solar surface, similar to a diffusive process.

The Sun rotates differentially which was first found by tracking sunspots on the solar sur-
face (Adams 1911; Belopolsky 1933; Howard 1984). This differential rotation at the surface
is such that the large-scale plasma flow speed along the direction of solar rotation varies lat-
itudinally with a faster-rotating equator than the poles. Later, helioseismology (Schou et al.
1998; Basu 2016) was utilized to obtain the structure and spatial variation of rotation rate
inside the solar convection zone. The radiative zone rotates as a solid body resulting in a
strong radial shear within the tachocline which is thought to encompass the (stable) over-
shoot layer at the base of the convection zone. The differential rotation plays a crucial role in
the generation and amplification of the toroidal component of the Sun’s large-scale magnetic
field (see Sect. 3).

Another large-scale subsurface plasma flow known as the meridional circulation (Hana-
soge 2022) which in near-surface layers carries plasma from the equatorial region to the
poles (in both hemispheres) with a varying speed dependent on latitude. The flow speed
becomes zero at the equator and the poles, and the circulation attains its peak speed
(10 – 20 m s−1, about 1% of the mean solar rotation rate) near mid-latitude. The law of mass
conservation dictates an equator-ward return flow of plasma deeper inside the solar convec-
tion zone, which, however, remained hard to map using helioseismic observations due to its
small amplitude. While some recent studies (Rajaguru and Antia 2015; Liang et al. 2018)
have suggested that meridional circulation is a single-cell flow where the return flow is at
the depth of the solar convection zone (depth < 0.8 R�), others (Hathaway 2012; Zhao et al.
2013; Hathaway et al. 2022) suggest that it may be multi-cellular in depth and or latitude.
The shape of the meridional profile in latitude and radius is crucial in determining the vari-
ous properties of the sunspot cycles, including cycle duration. Early flux transport dynamo
models suggest that a deep single-cell meridional flow threading the convection zone is nec-
essary to match solar cycle observations (Nandy and Choudhuri 2002; Hazra et al. 2014).
However, the recent Babcock-Leighton-type dynamo models (Zhang and Jiang 2022; Zhang
et al. 2022) indicate that the deep single-cell meridional flow is not crucial to match solar
cycle observations.

Note that both small-scale and large-scale plasma flows are not static. Helioseismic ob-
servation shows that the Sun’s differential rotation varies with time in an oscillatory fashion
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and is correlated with the solar activity cycle – it is known as the solar torsional oscilla-
tion (Zhao and Kosovichev 2004; Howe 2009). Meridional circulation also exhibits cycle-
dependent temporal variation in its peak speed, with reduced amplitude during cycle max-
imum compared to the minimum (Hathaway and Rightmire 2010; Hathaway and Upton
2014; Hathaway et al. 2022). However, for both large-scale plasma flows, such variations
constitute less than 20% of the average profiles. Thus, computational models with time-
independent plasma flow profiles can reproduce the majority of the observed large-scale
magnetic field variability.

2.4 Polar Fields as Precursors of the Strength of Sunspot Cycles

The temporal evolution of the averaged polar field has a π/2 phase difference with the
sunspot cycle. As mentioned earlier, the average polar field strength at cycle minimum serves
as an important element in predicting sunspot cycles. Although direct observation of the
polar fields became available only in the 1970s, indirect measures of polar flux exist based
on proxies. Polar flux evolution derived from polar faculae observations (Muñoz-Jaramillo
et al. 2012) cover a period of 100 years (during cycles 14 – 24). Note that the average polar
flux during cycle minimum is a close representation of the Sun’s magnetic dipole (axial)
moment – which acts as a seed to generate the following solar cycle. In fact, the average
polar flux at the nth cycle minimum has the maximum positive correlation with the amplitude
of the n+1th cycle [see, Fig. 3]. The correlation decreases drastically for the amplitude of
cycles nth, n+2th and n+3th as depicted in Fig. 3. Figure 3 reflects on two crucial aspects
of solar cycle predictability: first, a strong solar cycle does not result in a strong polar field
generation at that cycle minimum [see, Fig. 3(a)] and the memory of the polar field (of nth

cycle) diminishes beyond the next (n+1th) cycle [see, Fig. 3(c) and (d)]. It is important to
note here that these empirical observational evidences especially the decreasing correlation
beyond the immediate cycle, were preceded by flux transport dynamo models exploring the
memory issue which predicted that the sunspot cycle memory is limited primarily to one
cycle alone in certain parameter regimes related to flux transport timescales (Yeates et al.
2008; Karak and Nandy 2012).

3 Physical Modeling Approaches

In an astrophysical magnetised plasma system like our Sun, we expect the following proper-
ties of the plasma will be satisfied: the velocity is non-relativistic, the collisional mean free
path of the atomic or molecular constituents of the plasma is much shorter than competing
plasma length scales, and the plasma is electrically neutral and non-degenerate. In such a
system, the evolution of the magnetic field is dictated by the magnetohydrodynamic (MHD)
induction equation, which is a combination of Ohm’s law, Ampère’s law and Maxwell’s
equations:

∂B
∂t

= ∇ × (u × B − η∇ × B). (1)

Here u and B are the plasma velocity and magnetic fields, respectively, and η = 1/μσ is
the magnetic diffusivity, with μ the magnetic permeability and σ the electric conductiv-
ity. Additionally, the magnetic field satisfies the divergence-free condition, ∇ · B = 0. The
spatio-temporal evolution of the plasma flow is dictated by Navier–Stokes equation,

∂u
∂t

+ (u · ∇)u = − 1

ρ
∇P + g + 1

ρ
(J × B) + ν∇2u, (2)
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Fig. 3 Observed cycle-to-cycle correlations between the polar flux at cycle minima (say, [n]) and the cycle
amplitude of different cycles, namely (a) cycle [n], (b) cycle [n+1], (c) cycle [n+2], and (d) cycle [n+3]. The
numbers inside the circles indicate the associated solar cycle numbers. The colors of the circles differ based
on the source of polar flux data, orange: averaged polar flux obtained from polar faculae count, cyan: the
average dipole moment (scaled appropriately to place them in the figure). Image reproduced with permission
from Nandy (2021) copyright by Springer Link

where ρ is plasma density, P is plasma pressure, g is the gravitational acceleration, J =
(∇ ×B)/μ is the electric current, and ν is kinematic viscosity. Additionally, the plasma flow
obeys mass conservation through the continuity equation. Along with equations (1) and (2),
one should take into account the conservation of energy and equation of states involving the
pressure and plasma density. In an isolated system, where we can ignore the Poynting flux,
the mechanical energy stored in the flow (u) acting in the opposite direction of the Lorentz
force (J × B) is converted to magnetic energy. This magnetic energy can decay through the
dissipation of the electrical currents supporting the magnetic field.

Thus the sustainability of a dynamo depends on the relative strength between the induc-
tion effect controlled by the velocity field (the first term on the R.H.S in equation (1) and
the Ohmic dissipation (the second term on the R.H.S in equation (1). The ratio of these two
terms is known as the magnetic Reynolds number, Rm = uL/η, where L is the length scale
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determining whether inductive effect overcomes the dissipative processes. In most astro-
physical systems, a very large L ensures a very high Rm, which is crucial for the survival
and growth of the dynamo.

