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Abstract
To reconstruct past environmental changes, a range of indirect or proxy approaches 
can be applied to Quaternary archives. Here, we review the complementary and novel 
insights which have been provided by the analysis of chemical fossils (biomarkers). 
Biomarkers have a biological source that can be highly specific (e.g., produced by a 
small group of organisms) or more general. We show that biomarkers are able to 
quantify key climate variables (particularly water and air temperature) and can provide 
qualitative evidence for changes in hydrology, vegetation, human-environment 
interactions and biogeochemical cycling. In many settings, biomarker proxies provide 
the opportunity to simultaneously reconstruct multiple climate or environmental 
variables, alongside complementary and long-established approaches to palaeo- 
environmental reconstruction. Multi-proxy studies have provided rich sets of data to 
explore both the drivers and impacts of palaeo-environmental change. As new 
biomarker proxies continue to be developed and refined, there is further potential to 
answer emerging questions for Quaternary science and environmental change.

up to five keywords
biomarkers, Quaternary, proxies, palaeoclimate, palaeoenvironment
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1. Introduction
To reconstruct past environmental and climate changes, indirect physical, chemical or 
biological signals of environmental variables (“proxies”) are recovered from a range of 
archives (e.g., marine and lake sediments, ice cores, speleothems, peatlands). 
Biomarker proxies are molecular or chemical fossils with a biological origin (Eglinton 
and Calvin, 1967), which can be recovered, analysed and identified from palaeo- 
environmental archives (Peters et al., 2005). Biomarkers have emerged as valuable 
parts of the Quaternary science toolkit, due to both quantitative and qualitative insights 
into past environmental changes and because multiple biomarkers (and thus multiple 
environmental signals) are simultaneously recovered from single samples.
Biomarkers can either be very specific in terms of their environmental signal or 
biological source (e.g., individual highly branched isoprenoids indicative of sea-ice 
diatoms), or be more general indicators (e.g., mixtures of n-alkanes derived from 
higher plants) (Figure 1). A key strength of biomarker analysis is that biomarkers from 
multiple settings can be found in a single sediment sequence, since terrestrial 
biomarkers (from bedrock, soils or plants) may be transported by wind, rivers or ice 
into lakes, wetlands, caves or marine environments, allowing both the transport 
process and changes in different environments to be explored (e.g., Jaffe et al., 2001; 
Ngugi et al., 2017; Muller et al., 2018). Biomarker transport can also be a 
disadvantage: advection or bioturbation may influence how biomarkers are 
incorporated into the sediments and can even lead to age-offsets between different 
proxies (e.g., Ohkouchi et al., 2002). As organic molecules, biomarkers are subject to 
degradation processes during transport and deposition (e.g., Madureira et al., 1997; 
Wakeham et al., 1997; Thomas et al., 2021). However, different classes of organic 
compounds have varying rates of degradation (Arndt et al., 2013). Some of the most 
widely applied biomarkers are those which are relatively resistant to alteration (e.g., 
plant waxes), or where (rapid) transformation of lipids or pigments found in living 
biomass leaves behind a recognisable chemical signal so that the source organisms or 
formation processes can be determined (e.g., Harris et al., 1996; Pitcher et al., 2009). 
Biomarkers may be particularly useful in environments where other proxies (e.g., plant 
macrofossils) are degraded but their chemical remains can be found (e.g., Ronkainen 
et al., 2015).
A valuable property of biomarkers is that they can be isolated from the original archive 
so that isotope analysis can be undertaken on individual components of organic matter 
with a known origin. This “compound-specific isotope analysis” (CSIA) contrasts with 
the analysis of bulk samples, where changing isotope ratios could reflect varying 
contributions of different organic sources through time or space, as well as 
environmental controls over the contributing isotopic signals (e.g., Holtvoeth et al., 
2019; McClymont et al., 2022). By knowing the origin of the biomarker, the relative 
impact of biological and environmental controls on stable isotope ratios can be 
determined (Sachse et al., 2012; Holtvoeth et al., 2019). CSIA has enabled, for 
example, separation of the contributions of C3 and C4 plants and isolation of 
hydrological controls over plant wax deuterium/hydrogen isotopes (Section 4.2).

Our aim in this review is to provide an accessible introduction to the wide range of 
biomarker applications in Quaternary science. Detailed reviews are also available on 
both biomarker synthesis and proxy development in marine sediments (Rosell-Mele 
and McClymont, 2008), lake sediments (Castaneda and Schouten, 2011), peatlands 
(Naafs et al., 2019), speleothems (Blyth et al., 2016; Meckler et al., 2021) and 
geoarchaeology (Dubois and Jacob, 2016). Here, we explore a range of studies which 
have applied biomarker proxies and outline the novel and complementary contributions 
biomarkers have made to palaeoenvironmental reconstructions across a wide range of 
geographical regions, timescales, and environments. The review was conducted using 
methodical keyword literature searches of the Web of Science and Google Scholar
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databases. The searches returned thousands of results; therefore, the scope of this 
review precludes citations of all relevant studies. To address our aim of providing an 
accessible overview of biomarkers and their applications for all Quaternary scientists, 
we have prioritised the inclusion of initial foundation studies alongside a diversity of 
examples that span across different timescales, sedimentary archives, geographical 
locations, and topics of Quaternary science. Since some biomarker proxies have been 
applied to multiple archives but reconstruct similar environmental variables (e.g. 
temperature, salinity), the review is structured according to those variables or research 
questions, and archive- or proxy-specific considerations are provided. Finally, we 
reflect on recent developments in biomarker research and consider their future 
potential in Quaternary science.

2. Introduction to biomarkers: analysis and functions
2.1 An overview of biomarker laboratory methods
Biomarkers used in Quaternary studies include water-insoluble lipids, photosynthetic 
pigments, and macromolecules including lignin. Biomarkers are often present in very 
low (trace) concentrations in environmental samples (mg or ng per g of material) and 
may be components of a complex matrix of organic and minerogenic materials. 
Isolating the biomarkers of interest requires methods that maximise recovery and 
minimise contamination. As multiple biomarkers are recovered simultaneously a 
diverse range of environmental signals can be attained from a single sample.
Lipids and pigments are extracted from environmental or archaeological samples by 
using a range of organic solvents and approaches, tailored to the chemical properties 
of the compound(s) of interest. Ultra-sonication, microwave or accelerated solvent 
extraction methods are most commonly used but may have different efficiencies 
depending on sample size and composition (e.g. Kornilova and Rosell-Mele, 2003; 
Nichols, 2010; Kehelpannala et al., 2020; Manley et al., 2020). Lipid biomarkers are 
typically extracted with dichloromethane and methanol in a ratio aligned with the 
expected polarity of the target marker, whereas pigments are typically extracted using 
acetone (e.g. Chen et al., 2001) or a mixture of acetone, methanol and water (Leavitt 
and Hodgson, 2001). Pigment extractions can include soaking overnight at cold 
temperatures (e.g. -20°C) to minimise degradation (Jeffrey et al., 1997).

Care is needed, because organic solvents will also extract unwanted compounds and 
add them to the extract, particularly plasticisers but also oils from the skin/hair of 
researchers handling the materials (e.g. Blyth et al., 2006). As a result, sub-sampling 
cores or materials using metal spatulas, storing samples and extracts in glass jars or 
high-quality (low contaminant) bags, and using foil to separate samples from plastic 
bags or lids are effective strategies for minimising contamination, alongside using 
laboratory personal protective equipment (e.g. Nichols, 2010). Inclusion of blanks 
during sample processing allows for contamination to be detected, monitored and 
isolated (Blyth et al., 2016). Water can also interfere with lipid extraction efficiency and 
subsequent clean-up steps, and encourages oxidative degradation; the best approach 
is to freeze-dry samples (McClymont et al., 2007; Nichols, 2010).
A common approach in palaeo-environmental research is to recover multiple lipid 
biomarkers in a single extraction procedure to generate an “extract” (Kornilova and 
Rosell-Mele, 2003; Nichols, 2010). The extract may then be separated into classes of 
compounds according to their chemistry (e.g. polarity, pH) to isolate the target 
biomarkers or to remove interfering compounds (Nichols, 2010). Biomarkers are then 
analysed using liquid (LC) or gas chromatography (GC), whereby a prepared sample 
is introduced to a capillary column and transferred to a detector by a flow of liquid or 
gas (Peters et al. 2005). Non-extractable material (e.g., lignins) can be introduced by 
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pyrolysis, whereby high temperatures are used to split the large, refractory, molecules 
into diagnostic fragments (White et al., 2004). The capillary column (usually 0.20-0.25 
mm internal diameter) is coated with an internal film called the stationary phase, the 
chemistry of which determines how compounds are retained and released according to 
their chemical properties as they travel through the column. The result is a 
chromatogram of individual compounds separated by their chemical interaction with 
the column (Figure 2).

Biomarker identification usually involves the separated individual compounds being 
transferred directly to a mass spectrometer (LC-MS, GC-MS), which ionises and 
fragments them into characteristic patterns (Peters et al., 2005). Semi-quantitative 
analysis can be achieved by adding internal standards of known mass during the 
extraction steps, or a calibration curve will be derived using external standards of 
varying concentrations to enable absolute quantification (e.g., McGowan 2013). 
However, some analysis remains qualitative where internal standards are not feasible 
(e.g., McClymont et al., 2011). Ratios between different compounds may be more 
appropriate for characterising changing biomarker distributions; for several biomarkers 
these ratios are defined as indices which are specifically linked to, or calibrated 
against, environmental variables (Tables 1 and 2).
Finally, the separation of organic matter also allows for CSIA. Not all samples or 
compounds are suitable: individual biomarkers need to meet higher detection limits 
than for GC or LC, and there needs to be excellent baseline separation between 
peaks. For compound-specific 14C analysis, GC or LC techniques can be used to 
separate and then collect individual compounds or classes of compounds for 
subsequent analysis (Eglinton et al., 1996; Yamane et al., 2014; Sun et al., 2020).

2.2 Biological functions of biomarkers
In this section we have selected examples to introduce the biological function of 
biomarkers and the mechanistic principles behind their palaeoenvironmental proxy 
applications. The biological function of biomarkers varies between different classes of 
compounds (Peters et al., 2005; Bianchi and Canuel, 2011; Killops and Killops, 2013). 
Most lipid biomarkers used within Quaternary research can be classified as leaf wax or 
cell membrane lipids. Leaf wax lipids, such as such as n-alkanoic acids and n-alkanes, 
are synthesised by vegetation to act as waterproof protective barriers against the 
external environment and to control evaporative water loss and gas exchange 
(Eglinton and Hamilton, 1967; Post-Beittenmiller, 1996; Jetter et al., 2006). The chain 
length of leaf wax molecules varies between different plant species and hydrological 
conditions: aquatic (terrestrial) species are characterised by shorter (longer) chain 
lengths since they are adapted to wetter (drier) conditions (Cranwell et al., 1987;
Ficken et al., 2000; SchefuR et al., 2003; Table 2). Biochemical responses to 
environmental conditions can occur at fine scales, which should be considered during 
interpretation of the sedimentary record. For example, n-alkane chain lengths 
(Ronkainen et al., 2013) or concentrations (Huang et al., 2011) have been shown to 
differ between the leaves and roots of wetland species (Ronkainen et al., 2013;
Andersson et al., 2011), and both humidity and timing of leaf growth can impact n- 
alkane distributions even within single plants (e.g., Sachse et al., 2010; Eley and Hren, 
2018). There is also evidence for loss and transformation of some n-alkyl components 
within soils, although the dominant chain lengths tend to be maintained with depth 
(Thomas et al., 2021).
Cell membrane lipids are synthesized by a range of organisms including fungi, algae, 
plants and animals (e.g., sterols (e.g. Volkman, 1986), archaea (e.g., isoprenoidal 
glycerol dialkyl glycerol tetraethers (isoGDGTS) (e.g. Nishihara and Koga, 1987, 
Sinninghe Damste et al., 2000) and eubacteria (e.g., hopanoids (e.g. Innes et al. 1997; 
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Ourisson et al. 1979). Membrane lipids are structural components of cells that provide 
a stable controlled environment for biogeochemical reactions. Cell membrane lipids 
regulate the fluidity (or permeability) of the cell membrane by altering structural 
features such as chain lengths, the placement of unsaturated (double) bonds and 
cyclic rings (Peters et al., 2005; Bianchi and Canuel; 2011; Killops and Killops, 2013; 
Figure 3). For example, temperature changes are expressed by the number and 
position of methyl groups of branched GDGTs (brGDGTs; Weijers et al., 2007) and the 
number of cyclopentane moieties of isoGDGTs (De Rosa et al., 1980) (Figure 3; 
Section 3).

The primary functions of some lipids remain unknown or poorly understand. For 
example, alkenones, synthesised by phytoplankton (Theroux et al., 2010), were 
originally considered to be fluidity-influencing membrane lipids (e.g., Brassell et al., 
1986); however, more recent studies demonstrate that they more likely contribute to 
energy storage and regulate properties such as melting point and therefore ease of 
lipid catabolism (e.g., Epstein et al., 2001; Bakku et al., 2018). Regardless of their 
specific function, differences in alkenone chain lengths and the degree of unsaturation 
(number of double bonds) can be used to reconstruct palaeotemperature (e.g., 
Brassell et al., 1986; Figure 3; Section 3.1). Some other types of biomarkers of interest 
to Quaternary scientists are transformation products that reflect environmental 
processes. For example, some polyaromatic hydrocarbons (PAHs) and 
monosaccharide anhydrides are produced during combustion of organic matter and 
can therefore be used to reconstruct fire histories (Section 8.2).

