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ABSTRACT
As the aging population grows, the demand for long-term continuously Attended Home
Healthcare (AHH) services has increased significantly in recent years. AHH services are beneficial
since they not only alleviate the pressure on hospital resources, but also provide more convenient
care for patients. However, how to reasonably assign patients to doctors and arrange their visiting
sequences is still a challenging task due to various complex factors such as heterogeneous doc-
tors, skill-matching requirements, continuity of care, and uncertain travel and service times.
Motivated by a practical problem faced by an AHH service provider, we investigate a deterministic
continuity-skill-restricted scheduling and routing problem (CSRP) and its stochastic variant (SCSRP)
to address these operational challenges. The problem is formulated as a heterogeneous site-
dependent and consistent vehicle routing problem with time windows. However, there is not a
compact model and a practically implementable exact algorithm in the literature to solve such a
complicated problem. To fill this gap, we propose a branch-price-and-cut algorithm to solve the
CSRP and a discrete-approximation-method adaption for the SCSRP. Extensive numerical experi-
ments and a real case study verify the effectiveness and efficiency of the proposed algorithms and
provide managerial insights for AHH service providers to achieve better performance.
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1. Introduction

According to the World Health Organization estimation, 22% of
the global population will be over 60 years in age by 2050
(World Health Organization, 2014). As the aging population is
medically vulnerable, the demand for healthcare resources is
rapidly increasing (Gupta and Denton, 2008). In recent years, an
effective measure to relieve hospital congestion is emerging as
home medical care or convalescent care for patients, which has
encouraged service areas such as Attended Home Healthcare
(AHH). AHH services not only reduce avoidable hospital
readmission rates, but also are typically less expensive, more
convenient, and just as effective as the care provided in a hos-
pital or nursing facility. As a result, the AHH services expan-
sion is on a fast lane and perceived as a new opportunity for
healthcare excellence. Against this backdrop, AHH has gained
increasing attention in academia over the past 5 years. Most
existing studies investigate marketing, scheduling, and plan-
ning-related decisions, but in many developed countries these
decisions are still made manually; see Fikar and Hirsch
(2017) for a comprehensive review. Due to the increasing
demand for AHH services, it is imperative and worthwhile to
provide effective solutions to enable patients to access AHH
services in a timely and convenient manner.

This research was motivated by a real-world scheduling
problem at Pinetree, a Chinese AHH service provider based
in Beijing. Pinetree (http://www.qskh.cn) was founded in
2004 and provides primary home medical care and assist-
ance to patients. The company manages more than 1000
part-time doctors and has scheduled their visits to more
than 600,000 home-based patients for AHH services. Each
week, given the appointments and time windows required
for the visits, the schedulers take full responsibility for
manually determining the routing and scheduling for doc-
tors based on personal past experience and improvisation.
To address this challenging problem and also resolve certain
limitations within existing research (as reviewed in Section
1.1), we investigate a general AHH scheduling and routing
problem that includes the following important features:

� First, the doctors are depot-dependent (different home/-
depot addresses) and pattern-dependent (different availa-
bility/days to provide service). In this regard, most
existing AHH studies assume that only a single depot is
available for doctors to leave/return every day and the
doctors are always available over the whole planning
horizon (Gamst and Jensen, 2012; Trautsamwieser and
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Hirsch, 2014). However, for convenience, part-time and
even full-time doctors usually leave and return to their
homes directly and have their own diverse availability to
provide AHH services every week (Mosquera et al.,
2019). In this article, departing from the existing studies,
different depots and availability for individual doctors
are considered to reflect more practical operations.
Different from the traditional Multi-Depot Vehicle
Routing Problem (MDVRP) (Rabbouch et al., 2018), the
assignment of doctors to depots is achieved here impli-
citly and does not introduce additional decision
variables.

� The problem is further complicated by skill-matching
requirements between doctors and patients, which indi-
cate that the assigned doctors must satisfy the medical
demand and various additional requirements of patients,
such as gender, age, and task types. The traditional skill
VRP stipulates that customers’ requirements are fulfilled
by vehicles with higher skill levels (Cappanera et al.,
2011) or compatible pattern (Shao et al., 2012). However,
in AHH practice, the patient requirements (tasks) are
standardized and each doctor is only expert at a subset
of these tasks. Given the potential mismatch between
demand and supply, the scheduler has to allocate scarce
resources (i.e., doctors with specific scarce skills) to the
most demanding patients, thereby improving the overall
patient coverage. The problem is converted into a Site-
Dependent Vehicle Routing Problem (SDVRP) to cover
the skill-matching requirements (Baldacci et al., 2010),
but we extend the traditional SDVRP from one-dimen-
sional determinant (skill) to two-dimensional factors
(skill and availability) when determining the compatibil-
ity of a doctor.