In an ideal scenario, solving the complete set of MHD equations associated with the con-
servation of mass, momentum, energy, and magnetic flux including the magnetic induction
equation in the SCZ should provide the Sun-like spatio-temporal evolution of the velocity
and magnetic field with the given Sun-like plasma properties. However, this requires the
numerical models to be capable of comprising a wide range of spatial and temporal scales
characterizing fluid turbulence at high viscous and magnetic Reynolds number medium –
which is quite challenging from the computational point of view. While with increasing
computational power and improved algorithms, full MHD models are becoming more real-
istic, the parameter regimes are still nowhere near the real solar convection zone. Moreover,
all the existing MHD models operate with enhanced dissipation, much stronger than the
characteristic dissipation in the solar interior. A comprehensive account of the MHD simu-
lations of solar dynamos is presented in Käpylä et al. (2023), this collection, thus, we restrain
ourselves from going into further details.

The scope of the growth of the dynamo is encapsulated within the advective part of the
induction equation [∇ × (u × B)] in Eq. (1), where any pre-existing magnetic field (B)
is amplified by the plasma flow through the shearing term [B · ∇(u)], compression and
rarefication [B(∇ · u)], and advection [(u · ∇)B]. While any positive gradient in the plasma
flow ensures growth of B, the dynamo-generated magnetic field should have the following
observed characteristics (see Sect. 2) in the solar context:

• The large-scale magnetic field (the dipole component) should reverse on a decadal scale.
• The sunspot generating field component should have a π/2 phase difference with the

dipole component, should exhibit an equator-ward migration, and the associated polarity
should be anti-symmetric across the equator.

• On the solar surface, the dynamo model is expected to reproduce observed features of
sunspots and the associated flux evolution, which include pole-ward migration of the
diffused field and generation of observed polar field (as seen in Fig. 2).

• Moreover, the solar dynamo models should result in amplitude fluctuations in both the
sunspot-generating component and the large-scale dipole component, along with ob-
served empirical patterns and correlations between them.

Reproducing all these intricate details of the observed solar magnetic field and the velocity
field while solving the full set of MHD equations in the turbulent convection zone indeed
becomes a challenging problem. Thus one major and very successful alternative approach
in the dynamo community has been to focus on the evolution of the magnetic field only
by solving the induction equation (1) while utilizing prescribed plasma flow derived from
observation (Charbonneau 2020). These are often termed as kinematic dynamo models. An-
other modelling approach, namely Surface Flux Transport (SFT) models, simulate only one
half of the solar cycle, namely, the evolution of magnetic fields which have emerged on the
solar surface mediated via prescribed flow parameters which are constrained by observa-
tions. We discuss them briefly below.

3.1 Solar Surface Flux Transport Models as Tools for Polar Field Predictions

The genesis of solar surface magnetic field evolution models, as well as the Babcock-
Leighton mechanism for polar field generation can be traced to the heuristic ideas first
proposed by Babcock (1961). Babcock attempted to explain the behavior of the large-scale
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solar magnetic fields through a phenomenological description of the topology of the Sun’s
magnetic field and its evolution which was related to the emergence of systematically tilted
BMRs and the subsequent diffusion of their flux, cross-equatorial cancellation and migra-
tion to the poles – culminating in the large-scale dipolar field reversal. This process was
envisaged to be complemented by the stretching of the submerged large-scale flux systems
by differential rotation to produce the sunspot forming toroidal field. Later, Leighton (1964)
put these ideas on a firmer theoretical foundation. He suggested that the radial magnetic field
at the surface of the Sun is advected and diffused kinematically like a passive scalar field.

The computational models capturing the evolution of this radial magnetic field
[Br (θ,φ,R�)] associated with the active regions are known as Surface Flux Transport
(SFT) models. The temporal evolution of the longitudinal averaged radial field obtained
from such simulations should have the distinct features observed in the magnetic butterfly
diagram (Fig. 2). Then the SFT mechanism may also be derived from the MHD induction
equation (1) as the time evolution of the radial component of the magnetic field Br , evaluated
at r = R�, as:

∂Br

∂t
= − 1

r sin θ

∂

∂θ
(uθBr sin θ) − 1

r sin θ

∂

∂φ

(
uφBr

) + ηT ∇2Br. (3)

Here, uθ and uφ denote two large-scale plasma flows on the solar surface: meridional cir-
culation and differential rotation, respectively. The diffusivity ηT represents a simplification
of the effect of turbulent convective motions of the plasma on Br . Note that we haven’t
considered the contribution from radial diffusion, which appears in the mean-field MHD
formulation of SFT (Yeates et al. 2023). To the linear formulation above 3, a source term
must be added to account for the additional influx of magnetic field associated with the
emergence of active regions, which are primarily BMRs. For a detailed description of SFT
models and their theoretical considerations, refer to Jiang et al. (2014b), Yeates et al. (2023).

3.1.1 Genesis of Surface Flux Transport Simulations

Following the pioneering work by Babcock (1961) and Leighton (1964) describing the evo-
lution of Br on the solar surface, DeVore et al. (1984) created the first SFT model of the Sun.
Their SFT model was originally used to constrain meridional flow at the surface, which was
difficult to measure and very uncertain at that time. To mimic the emergence of active re-
gions on the solar surface, Sheeley et al. (1985) included bipolar active region sources based
on observed statistics. Wang et al. (1989) explored the role of surface flux transport and
dissipation processes such as differential rotation, meridional flow, and diffusion to investi-
gate their role in the reversal and build-up of the polar fields. They found that a) differential
rotation was essential for separating the leading and following polarity flux in bipolar active
regions, b) diffusion played a crucial role in cross-equatorial flux cancellation of the leading
polarities and b) meridional flow was essential for transporting the following polarity flux to
the poles aiding in polar field reversal and build-up. The primary physical ingredients of the
surface processes resulting in the observed solar cycle associated polar field dynamics were
now in place.

3.1.2 Evolution Towards Data Driven Surface Flux Transport Models

More evolved SFT models now have the ability to incorporate the observed flows (static and
time-evolving) and assimilate data for realistic simulations of solar surface field evolution
and polar field predictions. These models are also paving the way for realistic coronal field
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and heliospheric modeling by providing time-dependent, data assimilated boundary condi-
tions at the solar photosphere.

While many modern SFT models continue to parameterize the small-scale convective
motions with a diffusivity coefficient, a novel class of magnetoconvective SFT (mSFT)
models have been developed which emulate not only the spreading motions of convection
outflows, but also the concentration of the magnetic network formed at the boundaries of
convective structures. The first attempt at this was achieved by introducing a random at-
tractor matrix (Worden and Harvey 2000) to replace the diffusivity. The attractor method
was later adapted by the Air Force Data-Assimilative Photospheric Flux Transport model
(ADAPT) (Arge et al. 2010; Hickmann et al. 2015). Another SFT model invoked a colli-
sion and fragmentation algorithm (Schrijver 2001). An alternative approach known as the
Advective Flux Transport (AFT) (Upton and Hathaway 2014) model has been developed
which mimics surface convection through spherical harmonics to generate an evolving ve-
locity flow field that reproduces the size, velocities, and lifetimes of the observed convective
spectrum (Hathaway et al. 2015).

Another major advancement in SFT models, brought about by the space-based Doppler-
Magnetographs, is the availability of high cadence and high-resolution magnetograms.
Schrijver and De Rosa (2003) were one of the firsts to directly assimilate magnetogram
data into the SFT model by incorporating SOHO/MDI magnetic field observations within
60◦ of the disk center. Using their SFT maps as an inner boundary condition to a PFSS
model, they were able to create an accurate reconstruction of the interplanetary magnetic
field (IMF). More formal data assimilation processes (e.g., Kalman filtering) require that the
observed data be merged with the simulated data in a way that accounts for the uncertainties.
ADAPT (Hickmann et al. 2015) and AFT (Upton and Hathaway 2014) type SFT models em-
ploy Kalman filtering. The ADAPT model is used in conjunction with WSA-ENLIL model
to aid in Space Weather Predictions. Since the surface field distribution drives the coronal
magnetic field, SFT (and AFT) models have shown great capabilities for coronal field simu-
lations and predictions (Nandy et al. 2018; Dash et al. 2020; Mikić et al. 2018; Mackay and
Upton 2022; Yeates and Bhowmik 2022).