Pigments can be relatively general biomarkers of photosynthetic processes (e.g. 
chlorophyll a/b/c and pp-carotene are general productivity markers) or highly specific 
(e.g. alloxanthin is only found in cryptophytes; reviewed by McGowan, 2007). Pigment 
functions also vary: chlorophylls are active sites of photosynthesis, providing energy 
for the cell, whereas carotenoids can also help absorb light for photosynthesis (Jeffrey 
et al., 1997) or help protect cells from UV exposure (e.g. scytonemin; McGowan, 
2007). The stability of pigments is dependent on specific chemistry, the environment 
and presence of photoprotection (Leavitt, 1993; Cuddington and Leavitt, 1999). Some 
pigments are susceptible to oxidative or UV degradation, and even in environments 
with good preservation there can be as much as 95% degradation in the water column 
before sedimentation (McGowan, 2007). Pigment analysis is thus often most effective 
in environments where preservation is facilitated by e.g., anoxic or low light conditions 
(e.g. Hodgson et al., 2005). Where degradation allows characteristic fragments of the 
original pigment to be identified, valuable information can be recovered. For example, 
chlorins represent the preserved central ring structure of the original chlorophyll and 
are frequently selected as marine productivity biomarkers over glacial-interglacial 
timescales (Harris et al., 1996) (Section 7.1).

3. Quantifying amplitudes and rates of past temperature change
Air, water and soil temperatures are important for detailing climate system response to 
radiative forcing, including global climate sensitivity (Masson-Delmotte et al., 2021). 
Temperatures trace heat transfers through ocean/atmosphere circulation systems and 
can be informative of local conditions which may influence ecosystems. Quantification 
of past temperature change has been a key achievement for biomarker proxies and 
continues to be a frontier of biomarker proxy development. Here, we first outline 
insights gained from marine and lacustrine settings, before discussing emerging 
terrestrial records from soils, peats and speleothems.

3.1 Ocean and lake temperature reconstructions
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An early biomarker proxy success was the recognition that some aquatic organisms 
change their cell membrane chemistry in response to water temperature, and that 
these signals were detectable in sediments (Brassell et al., 1986; Figure 3). Multiple 
biomarker temperature proxies have subsequently been developed (Table 1). 
Biomarker temperature indices describe distributions of lipids produced by selected 
photosynthesising haptophyte algae (alkenone-derived UK37’ and UK38Me’ indices; Prahl 
and Wakeham, 1987; Novak et al., 2022), ammonia-oxidising Thaumarchaeota 
(isoGDGT-derived TEX86 index; Schouten et al., 2022), eustigmatophyte algae (long 
chain alkyl diol-derived LDI; Rampen et al., 2012) and bacteria (hydroxy fatty acid- 
derived RAN13 index and brGDGT derived MBT’5Me index; De Jonge et al., 2014; Yang 
et al., 2020). As each proxy has different source organisms and controls (Table 1), 
there is potential to generate detailed water temperature reconstructions which might 
include seasonality or temperature profiles with water depth. Both the UK37’ and TEX86 

proxies have reconstructed temperatures through the Quaternary and beyond (e.g., 
Herbert et al., 2010); more recently developed proxies have tended to focus on the 
Holocene or the last glacial cycle (e.g. Powers et al., 2005; Warnock et al., 2018; Yang 
et al., 2020).
Biomarker water temperature proxies are calibrated using field sampling, laboratory 
culture experiments, and sediment core-tops (Table 1). The accuracy and precision of 
the temperature proxies varies, especially at the upper and lower ends of the 
calibrations or close to detection limits, and not all proxies are found in all settings. 
Many of the proxies are calibrated to mean annual surface water temperature (Table 
1), but if the producers have preferred seasons or water depths, a seasonal or sub­
surface temperature signal may be reconstructed (D’Andrea et al., 2005, 2011; 
Jaeschke et al., 2017; Tierney and Tingley, 2018; Inglis and Tierney, 2020; Theroux et 
al., 2020; Spencer-Jones et al., 2021). Although marine biomarkers have global 
calibrations (Table 1), there can also be local controls over the biomarker-temperature 
relationship in all aquatic settings (e.g., salinity, sea/lake ice cover, lake size). In some 
settings a regional temperature calibration may be more appropriate (Table 1) (e.g., 
Bendle et al., 2005; De Jonge et al., 2014; D’Andrea et al., 2016; Loomis et al., 2014; 
Longo et al., 2016; De Bar et al., 2020; Sinninghe Damste et al., 2022; Yao et al., 
2022).
A key impact of marine SST biomarker proxies has been the generation of quantitative 
data to calculate amplitudes and rates of change, climate response to changing CO2, 
and to facilitate data-model comparisons (e.g., Brassell et al., 1986; MARGO Project 
Members, 2005; Martrat et al., 2007; Schmittner et al., 2011; Capron et al., 2017; 
Tierney et al., 2020). Relatively strong mid- and high-latitude SST responses to glacial- 
interglacial cycles have been demonstrated (Martrat et al., 2007; Naafs et al., 2013), 
but tropical cooling has also been reconstructed during glacials (MARGO Project 
Members, 2005; Herbert et al., 2010; McClymont et al., 2013). UK37’ records have 
shown that there are regional and temporal differences in the amplitudes of interglacial 
warming (MARGO Project Members, 2005; Past Interglacials Working Group, 2016) 
and that early ocean cooling preceded the evolution of 100-ka glacial-interglacial 
cycles during the mid-Pleistocene transition (McClymont et al., 2013). Recent 
calibration of the UK38Me’ index shows potential to extend the upper linear calibration 
limit of the UK37’ proxy to ~30°C (Novak et al., 2022), reducing the reconstructed 
uncertainties at high SSTs (Table 1) and enabling improved reconstructions of 
interglacial warmth and glacial-interglacial variability in the low latitudes.
Differences in absolute SSTs from UK37’ and TEX86 or LDI reconstructions from the 
same sediment sequences have revealed circulation changes on a range of 
timescales (Figure 4). In the first TEX86 reconstruction spanning the last deglaciation 
from the South China Sea, SSTs aligned well with millennial-scale variability in Hulu 
Cave stalagmite 18O, but exceeded and had a different trend to the UK37’-SSTs, which 
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may in part be explained by different seasons of production (Shintani et al., 2011). In 
low-latitude upwelling systems, warmer UK37’ (surface) and cooler TEX86 (sub-surface) 
temperatures have enabled reconstructions of varying upwelling intensity spanning 
millennial to million-year timescales (e.g., McClymont et al., 2012; de Bar et al., 2018; 
Petrick et al., 2018; Erdem et al., 2021). Glacial-interglacial migrations in the latitude of 
the Subtropical Front in the southern hemisphere have been determined by combining 
UK37’ and TEX86 data (Cartagena-Sierra et al., 2021), and seasonally-driven offsets 
between UK37’, TEX86 and LDI temperatures identified variable Leeuwin Current 
strength offshore South-east Australia over the last ~135 ka (Lopes dos Santos et al., 
2013a). Although less widely applied, the LDI has isolated Baltic Sea cooling related to 
the 8.2 ka event, followed by a Holocene Thermal Maximum, and late Holocene 
cooling with sea-ice expansion (Warnock et al., 2018). On much shorter timescales, an 
“Atlantification” of waters in the Fram Strait through the 20th century was detected 
using UK37’ and TEX86 (Tesi et al., 2021; Figure 4). Here, a multi-biomarker approach, 
with 5-10 year resolution, enabled interactions between sea ice, ocean mixing, and 
heat transfer to be better determined than by using the short instrumental record 
alone.
Lake temperature reconstructions provide valuable climate indicators for continental 
climate change. Early TEX86 records generated new constraints on temperature 
change in Africa: a ~2°C increase in Lake Malawi surface water temperature occurred 
during the last ~100 years which exceeded variability in the preceding ~600 years 
(Powers et al., 2005); coherence between Lake Victoria warming/cooling and rainfall 
occurred over the last ~14,000 years (Berke et al., 2012a); and both long-term and 
abrupt temperature changes in Lake Tanganyika were linked to Indian Ocean SSTs 
across the last deglaciation (Tierney et al., 2008). However, local or regional 
influences over the biomarker-temperature relationships include lake size and depth 
(for TEX86; Sinninghe Damste et al., 2022), salinity or alkalinity (for MBT’5Me and 
alkenones; Pearson et al., 2008; De Jonge et al., 2014; Song et al., 2016; Plancq et 
al., 2018), nutrient availability (Toney et al., 2010), and inputs of soils containing the 
same compounds (e.g., Loomis et al., 2012; De Jonge et al., 2015; Russell et al., 
2018). GDGT inputs from methanogens and other archaea can also complicate TEX86 

reconstructions: at Lake Challa (Africa) reliable temperature reconstructions using 
lacustrine GDGTs were only possible between 25-13 ka, but not in the Holocene 
section (Sinninghe Damste et al., 2012).

The brGDGT proxy MBT’5Me (de Jonge et al., 2014), has been used to reconstruct 
millennial and centennial scale variations in lake temperature, which align with stadial 
and interstadial events in the Iberian Peninsula (Rodrigo-Gamiz et al., 2022). Although 
local conditions prevented application of the MBT’5ME index to an Icelandic lake, the 
combined analysis of brGDGT distributions and UK37’ data enabled quantification of 
temperature change through the Holocene which could be directly compared to 
reconstructed and modelled ice cap change (Harning et al., 2020). Having quantified 
early Holocene warmth, the loss of the local ice cap by ~2050 CE was predicted 
(Harning et al., 2020). A challenge for brGDGT reconstructions is that the calibration 
uncertainties (up to ~5 °C; Table 1) are of similar magnitude to some reconstructed 
Quaternary temperature changes. The application of MBT’5Me can be complex since 
the full range of specific bacterial sources of brGDGTs is unknown: community 
sequencing of laboratory cultures, environmental samples and micro- and mesocosm 
studies have identified Acidobacteria as brGDGT producers; however, they currently 
do not account for the full distributions of brGDGTs found in sedimentary samples 
(e.g., Weijers et al., 2010; Sinninghe Damste et al., 2011,2018; Martinez-Sosa and 
Tierney, 2019; De Jonge et al., 2021; Halamka et al., 2023).

The uncertainty surrounding the producer organisms (and whether they have changed 
through time), as well as limited high-latitude samples in global calibrations (Blaga et 
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al., 2010; De Jonge et al., 2014; Naafs et al., 2017), complicated the interpretation of 
Greenland lake data which did not align with other biomarker or macrofossil proxies 
(Kusch et al., 2019). In the high-latitudes of the southern hemisphere, accounting for 
distinct brGDGT distributions at low temperatures enabled the production of a regional 
brGDGT calibration with reduced uncertainties; in turn, millennial-scale temperature 
changes were identified in an Antarctic lake core spanning the last ~4000 years 
(Foster et al., 2016). In East Africa, a regional MBT’5Me calibration also reduced 
temperature reconstruction errors to <2.5 °C (Russell et al., 2018). Regional 
calibrations may therefore need to be considered where strong environmental impacts 
on lipid synthesis could occur.
Identification of key alkenone producers in North American, Greenland and Alaska 
lakes, with a preferred spring signal (e.g., D’Andrea et al., 2005; Toney et al., 2010; 
Wang et al., 2021a), offers the potential to quantify seasonal lake temperature change 
in the northern high latitudes. Centennial-scale late Holocene winter-spring lake 
temperature changes have been quantified in Iceland, showing a strong influence from 
SSTs (Richter et al., 2021). Holocene lake temperature changes linked to ice shelf 
configuration were reconstructed in North-east Greenland (Smith et al., 2023). With the 
recent development and calibration of the 3-hydroxy-fatty acid ratios in lakes (Table 1; 
e.g., Wang et al., 2021a) there is also the potential for new bacteria-derived 
temperature proxies to be generated, but downcore applications are not yet available.
In aquatic settings where there are inputs of organic matter from the continents, and 
where the same biomarkers are found onshore, it is important to assess and correct 
(or remove) temperature data which may incorporate a mixture of both marine and 
terrestrial inputs, since the two environments have different biomarker-temperature 
calibrations (e.g., De Jonge et al., 2015; Russell et al., 2018; Martinez-Sosa et al., 
2021). For example, samples with high inputs of terrestrial brGDGTs can be flagged 
and removed using the BIT index (Branched and Isoprenoid Tetraether index; Table 3 
and Hopmans et al., 2004), whereas two separate calibrations may be applied if there 
is sedimentological evidence for a switch from marine to lake environments (Smith et 
al., 2023). Where a separation between aquatic and terrestrial lipids can be achieved, 
it is possible to generate terrestrial temperature records using lake/marine sediments 
(e.g., Blaga et al., 2010; Watson et al., 2018; see Section 3.2).

Finally, on Quaternary timescales, there is potential for evolution to alter the 
biomarker-temperature relationship. Although the marine UK37’-SST relationship 
appears robust to evolutionary events in alkenone producers (McClymont et al., 2005), 
a long-term (million year) warming in TEX86 at Lake El'gygytgyn in the Russian Arctic 
was influenced by archaeal community changes as landscape evolution influenced 
biogeochemical cycling (Daniels et al., 2021). On shorter timescales, alkenone 
temperature indices in saline lakes can be impacted by shifts between the dominant 
haptophytes (Yao et al., 2022). For example, salinity driven changes in the haptophyte 
assemblage in Lake Van, Turkey are suggested to have complicated the UK37’- 
temperature reconstructions for the oldest part of the record (~100-270 ka) (Randlett et 
al., 2014).

