1 Possible magmatic CO₂ influence on Laacher See eruption date

2

James U.L. Baldini^{1*}, Richard J. Brown¹, Fabian B. Wadsworth¹, Alice R. Paine², Jack Campbell¹,

- 4 Charlotte E. Green³, Natasha Mawdsley⁴, and Lisa M. Baldini⁵
- ⁵ ¹Department of Earth Sciences, Durham University, Durham DH1 3LE, UK.
- ²Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK.
- ³Department of Earth Sciences, Royal Holloway, University of London, Egham TW20 0EX, UK.
- 8 ⁴SYSTEMIQ Ltd, 110 High Holborn WC1V 6JS, London, UK
- 9 ⁵School of Health & Life Sciences, Teesside University, Middlesbrough, TS1 3BX, UK.
- 10 *Corresponding author: james.baldini@durham.ac.uk
- 11

12 The Laacher See Tephra (LST) is a key Late Pleistocene chronostratigraphic unit across Europe, and 13 an accurate date for the deposit is critical for understanding Late Glacial sedimentary sequences. 14 Reinig et al.¹ recently used radiocarbon measurements of subfossil trees trapped within the Laacher 15 See eruption's (LSE) pyroclastic deposits to date the eruption to 13,006 +/- 9 BP, ~130 years older than the previously accepted varve counting $(12,880 \pm 40 \text{ BP}^2)$ and $^{40}\text{Ar}/^{39}\text{Ar}$ $(12,900 \pm 560 \text{ BP}^3)$ age 16 determinations. However, Reinig et al. did not correct for the incorporation of radiocarbon 'dead' 17 18 magmatic CO₂ into the growing trees, and here we highlight the possibility that the date is in fact 19 ~130 years too old. The implications of incorporating a high precision yet inaccurate LST age into the 20 European chronostratigraphic framework are substantial, and include the misinterpretation of 21 regional records, the misalignment of climate shifts, and the exclusion of the LSE from consideration 22 as a possible driver of abrupt climate change.

23 Studies of trees growing adjacent to volcanoes illustrate that magmatic CO₂ (containing no 24 radiocarbon) incorporation can lead to radiocarbon ages that are between a few decades to 200 25 years too old⁴, providing a straightforward explanation for why the Reinig et al.¹ date is ~130 years 26 older than previous age estimates. Reinig et al.¹ briefly explored magmatic CO₂ incorporation as the 27 reason for an age offset in one of their carbonised wood samples, but ultimately no correction was 28 made. Because the subfossil trees were sampled at near-vent localities, it seems likely that all the 29 samples were affected by magmatic CO₂ to variable extents. The Laacher See volcano is currently in a quiescent phase, but magmatic gasses are still visibly being released from the subsurface. Studies 30 31 indicate that the nature of magmatic CO₂ degassing varies by site, and can occur diffusely over large 32 areas or at concentrated sources such as faults or springs⁵. This spatial variability combined with

33 dynamic CO₂ flow rates means that small-scale studies of the modern system are insufficient to

- 34 characterise ancient CO₂ flows; trees even a few hundred meters away from a concentrated CO₂
- source may experience only negligible CO_2 uptake⁵. However, it is unlikely that magmatic gas flux is
- 36 present now but was entirely absent in the decades preceding the large LSE, which was of a similar

37 magnitude as the C.E. 1991 Pinatubo eruption and was fed by volatile-rich, phonolite magma.

38 Studies from the USA, New Zealand, and Italy demonstrate that magmatic CO₂ incorporation rates

into trees are spatiotemporally variable^{4,6-8} (Fig. 1). Therefore, temporally variable magmatic CO₂

40 fluxes^{7,8} preceding the LSE may have not only made the radiocarbon dates of the wood samples

41 appear generally older, but also affected the shape of the radiocarbon curve produced by Reinig et

42 al.¹ (Fig. 1), consequently yielding a spurious correlation when wiggle-matched with the Swiss Late

43 Glacial Master Radiocarbon (SWILM-¹⁴C) dataset.

The varve counting $(12,880 \pm 40 \text{ BP}^2)$ and ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ $(12,900 \pm 560 \text{ BP}^3)$ LSE dates are within 10 and 30 44 45 years (respectively) of a large sulphate spike at ~12,870 BP within the Greenland NGRIP ice core reported by Reinig et al.¹ and subsequently discussed in Abbott et al.⁹ (Fig. 2). The sulphate 46 47 distribution between Greenland and Antarctica suggests that this was a large, mid-to-high latitude northern hemisphere eruption, a signature consistent with the LSE. Reinig et al.¹ and Abbott et al.⁹ 48 49 did not consider this spike as potentially arising from the LSE because it was outside the 50 uncertainties of the Reinig et al.¹ date. However, if the Reinig et al.¹ age determination was indeed 51 affected by magmatic CO₂ and is ~130 years too old, this newly reported sulphur spike: i) is consistent with the ⁴⁰Ar/³⁹Ar date for the LSE; ii) is consistent with the varve counting age for the 52 53 LSE; and iii) coincides with a smaller sulphur spike within the GISP2 ice core previously attributed to the LSE¹⁰. 54

It is worth emphasizing that we currently cannot know for sure if the Reinig et al.¹ date was affected by magmatic CO₂, and, in fact, the observed increase in radiocarbon values immediately preceding the LSE is surprising. However, magmatic outgassing effects on radiocarbon data are still poorly understood, and we believe that the evidence is strong enough, and the repercussions of an incorrect age serious enough, to warrant discussion. We suggest that until the date is independently verified, the community approach the Reinig et al.¹ date in tandem with the Brauer et al. date of 12,880 ± 40 BP² in order to avoid possible interpretive issues.