Studies are illuminating the influence that flow variations have on polar field dynamics.
Hathaway and Upton (2014) found that variations in the meridional flow had a significant
impact (∼ 20%) on the polar field strength. Cross equatorial flow (Komm 2022) signif-
icantly influenced the residual magnetic flux transported to the poles. These simulations
clearly show that despite being relatively weak, the shape and amplitude of the meridional
circulation is a crucial element shaping the solar cycle dynamics.

Incorporating the observed sunspots statistics (Jiang et al. 2011) on the solar surface is
crucial – where the active region’s emergence latitude and associated tilt angle and mag-
netic flux become major deciding factors to the final contribution to the dipole moment
evolution (Petrovay et al. 2020a; Wang et al. 2021). It may appear that the final dipole
moment at the end of a cycle (which acts as a seed to the following cycle) will then be de-
terministic – a strong cycle producing a strong poloidal field at cycle minimum. However,
observation suggests otherwise [see Fig. 3(a)]: saturation in the final dipole moment, which
is linked with two factors: tilt-quenching (Dasi-Espuig et al. 2010; Jiang et al. 2011) and
latitude-quenching (Jiang 2020) (see Sect. 4.3.2 for more details). Moreover, scatter in the
active region tilt angles (in addition to the systematic tilt according to Joy’s law) introduces
substantial uncertainty in the final dipole moment at cycle minimum (Jiang et al. 2014a;
Bhowmik 2019). For example, a few big rogue active regions emerging at low latitudes with
a “wrong” (i.e., opposite to the majority for this cycle) tilt angles can reduce the dipole mo-
ment amplitude, thus weakening the seed for the following cycle (Jiang et al. 2015; Nagy
et al. 2017).
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Observationally constrained and flux calibrated SFT models can now match decadal to
centennial-scale solar surface magnetic field dynamics and are being used for predicting the
polar field amplitude based on synthetic data inputs of the declining phase of the cycle –
with a reasonably good degree of success (Cameron et al. 2010; Upton and Hathaway 2014;
Cameron et al. 2016; Bhowmik and Nandy 2018; Wang et al. 2002). These models have
become useful tools for understanding solar surface flux transport dynamics, exploring the
nuances of the Babcock-Leighton mechanism for solar poloidal field generation, and are
being coupled to data-driven dynamo models for predicting the strength of the sunspot cycle.

3.2 Flux Transport Dynamo Models as a Tool for Sunspot Cycle Predictions

Kinematic or flux transport dynamo models have shown exceptional fidelity for being used
as tools for solar cycle predictions. The utility of these models are due to the possibility
of prescribing observationally constrained, or theoretically “expected” velocity profiles (u)
and assimilating observations of the poloidal field to obtain the spatio-temporal evolution
of the solar magnetic field (B) by using Eq. (1). These models use two large-scale time-
independent velocity profiles to incorporate the observed differential rotation and meridional
circulation (see Sect. 2).

Based on the observed properties of the surface field, the large-scale solar magnetic field
at cycle minimum can be reasonably approximated to be axisymmetric (independent of φ)
and antisymmetric across the equatorial plane. This simplifies the kinematic dynamo prob-
lem further. Thus in spherical polar coordinates (r , θ , φ), the magnetic field (B) can be
expressed as,

B(r, θ, t) = ∇ ×A(r, θ, t) êφ + B(r, θ, t) êφ. (4)

The first term in the R.H.S. of the above equation is the poloidal component (BP, hereafter)
in the meridional plane expressed through a vector potential (A) and the second term (B)
corresponds to the toroidal component (BT, hereafter). The velocity can also be expressed
similarly as a combination of the poloidal (meridional circulation) and toroidal (differential
rotation) components. All these simplifications lead us to two separate but coupled equations
for BP and BT, where the first corresponds to the axial dipole moment (or averaged polar
field), and the latter is related to the sunspot-generating strong magnetic field.

The solution to the set of equations produces BP and BT with a π/2 phase difference,
both having roughly decadal-scale periodicity (considering amplitude only). It is reflected
in Fig. 4 showing the observed evolution of averaged polar field and sunspot cycles over
four decades. A cycle begins with the strongest BP and the weakest BT. In the rising phase
of a cycle, with increasing BT (i.e., more sunspots of opposite polarity), BP (i.e., average
polar field) weakens gradually through the B-L mechanism. BP changes its polarity during
the cycle maximum and progresses towards a new maximum value (with opposite polar-
ity) during the declining phase of the cycle while BT continues to decrease till the cycle
minimum. Polarity-wise, BP and BT have a 22-year-long periodicity, which is also evinced
through Hale’s polarity law (as discussed in Sect. 2). In the following section, we describe
how the generation process of the two components of the Sun’s magnetic field rely on each
other.

3.2.1 Poloidal to Toroidal Field

The induction equation for the toroidal component (BT) includes a source term originating
from the differential rotation [�(r, θ)] in the SCZ, compared to which the sink term due
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Fig. 4 The temporal evolution of yearly sunspot number (source: WDC-SILSO, Royal Observatory of Bel-
gium, Brussels) and average polar field (source: Wilcox Solar Observatory) during sunspot cycles: 21 – 24.
The arrows denote the epochs of cycle minima approximately. The sign of the average polar field corresponds
to the sign of BP(+/−), and the sunspot number is related to the amplitude of BT

to diffusive decay is negligible. Thus any pre-existing BP will be amplified through shear-
ing along the azimuthal direction (φ) by BP · ∇� and generate new BT. The differential
rotation in the solar convection zone and the stable overshoot layer at its base (coinciding
with the tachocline where turbulent diffusivity is suppressed) plays important roles in the
amplification and storage of BT (Muñoz-Jaramillo et al. 2009).

Following sufficient amplification by differential rotation, BT satisfies the magnetic
buoyancy condition (Jouve et al. 2018; Fan 2021). Any perturbed part of the toroidal field
rises as a flux rope through the SCZ, where it encounters the Coriolis force and turbulent dif-
fusivity in the medium (Weber et al. 2011). The flux tube which eventually emerges through
the solar surface creates a pair of spots (in general, following Hale’s polarity rule) with a
certain latitude-dependent tilt angle (following Joy’s law), a somewhat fragmented structure
and a reduced strength compared to its initial amplitude. A more detailed account of active
region emergence has been discussed in Weber et al. (2023).

3.2.2 Toroidal to Poloidal Field Generation

Strictly axisymmetric flows and fields cannot sustain the dynamo process (Cowling’s the-
orem). Thus to sustain a dynamo, a non-axisymmetric process must be invoked. Elaborate
studies on kinematic dynamo models have utilized different mechanisms to convert BT to
BP (Cameron et al. 2017; Charbonneau 2020) by utilizing intrinsically non-axisymmetric
processes which are parameterized in the dynamo equations. We present below a very brief
narrative of such approaches.