3.2 Temperatures reconstructed from soils, peats and speleothems
The calibration of biomarker proxies for continental temperatures using soils, peats 
and speleothems has been more challenging than for aquatic settings and remains an 
active area of development (e.g. Weijers et al., 2007; Naafs et al., 2017; Meckler et al., 
2021). Quantified temperature data can provide a valuable backdrop to understand the 
rich environmental information recovered from the same archives (e.g., vegetation and 
hydrological change, human activity; see Sections 4 and 8).
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The (acido)bacteria-produced brGDGTs, found in soils, peats and speleothems, have 
been explored as temperature proxies given their promise in aquatic settings (Section 
3.1). The uncertainties in the branched GDGT temperature calibrations for peat 
(~4.7°C, Naafs et al., 2017) and soils (~4.8°C, De Jonge et al., 2014; Yamamoto et al., 
2016) make it difficult to reconstruct small amplitude and potentially brief Holocene 
temperature fluctuations. In the low latitudes, regional calibrations have been 
developed which have lower uncertainties (Perez-Angel et al., 2020), and 
loess/palaeosol sequences have required careful interpretation given unusual brGDGT 
distributions in semi-arid settings (Yang et al., 2014). Conversion of soil or peat 
temperatures to overlying air temperatures has also been challenging where there are 
differences between the two (Dearing Crampton-Flood et al., 2020). Nevertheless, in 
the Great Lakes region (North America) brGDGT-inferred soil/air temperatures from a 
lake core aligned with pollen-based temperature reconstructions associated with the 
B0lling-Aller0d (B-A) warming, Younger Dryas cooling and Holocene warming (Watson 
et al., 2018). Importantly, the brGDGT analysis was able to advance understanding 
beyond pollen-based interpretations by showing that the multi-centennial lag in 
warming compared to Northern Hemisphere temperature syntheses was due to the 
effects of continentality and regional influences of ice-sheet extent rather than a 
delayed vegetation response (Watson et al., 2018). Where soil-derived biomarkers 
have been transported to different depositional settings, there can be complexity in the 
signature if the source regions have changed over time: shifting sediment provenance 
of brGDGT distributions recovered offshore of the Amazon basin over the last 
deglaciation impacted the reconstructed absolute air temperature time-series, due to 
the increasing influence of colder, higher-elevation inputs from the Andes into the 
Holocene (Bendle et al., 2010).
In Asia, both isoprenoidal (TEX86) and branched GDGTs have been used in peat, 
loess and speleothems to explore the drivers and impacts of shifts in the summer 
monsoon. In peats, the combination of proxies for temperature and hydrology can be 
effective in considering their different drivers and the potential for (a)synchrony (e.g. 
Peterse et al., 2014; Wang et al., 2017). A 130,000 year loess-palaeosol sequence 
yielded high-resolution brGDGT temperature reconstructions: local insolation was the 
main driver of temperature change, but temperatures led brGDGT inferred precipitation 
changes with a lag length which was linked to the intensity of northern hemisphere 
glaciation (Peterse et al., 2014). Rapid brGDGT temperature changes across the 
Younger Dryas and ~3.2 ka in Southeast China occurred synchronously with pollen 
assemblage changes over the last ~30,000 years in a peat sequence, and also 
showed asynchrony between temperature and precipitation proxies during the last 
deglaciation (Wang et al., 2017). A 4°C increase in mean annual air temperature was 
recorded by speleothem-TEX86 over the last deglaciation: the warming pre-dated 
Indian Summer Monsoon strengthening but was closely aligned with SST records 
(Huguet et al., 2018). A pattern of early Holocene warmth followed by cooling towards 
the present day has been recorded by brGDGTs in peats (NE China; Zheng et al., 
2018) and using the more recently developed fatty acid RAN15 index in a Chinese 
speleothem (Wang et al., 2018; Table 1). Given the challenges of recovering 
biomarkers from low organic carbon archives, and concerns about the relative 
influence of cave micro-environments on each record (Blyth et al., 2016; Baker et al., 
2019), the recovery of both GDGTs and the C15 and C17 fatty acids from speleothems 
shows huge potential for generating new terrestrial records of cave or air temperature 
(e.g., Li et al., 2011; Blyth et al., 2016; Baker et al., 2019). As speleothems can also 
yield fatty acid, n-alkanol and n-alkan-2-one distributions, interpreted to reflect 
changing soil micro-organism responses to Holocene climate change (Xie et al., 2003; 
Kalpana et al., 2021), there is further potential to consider ecosystem response to 
temperature change (see also Section 4.1), especially as analytical developments 
reduce sample sizes (e.g. Meckler et al., 2021).
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4. Reconstructing vegetation and hydrological change
Palaeovegetation and palaeohydrology records provide insights into drivers of climate 
change that impact precipitation/evaporation and terrestrial ecosystem response. 
Water availability is essential to the functioning of ecosystems and societies; therefore, 
long-term hydrological records also provide essential context for understanding 
changes in habitat and landcover, diets, agricultural practises, settlement dynamics 
and societal structures through the Quaternary. Different vegetation types have 
characteristic biomarker distributions and stable isotope ratios reflecting their 
biosynthetic pathways and biological responses to environmental conditions (Table 2, 
Section 2.2). When the biological source of the biomarkers is well-constrained, 
compound-specific isotope analysis (CSIA) has enabled the varying biological and 
environmental influences over 13C and D to be disentangled. CSIA has thus 
emerged as a powerful tool for reconstructing both past vegetation change and 
palaeohydrology (Castaneda and Schouten, 2011; Diefendorf and Freimuth, 2017; 
Holvoeth et al., 2019; Inglis et al., 2022).

4.1 Reconstructing vegetation using biomarker distributions
Plant-derived lipids were among the first to be characterised (Eglinton and Hamilton, 
1967), and remain among the most frequently applied biomarker tools owing to their 
prevalence in Quaternary sequences, their relative resilience to decay, ease of 
analysis, and the diversity of environmental information that they contain within their 
distributions and isotopic compositions. Lignin-derived compounds have also been 
targeted as relatively well-preserved plant remains (e.g. Castaneda et al., 2009b; 
reviewed in Jex et al., 2014).
Biomarker vegetation reconstructions commonly use distributions of n-alkyl 
compounds such as n-alkanes, n-alkanols, n-alkanoic acids and wax esters, but may 
also draw upon sterols, phenols and more specific compounds (defined in Table 2). 
Biomarker vegetation reconstructions are usually made at the family rather than the 
species level, so the taxonomic detail is lower than other vegetation proxies (pollen, 
plant macrofossils, and sedimentary ancient DNA (sedaDNA)). However, the relative 
resistance of n-alkyl compounds to decay has enabled vegetation reconstructions in 
samples with low levels of macro- and micro-fossil preservation, particularly in 
wetlands (e.g. McClymont et al., 2008a; Ronkainen et al., 2015). Biomarkers are also 
considered less susceptible to the long range transport processes that can complicate 
pollen analyses due to the hydrodynamic properties of the leaves they are derived 
from (Schwark et al., 2002).
Complexity is introduced where some plants produce n-alkane distributions that 
contain peaks in both longer and shorter chain lengths. For example, some Sphagnum 
species produce a dominant n-alkane chain length of C23, but also have elevated C31, 
which complicates the use of the C23/C31 ratio as a Sphagnum indicator (e.g., 
Andersson et al., 2011; Bingham et al., 2010; Bush and McInerney, 2013; Table 2). 
However, the presence of the sphagnum acid product, 4-isopropenylphenol, may offer 
a complementary assessment of the relative Sphagnum inputs to peat cores (e.g. 
Boon et al., 1986; McClymont et al., 2011). There may also be a bias caused by 
variable n-alkyl lipid production. For example, some conifer groups (e.g. Pinaceae) 
produce significantly less n-alkanes than broad leaf species, whereas others (e.g. 
Podocarpaceae) are similar (Diefendorf and Freimuth, 2017). As such, in catchments 
where pollen analyses indicate conifers as being the dominant vegetation type, 
biomarker interpretations should be part of a multi-proxy assessment: in northern
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Poland, this approach enabled subdecadal shifts in vegetation during the last 
deglaciation to be determined in detail (Aichner et al., 2018).
As different vegetation types have particular moisture preferences, plant biomarkers 
have been used to assess palaeohydrology by reconstructing the relative contributions 
of different vegetation types to sedimentary archives including lake sediments (e.g., 
Meyers, 2003; Castaneda et al., 2009b), marine sediments (Castaneda et al., 2009a), 
peats (e.g., Pancost et al., 2002; Ortiz et al., 2010; Zhou et al., 2010), and palaeosols 
(e.g., Zhang et al., 2006) (Table 2). Concurrent changes in the peatland C23/C29 n- 
alkane ratio (Sphagnum:vascular plants) and solar irradiance highlighted the sensitivity 
of northeast American hydroclimate to solar forcing, and its amplification by the 
Arctic/North Atlantic Oscillation since the mid-Holocene (Nichols and Huang, 2012). A 
key area of research has been the development of multiple records of vegetation 
change linked to changes in the Asian monsoon. Peatland aquatic:terrestrial 
vegetation reconstructions using n-alkanes identified Holocene intensification of the 
Indian Summer Monsoon in the Garwhal Himalyas, and in turn, regional heterogeneity 
in mid-late Holocene monsoonal conditions in the Indian sub-continent (Bhattacharya 
et al., 2021). Speleothem reconstructions of changing ecosystem dynamics have also 
been generated using a diverse suite of compounds, including n-alkanes (e.g., Xie et 
al., 2003; Blyth et al., 2007), sterols (e.g., Rousseau et al., 1995), fatty acids (e.g., 
Wang et al., 2019a) and lignin phenols (e.g., Blyth and Watson, 2009; Heidke et al., 
2019). For example, in a Chinese speleothem, ratios of long-chain n-alkanes and n- 
alkan-2-ones (from terrestrial vegetation) to shorter chain compounds (from soil 
organisms) recorded vegetation changes during the Last Glacial Maximum which 
could be linked to fluctuations in North Atlantic SSTs during the last deglaciation (Xie 
et al., 2003). However, biomarker distributions (and other proxies) tend to be used as 
part of the evaluation of biological and/or environmental controls over compound­
specific stable carbon and hydrogen isotope ratios, rather than in isolation (e.g. 
Castaneda et al., 2009a,b).

4.2 Reconstructing vegetation and hydrological change using compound­
specific stable isotope analysis
For higher plant biomarkers, stable carbon isotope analysis (<513C) of individual lipids 
provides a powerful tool to reconstruct past vegetation changes, because different 
photosynthetic pathways can be distinguished by their impact on plant tissue <513C (Liu 
et al., 2022). Thus, n-alkane <513C from trees and shrubs using the C3 (Calvin-Benson) 
pathway is on average >10 ppm lower than in n-alkane <513C from plants using the C4 

(Hatch-Slack) pathway, which are mainly tropical grasses (Castaneda et al., 2009a). A 
range of additional factors impact fractionation which may need to be considered in 
interpreting 13C records. including moisture availability (for C3 plants), ecological or 
physiological changes and past 13CO2 values (Diefendorf and Freimuth, 2016). A 
common nomenclature when presenting stable isotope ratios of individual lipids is 

13Clipid, where “lipid” is the chain-length or the name of the lipid which has been 
analysed.
The long-term reliability of the leaf wax <513C vegetation proxy has been demonstrated 
through comparisons with pollen records since the late Pleistocene (e.g., Tierney et 
al., 2010; Huang et al., 2006). Mixing models have successfully used <513C differences 
to reconstruct shifts in the relative abundance of C3 and C4 with the caveat that bias 
may also be introduced by variable n-alkyl lipid production (Section 4.1; Garcin et al., 
2014). In tropical Africa, <513Clipid records have reconstructed variable trees/shrubs (C3) 
and grasses (C4) extending back to the early Pleistocene from both lake and marine 
sediments (e.g., Castaneda et al., 2007; SchefuR et al., 2003). In Lake Challa, Africa, 

13C analysis of the C31 n-alkane ( 13C31) reconstructed a vegetation transition from C4- 
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dominated plants during the glacial period to a mix of C3/C4 plants ~16.5 cal. ka BP, 
which persisted during the Holocene and reflected the combined influences of 
increasing atmospheric CO2 concentrations and increasing monsoon rainfall 
(Sinninghe Damste et al., 2011). N-alkane, n-alkanol and 813C3i have recorded glacial- 
interglacial switches between steppe vegetation (C3) and warm season grasses (C4) at 
the Chinese loess plateau over the last 170 ka (Zhang et al., 2006). In Olduvai Gorge, 
orbitally-paced 13C31 variations demonstrated rapid and large shifts between closed 
C3 woodlands and more open C4 grasslands ~1.9 Ma, challenging previous 
reconstructions of relatively stable ecosystems in the early Pleistocene (Magill et al., 
2013). The ecosystem variations were likely linked to SST oscillations and monsoon 
strength, and provide a backdrop for the emergence and dispersal of Homo (Magill et 
al., 2013), as also suggested for more recent hominid migrations (e.g. Castaneda et 
al., 2009a).

By comparing n-alkane flux and 813C signals across multiple glacial-interglacial 
timescales offshore of the Angola Basin, a decoupling between enhanced dust 
deposition ~900 ka and orbital variability in 13C31 revealed the different impacts of 
trade wind response to northern hemisphere ice-sheet growth (driving dust) and 
vegetation responses to regional SST changes (SchefuR et al., 2003). Lignin phenol 
and n-alkane distributions alongside n-alkane 13C spanning the last 23 ka in Lake 
Malawi reconstructed millennial-scale variability in vegetation linked to wet conditions 
in Southeast Africa, and a dominance of higher plant signals in bulk 13C was 
confirmed (Castaneda et al., 2009b). However, caution is required where there may be 
mixed aquatic/terrestrial or local/regional inputs in the same archive: contributions of 
aquatic C27 and C29 n-alkanes to a lake sediment resulted in different 13C variations 
compared to the terrestrial leaf wax 13C31 in the same core (Liu et al., 2015); varying 
inputs of local and more widely-sourced leaf waxes to an estuarine sequence were 
identified by different 13C signals recorded depending upon the n-alkane chain length 
(Carr et al., 2015).