62

63 Data availability

- 64 All datasets analysed during the current study are available from the references cited and are
- 65 available from the corresponding author on reasonable request.
- 66

67 Code availability

68 No new codes were developed for use in this study.

69

70 References

- Reinig, F. *et al.* Precise date for the Laacher See eruption synchronizes the Younger Dryas.
 Nature 595, 66-69, (2021).
- Brauer, A. *et al.* High resolution sediment and vegetation responses to Younger Dryas
 climate change in varved lake sediments from Meerfelder Maar, Germany. *Quaternary Science Reviews* 18, 321-329, (1999).
- van den Bogaard, P. ⁴⁰Ar/³⁹Ar ages of sanidine phenocrysts from Laacher See Tephra (12,900
 Yr Bp): chronostratigraphic and petrological significance. *Earth and Planetary Science Letters* **133**, 163-174, (1995).
- Holdaway, R. N., Duffy, B. & Kennedy, B. Evidence for magmatic carbon bias in C-14 dating of
 the Taupo and other major eruptions. *Nat Commun* 9, (2018).
- 815Soter, S. Radiocarbon anomalies from old CO2 in the soil and canopy air. Radiocarbon 53, 55-8269, (2011).
- 836Seiler, R. *et al.* Tree-ring stable isotopes and radiocarbon reveal pre- and post-eruption84effects of volcanic processes on trees on Mt. Etna (Sicily, Italy). *Ecohydrology*, (2021).
- Cook, A. C., Hainsworth, L. J., Sorey, M. L., Evans, W. C. & Southon, J. R. Radiocarbon studies
 of plant leaves and tree rings from Mammoth Mountain, CA: a long-term record of
 magmatic CO₂ release. *Chem Geol* **177**, 117-131, (2001).
- Peiffer, L., Wanner, C. & Lewicki, J. L. Unraveling the dynamics of magmatic CO₂ degassing at
 Mammoth Mountain, California. *Earth and Planetary Science Letters* 484, 318-328, (2018).
- 90 9 Abbott, P. M. *et al.* Volcanic climate forcing preceding the inception of the Younger Dryas:
 91 Implications for tracing the Laacher See eruption. *Quaternary Sci Rev* 274, (2021).
- Baldini, J. U. L., Brown, R. J. & Mawdsley, N. Evaluating the link between the sulfur-rich
 Laacher See volcanic eruption and the Younger Dryas climate anomaly. *Climate of the Past*14, 969-990, (2018).
- Hammer, S. & Levin, I. Monthly mean atmospheric D¹⁴CO₂ at Jungfraujoch and Schauinsland
 from 1986 to 2016. *heiDATA*, (2017).
- 97 12 Cheng, H. *et al.* Timing and structure of the Younger Dryas event and its underlying climate
 98 dynamics. *P Natl Acad Sci USA* **117**, 23408-23417, (2020).

100 Contributions

101 The original premise for this article was developed by J.B., F.W., and A.P. All authors contributed to

102 the text and figures. All authors contributed to the development of the concepts presented here.

103

⁹⁹

- 104 Corresponding author
- 105 Correspondence to James Baldini.
- 106
- 107 Ethics declarations
- 108 Competing interests
- 109 The authors declare no competing interests.
- 110
- 111 Figure Captions

112 Figure 1: An example of magmatic CO₂ effects on radiocarbon values of a tree growing near a

- 113 **volcanic centre.** Radiocarbon measurements from a tree⁷ growing on the SE flank of Mammoth
- 114 Mountain, California, USA, a volcanically active area (orange circles with dashed line) compared with
- 115 the northern hemisphere background radiocarbon activity in carbon dioxide¹¹ (from Jungfraujoch,
- 116 Switzerland) (black line) and another nearby tree from a non-volcanic area ('background', Mammoth
- 117 Lakes) (blue line). The grey shading highlights an interval of known magmatic carbon dioxide
- 118 outgassing near Mammoth Mountain, which peaked in 1991 C.E.. Adapted from Cook et al., 2001⁷.
- Figure 2: NGRIP ice core sulphate plotted with both the Brauer et al.² and Reinig et al.¹ dates for
 the LSE. Cheng et al.¹² suggest that the NGRIP chronological uncertainty near the beginning of the YD
- 121 is ±20-40 years.
- 122
- 123

To cite this article: Baldini, J. U. L., Brown, R. J., Wadsworth, F. B., Paine, A. R., Campbell, J. W., Green, C. E., ...Baldini, L. M. (2023). Possible magmatic CO2 influence on the Laacher See eruption date. Nature, 619(7968), E1-E2. <u>https://doi.org/10.1038/s41586-023-</u>

<u>05965-1</u>

Durham Research Online URL: <u>https://durham-</u> repository.worktribe.com/output/1709112

Copyright statement: This content can be used for non-commercial, personal study.