Turbulence and Mean-Field Electrodynamics Approach The thermally driven environment
in the SCZ results in turbulent motion of the plasma, which therefore has a mean large-
scale flow along with a fluctuating component [u = 〈u〉 + u′]. While the mean component,
〈u〉, corresponds to the standard axisymmetric large-scale plasma velocity (differential rota-
tion and meridional circulation), the fluctuating component, u′, vanishes when averaged
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in the azimuthal direction. The magnetic field can be decomposed in a similar fashion:
B = 〈B〉 + B′. Although the fluctuating parts of the velocity and the magnetic field van-
ish individually when averaged azimuthally, their product, E = 〈u′ × B′〉 will sustain and
overcome the restriction set by Cowling’s theorem. E is known as the mean turbulent elec-
tromotive force, and part of it serves as a source term (the α-effect) in the induction equation
of BP. From a physical point of view, it can be linked to the helical twisting of the toroidal
field component (BT) by helical turbulent convection. For a thorough description, please
refer to Brandenburg et al. (2023), Hazra et al. (2023), this collection.

The Babcock-Leighton Mechanism The magnetic axis connecting the opposite polarities of
active regions has a certain tilt with respect to the east-west (toroidal) direction which arises
due to the action of the Coriolis force on buoyantly rising toroidal flux tubes (an inherently
non-axisymmetric process, see Fisher et al. (2000) and references within). Thus, all active
regions have non-zero components of magnetic moments along the north-south (poloidal)
direction – which collectively contributes to the axial dipole moment generation and evolu-
tion (Petrovay et al. 2020a). Section 3.1 describes how the magnetic flux initially concen-
trated within tilted active regions decay and redistributes across the solar surface to generate
the large-scale magnetic field. Thus is the so called Babcock-Leighton mechanism which
converts BT to BP. Observational evidence not only strongly supports the B-L mechanism,
they also help constrain data-driven predictive SFT and dynamo models (Passos et al. 2014;
Cameron and Schüssler 2015; Bhowmik and Nandy 2018; Bhowmik 2019). For a more
detailed account readers may consult Cameron and Schüssler (2023), this collection.

One critical aspect of B-L type dynamos is the spatial dissociation between the source
regions of BP (on the solar surface) and BT (in the deep SCZ). For the B-L dynamo to func-
tion effectively, the spatially segregated layers must be connected to complete the dynamo
loop. The transport of BP generated on the solar surface to the deeper layers of SCZ can
occur through various processes. These include meridional circulation (Wang et al. 1991;
Choudhuri et al. 1995; Nandy and Choudhuri 2002) which acts as a conveyor belt connect-
ing surface layers to the deep convection zone, turbulent diffusion (Yeates et al. 2008) as
well as turbulent pumping Hazra and Nandy (2016). All these processes are an integral part
of any flux-transport dynamo model, irrespective of whether the dominant poloidal field
generation process is the mean-field or the B-L mechanism.

A new approach towards predictive solar cycle modeling is the coupling of a 2D SFT
model to an internal 2D dynamo model – where the output from the first model serves as
an upper boundary condition of the second one (Lemerle and Charbonneau 2017). Subse-
quently, the internal distribution of the toroidal magnetic field (BT) in the dynamo model
generates synthetic sunspots emerging in the SFT model. This model, therefore, has the
advantage of incorporating a full non-axisymmetric representation of the solar surface at
a much lower numerical cost than the 3D models. The primary weakness of this 2 × 2D
model is its obligation to tackle the different spatial resolutions in the SFT and the dynamo
components.

Presenting an elaborate account of all important works on SFT and solar dynamo mod-
elling approaches is beyond the scope of this review; instead we have elaborated only on the
primary physical mechanisms that are at the heart of the solar dynamo mechanism. We now
turn our focus to processes that are at the basis of solar cycle fluctuations, understanding
which is important from the perspective of solar cycle predictions.
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4 Physical Processes Influencing Solar Cycle Predictability

As shown in Sect. 2, apart from its about 11-year periodicity, a prominent property of the
solar activity record is the strong variability of the cycle amplitudes, including extended
intervals of very low activity, e.g., Maunder minimum, or particularly high activity, e.g.,
modern maximum (Usoskin 2017, Biswas et al. 2023, this collection). Stochastic perturba-
tions inherent in the turbulent solar-stellar convection zones and nonlinearities are two viable
candidates for explaining solar cycle fluctuations. Understanding what drives these fluctua-
tions and our ability to account for them either through first principles or observational data
assimilation paves the way towards physics-based solar cycle predictions.

4.1 Numerical Weather Forecasts and Nonlinear Time Series Analysis of Solar
Activity Proxies

Insights into the development of numerical weather or climate forecasting models over half
a century serve as an useful analogy for physics-based solar cycle predictions (Wiin-Nielsen
1991) and could inspire the progress in physics-based solar cycle predictions. Numerical
weather forecasts correspond to applying physical laws to the atmosphere, solving math-
ematical equations associated with these laws, and generating reliable forecasts within a
certain timescale. The breakthrough from the 1930s to the 1950s can be classified into two
groups. One is the physics of atmospheric dynamics. Vilhelm Bjerknes formulated the atmo-
spheric prediction problem. C. G. Rossby (1939) derived the barotropic vorticity equation
and proposed the first theory of the atmospheric long waves, i.e., Rossby waves. J. Char-
ney (1948) developed the quasi-geostrophic theory for calculating the large-scale motions
of planetary-scale waves. The second is the genesis of numerical calculation methods and
the application of the computational method led by Lewis Fry Richardson and John von
Neumann. From 1955 onwards, numerical forecasts generated by computers were issued
regularly. People mainly concentrate on four domains to increase the performance of pre-
dictions (Kalnay 2003); improve the representation of small-scale physical processes, utilize
more comprehensive (spatial and temporal) observational data, use more accurate methods
of data assimilation, and utilize more and more powerful supercomputers.

Edward Lorenz (1963) opened the doors of physics based weather forecasting by es-
tablishing the importance of nonlinear dynamics in the context of convecting systems and
meteorology. In the subsequent remarkable papers (Lorenz 1965, 1969), Lorenz made a fun-
damental discovery related to the predictability of weather arguing that nonlinearity leads to
chaotic dynamics making long-range forecasts impossible. We now know that the chaotic
nature of the atmosphere imposes a limit of about two weeks in weather forecasts even with
ideal models and perfect observations.

Advances in time-series analysis of non-linear dynamics since the 1980s have made it
possible to distinguish between stochastic behavior and deterministic chaos in principle.
Strange attractor reconstruction based on correlation integral and embedding dimension
(Takens 1981; Grassberger and Procaccia 1983) and the method of surrogate data (Theiler
et al. 1992; Paluš and Novotná 1999) are the most widely used methods to look for chaotic
behavior. Numerous attempts in this field have been invoked in the literature by analyzing
different time series of solar activity proxies, e.g., sunspot number data (Price et al. 1992),
sunspot area data (Carbonell et al. 1994), cosmogenic data (Hanslmeier and Brajša 2010),
polar faculae (Deng et al. 2016), and so on. However, these studies show highly diverging
results. For example, some studies (Mundt et al. 1991; Rozelot 1995; Hanslmeier and Brajša
2010; Deng et al. 2016) report evidence for the presence of low-dimensional deterministic
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chaos in solar cycles. On the other hand, others (Price et al. 1992; Carbonell et al. 1994;
Mininni et al. 2000) find no evidence that sunspots are generated by a low-dimensional
chaotic process. Even in studies showing evidence of chaos, divergent values of the system
parameters (e.g., maximum Lyapunov exponent) were estimated – indicating divergent pre-
diction time scales. It is suggested that results claiming the existence of chaos were derived
from short scaling regions obtained using very low time delays in the computations for the
correlation dimension (Carbonell et al. 1994). Furthermore, the ways to filter or smooth
solar activity data also strongly impact the results (Price et al. 1992; Petrovay 2020).