A powerful and direct proxy measurement of hydroclimate comes from <52H signatures 
of lipids derived from plants and algae, which track the <52H of their environmental 
water sources (reviewed by Sachse et al., 2012). D/H fractionation of meteoric water is 
influenced by temperature, precipitation source and amount, elevation and distance 
from the ocean, which results in a distinctive geographical pattern of lower 2Hprecipitation 

at increasing latitude (e.g., Craig and Gordon, 1965; Bowen and Revenaugh, 2003). 
Several environmental and biological processes contribute to further D/H fractionation 
between the source water and the lipids and can complicate the interpretation of 
palaeohydrological 2Hlipid signatures (Sachse et al., 2012; Sessions, 2016; Huang and 
Meyers, 2018): higher plant 2Hlipid are influenced by factors such as humidity, 
evapotranspiration rates, light, vegetation assemblage and plant physiological 
differences (e.g., Smith and Freeman, 2006; Hou et al., 2008; Liu and Yang, 2008; 
Yang et al., 2009; Kahmen et al., 2013), whilst algal 2Hlipid are influenced by metabolic 
processes, growth rate and phase, nutrients and temperature (e.g., Schouten et al., 
2006; Sachse and Sachs, 2008; Wolhow et al., 2009; Zhang et al., 2009). Salinity also 
influences D/H fractionation of both plant and algal lipids, facilitating the application of 

2Hlipid as a palaeosalinity proxy (discussed in Section 5).

Palaeohydrological 2Hlipid reconstructions developed from terrestrial and marine 
sediment archives (e.g., Sauer et al., 2001; Xie et al., 2000; Huang et al., 2004; 
SchefuR et al., 2005) have provided insight into diverse aspects of the Quaternary 
climate system and its impacts on palaeohydrology. Applications have included 
reconstructions of changes in the ITCZ and ENSO (e.g., Atwood and Sachs, 2014; 
Massa et al., 2021), the South Pacific Convergence Zone (e.g., Maloney et al., 2022), 
the Southern Annular Mode (e.g., van der Bilt, 2022); monsoonal activity (e.g, Seki et 
al., 2009; Basu et al., 2019), seismic activity (e.g,, Norstrom et al., 2018), insolation 
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forcing (e.g., Lupien et al., 2022) and meltwater dynamics (e.g., Aichner et al., 2022). 
By comparing terrestrial and aquatic n-alkane <52H signatures, variations in 
evapotranspiration of lake environments (e.g., Sachse et al., 2004, 2006), climate- 
driven lake level changes (e.g., Gunther et al., 2016; Saini et al., 2017; Aichner et al., 
2019) and seasonality of precipitation (e.g., Kjellman et al., 2020; Katrantsiotis et al., 
2021) have been determined. Another approach to disentangling the impact of lake 
water evaporation from precipitation changes is coupling <52H and <518O reconstructions, 
as demonstrated using 2H of n-alkanes and of 18O sugar biomarkers to develop a 
Late Glacial-Holocene palaeohydrological reconstruction from Himalayan Nepal (Hepp 
et al., 2015). Reconstructed palaeohydrology from 2Hlipid have also provided climatic
contexts for human evolution (as reviewed by Patalano et al., 2021) and human 
settlements (e.g., Sharifi et al., 2015; Balascio et al., 2020).
Care is needed to disentangle changes in n-alkane <52H that are driven by biological 
fractionation or vegetation change rather than hydroclimate (e.g., Liu et al., 2006; 
Wang et al., 2013; Griepentrog et al., 2019). This can be effectively achieved by 
reconstructing vegetation change using pollen, biomarker distributions, leaf wax <513C, 
or sedaDNA. At Meerfelder Maar, western Europe, the influences of vegetation change 
and hydroclimate were assessed using n-alkane distributions, pollen, and n-alkane 
6 2H, demonstrating that cooler and wetter conditions were established ~2.8 ka BP 
(Rach et al., 2017). Contrasting late Holocene <52Hdinosterol hydroclimate reconstructions 
from paired lakes in the western tropical Pacific showcases the importance of multi-site 
and multi-proxy data to distinguish between climate and other limnological drivers of 
hydrological change (Maloney et al., 2022). By combining n-alkane and n-acid 
distributions with n-alkane 13C and 2H, both vegetation ( 13C31 and 13C33) and
precipitation ( 2HC29) were recorded and could be separated (Wang et al., 2013).
Under arid conditions in the Qinling Mountains, China, a strong correlation between 
altitude and 2Hlipid (but not 13Clipid) highlights the potential to reconstruct and evaluate
palaeoelevation and its interaction with local hydroclimate (Liu, 2021). These studies 
demonstrate both the complexity but also the valuable and detailed environmental 
issue which can be recovered using CSIA.
Where temperature and hydroclimate reconstructions are available from the same 
archive, the synchroneity or links between both larger and smaller-scale climate 
drivers can be interrogated (e.g., Berke et al., 2014; Tierney et al., 2008; Munoz et al., 
2020; Stockhecke et al., 2021). In Lake Victoria, Africa, coherence between leaf wax 
6 2H hydroclimate and GDGT-inferred temperature records (Section 3) provided clear 
evidence for orbitally forced tropical climate since the Late Pleistocene, and 
highlighted the role of ENSO-related teleconnections in shaping climatic events such 
as the Younger Dryas (Figure 5) (Berke et al., 2012b). In Lake Elsinore (California), 
abrupt changes recorded by leaf wax <52H in the late glacial (32-20 ka) were 
independent of GDGT-inferred temperature shifts and were attributed to changes in 
storm tracks (Feakins et al., 2019). In a marine sediment core offshore Sumatra, leaf 
wax <52H challenged previous views of increased precipitation over the Indo-Pacific 
Warm Pool during the Last Glacial Maximum, which was attributed to regional 
differences in deglacial sea level and coastline configuration (Niedermeyer et al., 
2014). In turn, new Holocene oscillations in the Indian Ocean precipitation could be 
linked to rainfall in East Africa via a “precipitation dipole”, rather than by ENSO 
(Niedermeyer et al., 2014). These examples are important for demonstrating that we 
can extend our understanding of the late glacial climate instability beyond ice and 
ocean dynamics, to include hydroclimate and atmospheric variability, especially in the 
low latitudes.

5. Reconstructing salinity using lake and marine sediments
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Palaeosalinity reconstructions in the oceans and in lakes may provide an indication of 
changes in circulation (e.g. through changing water masses or currents) or 
hydroclimate (e.g. where enhanced freshwater inputs or increased evaporation can 
lead to lake salinity changes). In estuarine or coastal settings, salinity variations may 
also reflect changes in river discharge or the relative contribution of marine and 
freshwater as influenced by local changes in relative sea level. In this section we 
outline both biomarker distributions and CSIA which have detailed changes in salinity 
either in marine (Section 5.1) or lacustrine (Section 5.2) settings.

5.1 Sea-surface salinity as an indicator of circulation or sea-level changes
During the early UK37’-SST calibration work (Section 3.1), a potential salinity or polar 
water mass influence over the abundance of the haptophyte algae C374 alkenone was 
determined (Rosell-Mele, 1998; Bendle et al., 2005), noting that this alkenone is not 
part of the UK37’ index (Table 1). Subsequently, high C37:4 values have been used to 
track expansion of (sub)polar water masses in the Atlantic, Pacific, and Southern 
Oceans across glacial-interglacial and million-year timescales (McClymont et al., 
2008b; Martinez-Garcia et al., 2010). Elevated C37:4 alkenone abundances (low 
salinity) have identified meltwater from Heinrich event icebergs reaching the Iberian 
Peninsula (Martrat et al., 2007), and glacial meltwater reaching the North-east Pacific 
(Sanchez-Montes et al., 2020). Although not specific salinity markers, terrestrial- 
derived biomarkers in the iceberg-rafted debris-rich Heinrich layers (Madureira et al., 
1997; Rosell-Mele et al., 1997; van der Meer, 2007) confirmed the release of IRD and 
meltwater to the North Atlantic Ocean. Alternatively, large inputs of heavily altered 
carotenoids to southern Greenland, in the absence of IRD, suggested that an outburst 
flood occurred during the last interglacial (Nicholl et al., 2012).

More direct records of sea-surface salinity draw on the impact of changing salinity on 
D/H fractionation in seawater and during biosynthesis (e.g. Sauer et al., 2001;
Englebrecht and Sachs, 2005; Schouten et al., 2006). Cultured haptophyte algae show 
that 2Halkenone records salinity change (Engelbrecht and Sachs, 2005; Schouten et al., 
2006), and may even be used to identify the source regions of alkenones transported 
to sediment drift sites (Englebrecht and Sachs, 2005). An early application in the 
eastern tropical Pacific used instrumental records to show that 2Halkenone fluctuations 
recorded rainfall and river discharge in Columbia, and revealed reduced runoff during 
the last glacial compared to the Holocene (Pahnke et al., 2007). Combined 2Halkenone

and dinoflagellate cyst analysis showed substantial freshening of the Black Sea over 
the last ~3000 years, and refuted a hypothesis that salinity changes were responsible 
for changes to the haptophyte assemblage (van der Meer et al., 2008). In the South­
east Atlantic, a decoupling of SST and salinity across multiple deglaciations has been 
recognised, whereby salinity ( 2Halkenone) increased earlier than ocean warming (UK37’ 
index); both changes pre-date the onset of deglaciation and may even play a role in 
triggering or facilitating ocean circulation change during glacial-interglacial transitions 
(Kasper et al., 2014; Petrick et al., 2015). In the Mediterranean Sea, 2Halkenone

confirmed a large drop in surface salinity at the onset of a Last Interglacial sapropel, 
supporting the hypothesis that these organic-rich layers were the result of precession- 
driven monsoon rains disrupting the circulation (van der Meer et al., 2007). As for leaf 
wax 2H (Section 4.2), care is needed to assess whether salinity change is the primary 
signal being recorded by sedimentary 2Hlipid, since it could also be impacted by factors 
including variations in growth rate (Wolhowe et al., 2009) and the algal species/genera 
(Schouten et al., 2006; van der Meer et al., 2008; Nelson and Sachs, 2014).
In coastal systems, salinity change can be a reflection of relative sea-level change. A 
fall in C37:4 abundance (increased salinity) was used to identify relative sea-level rise in 
a Scottish isolation basin following the last deglaciation (Bendle et al., 2009). The 
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relative contribution of mangrove species biomarkers (e.g., taraxerol) to inter-tidal 
sediments has also been explored as an alternative indicator of sea-level change 
(Versteegh et al., 2004; Koch et al., 2011), but local influences on sedimentation 
patterns and biomarker degradation require further investigation (He et al., 2018; 
Sefton, 2020). Both n-alkane and taraxerol 2H in mangrove systems show potential 
for isolating a biological response to changes in salinity (Ladd and Sachs, 2015). A 
salinity impact on mangrove water-use efficiency was also indicated by n-alkane 13C 
in Australia (Ladd and Sachs, 2013). A challenge in low-latitude settings is to isolate a 
sea-level driven salinity change from a hydroclimate impact on precipitation or 
seawater 2H (e.g. Pahnke et al., 2007; Tamalavage et al., 2020). However, by 
combining pollen analysis with plant wax distributions and 2H from a mangrove 
system in the Bahamas, the time-varying influences of changes in vegetation 
assemblage and precipitation could be disentangled during the Holocene (Tamalavage 
et al., 2020). Multi-proxy analyses thus show great potential for evaluating the relative 
influences of vegetation change, hydroclimate, and sea-level driven salinity variability 
in mangrove environments.

5.2 Lake salinity as an indicator of hydrological change
As observed in the marine environment (Section 5.1), high abundances of the 
haptophyte-algae C37:4 alkenone have been recorded with low salinity in modern 
calibration studies of saline lakes (Liu et al., 2008, 2011; Song et al., 2016; He et al., 
2020) and in comparisons between lake reconstructions and instrumental data (He et 
al., 2013). Qualitative palaeosalinity reconstructions using C374 abundance in lake 
sediments have reconstructed late Holocene moisture fluctuations on the Northern 
Tibetan Plateau linked to solar irradiance (He et al., 2013), and identified the transition 
between marine and lake environments associated with ice-shelf expansion in North­
east Greenland (Smith et al., 2023). However, not all lakes have recorded the C374 

alkenone (e.g., Toney et al., 2010), and seasonal biases in alkenone production may 
influence the reconstructions (He et al., 2020). Combined analysis of alkenone 
distributions and phylogenetic analysis in a suite of saline Chines lakes (Yao et al., 
2022) indicates that C374 alkenone may reflect changing haptophyte groups rather than 
salinity, since the detected groups occupied different ecological niches. The presence 
of another salinity-sensitive indicator, the alkenone C38:3Me, was detected during times 
of haptophyte assemblage changes consistent with fresher surface waters in a 
Pleistocene record from Lake Van, Turkey (Randlett et al., 2014). Palaeosalinity 
indices, such as the RIK37 (ratio of isomeric ketones of C37 chain length) index37 (ratio 
of isomeric ketones of C37 chain length) index (Longo et al., 2016)), capture salinity- 
driven shifts in haptophyte species composition and are reliable salinity proxies in 
oligohaline environments (Longo et al., 2016).
Salinity is also reflected in lake water <52H and the biosynthesis of algal lipids: field 
calibration laboratory culture studies have demonstrated that the salinity is inversely 
related to the D/H fractionation of algal lipids (e.g., Sessions et al., 1999; Schouten et 
al., 2006; Sachse and Sachs, 2008; Schwab and Sachs, 2011; Ladd and Sachs, 2012; 
Nelson and Sachs, 2014; Englebrecht and Sachs, 2015; see Section 4.2 for 
discussions of other controls on <52Hlipids). Mid-Holocene changes to the Indian Summer 
Monsoon have been detected using biomarker <52H in a saline-alkaline lake in the core 
‘monsoon zone’ of central India (Sarkar et al., 2015): more enriched <52H in terrestrial 
leaf waxes and cyanobacteria, alongside increased abundance of the biomarker 
tetrahymanol (generated under saline conditions; Romero-Viana et al., 2012) 
reconstructed increased salinity and a lowering of lake levels after 6 cal ka BP (Sarkar 
et al. 2015).
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Archaeal GDGTs have also been used as palaeosalinity indicators based on ratios of 
archaeol, a biomarker for hypersaline archaea, and caldarchaeol, a cosmopolitan 
isoGDGT that is produced across a range of salinity conditions. The Archaeol and 
Caldarchaeol Ecometric (ACE) index (Turich and Freeman, 2011) has since been 
used as a qualitative lacustrine palaeosalinity proxy, showing that salinity increased 
due to a reduced water balance during periods of higher late glacial temperatures in 
southern California (Feakins et al., 2019). However, a study of 55 lakes in mid-latitude 
Asia has identified a threshold response in the ACE index, which suggests that it may 
only be effective in high lake salinity ranges (60,000-100,000 mg L-1) (He et al., 2020).

6. Reconstructing changes in sea ice extent
Early identification of elevated concentrations (>5-10%) of the abundant haptophyte 
algae C37:4 alkenone in high-latitude marine samples suggested that low temperatures 
and/or low salinity in (sub)polar waters were important (see Section 5.1). 
Subsequently, DNA analyses have demonstrated that high C37:4 abundances can be 
more specifically linked to sea ice-associated haptophyte algae (Wang et al., 2021b). 
With further testing, this new evidence offers the potential for both sea ice and SST 
information to be simultaneously retrieved from alkenone data in the high latitudes.

Two related sea-ice biomarker proxies have been more extensively developed: 
specific highly branched isoprenoids (HBIs) usually synthesized in spring by particular 
ice-associated diatoms (see detailed review by Belt, 2018). In the Arctic, the mono­
unsaturated alkene containing 25 carbon atoms is used (“IP25”, Belt et al., 2007) but 
this is not present in the Southern Ocean. Instead, the di-unsaturated HBI (“IPSO25”) is 
applied (Belt et al., 2016) (Table 3). Extensive evaluation of the HBIs, especially IP25, 
against diatom proxy data gives confidence in their ability to reconstruct sea-ice 
changes (Masse et al., 2008; Weckstrom et al., 2013). 1PSO25 is a relatively specific 
environmental indicator, reflecting the tendency for its producer Berkeleya adeliensis, 
to live in platelet ice and the bottom layer of land-fast ice (Belt et al., 2016; Riaux- 
Gobin et al., 2000), and thus shows a strong signal of coastal production (Masse et al., 
2011; Rontani et al., 2019). However, since HBIs have also been determined beyond 
the continental shelf edge, in the Scotia Sea (Collins et al., 2013); further investigation 
is required to fully evaluate the interpretation of IPSO25 beyond the coastal regions.

A challenge for both HBI proxies is how to interpret the sea ice signal when IP25 or 
IPSO25 is absent. Absence could reflect compound degradation within the sea ice, 
water column or sediments (Belt, 2018), although recent work has confirmed IP25 in 
pre-Quaternary sediments (Knies et al., 2014; Clotten et al., 2018). Alternatively, 
productivity by ice-dwelling diatoms may be minimal or absent under permanent sea 
ice cover if photosynthesis is restricted (Belt, 2018). To address the latter concern, the 
relative abundance of IP25 or IPSO25 can be compared with open-ocean productivity 
biomarkers (e.g., HBI III or brassicasterol for diatoms, dinosterol for dinoflagellates). 
Revised “PIP25” or “PIPSO25” indices have been proposed to describe this ratio (Table 
3): an absence of both the sea-ice and open-ocean biomarkers yields a PIP(SO)25 

value of zero (“perennial sea ice”), whereas open-ocean only biomarkers yield a 
PIP(SO)25 value of 1; values in between reflect seasonal sea ice presence (Belt & 
Muller, 2013).
IP25 records have been important in assessing the role of sea ice in past climate 
changes. Relatively short historical sea ice records have been extended (Tesi et al., 
2021). By filling in intervals of sparse historical data, abrupt changes in sea ice have 
been reconstructed during the last millennium (Masse et al., 2008). Millennial-scale 
fluctuations in spring sea-ice cover occurred to the north of Iceland during the 
Holocene and the last glacial-interglacial cycle (e.g., Muller et al., 2009; Hoff et al., 
2016; Stein et al., 2017; Xiao et al., 2017; Sadatzki et al., 2020), including contrasting 
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sea-ice conditions between the early/mid and late Younger Dryas close to northern 
Norway (Cabedo-Sanz et al. 2013). Regional differences between the timing of 
expanded sea-ice cover were proposed to have contributed to millennial-scale 
variability in deep-water formation across the deglaciation (Figure 6) (Xiao et al., 
2017). Longer-term, an increase in Bering Sea sea-ice cover and development of the 
seasonal advance and retreat of the sea ice margin occurred alongside the mid­
Pleistocene transition ~1 Ma, which might have been important for influencing ice­
sheet growth and increased deep ocean storage of carbon during glacial stages 
(Detlef et al., 2018). The transition from the warm Pliocene epoch into the Quaternary 
also saw an expansion of Arctic sea ice alongside the intensification of northern 
hemisphere glaciation ~2.7 Ma (Knies et al., 2014; Clotten et al., 2018). Although 
preservation over long timescales is promising, concerns have also been raised about 
the inherent instability of HBIs, meaning caution needs to be applied to interpretation 
of their presence/absence (Sinninghe Damste et al., 2007).

IPSO25 records have been integrated within several multi-proxy studies. Expanded 
seasonal sea ice cover occurred during the last glacial stage in the Scotia Sea (Collins 
et al., 2013), and millennial-scale evolution of perennial and seasonal sea ice was 
recorded over the last deglaciation in the Amundsen Sea (Lamping et al., 2020). 
Multiple IPSO25 records detail expansion and retreat of sea ice during the Holocene 
(Barbara et al., 2010, 2016; Etourneau et al., 2013; Denis et al., 2010; Tesi et al., 
2020; Ashley et al., 2021; Johnson et al., 2021). High-resolution analyses of the last 
~400 years have shown that IPSO25 can identify trends and cyclicity in seasonal and 
perennial sea ice cover, and links to ocean or atmospheric forcings (e.g., Campagne et 
al., 2015; Barbara et al., 2016; Vorrath et al., 2020). Differences in Holocene sea-ice 
histories between sites likely indicates the influence of local and regional circulation 
systems (Lamping et al., 2020; Vorrath et al., 2020), which are also expressed in the 
instrumental record (e.g., Parkinson, 2019).

7. Tracing biological productivity and biogeochemical cycling
Biomarker proxies implicitly record the flux of organic matter between different 
reservoirs of the Earth system. In this section, we outline biomarkers which have been 
used qualitatively to explore biogeochemical cycles in more detail by either detecting 
specific environmental conditions (e.g., biomarkers for methanogenic or 
methanotrophic micro-organisms) or for tracing changes in productivity and 
degradation (e.g., fluxes of biomarkers linked to specific producers).

7.1 Reconstructing biological productivity in lakes and the oceans
The source-specific nature of biomarkers allows for groups of producers to be traced in 
sedimentary systems, and to assess whether their productivity has changed in the past 
(Tables 2 and 3). When comparing the relative abundances of productivity markers, it 
is important to assess the potential impacts of bioturbation, remineralisation and 
degradation of organic matter; these can be rapid and effective in oxic settings and 
could bias the target productivity signal (e.g., Leavitt, 1993; Arndt et al., 2013; Jessen 
et al., 2017). Intact pigments are particularly vulnerable to oxidation, UV radiation and 
associated processes of degradation, and usually have very low preservation in 
marine sequences (Reuss et al., 2005; McGowan, 2013). Better preservation may be 
recorded in lake sediments, but still more successfully with anoxic water columns, or 
with minimal sinking depths and benthic algae coverage (Leavitt, 1993; Hodgson et al., 
2005; McGowan, 2013).

Pigment analysis has detected lake productivity oscillations in central Italy linked to 
warm-cold oscillations in the North Atlantic between ~15.0 and 28.0 cal. ka BP
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(Chondrogianni et al., 2004), and changes in lake level linked to the onset of the 
African Humid Period in Ethiopia (Loakes et al., 2018). In East Antarctica, 
recolonisation and succession of marine flora has been determined as the ice sheet 
and sea ice interacted through the Holocene (Hodgson et al., 2003). A distinctive 
pigment is isorenieratene (Table 3), a carotenoid pigment synthesised by green sulfur 
bacteria, making it a biomarker for a relatively uncommon but specific environment: 
photic zone euxinia (both anoxic and sulfidic) (Sinninghe Damste et al., 2001). 
Isorenieratene has been instrumental in demonstrating that euxinic conditions 
developed during the Last Interglacial in the Mediterranean Sea associated with the 
formation of sapropels (Marino et al., 2007). Significantly, the co-recorded proxy data 
illustrated the role of increased runoff in altering Mediterranean circulation (Section 
5.1) (Marino et al., 2007).

It is more common to find pigment degradation products in marine sediments, often 
alongside lipid biomarkers for other producers or degradation pathways (Table 3). 
Chlorophyll degradation products, chlorins (Section 2.2), have been used to 
reconstruct export production i.e., the organic matter which is removed from the 
surface ocean and stored longer-term in the deep ocean or sediments (e.g. Petrick et 
al., 2018). Chlorins, alkenones, sterols and diols have reconstructed intensification or 
shifts in export production across multiple glacial-interglacial cycles linked to coastal 
upwelling systems (Petrick et al., 2018), highly productive oceanographic fronts 
(Cartagena-Sierra et al., 2021), sea-ice extent (Fahl and Stein, 1999) and changing 
nutrient inputs (e.g., Martinez-Garcia et al., 2011; Sanchez-Montes et al., 2022). In the 
Subantarctic Atlantic Ocean, a consistent pattern of elevated higher plant n-alkanes 
during glacial intervals aligned closely with dust peaks in Antarctic ice cores (Martinez- 
Garcia et al., 2009). In turn, colder SSTs and higher primary productivity (both 
reconstructed from alkenones) demonstrated close connections between ocean and 
atmosphere circulation, nutrient supply and potential glacial-stage CO2 drawdown by 
the ocean through the Quaternary (Martinez-Garcia et al., 2011). A recent global-scale 
analysis of seafloor sediments flags the potential that alkenone concentrations may be 
dominated by primary productivity, and thus provide a potentially quantitative 
reconstruction of production over Quaternary timescales (Raja and Rosell-Mele, 2021).

7.2 Reconstructing sediment, organic matter and nutrient cycling
The presence of terrestrial biomarkers in marine sediments can enable an assessment 
of the links between ocean circulation and environmental change onshore as detailed 
above, but may also give insights into the transport pathways of terrestrial organic 
material and identify important connections between nutrient cycles and productivity 
alongside palaeohydrology. For example, flood events have been identified in 
estuarine sediments by increases to the C31/C17 n-alkane ratio (Meyers, 2003), which 
were consistent with historical records of the Minjiang River, China, since the 1800s 
CE (Wang et al., 2014). A “terrestrial to aquatic organic matter n-alkane ratio” (TAR, 
Table 3) has been used to record both dust and glacier-derived sediment inputs to the 
North Atlantic and Gulf of Alaska across multiple glacial-interglacial cycles (Naafs et 
al., 2012; Lang et al., 2014; Muller et al., 2018) with potential impacts on marine 
productivity (Muller et al., 2018; Sanchez-Montes et al., 2020). Biomarker fingerprinting 
of sediments eroded by the circum-Atlantic ice sheets has added to this detail, and 
determined the asynchroneity of IRD or meltwater release between different ice sheets 
(e.g. Stein et al., 2009; Rosell-Mele et al., 2011; Naafs et al., 2013; Hefter et al., 2017).
As well as tracing these land-ocean and land-lake transfers of organic matter, and 
describing or quantifying lake/ocean export productivity (Section 7.1), biomarkers can 
be used to trace biogeochemical cycling in two ways: (1) the presence of biomarkers 
generated under specific environmental conditions, e.g., anoxic settings; (2) the 
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presence of diagenetic products of the original biosynthesised molecule, where the 
environmental controls on diagenesis are known. Although used to qualitatively 
describe organic matter formation, transport and reworking, there is emerging potential 
to consider biomarker concentrations or transformations as a way to quantify carbon 
burial and biogeochemical interactions including nutrient and oxygen availability.