In brief, despite the intensive investigation of solar activity data, there is no consensus on
whether chaos or inherent stochastic perturbations or noise, or a combination of these pro-
cesses drive solar cycle fluctuations. The insufficient length of the solar activity data, that
is sparsity of data in phase space, compromises statistical sampling. Clearly distinguishing
between stochastic modulation and deterministic chaos remains an outstanding issue. How-
ever, driving predictive physical models with observational data of the poloidal component
of Sun’s magnetic field (which is primarily subject to stochasticity and nonlinear effects)
provides a way out of this conundrum.

4.2 Low-Order Models of the Solar Cycle

Model building aims to use our understanding of a physical system by establishing dynami-
cal equations explaining a physical phenomena and furthermore, aid in the interpretation of
observational data. One such approach – low-order dynamo models – usually approximate
physical processes that occur in a dynamo through truncated equations. Such models have
the advantage of exploring a wide variety of solar behavior that is governed by the same un-
derlying mathematical structure, without studying the dynamo process in detail, or making
other modeling assumptions. Sections 3.5 and 3.6 of Petrovay (2020) give an overview of
this topic classified by two types of low-order models: truncated models and generic normal-
form models. See also the review by Lopes et al. (2014). Here we present the progress in
this field by classifying them based on different physical processes influencing solar cycle
variability and predictability. Although there is no conclusive evidence of the presence or
absence of chaos, most recent studies suggest that the irregular component in the variation
of solar activity is dominated by stochastic mechanisms.

4.2.1 Deterministic Chaos Subject to Weak Stochastic Perturbations

Such studies assume the non-linear solar dynamo is a chaotic oscillator, subject only to
weak stochastic perturbations. The generic normal-form equations are investigated utilizing
the theory of non-linear dynamics by bifurcation analysis. The bifurcation sequences are ro-
bust. Although the approach has no actual predictive power, they provide an understanding
of generic properties and explain the origin of assumed chaotic behavior. Tobias et al. (1995)
used a Poincare-Birkhoff normal form for a saddle-node or Hopf bifurcation. Their results
show that stellar dynamos are governed by equations that possess the bifurcation structure.
Modulation of the basic cycle and chaos are found to be a natural consequence of the succes-
sive transitions from a non-magnetic state to periodic cyclic activity and then to periodically
modulated cyclic activity followed by chaotically modulated cycles. This behaviour can be
further complicated by symmetry-breaking bifurcations that lead to mixed-mode modulation
of cyclic behaviour (Knobloch et al. 1998). Trajectories in the phase space spend most of
the time in the dipole subspace, displaying modulated cyclic activity, but occasionally flip
during a deep grand minimum. Wilmot-Smith et al. (2005) extended the model of Tobias
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et al. (1995) to include an axisymmetry-breaking term. The model is able to reproduce some
properties found in observations of solar-type stars. Their solution also exhibits clustering
of minima, together with periods of reduced and enhanced magnetic activity.

There are also some studies using truncated dynamo models to investigate chaotic be-
haviour. For example, some argue that mixed modes of symmetry can only appear as a
result of symmetry-breaking bifurcations in the nonlinear domain based on a constructed
minimal nonlinear α-� dynamo (Jennings and Weiss 1991). Tobias (1996) show that grand
minima naturally occur in their low-order non-linear α-� dynamo if the magnetic Prandtl
number is small. The pattern of magnetic activity during grand minima can be contrasted
both with sunspot observations and with the cosmogenic record.

Yoshimura (1978) suggested that a time-delay mechanism is intrinsic to the feedback
action of a magnetic field on the dynamo process. Wilmot-Smith et al. (2006) constructed a
truncated dynamo model to mimic the generation of field components in spatially segregated
layers and their communication was mimicked through the use of time delays in a dynamo
model involving delay differential equations. A variety of dynamic behaviors including pe-
riodic and aperiodic oscillations similar to solar variability arise as a direct consequence
of the introduction of time delays in the system. Hazra et al. (2014) extended the model
of Wilmot-Smith et al. (2006) by introducing stochastic fluctuations to investigate the solar
behaviour during a grand minimum. Recently Tripathi et al. (2021) apply the model with an
additive noise to understand the breakdown of stellar gyrochronology relations at about the
age of the Sun (van Saders JL et al. 2016). The one-dimensional iterative map is an effective
and classical method to investigate the dynamics of a system. Using this method, studies
(Durney 2000; Charbonneau 2001) explored the dynamical consequences of the time delay
in the B-L type dynamo. As the dynamo number increases beyond criticality, the system
exhibits a classical transition to chaos through successive period doubling bifurcations.

4.2.2 Weakly Nonlinear Limit Cycle Affected by Random Noise

Since the non-stationary nature of solar convection is an intimate part of the solar dynamo,
a rich body of literature regards that solar variability is largely governed by stochastic per-
turbations. Random noise has been used to fully mimic the behaviour of the solar cycle
(Barnes et al. 1980) while others describe the global behavior of the solar cycle in terms
of a Van der Pol oscillator (Mininni et al. 2001); a stochastic parameter corresponding to a
stochastic mechanism in the dynamo process was introduced in the Van der Pol equations
to model irregularities in the solar cycle were modeled. The mean values and deviations ob-
tained for the periods, rise times, and peak values, were in good agreement with the values
obtained from the sunspot time series. Another example is a low-order dynamo model with
a stochastic α-effect (Passos and Lopes 2011) in which grand minima episodes manifested;
this model is characterized by a non-linear oscillator whose coefficients retain most of the
physics behind dynamo theory.

While most low-order models have a loose connection with observations, Cameron and
Schüssler (2017) developed a generic normal-form model, whose parameters are all con-
strained by observations. They introduce multiplicative noise to the generic normal-form
model of a weakly nonlinear system near a Hopf bifurcation. Their model reproduces the
characteristics of the solar cycle variability on timescales between decades and millennia,
including the properties of grand minima, which suggest that the variability of the solar cycle
can be understood in terms of a weakly nonlinear limit cycle affected by random noise. In
addition, they argue that no intrinsic periodicities apart from the 11-year cycle are required
to understand the variability.
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4.3 Babcock-Leighton-Type Kinematic Dynamo Models

Over the past two decades – supported by advances in flux transport models and observa-
tional evidence – Babcock-Leighton type solar dynamo models have become the mainstream
approach to solar cycle modeling. The B-L mechanism imbibes the processes of emergence
of toroidal fields through the convection zone and their subsequent decay and transport by
supergranular diffusion and large-scale surface flow fields over the surface, i.e., the SFT
processes discussed in Sect. 3.1. Since the SFT processes are directly observed, these act
as a source of data assimilation in the B-L dynamo paving the way towards data-driven
predictions – akin to what has been achieved in weather models.

4.3.1 Effects of the Meridional Flow and the Time Delay

The meridional flow plays an essential role in the B-L type flux transport dynamo (FTD).
The flow strength can modulate not only the cycle strength but also the cycle period. There
exists a rich literature describing the effects of the meridional flow on modulation of solar
cycles based on FTD models (Yeates et al. 2008; Karak 2010; Nandy et al. 2011; Karak and
Choudhuri 2013). Bushby and Tobias (2007) introduced weak stochastic perturbations in
the penetration depth of the meridional flow and the results showed significant modulation
in the activity cycle; while they argue that this modulation leads to a loss of predictability.
Nandy (2021) provides counter arguments pointing out short-term prediction up to one cycle
is possible due to the inherent one-cycle memory in the sunspot cycle; see also Yeates et al.
(2008), Karak and Nandy (2012), Hazra et al. (2020), Kumar et al. (2021). We note that
recently Zhang and Jiang (2022) developed a B-L type dynamo working in the bulk of the
convection zone. The model has a much weaker dependence on the flow. Only the flow at
the solar surface plays a key role in the polar field generation as in the SFT models implying
that the flux transport paradigm is not hostage to meridional circulation being the primary
transporter of magnetic flux within the SCZ – as also argued in Hazra and Nandy (2016),
Karak and Cameron (2016).