In peatlands, biomarker tracers of biogeochemical cycling have been explored, due to 
the close links between peat water table depth, oxygen availability, and the associated 
generation of greenhouse gases. For example, elevated concentrations of the 
anaerobic archaea-produced archaeol reflect rising water tables in peat sequences 
(Pancost et al., 2011) or enhanced methanogenesis during warm periods of the late 
Pleistocene and Holocene in Siberian permafrost (Bischoff et al., 2013). Methanogens 
are also likely the main source of isoGDGT-0 in peats (Basiliko et al., 2003, Pancost 
and Sinninghe Damste, 2003); by comparing iso-GDGT-0 and archaeol accumulation 
rates in a 16 kyr old peat sequence from Hani, China, the long-term link between 
elevated levels of methanogenesis, high temperatures and high summer insolation 
was demonstrated (Zheng et al., 2019).
Biohopanoids are largely biomarkers of aerobic bacteria (Rohmer et al., 1992; Talbot 
et al., 2016b), and include relatively simple C30 hopanoids (e.g. diploptene), or more 
complex versions with additional side chains (bacteriohopanepolyols or BHPs; 
reviewed by Kusch and Rush, 2022). BHPs have a wide range of sources including 
methanotrophs, heterotrophs and phototrophs (reviewed by Talbot et al. 2016b; Inglis 
et al., 2018; Kusch and Rush, 2022). Quaternary applications of BHPs in the Congo 
fan have demonstrated the correlation between elevated aerobic methane oxidation in 
the wetlands onshore and late Quaternary interglacial climates (Talbot et al., 2014) as 
well as a longer-term shift ~1 Ma (Spencer-Jones et al., 2017). Variations in archaeol 
and diploptene <513C values suggested links between the strength of the Asian 
monsoon and fluctuations in atmospheric methane concentrations (Zheng et al., 2014). 
Low <513Cdiploptene have also traced the presence and small-scale spatial heterogeneity 
of methane oxidising bacteria (MOB), and therefore methane oxidation, in Alaskan 
thermokarst lakes (Davies et al., 2016).
Long-term insights into the nitrogen cycle have been developed using the 
bacteriohopanetetrol stereoisomer (BHT-x), a tracer of anaerobic oxidation of 
ammonium (anammox) (Rush et al., 2014). For example, BHT-x demonstrated the link 
between higher temperatures and the intensification of oxygen deficiency zones in the 
Late Pleistocene in the Gulf of Alaska (Zindorf et al., 2020). This study indicated that, 
unlike redox-sensitive trace metals, BHT-x is not impacted by dilution effects of high 
sedimentation rates. Ammonium oxidation has also been reconstructed using ratios of 
isoGDGT [2]/[3], indicating the presence of the archaea Thaumarchaeota: in the South 
China Sea, interglacials were shown to be characterised by concurrent increases in 
ammonium oxidation and <515N-inferred N2 fixation (Dong et al., 2019).

Transformation of the original biosynthesised compounds into recognisable products, 
under specific redox conditions, have also allowed changes in aerobic/anaerobic 
conditions to be traced in a range of environments. Interlinked changes to pH and 
water table explained the presence and down-core variations of an unusual hopanoid 
(the C31 17a,2ip(H)-homohopane) in Holocene peats, which is usually only found in 
thermally mature organic matter (Pancost et al., 2003; McClymont et al., 2008a; Inglis 
et al., 2018). Transformation of sterols into stanols at the interface between oxic and 
anoxic conditions (Wakeham, 1989; Naafs et al., 2019) has also been used to 
qualitatively assess Holocene changes in peat redox conditions and water table depth 
(Naafs et al., 2019). In a marine sediment core, the different resistance to oxygenation 
of a plant wax n-alcohol and n-alkane was exploited to identify bottom current strength 
and thus duration of organic matter exposure to oxygenated waters across multiple 
millennial-scale and glacial-interglacial cycles (Martrat et al., 2007).
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To assess the impacts of biogeochemical cycles on atmospheric CO2, the 813Caikenone 

biomarker proxy showed early promise, drawing on the fractionation of stable carbon 
isotopes during haptophyte photosynthesis (Bidigare et al., 1997). However, recent 
work has demonstrated that CO2 uptake by haptophytes is different at low CO2 

concentrations (Badger et al., 2019), which requires careful interpretation of alkenone- 
based CO2 reconstructions during the Quaternary.

8. Sedimentary records of humans and animals in Quaternary landscapes
Lipid biomarker analyses of sedimentary archives are increasingly used to 
characterise the presence, activities and impacts of humans and animals in the 
landscape, either as independent reconstructions or as complementary evidence in 
support of archaeological and palaeoecological anthropogenic reconstructions. 
Biomarkers also offer an alternative approach when levels of preservation are low or 
where archaeological excavation is not possible due to time, financial or logistical 
constraints (discussed in Brown et al., 2022). Biomarkers in archaeological remains 
contain a wealth of information about the origin of artefacts and deposits and their 
associated use (reviewed by Evershed, 2008); however, here we focus on 
sedimentary biomarker proxies that provide both direct and indirect evidence for the 
presence and environmental impacts of human and animals. For more information, we 
direct readers to the dedicated review of anthropic biomarkers in sediment archives 
(Dubois and Jacob, 2016).

8.1. Faecal biomarkers as direct sedimentary indicators of human and animals
Faecal steroid biomarkers (50-stanols, bile acids), which are produced in the digestive 
tracts of mammals and deposited via excrement into the environment, present an 
opportunity to directly identify both animals and humans from sedimentary archives 
(reviewed by Bull et al., 2002). These compounds are well-preserved within 
sedimentary archives over Holocene timescales (e.g., Simpson et al., 1998; D’Anjou et 
al., 2012; White et al., 2019; Schroeter et al., 2020; Brown et al., 2021). Different 
species produce different diagnostic distributions of faecal steroids due to differences 
in diets, digestive processes and gut bacteria (e.g., Leeming et al., 1996). Steroid 
ratios have therefore been used to distinguish between source organisms in 
investigations of modern faeces and archaeological deposits (e.g., Prost et al., 2017; 
Zocatelli et al., 2017; Shillito et al., 2020; Kemp et al., 2022), including through 
multivariate statistics analysis (Harrault et al., 2019). The presence of 50-stanols is not 
conclusive evidence of faecal deposition, since small amounts can be produced 
through the reduction of cholesterol sedimentary environments (e.g., Gaskell and 
Eglinton, 1975; Bethel et al., 1994), however the application of sterol ratios and the 
tandem analysis of sterols and bile acids can be used to confirm faecal input and 
improve faecal source assignment (e.g., Prost et al., 2017). Identification of faecal 
sources are improved by characterising steroid distributions of local reference dung to 
correct for within species variability of sterol threshold values (Larson et al., 2022) and 
reference soils to account for in situ sterol transformation (e.g., Bull et al., 2002; Birks 
et al., 2011).

Interactions between seabirds and their environment have been particularly effective 
using faecal steroid (reviewed by Duda et al., 2021). Relationships between penguin 
colonies and vegetation on the West Antarctic Peninsula over the last 2400 years have 
been retrieved from lake sediments (Wang et al., 2007). Local declines of northern 
common eider (Somateria mollissima borealis) populations in Arctic Canada and 
Greenland have been linked to changes in sea-ice concentrations during the Little Ice 
Age (Hargan et al., 2019), and Holocene little auk population changes have been 
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linked to the availability and stability of open waters (polynyas) in the sea ice (Ribeiro 
et al., 2021).
New insights into the presence and impacts of humans in past landscapes have 
occurred where faecal steroids have refined the timings of human arrival and 
settlement activities in locations such as northern Norway (D’Anjou et al., 2012), the 
North Atlantic Faroe Islands (Curtin et al., 2021), the Azores Archipelago (Raposeiro et 
al., 2021); the Pacific Cook Islands (Sear et al., 2020) and New Zealand (Argiriadis et 
al., 2018). Faecal steroids have also reconstructed the presence of humans and/or 
livestock (e.g., White et al., 2018; Vachula et al., 2019; McWethy et al., 2020; Elliott 
Arnold et al., 2021; Keenan et al., 2021; Ortiz et al., 2022), characterised long-term 
animal husbandry practices and land use (e.g., Mackay et al., 2020; Schroeter et al., 
2020; Birk et al., 2021), and the diets of extinct species (e.g., van Geel et al., 2008; 
Sistiaga et al., 2014). Comprehensive modern characterisation of east African 
megafauna also illustrates the potential for faecal sterol applications to inform 
conservation palaeobiology (Kemp et al., 2022).
Robust sedimentary faecal biomarker identifications of human presence in past 
landscapes are developed in combination with other sedimentary markers of 
anthropogenic activity such as pollen, charcoal, fire-derived lipid biomarkers (e.g., 
D’Anjou et al., 2012; Battistel et al., 2016; Section 8.2), and/or domesticated mammal 
sedaDNA (e.g., Brown et al., 2021, 2022), and are integrated with existing historical 
and/or archaeologyical context. Current uncertainties associated within-species 
variability of steroid distributions, contributions from environmentally transformed 50- 
stanols, and steroid transportation, storage, secondary deposition and degradation 
processes (e.g., Birk et al., 2021; Keenan et al., 2021; Davies et al., 2022; Lawson et 
al., 2022), present a range of opportunities for further analysis to refine steroid 
identification of faecal sources and enhance their applications as anthropogenic and 
mammalian tracers in Quaternary science.

8.2. Biomarkers of burning and agricultural activity as indirect indicators of 
human activity
Pyrogenic biomarkers can enhance understandings of fire histories since their 
signatures and concentrations record information on the fuel type and conditions 
during the fire such as burn intensity and moisture content, as demonstrated through 
modern burning experiments (e.g., Oros and Simoneit, 2001; Karp et al., 2020) and 
palaeo comparisons with macro- and micro-charcoal (e.g., Elias et al., 2001;
Schreuder et al., 2019a).

Polycyclic aromatic hydrocarbons (PAH) are produced during the incomplete 
combustion of biomass (reviewed by Richter and Howard (2000) and Lima et al. 
(2005)). PAH compound distributions represent combustion conditions, vegetation fuel 
type and transport pathways (Karp et al., 2020) and can be used to distinguish 
between local and regional burning events (e.g., Vachula et al., 2022). Many PAHs 
can be atmospherically transported across thousands of kilometres, although some 
compounds, such as benzo[a]pyrene have lower modelled half-life transport distances 
of ca. 500km (Halsall et al., 2001). PAHs are produced by a wide range of burn 
temperatures (ca. 200 - 700 °C; Lu et al., 2009), but higher concentrations are 
produced under high intensity burning temperatures of 400 - 500 °C and during the 
combustion of woody rather than grassy vegetation (Karp et al., 2020). Palaeo-PAH 
records may therefore be biased towards wildfires and sensitive to changes in fuel 
type and/or fire regime. Whilst PAHs can be released from petrogenic sources (e.g., 
Wakeham et al., 1980), pyrogenic inputs can be identified using relative distributions of 
PAHs (e.g.,Stogiannidis and Laane, 2015) or through comparisons with other fire 
proxies (e.g., Ruan et al., 2020; Tan et al., 2020). Long-term records of PAH fire 
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histories have tracked human settlement and activity in the late Holocene in northern 
Norway (D’Anjou et al., 2012), East Africa (Battistel et al., 2016) and New Zealand 
(Argiriadis et al., 2018) and characterised the advent of hominin pyrotechnology in the 
Middle Palaeolithic (Brittingham et al., 2019). PAHs from lake sediments have also 
tracked industrial emissions such as combustion of coal (e.g., Meyers, 2003) and other 
fossil fuels (e.g., Guo et al., 2022); anthropogenic pollution contributions must be 
considered if using PAHs to reconstruct fire histories over the industrial period.

Levoglucosan and its isomers (mannosan and galactosan) are monosaccharide 
anhydride (MA) compounds that are specific palaeo-fire proxies (reviewed by 
Simoneit, 2002 and Bhattarai et al., 2019) since they are exclusively formed during the 
combustion of cellulose (Simoneit et al., 1999) during burn temperatures of ca. 150 - 
350 °C (e.g., Kuo et al., 2008). MAs can travel hundreds to thousands of kilometres 
transported by wind and rivers (e.g., Mochida et al., 2010; Zennaro et al., 2014).
Ratios of levoglucosan, mannosan and galactosan can reveal the type of biomass 
involved in burning events (e.g., Fabbri et al., 2009; Kirchgeorg et al., 2014) and 
combustion conditions (e.g., Kuo et al., 2011). Lake sediment comparisons of 
macroscopic charcoal and MAs from The Mayan Lowlands, Guatemala, demonstrated 
the advances of combining these fire proxies to enhance understanding of palaeo fire 
regimes at different spatial scales (Schupbach et al., 2015). Offshore levoglucosan 
records have confirmed vegetation changes associated with the late Quaternary 
megafaunal extinction in Southeastern Australia (Lopes dos Santos et al., 2013b) and 
demonstrated increased burning linked with vegetation change and human settlement 
in sub-Saharan Northwest Africa 60-50ka (Schreuder et al., 2019b). MA records from 
ice cores have been successfully applied to track post-Last Glacial Maximum and 
Holocene fire intensity and burning type at regional to semi-hemispheric scales (e.g., 
Zennaro et al., 2014; Battistel et al., 2018; Segato et al., 2021; Chen et al., 2022). 
Combustion-derived derivatives of lignin phenols, monosaccharide molecules and 
diterpenoids are also major components of smoke particulate matter and can be 
detected in sediment archives (Oros and Simoneit, 2001).
Evidence of crop cultivation and processing can characterise the timings of human 
presence and the types of activities taking place in past landscapes. Although not 
every cultivar has known specific lipid biomarkers, millacin is a marker of the 
introduced broomcorn millet in well-defined botanical settings (e.g., Jacob et al., 
2008a,b; Bossard et al., 2013). Fluxes of millacin detected in lake sediments have, for 
example, traced the introduction, intensification and failure of millet cultivation since 
the Bronze Age in the French Alps, and comparisons with contemporary 
palaeohydrological reconstructions have demonstrated climatically-driven downturns in 
millet cultivation in the Hallstatt period (Jacob et al., 2008a). Other cultivar biomarkers 
include cannabinol, a marker of hemp that can be used to identify processing activities 
(retting) from sediment archives (e.g., Lavrieux et al., 2013; Schmidt et al., 2020; Rull 
et al., 2022), and palmitone, a marker of Colocasia esculenta Schott (taro) (e.g., 
Krentcher et al., 2019).