In Sect. 4.2 we have shown numerous attempts at the analysis of the dynamical sys-
tem using low-order models. For the first time, Charbonneau et al. (2005) presented a se-
ries of numerical simulations of the PDE-based 2D B-L type dynamo model incorporating
amplitude-limiting quenching nonlinearity. The solutions show a well-defined transition to
chaos via a sequence of period-doubling bifurcations as the dynamo numbers CS = s0R�/ηt

(s0: strength of the source term, ηt is the turbulent magnetic diffusivity in the Sun’s convec-
tive envelope) is increased. The results are presented in Fig. 5. Hence they suggest that the
time delay inherent to the B-L type dynamo process, acting in conjunction with a simple
amplitude-quenching algebraic-type nonlinearity could naturally lead to the observed fluc-
tuations in the amplitude of the solar cycle. The time delay was regarded as the third class
of fluctuation mechanisms by Charbonneau et al. (2005). The method was further extended
(Charbonneau et al. 2007) to investigate the odd-even pattern in sunspot cycle peak ampli-
tudes. Indeed, it is now being recognized that time delays introduced into the dynamo system
due to the finite time necessary for flux transport processes to bridge the source layers of the
poloidal and toroidal fields across the convection zone introduces a memory into the system
which makes solar cycle predictions a realistic possibility (Nandy 2021).

4.3.2 Observable Nonlinear and Stochastic Mechanisms in the Source Term

Within the framework of the B-L type dynamo, the emergence and decay of tilted bipolar
sunspots give rise to the poloidal field. The amount of poloidal field depends on the sunspot
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Fig. 5 Bifurcation diagram
reconstructed from a sequence of
numerical 2D B-L type dynamo
solutions with increasing dynamo
numbers CS . Vertical lines
labeled ‘A’ to ‘E’ correspond to
representative 2-periodic,
4-periodic, 5-periodic,
3-periodic, and chaotic solutions,
respectively. Image reproduced
with permission from
Charbonneau et al. (2005),
copyright by the American
Astronomical Society

properties, e.g., the tilt angle of the bipolar sunspots, which show both the systematic prop-
erty resulting from Joy’s law and the stochastic one due to the tilt scatter. Hence, the B-L
mechanism has an inherent randomness. Studies like Charbonneau and Dikpati (2000), Pas-
sos et al. (2014), Kitchatinov et al. (2018), Hazra and Nandy (2019a), Saha et al. (2022)
took the stochastic fluctuation in the poloidal field source term as a free parameter and in-
vestigated their possible effects on the cycle modulation. Based on a B-L type solar dynamo
with an additional mean-field α-effect, Sanchez et al. (2014) quantified the intrinsic limit
of predictability, i.e., e-folding time τ , which is the equivalent of the two weeks for the
weather forecast. As expected, the e-folding time is shown to decrease corresponding to a
short forecast horizon, with the increase of the α-effect.

Studies (Kitchatinov and Olemskoy 2011; Choudhuri and Karak 2012; Olemskoy et al.
2013; Karak and Miesch 2017) attempted to estimate the parameters of the B-L mechanism
and their fluctuations using historical sunspot data. Jiang et al. (2014a) measured the tilt-
angle scatter using the observed tilt-angle data and quantified the effects of this scatter on
the evolution of the solar surface field using SFT simulations with flux input based upon the
recorded sunspot groups. The result showed that the effect of the scatter on the evolution
of the large-scale magnetic field at the solar surface reaches a level of over 30%. When a
BMR with area A and tilt angle α emerges, it has the (initial) axial dipole field strength
Di ∝ A1.5 sinα. We define the final contribution of a BMR to the axial dipole field as the
final axial dipole field strength Df . Jiang et al. (2014a) show that Df has the Gaussian
latitudinal dependence. The result was confirmed by others (Nagy et al. 2017; Whitbread
et al. 2018; Petrovay et al. 2020b), that is

Df = Di exp(−λ2/λ2
R), (5)

where λR is determined by the ratio of equatorial flow divergence to diffusivity. Wang et al.
(2021) further generalized the result to ARs with realistic configuration, which usually show
large differences in evolution from the idealized BMR approximation for δ-type ARs (Jiang
et al. 2019; Yeates 2020). Hence big ARs emerging close to the equator could have big
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effects on the polar field evolution, and on the subsequent cycle evolution based on the
correlation between the polar field at cycle minimum and the subsequent cycle strength.
These are referred to as rogue ARs by Nagy et al. (2017). Jiang et al. (2015) demonstrated
that these low-latitude regions with abnormal polarity could indeed be the cause of the weak
polar field at the end of cycle 23, hence the low amplitude of cycle 24. Simulations by Nagy
et al. (2017) indicate that in the most extreme case, such an event could lead to a grand
minimum; they argue that the emergence of rogue ARs in the late phase of a cycle may limit
the scope of predicting the dipole moment (and polar field amplitude) at the minimum of a
cycle. However, it is likely that the impact of such rogue regions may be estimated through
the ensemble prediction approach (Cameron et al. 2016; Bhowmik and Nandy 2018; Jiang
et al. 2018).

The stochastic properties of the BMRs emergence mentioned above provide the observ-
able stochastic mechanisms in solar cycle modulation. The systematic properties of the
BMRs emergence have recently been suggested to be observable nonlinearities. Historical
data show that the cycle amplitude has an anti-correlation with the mean tilt angle of BMRs
(Dasi-Espuig et al. 2010; Jiao et al. 2021) and a positive correlation with the mean emer-
gence latitudes (Solanki et al. 2008; Jiang et al. 2011). Jiang (2020) investigated the effects
of the latitude and tilt’s properties on the solar cycle, which are referred to as latitudinal
quenching and tilt quenching, respectively as depicted in Fig. 6 (also see Jha et al. 2020).
They defined the final total dipole moment, which is the total dipole moment generated
by all sunspot emergence during a whole cycle. For a stronger cycle, more ARs emerge at
higher latitudes, limiting the amount of flux cancellation between the leading spots of oppo-
site polarities through cross-equatorial interactions. Effectively, this causes a weaker impact
on the dipole moment evolution as magnetic flux from both leading and following spots
of opposite polarities advect towards the poles. Additionally, ARs from stronger cycles are
likely to have smaller mean tilt angles, thus collectively contributing less to the dipole mo-
ment. In comparison, in a weaker solar cycle, more ARs emerging at lower latitudes ensure
enhanced cross-equatorial flux cancellation, thereby, a larger effect on the dipole moment.
Weaker cycles also tend to have ARs with higher mean tilt angles, which again will be more
impactful in determining the dipole moment evolution. Thus, both forms of quenching lead
to the expected final total dipolar moment being enhanced for weak cycles and saturated
to a nearly constant value for normal and strong cycles. This could be an explanation of
the observed long-term solar cycle variability, e.g., the odd-even rule. Karak (2020) verified
that latitudinal quenching is a potential mechanism for limiting the magnetic field growth in
the Sun using a three-dimensional B-L type dynamo model. Talafha et al. (2022) systemat-
ically explored the relative importance played by these two forms of quenching in the solar
dynamo showing that this is governed by λR .

5 Physics-Based Solar Cycle Predictions

The importance of the dipole moment (or the average polar field) in solar cycle predictions is
established through observation and dynamo theory. The most successful empirical method
for solar cycle predictions based on the polar field precursor (Schatten et al. 1978) in fact
predated the solar dynamo model based predictions. Thus, physics-based predictions of the
solar cycle, in general, are either based on SFT simulations aiming to estimate the dipole
moment (related to polar flux) at the cycle minimum or involve dynamo simulations with
modified poloidal field source term according to the observed (or simulated) dipole moment
at the cycle minimum. Nandy (2002) first alluded to the possibility of developing data-driven
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Fig. 6 Effects of observable nonlinear and stochastic mechanisms in the source term on the poloidal field
generation. The black solid curve indicates the expected values from 100 SFT simulations using random
sunspot group realizations including latitudinal and tilt quenching. Error bars correspond to the 1σ standard
deviation, caused by the randomness in the properties of sunspot groups. Green dashed–triple-dotted and
purple dashed–dotted curves show the expected values for SFT simulations with only the latitudinal and
tilt quenching, respectively. The orange dashed curve shows the expected value of SFT simulations without
latitudinal or tilt quenching. Image reproduced with permission from Jiang (2020), copyright by the American
Astronomical Society

predictive solar dynamo models by utilizing the observed poloidal field as inputs; although
this particular branch of solar cycle predictions is relatively new, significant progress has
been achieved through contributions from multiple works predicting the past cycle 24 and
present cycle 25 using physics-based models.

5.1 Role of SFT Models in Solar Cycle Predictions

Despite the dissimilarities among different SFT models regarding their treatments of the
emerged sunspot statistics and observed transport processes on the photosphere, SFT models
have played a major role in physics-based solar cycle predictions, especially of cycle 25. The
idea lies in the fact that the Sun’s magnetic axial dipole moment at the end of a solar cycle
is strongly correlated with the following cycle’s peak amplitude. This positive correlation is
found from observation spanning multiple cycles (Muñoz-Jaramillo et al. 2013) and is also
supported by the principles of the solar dynamo mechanism (see Sect. 3.2 for more details).

Using SFT simulations, Cameron et al. (2016) presented the first prediction of cycle 25
about four years before the cycle minimum (which occurred at the end of 2019). Their sim-
ulation started with the observed synoptic magnetogram at the end of 2015. The sunspot
emergence statistics in the declining phase (years: 2016 – 2020) of cycle 24 were generated
using 50 randomizations which included uncertainties associated with the emergence tim-
ing, latitude-longitude position, tilt angle and magnetic flux of the sunspots. They provided
a possible range of the axial dipole moment at the end of cycle 24. Based on the posi-
tive correlation between dipole moment and the following cycle amplitude, they predicted
a moderately strong sunspot cycle 25. Hathaway and Upton (2016), Upton and Hathaway
(2018) took a similar approach to estimate the axial dipole moment at the end of cycle 24
using their AFT simulations. However, the sunspot statistics corresponding to the declining
phase of cycle 24 were taken from the declining phase of solar cycle 14. The uncertainties in
predicting the dipole moment were realised by considering stochastic variations in the con-
vective motion details, sunspot tilt angles, and changes in the meridional flow profile. Their
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predicted dipole moment amplitude suggested that cycle 25 would be a weak to moderate
cycle. Iijima et al. (2017) argued that the axial dipole moment does not vary significantly in
the last three years of the declining phase of any sunspot cycle. Thus to predict the dipole
moment at the end of cycle 24, they initiated their SFT simulation in 2017 with an observed
synoptic magnetogram and continued till the end of 2019 without assimilating any sunspots.
Their prediction suggested a weak solar cycle 25. The importance of correctly simulating
the surface magnetic field distribution and their consecutive inclusion in an interior dynamo
model was extensively utilized by other studies (Labonville et al. 2019; Bhowmik and Nandy
2018) for cycle predictions.

As addressed in previous sections, the randomness in sunspot emergence properties plays
an important role in the final amplitude of the axial dipole moment at cycle minimum. As-
similating the uncertainties associated with the sunspots and the observed magnetogram
used as the initial condition in the SFT simulations, Jiang et al. (2018) demonstrated a gener-
alized scheme to investigate the predictability of the solar cycle over one cycle. The scheme
requires at least three years of sunspot observation for the ongoing cycle to predict the sta-
tistical properties of the sunspots during the remaining phase. Their prediction of cycle 25
based on this scheme suggests a weak-to-moderate cycle peak.

5.2 Dynamo-Based Solar Cycle Predictions with Data Assimilation

The B-L type 2D flux transport dynamo models were utilized for the first time to predict
cycle 24 during the mid-2000s (Dikpati et al. 2006; Choudhuri et al. 2007). However, the
only two physics-based predictions of cycle 24 diverged significantly from each other (with a
difference of ∼ 100 sunspots during the maximum). Despite using similar dynamo models,
such divergence can arise from two aspects: differences in the dominating flux transport
processes (Yeates et al. 2008) and how the B-L source term is designed according to the
observed magnetic field. Exploring these two points is crucial for understanding the physics
behind sunspot cycle predictions as well as providing realistic forecasts.

All kinematic flux transport dynamo models consider the following transport processes
at the least: differential rotation, meridional circulation and magnetic diffusion. They use
analytical functions corresponding to the observed differential rotation (Howe 2009). The
observed meridional flow on the solar surface sets constraints for the meridional circulation
profile used within the SCZ. The exact structuring of this flow at different layers of the
SCZ still requires further observational support (Hanasoge 2022), but recent helioseismic
studies suggest a one-cell meridional circulation (Rajaguru and Antia 2015; Liang et al.
2018). Nonetheless, these models assume an equatorward branch of the meridional flow
near the tachocline which ensures observed latitudinal propagation of sunspot activity belts
in both hemispheres and an appropriate cycle duration (Choudhuri et al. 1995; Dikpati and
Charbonneau 1999; Nandy and Choudhuri 2002; Chatterjee et al. 2004; Hazra et al. 2014;
Hazra and Nandy 2019b). Furthermore, the amplitude and profiles of magnetic diffusivity
are also based on analytical functions, which only vary with the depth of the SCZ (Muñoz-
Jaramillo et al. 2011).

However, based on the strength of diffusivity, flux transport dynamo models behave
differently and can be categorized into two major classes: advection dominated (diffusiv-
ity order, η ∼ 1010 cm2 s−1, see Dikpati and Charbonneau 1999) and diffusion dominated
(η ∼ 1012 cm2 s−1, see Choudhuri et al. 2007). The strength of the diffusivity decides which
transport mechanism between meridional circulation and magnetic diffusivity will be more
effective for convecting BP to the deeper layers of the SCZ (Yeates et al. 2008). It also de-
termines whether BP associated with multiple past solar cycles can survive in the SCZ at
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the prescribed diffusivity and contribute simultaneously to the generation of new BT of the
following cycle (Yeates et al. 2008; Jiang et al. 2007). However, the inclusion of turbulent
pumping (Karak and Nandy 2012; Hazra and Nandy 2016) as an additional transport pro-
cess in flux transport dynamo diminishes the difference between the advection-dominated
and diffusion-dominated regimes. All these results are crucial for estimating the dynamical
memory of the solar dynamo models and their ability to accurately predict the future solar
cycle amplitude. Dynamical memory is a measure of determining the range of temporal as-
sociation of the poloidal field (BP) of a certain sunspot cycle (say, nth) with the toroidal field
(BT) of following cycles (say, n+1th, n+2th, n+3th, etc.). Note that for advection-dominated
dynamo models, the dynamical memory is about two solar cycles, whereas it’s about half
a solar cycle for diffusion-dominated dynamo models or in models with turbulent pumping
(Yeates et al. 2008; Karak and Nandy 2012).