9. Conclusions and future outlook
Biomarkers have emerged as valuable parts of the Quaternary science toolkit, due to 
both quantitative and qualitative insights into past environmental changes, and 
because multiple biomarkers (and thus multiple environmental signals) can be 
recovered from single samples. Analytical developments and improved understanding 
of the processes underpinning the wide range of biomarker proxies outlined here have 
also led to data that has been both novel and complementary to more established 
Quaternary science approaches.
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The major impacts of biomarker analyses have so far come from the quantification of 
temperature changes, and detailed assessments of the interactions between 
vegetation change and hydroclimate. The results are important in spanning a wide 
range of timescales, from annual/decadal through to the long-term evolution of 
Quaternary climates at glacial-interglacial and longer timescales. In considering future 
climate projections, both the quantitative and qualitative insights gained from 
biomarker reconstructions have enabled data-model comparison and data-model 
assimilation to be undertaken across a wide range of timescales, including the pre­
Quaternary (Tierney et al., 2020; Masson-Delmotte et al., 2021). In addition to 
providing valuable palaeoclimatic insights, biomarkers are increasingly being used to 
directly identify human impacts on the environment both pre-dating and through the 
Industrial era, thereby providing essential long-term context to advance our 
understanding of the resilience of ecosystems and societies
Continued efforts to better constrain quantitative calibrations of temperature, salinity, 
sea ice and precipitation will further enhance our biomarker reconstructions.
Community-wide collaborations have been important for advancing our understanding 
and application of palaeo-environmental proxies and their uncertainties (e.g. Schouten 
et al., 2013 for TEX86; Belt et al., 2014 for IP25); similar approaches could assist with 
advancing our understanding of more recently developed or more qualitative 
biomarker proxies (e.g. anthropogenic markers). With the increasing application of 
(seda)DNA approaches to identify and understand the biomarker producers (e.g., 
Wang et al., 2019b; Theroux et al., 2020), more nuanced interpretations of past 
temperature or other environmental changes are also likely to result from reduced 
uncertainty estimates and through advances in our understanding of signals related to 
key producers and their potentially varied responses to factors including seasonality 
and nutrient availability. There is therefore the potential to add to the rich 
environmental information provided by both biomarkers and other geochemical and 
palaeoecological proxies, with new assessments of biogeochemical cycling, sea ice 
evolution, and human-environment interactions, as well as new data on how that 
organic matter has been preserved, recycled, and transported through palaeo­
environments.

In this review, we have outlined some of the many, diverse ways in which biomarkers 
have advanced understandings of Quaternary environments. The biomarker toolkit is 
continually evolving, aided by advances in instrument capabilities which are presenting 
new opportunities to analyse smaller sample sizes and a greater diversity of 
Quaternary archives. For example, improvements in detection limits facilitated by high 
resolution mass spectrometry present opportunities to expand the suite of 
palaeoenvironmental proxies that can be analysed from a single sample, and extend 
applications where sample sizes are limited and/or biomarker concentrations may be 
low (e.g., varved sediments, ice cores and/or highly resolved sedimentary records). In 
turn, untargeted analysis of environmental mass spectrometry spectral data, such as 
hierarchical clustering (e.g., Bale et al, 2021) and the application of information theory 
and molecular networking (e.g., Ding et al., 2021), yields highly detailed molecular 
information, with the potential to provide unprecedented levels of detail about 
environmental contributions as well the identification of yet unknown biomarkers, that 
may prove to be of ecological and environmental significance. In addition, there is 
great potential to expand compound-specific analyses, which have already yielded 
detailed insights into past hydroclimate, productivity, and CO2, by extending the range 
of biomarkers that can be analysed. A rapidly advancing area of biomarker research is 
radiocarbon analysis of individual lipids, or groups of lipids, which has already 
demonstrated that different pools of organic matter are being (re)worked and 
transported through river systems today (e.g., Galy & Eglinton, 2011; Eglinton et al., 
2021; Feng et al., 2013) and in the past (Bliedtner et al., 2020). Biomarker radiocarbon 
analysis shows great potential to not only enhance our understandings of Quaternary 
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sedimentary environments and processes, but also to improve chronological controls 
through compound-specific radiocarbon analysis. Biomarkers have therefore made a 
wealth of contributions to Quaternary science, and the continued advances in this field 
of research offer many opportunities to extend our understandings of Earth systems in 
the past, present, and future.
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Tables

Table 1. Biomarker proxies for aquatic temperatures. For the equations underpinning 
the listed indices please see the original publications.

Proxy Source Calibration Uncertainty Reference
Marine sea-surface temperatures (SSTs)
UK37’ Ratio of long- 

chain (C37) 
ketones 
(alkenones) 
synthesised by 
haptophyte algae

Linear core- 
top calibration, 
mean annual
SST

Includes all three C37 

alkenones but potential 
influence of salinity 
and/or sea ice over C37:4

Brassell et al. (1986)

Rosell-Mele (1998)

UK37’ 
index

Ratio of long- 
chain (C37) 
ketones 
(alkenones) 
synthesised by 
haptophyte algae

Linear, non­
linear and 
Bayesian 
calibrations, 
generally to 
mean annual 
SST (core-top) 
or growth 
temperature 
(cultures).

Core-top calibration 
uncertainty 1.5 °C (10; 
linear), 1.4 °C (10, 
<23.4 °C; BAYSPLINE), 
up to 4.4 °C (1o, at 29.4 
°C; BAYSPLINE). 
Non-linearity and 
seasonal bias at high 
latitudes in Bayesian 
calibrations.

Linear: Prahl and 
Wakeham (1987)

Linear: Muller et al. 
(1998)

Non-linear: Conte et 
al. (2006)

Bayesian: Tierney and
Tingley (2018)

UK38Me’ 
index

Ratio of long- 
chain (C38) 
ketones 
(alkenones) 
synthesised by 
haptophyte algae

Linear core- 
top calibration, 
mean annual
SST

Core-top calibration 
uncertainty 1.84 °C 
(including sea ice 
samples) or 1.30 °C 
(excluding sea ice 
samples).

Novak et al. (2022)

TEX86 

index
Ratio of glycerol 
dialkyl glycerol 
tetraethers 
(GDGTs) 
synthesised by 
Thaumarchaeota

Linear, non­
linear and 
Bayesian 
calibrations, to 
mean annual 
SST or to 
mixed layer 
temperatures 
(core-tops).

Potential integration of 
mixed-layer 
temperatures not just 
SST.

Non-linear calibrations 
not recommended due 
to observed biases.

Linear: Schouten et 
al. (2002)

Non-linear: Kim et al. 
(2010)

Bayesian: Tierney and 
Tingley (2014), 
Inglis and Tierney 
(2020)

Long- 
chain 
diol 
index 
(LDI)

Ratio of 1,13- and 
1,15-long-chain 
diols, synthesised 
by marine 
eustigmatophyte 
algae in cultures

Linear core- 
top

3°C (1o)
Not applicable to 
sediments where salinity 
<32 psu; some regional- 
specific non-thermal 
influences.

Rampen et al. (2012)

De Bar et al. (2020)

RAN13 Ratios of the 
isomers of 3- 
hydroxy C13 fatty 
acids synthesised 
by bacteria

Latitudinal 
transect core- 
top calibration 
(NW Pacific)

2.25°C (RMSE) Yang et al. (2020)

Terrestrial temperature proxies
UK37’ 
index

Ratio of long- 
chain (C37) 
ketones 
(alkenones)

Multiple 
calibrations for 
lake surface 
water

e.g. Freshwater lakes: 
1.3°C (Spring-summer 
Greenland and Europe).

Greenland lakes: 
D’Andrea et al. (2011)
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synthesised by 
haptophyte algae

temperatures, 
which may be 
calibrated to 
air 
temperatures 
depending on 
the location. 
Seasonal or 
mean annual.

e.g. Brackish lake 
cultures: 1.6°C (RMSE) 
different producers and 
temperature 
sensitivities.

Alaskan lakes: Longo 
et al. (2016)

Brackish lakes:
Theroux et al. (2020)

Reviewed by 
Castaneda & 
Schouten (2011)

TEX86 

index
Ratio of glycerol 
dialkyl glycerol 
tetraethers 
(GDGTs) 
synthesised by 
Thaumarchaeota

Multiple 
calibrations for 
lake surface 
water 
temperatures, 
which may be 
calibrated to 
air 
temperatures 
depending on 
the location. 
Seasonal or 
mean annual.

2.1-3.6 °C (RMSE) 
Mean annual air 
temperature

Potential for production 
at depth in the lake, 
rather than a surface 
water temperature.

Powers et al. (2010)

Tierney et al. (2010)

Sinninghe Damste et 
al. (2022)

Reviewed by
Castaneda &
Schouten (2011)

Cave or 
surface air 
temperature

Connection between 
GDGT and surface air 
temperature, but some 
unknown influences 
occur. Relatively small 
calibration dataset. 
needed and recognition 
of in-cave variables 
such as location and 
cave micro-environment.

Blyth et al. (2016)

Baker et al. (2019)

MBT 
and 
CBT 
ratios

MBT: ratio of 
branched GDGTs 
with varying 
numbers of 
methyl groups. 
CBT: ratio of 
branched GDGTs 
with varying 
numbers of 
cyclopentyl 
moieties.
Synthesised by 
(acido)bacteria

MBT related to 
air 
temperature 
and 
precipitation. 
Strong impact 
of pH on CbT 
enables air 
temperature to 
be 
reconstructed 
by combining 
MBT and CBT.

Mean annual air 
temperature calibrations 
(RMSE ~5°C) but 
potential insensitivity 
<5°C and >20°C.

Alternative calibrations 
needed in (semi) arid 
soils due to temperature 
influence on CBT 
(RMSE 1.83°C).

Weijers et al. (2007) 
Peterse et al. (2012)

Yang et al. (2014)

MBT‘5Me 
index

Ratio of branched 
GDGTs including 
the 6-methyl 
isomers 
synthesised by 
(acido)bacterial 
(note that full 
range of source 
organisms 
remains unknown.

Global soil 
calibration, 
recovered 
from lakes, 
peats and 
speleothems

4.8°C (RMSE) in soils. 
Mean annual air 
temperature

De Jonge et al. (2014)

Baker et al. (2019)

Long- 
chain 
diol 
index 
(LDI)

Ratio of 1,13- and 
1,15-long-chain 
diols, synthesised 
by freshwater

Lake surface 
water 
temperatures.

Potential temperature 
influence, but 
seasonality in 
production and 
uncertainty around

Rampen et al. (2014)

Lattaud et al. (2021)
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eustigmatophyte 
algae in cultures

producers limits 
application.

RANi5 

and
RAN17

Ratios of the 
isomers of 3- 
hydroxy C15 and 
C17 fatty acids 
synthesised by 
bacteria

Global soil 
calibration, 
recovered 
from lakes and 
speleothems.

3.5°C RMSE in lakes. 
Potential influence of 
pH.

Wang et al. (2021a)

59



McClymont, Mackay et al. Under Review at Journal of Quaternary Science, May 2023

Table 2 (next page) Examples of lipid ratios and compounds used to identify differences in 
vegetation source and environmental conditions.
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Ratio or biomarker Representation Interpretation E.g., Reference
Average chain 
length (ACL)

Weighted average 
indication of plant 
input (n-alkanes)

Higher values 
represent more 
higher plant inputs, 
which can be driven 
by warmer 
temperatures and/or 
drier conditions

Poynter et al., (1989)

SchefuB et al. (2003)

Zhou et al. (2010)

Carbon Preference 
Index (CPI)

n-alkanes with odd 
over even carbon 
atom preference, 
which reflects source 
material, maturity 
level and/or 
contamination.

Higher values can 
indicate reduced 
decomposition (e.g., 
fresher material, 
colder/drier 
conditions), lower 
values can also be 
driven by petroleum 
or microbial inputs

Bray and Evans (1961)

Zhou et al. (2010)

P(aqueous): 
(C23+C25)/ 
(C23+C25+C29+C31) 
n-alkanes

Hydrological- 
submerged vascular 
compared with 
terrestrial species

Higher values 
indicate relatively 
more submerged 
plant input and 
wetter conditions

Ficken et al. (2000)

P(wax): 
(C27+C29+C31)/ 
(C23+C25+C27+ 
C29+C31) n-alkanes

Hydrological- 
emerged species 
compared with total 
vegetation

Higher values 
indicated more 
vascular plant inputs 
and drier conditions

Zheng et al. (2007)

C23/C31 n-alkanes Sphagnum vs higher 
plants

Higher values 
indicate relatively 
more Sphagnum 
input and wetter 
conditions

Bingham et al. (2010)

C23/C29 n-alkanes 
(peatlands)

Sphagnum vs non­
Sphagnum plants

Higher values 
indicate relatively 
more Sphagnum 
input and wetter 
conditions

Nichols et al. (2006)

C29/C33 n-alkanes 
(palaeosols)

Deciduous trees vs 
grasses and herbs

Trigui et al. (2019)

C27/C31 n-alkanes 
(stalagmites)

Grass:tree Xie et al. (2003) 
Blyth et al. (2007)

5-n-alkylresorcinols Presence of sedges Avsejs et al. (2002) 
McClymont et al. (2008a)

4-
isopropenylphenol 
(peatlands)

Analytical product of 
Sphagnum acid, 
specific to 
Sphagnum

Higher abundance 
reflects more 
Sphagnum

Boon et al. (1986)
McClymont et al. (2011)

Sterols Range of markers 
depending on 
vegetation type

E.g., lupeol, 
obtusifoliol, 
gramisterol from 
sedge roots in fens

Ronkainen et al. (2013)

Triterpenoids Range of markers 
depending on 
vegetation type

E.g., taraxerol as an 
indicator of 
mangroves in tidal 
sediments or 
Ericaceae in 
peatlands, millacin 
as an indicator of 
millet

Versteegh et al. (2004)

Jacob et al. (2008a,b)

Pancost et al. (2002)
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Ketones Range of markers 
depending on 
vegetation type

E.g., Palmitone as 
an indicator of 
Colocasia esculenta 
(taro).