Besides the transport parameters, how we assimilate observational data to model the
poloidal field (BP) source will influence the successive generation of the toroidal field (BT),
thus is crucial for solar cycle predictions. Below, we discuss this aspect of ‘data-driven’
dynamo models in the context of solar cycle prediction.

As mentioned in Sect. 3.2, surface flux transport processes acting on emerged active re-
gions produces the large-scale photospheric field and serves as a reliable means for poloidal
field generation. Multiple efforts have been made to assimilate the observed surface data in
flux transport dynamo models. Dikpati and Gilman (2006) included observed sunspot group
areas to formulate the BP source while assuming all spots of any solar cycle are distributed
in the same latitudinal belt (between 5◦ and 35◦) and have similar tilt angles. However, their
data-driven model failed to correctly predict the solar cycle 24 peak (Dikpati et al. 2006).
The primary reasons for this disparity were that the idealized realization of the sunspots
(fixed latitude and tilt angle) results in a poloidal source at the minimum (of nth cycle)
directly proportional to the preceding cycle (nth) amplitude and that the low magnetic diffu-
sivity in their flux transport dynamo model increased the dynamical memory to more than
two solar cycles. Thus according to their model, not only does a strong solar cycle (nth) pro-
duce a strong poloidal source, its strength influences several following solar cycles (n+1th,
n+2th and n+3th).

In contrast, Choudhuri et al. (2007) and Jiang et al. (2007) used a diffusion-dominated
flux transport dynamo model to predict sunspot cycle 24. For modeling the BP source, they
relied on observed large-scale surface magnetic field distribution (for example, the axial
dipole moment) during the solar cycle 23 minimum. Their prediction was a good match to
the observed peak of cycle 24. The positive correlation between BP(n) and the BT(n + 1)

using a diffusion-dominated dynamo model where the dynamic memory is half a solar cy-
cle ensured the success of their prediction. Guo et al. (2021) took a similar approach by
combining observed axial dipole moment to a diffusion-dominated dynamo model to pre-
dict cycle 25. In a recent review, Nandy (2021) discusses in details how observations and
stochastically forced dynamo simulations support only a short half- to one-cycle memory in
the solar cycle, suggesting that the latter class of dynamo models are the right approach to
take for solar cycle predictions.

Recently, Bhowmik and Nandy (2018) assimilated a series of surface magnetic field dis-
tribution at eight successive solar minima (cycles 16 – 23 minima) in a flux transport dy-
namo model (diffusion-dominated). The surface maps were obtained from their calibrated
century-scale SFT simulation, which assimilates the observed statistics of emerging bipolar
sunspot pairs during that period. Their coupled SFT-dynamo simulations reproduced past
solar cycles (17 – 23) with reasonable accuracy (except cycle 19). The same methodology
was utilized to provide an ensemble forecast for cycle 25 while assimilating the predicted
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Fig. 7 Comparison of physical
model-based predictions of solar
cycle 25 peak amplitude. The
average of the six predictions is
107.75 sunspots (with
±1σ = 17.15). Details on each of
these predictions are described in
Sects. 5.1 and 5.2

surface field distributions at cycle 24 minimum from their SFT simulations. Their prediction
indicates a weak cycle 25 (with a peak SSN of 118 and a range from 109 – 139), similar to,
or slightly stronger than cycle 24. Note that the upper bound of the Bhowmik and Nandy
(2018) prediction as reported in Nandy (2021) was misreported as 155 but should have been
139. The 2 × 2D SFT-dynamo model by Lemerle and Charbonneau (2017) is another ex-
ample of coupling the surface magnetic field to the internal dynamo, which occurs more
intimately in their model. Labonville et al. (2019) utilized the same model to assimilate the
series of BMRs observed during cycles 23 and 24 (from Yeates et al. 2007) into the SFT part
of the simulations. They first calibrated the model by including cycle 23 data to produce an
ensemble forecast for cycle 24 and subsequently comparing it with observation. They then
assimilated the BMRs series for cycles 23 and 24 to present an ensemble forecast for cycle
25, including its amplitude (weaker than cycle 24), rising and declining phases and northern
and southern asymmetry.

All physics-based predictions for cycle 25 are depicted in Fig. 7.

5.3 Comparison with Other Prediction Methods

The methodologies of predictions are not restricted to physical modeling only. They can
be based on (a) precursor technique-based forecasts, (b) non-linear mathematical model-
ing, (c) statistical forecasts, (d) machine learning and neural network, (e) spectral methods
etc. (Petrovay 2020; Nandy 2021). Note that most of the precursor-based forecasts consider
the physics of solar dynamo and cycle predictability to some extent without performing
any computational modeling. For example, based on semi-empirical and semi-physical ap-
proaches Hazra and Choudhuri (2019) and Kumar et al. (2022) predicted solar cycle 25 am-
plitude, where the latter group claimed that polar field evolution after the polarity reversal
exhibits similar features like the Waldmeier effect and can be utilized for cycle predictions.
Nonetheless, the forecasts based on diverging techniques show a wide variation in predicted
cycle amplitudes: with peak sunspot numbers ranging between 50 and 250 for solar cycle
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25 (see Fig. 3 of Nandy 2021). In that regard, physics-based predictions of cycle 25 have
reached a consensus with an average of 107.75 sunspots (with ±1σ = 17.15). In contrast,
for cycle 24 physics-based predictions, the difference between the two predicted peaks was
more than 100 sunspots.

6 Summary and Future Prospects

It is noteworthy that while the only two physics-based predictions of solar cycle 24 diverged
significantly from each other, physics-based predictions of cycle 25 show significantly more
convergence. This is possibly an indication of increasing understanding of the solar dynamo
process – as argued in Nandy (2002) – and advances in assimilating observational data in
the computational models used for predictions. However, there are significant improvements
that are still necessary in the adopted modeling approaches.

While all physical models of solar cycle predictions have been 2D in nature, global 3D
dynamo models have the promise of capturing the surface flux transport dynamics and inter-
nal magnetic field evolution self-consistently. Some recent works have solved the induction
equation in three spatial dimensions within a dynamo framework thus going beyond the 2D
axisymmetric models (Yeates and Muñoz-Jaramillo 2013; Miesch and Dikpati 2014; Hazra
et al. 2017; Karak and Miesch 2017; Kumar et al. 2019; Whitbread et al. 2019). These
are B-L type dynamos working in a kinematic mode with modules to incorporate realistic
sunspot emergence and decay of the associated flux. These models provide the opportunity
of further development towards dynamical models, imbibing in-built axisymmetric and non-
axisymmetric feedback mechanisms (Nagy et al. 2020), thus slowly closing the gap between
these phenomenological B-L type dynamo models and the full MHD dynamo models. How-
ever, such models still have two significant discrepancies: the polar field generated on the
surface is much stronger than the observed order of magnitude, and sunspot emergence at
higher latitudes is prevented artificially. Nonetheless, these models hold the promise of self-
consistently imbibing elements of the surface flux transport dynamics leading to polar field
reversal and build-up as well as solar internal magnetic field evolution, which 2D models
cannot.

Finally, we end by posing the following provocative questions. From a purely utilitarian
view, are dynamo models at all necessary for solar cycle predictions and can they provide
higher accuracy or advantage compared to empirical polar field precursor based techniques?
There is no doubt that physical approaches based on surface flux transport models and
dynamo models have significantly advanced our understanding of solar cycle predictabil-
ity; however, the resolution of the above questions are fundamental to sustained growth
prospects of this field of research.
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