Krentscher et al. (2019)

Lignin phenols Terrigenous inputs 
from vascular parts 
of plants.

Identify vegetation 
type and extent, 
disentangling non­
woody woody 
angiosperms and 
gymnosperm 
vegetation. Cannot 
provide species-level 
identification.
Requires 
combination with 
pollen or macrofossil 
analysis if species­
level information 
needed.

Hedges et al. (1982) 
Orem et al. (W97) 
Tareq et al. (2011)

Polycyclic aromatic 
hydrocarbons 
(PAHs)

Incomplete 
combustion of 
organic matter

Proxy for vegetation 
burning. Some 
alkylated PAHs are 
also formed during 
thermal maturation 
and petrogenic 
processes, however, 
ratios have been 
applied to distinguish 
between 
(non)pyrogenic 
sources and identify 
vegetation type.

Ramdahl et al., 1983.

Reviewed by Karp et al. 
(2020), including ratio 
details.

Levoglucosan and 
other 
monosaccharide 
anhydride (MA) 
compounds

Pyrolysis of 
carbohydrates such 
as from vegetation.

Wildfire intensity 
indicator. Ratios of 
MA indicate the 
vegetation type 
involved in the burn 
and burn conditions. 
Sometimes only 
detectable in low 
abundance. Can be 
challenging to 
disentangle local 
from regional fire 
histories.

Simoneit et al. (1999)

Reviewed by Bhattarai et al., 
2019
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Table 3: Overview of the key proxies for palaeo-productivity and biogeochemical 
cycling and sediment transport.

Proxy Source Environmental 
signal

Considerations E.g., References

Branched vs 
Isoprenoidal 
Tetraether 
(BIT) index 
from GDGTs

Archaea in soils 
(brGDGTs) and 
aquatic settings 
(isoGDGTs)

Indicator of soil 
inputs to aquatic 
systems

Some in-situ water 
column production 
of branched 
GDGTs has been 
identified, 
complicating 
interpretations

Hopmans et 
al. (2004)

Bechtel et al.
(2010)
Fietz et al. (2012)

Terrestrial to 
aquatic ratio 
(TAR)

N-alkanes from 
higher plants 
(long chains) and 
algae (short 
chains)

Indicator of plant 
or soil inputs to 
aquatic systems

As well as plant 
inputs, soils and 
sedimentary rocks 
may also transport 
long-chain n- 
alkanes; multiple 
potential pathways.

Cranwell (1973) 
Muller et al., 
(2014) 
Sanchez-Montes 
et al. (2020)

Alkenones Ketones 
(alkenones) 
synthesised by 
haptophyte algae.

Haptophyte algae 
productivity 
signal.

Recent suggestions 
that alkenone 
abundance may 
link directly to total 
primary 
productivity, sea ice 
(%C37:4), or salinity 
(%C37:4).

Petrick et al. 
(2018)

Cartagena-Sierra 
et al. (2021)

Raja Sanchez 
and Rosell-Mele
(2021) 
Wang et al. 
(2021b)

Archaeol Produced by 
Anaerobic 
archaea

Redox changes 
and 
methanogensis

Potential to record 
microbial activity 
onshore depending 
on source and 
transport pathway

Pancost et al. 
(2011)

Bacteriohopan 
epolyols 
(BHPs)

Membrane lipids 
produced by 
bacteria.

Microbial 
processes such 
as 
methanogenesis

Potential to record 
microbial activity 
onshore depending 
on source and 
transport pathway

Talbot et al. 
(2003)

Talbot and 
Farrimond, (2007)

Chlorins Algal productivity. 
Used extensively 
to reconstruct 
productivity in 
ocean sediments.

General 
phytoplankton 
productivity 
marker

Formed from 
degradation of 
chlorophyll to more 
stable tetrapyrrolic 
pigments.
Sedimentary 
concentration 
reflects overall 
export to seafloor.

Harris and 
Maxwell (1995)

Zhao et al. (2006)

Chlorophyll 
and carotenoid 
pigments

Mainly aquatic 
productivity, some 
inputs from 
terrestrial plant 
matter.

Algal production 
markers. Used to 
interpret 
productivity in 
combination with 
other markers.

Can be susceptible 
to degradation, 
though degradation 
products can also 
be productivity 
markers. Generally, 
better preserved in 
lakes than ocean 
sediments, unless

Leavitt (1993)

Hodgson et al. 
(2003)

McGowan (2013)
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near-shore or under 
anoxic conditions.

Highly 
branched 
isoprenoids 
(HBIs)

Produced by 
selected diatoms, 
including some 
sea-ice 
associated 
species.
Arctic: IP25 
synthesised by 
Haslea spp.
Southern Ocean: 
IPSO25 
synthesised by 
the sea ice diatom 
Berkeleya 
Adelensis

General indicators 
of selected diatom 
productivity, and 
for spring sea ice 
with IP(SO)25.

Combination of 
IP(SO)25 and 
associated diatom 
HBIs or sterols can 
be used to 
distinguish between 
perennial sea ice 
(no HBIs) and open 
waters (no 
IP(SO25)): 
PIP25: IP25 / (IP25 
+ phytoplankton 
marker x c) 
PIPSO25: IPSO25 / 
(IP25 + 
phytoplankton 
marker x c)

Belt and Muller 
(2013)

Belt et al. (2015, 
2016).

Vorrath et al. 
(2020)

isoGDGT-0 Methanogens are 
likely the 
dominant 
producers in peat

Microbial 
processes such 
as 
methanogenesis

Other potential 
source organisms 
may conflate the 
methanogensis 
signal.

Basiliko et al. 
(2003) 
Pancost and 
Sinninghe 
Damste (2003)

Isorenieratene Algae which can 
fix in low-light 
conditions at deep 
water depths.

Photic zone 
anoxia, green 
sulfur bacteria.

Needs suitable 
environment for 
preservation.

Sinninghe 
Damste et al. 
(2001)

Mallorqu^ et al. 
(2005)

Scytonemin Protective 
carotenoid 
production by 
algae to avoid 
deleterious effects 
of harmful UVR.

Indicator of high 
UVR receipt.
Environmental 
pressure for algae 
to protect cells 
during production.

Challenging to 
decouple UVR 
limitation from other 
limiting factors e.g. 
nutrient availability.

Hodgson et al. 
(2005)

Sterols (e.g. 
dinosterol, 
brassicasterol)

Produced by 
algae, but also 
present in some 
terrestrial material

Can be linked to 
groups of 
producers (e.g., 
dinosterol for 
dinoflagellates)

Can be degraded in 
the water column.

Fahl and Stein 
(1999)

Nakakuni et al. 
(2017)

Compound­
specific stable 
carbon 
isotopes 613C 
on individual 
n-alkanes, n - 
alkanols and 
n-alkanoic 
acids

Wide range of 
sources (Table 1).

Biomarker 
specific: changes 
in C3 to C4 

vegetation;
changing 
productivity or 
producers.

Can be challenging 
to interpret in 
isolation due to 
producer-specific 
influences.

(Huang et al. 
(2006)

Tierney et al.
(2010)

McClymont et al. 
(2022)
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Figures and figure captions

Figure 1. Using biomarkers to trace a wide range of environmental processes. Examples 
include biomarkers of climate change (e.g., temperature, precipitation, sea ice), ecosystem 
change (e.g., vegetation cover, productivity dynamics and fire regimes), biogeochemical 
cycling (e.g., methane production), sediment transport (e.g., soil residence time and land­
ocean interactions), and human-environment interactions (e.g., presence of humans and 
animals and agricultural activity). Biomarkers can be transported between terrestrial 
ecosystems and to marine environments by rivers, surface water run-off, erosional 
processes, wind and melting ice. Abbreviations: IP25 (Ice Proxy with 25 carbon atoms), 
IPSO25 (Ice Proxy Southern Ocean with 25 carbon atoms), isoGDGT (isoprenoidal glycerol 
dialkyl tetraether), brGDGT (branched glycerol dialkyl tetraether), BHPs 
(bacteriohopanepolyols).
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Figure 2: two examples of biomarker distributions containing mixtures of aquatic and 
vascular plants. Analysis is by chromatography, whereby individual compounds are 
separated according to their size and chemical structures. The sample is injected at time 
zero, and the size of the peak corresponds to the abundance of that molecule in the sample. 
(a) gas chromatogram of the apolar compounds recovered from a lake or marine sediment 
sample, showing a mixture of aquatic and vascular plant inputs; (b) gas chromatogram of the 
polar compounds recovered from a peatland sample, showing a mixture of vascular plant 
inputs.
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o

Figure 3: a selection of palaeotemperature biomarkers, detailing the different chemical 
properties that can be used to identify specific markers and their relationships to biological 
and environmental variables. (a) TEX86 (TetraEther indeX of tetraethers consisting of 86 
carbon atoms) temperature proxy is calculated using the relative distributions of isoGDGTs 
(iso-GDGT-1, iso-GDGT-2 and iso-GDGT-3) and the crenarchaeol regioisomer (Schouten et 
al., 2002). Blue circles highlight the number of cyclopentane moieties, and the yellow circle

Cr jMe (alksnone)

Long chain Dol 
Index (LDI1
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highlights the presence of a cyclohexane ring; (b) MBT’5Me (Methylation of Branched 
Tetraethers using the 5-methyl isomers) temperature proxy in soils is calculated using 
relative distributions of 5-methyl brGDGT (de Jonge et al., 2014). Blue circles highlight the 
presence and number of cyclopentane moieties and green circles highlight the presence and 
number of methyl groups in the a and/or w-5 position; (c) UK37’ temperature proxy in 
freshwater and marine environments is calculated using relative distributions of the di- and 
tri- unsaturated alkenone distributions (Prahl and Wakeham, 1987). The chain lengths of the 
two alkenones are the same (C37 = 37 carbon atoms), but the number of double bonds 
increases from 2 to 3 (highlighted by red circles); (d) LDI (long chain diol index) temperature 
proxy in freshwater and marine environments is calculated using relative distributions of C28 

and C30 1,13- and C30 1,15-alykl diol distributions (Rampen et al., 2012; 2014). Compounds 
vary in terms of chain lengths (C28 = 28 carbons atoms and C30 = 30 carbons atoms) and the 
location of the midchain alcohol group (C13 or C15; highlighted by the orange circles); (e) 
RAN15 temperature proxy in soils is calculated using the ratio of anteiso to normal 3-hydroxy 
C15 fatty acid (Wang et al., 2021a). Green circle highlights the methyl-substituent located on 
the antepenultimate carbon atom.
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Figure 4: Biomarker insights into changes in late Holocene sea ice and expansion of Atlantic 
waters (“Atlantification”) from reconstructed sea surface temperatures (SST) in the Fram 
Strait, the largest gateway to the Arctic Ocean (data from Tesi et al., 2021). Surface water 
and sub-surface water temperature reconstructions are reconstructed from the same 
sediment core using two different biomarker proxies (UK37 and TEX86 respectively) and 
compared with historical records of sea ice persistence. a) UK37-derived SST (standard error 
is shown in grey vertical lines); b) TEXL86-derived water temperatures (standard error is 
shown in grey vertical lines); c) Historical records of sea ice presence at Icelandic coasts 
(weeks/year) (Lamb, 1977).
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Figure 5: Terrestrial and marine 
biomarker reconstructions of 
environmental change in east 
Africa since the late Pleistocene. 
a-b) Palaeoclimate 
reconstructions from Lake 
Victoria (Berke et al., 2012) a) 
TEX86 palaeotemperatures and b) 
Palaeoprecipitation record from 
ice volume corrected 62H of the 
C28 leaf wax fatty acid methyl 
ester (FAME) with error bars 
(grey lines) representing the 
mean error of replicated analyses 
for each sample; C-d) 
palaeoclimate reconstructions 
from Lake Tanganyika (Tierney 
et al., 2008) c) TEX86 

palaeotemperatures and d) 
Palaeoprecipitation record from 
ice volume corrected 62H of the 
C28 leaf wax FAME; e-h) 
Palaeoclimate reconstructions 
from a marine sediment core off 
the mouth of the Zambezi River 
(SchefuR et al., 2011), e) BIT 
(branched and isoprenoid 
tetraether) index representing 
soil organic matter inputs, f) 
Palaeprecipitation record from 
62H of C31 alkane, g) TEX86sea 
surface temperatures and h) 
Insolation curves for June-July- 
August (JJA) and December- 
January-February (DJF) for 
Northern (30°N) and Southern 
(30°S) Hemisphere (solid lines) 
and March-April-May (MAM) 
insolation at the equator (dashed 
line).
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Figure 6. Schematic illustration of biomarker (IP25) inferred changes in spring/summer sea 
ice extent (white shadings) between a) B0lling/Aller0d; b) Younger Dryas and c) Early 
Holocene (adapted from Xiao et al., 2017, please refer to the original figure for the detailed 
map key). Atlantic Water advection is represented by red arrows and cold Polar waters from 
the Arctic Ocean are represented by blue arrows. d-e) Examples of the IP25 records used to 
develop the sea ice maps in a-c). d) Most northerly IP25 record of sea ice presence (Yermak 
Plateau, denoted in purple; Muller et al., 2009) and c) most southerly IP25 record of sea ice 
presence (North of Iceland, denoted in green; Xiao et al., 2017) included in the schematic 
maps.
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