� Another intricate factor is continuity, which stipulates
that the number of doctors caring for the same patient
within the prescribed time horizon should be limited
within a cohort to ensure consistently high quality and
satisfaction when providing service, and avoid imbal-
anced workload across doctors. This factor has been con-
sidered as consistency constraints in the literature, which
require that the nodes are consistently served by the
same vehicle (Lian et al., 2016; Song et al., 2020).
However, we relax the consistency requirement from a
particular vehicle to a subset of vehicles to reflect more
practical operations, bringing more flexibility in the
scheduling decisions but together with extra challenges.
Zhao and Alfandari (2020) investigated the possibility to
visit each node by a subset of vehicles, however, under
the situation of one common depot and thus is different
from the heterogeneous depots setting here. To this end,
we refer to the consistent vehicle routing problem
(ConVRP) and extend it from a consistent singleton to a
consistent subset.

To better illustrate the above features, we present a realis-
tic case in Figure 1 with five patients and four doctors
within 2 days, where each patient and doctor has its own
address, skills and availability (heterogeneity). The data

triplet next to each patient displays the individual informa-
tion, including time window, skill-matching requirements,
service duration, arrival time, and service start time. The
gray node denotes that the patient/doctor is unavailable and
can not be visited/assigned on that day. The optimal routes
are shown in connected lines in which each patient can
receive AHH service at a prescribed time slot provided by
her familiar doctors. Specifically, patient 4 is assigned to
doctor 2 on day 2 rather than to a geographically closer doc-
tor 3, due to the skill-matching requirements. In addition,
this patient could be assigned to doctor 0 on day 1 but re-
assigned to doctor 2 on day 2, since her continuity require-
ment is relaxed to 2, allowing additional flexibility in sched-
uling visits given doctor 0 is unavailable on day 2. By
considering these features in the AHH problem, we aim to
describe a consistent scheduling and routing problem for
doctors that takes into account their heterogeneous charac-
teristics. We therefore define this problem as the Continuity-
Skill-Restricted scheduling and routing Problem (CSRP).
Clearly, the following three distinct features of the CSRP
render it rather challenging to be addressed exactly:

1. First and foremost, the complexity is compounded by
the inconsistent availability among doctors and patients
across the planning horizon, indicating that simply
repeating the daily agendas is impractical. The solution
procedure should differentiate networks and generate
multiple graphs with respect to different combinations
of doctor and time (i.e., day). In other words, several
heterogeneous SDVRP are addressed on different days,
which is certainly more difficult than the classic VRP.

2. Designing exact solution methods including the con-
tinuity constraints is challenging, as these constraints
come into effect over multiple periods and multiple
depot-dependent graphs to ensure the number of doc-
tors visiting each patient is less than a threshold. In this
regard, it is more challenging than the general ConVRP,
as the latter only describes a special case of our problem
by forcing the continuity parameter to equal one in the
CSRP.

3. Last but not least, the interaction between the site-
dependency and continuity, for example, allocating the
doctors with specific skills (which can be perceived as
scarce resources) to the most demanding patients at an
appropriate slot, leads to foreseeably extra computa-
tional iterations when searching for optimal solutions.

Therefore, in terms of modeling perspective, the CSRP can
be affiliated as a heterogeneous site-dependent consistent vehicle
routing problem with time windows (HSDConVRPTW), where
doctors are represented as vehicles and patients are described as
nodes. For ease of explanation, we might abuse these terminolo-
gies when it is not misleading in the following sections. As far
as we know, there is not yet a compact model and an exact
solution approach in the literature that can handle such a com-
plicated HSDConVRPTW with the aforementioned practical
features. In light of these observations, this article is dedicated
to developing a high-performance exact algorithm to search
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for solutions of proven optimality. In the end, by dropping
certain AHH-specific features, the CSRP can be adapted to
address traditional VRPTW problems. As a result, the pro-
posed model and algorithms can be extended to tackle similar
scheduling and routing problems as well as VRPTW applica-
tions such as operating room planning and scheduling
(Naderi et al., 2021), waste collection (Beli€en et al., 2014),
school bus routing and scheduling (Park and Kim, 2010) and
petroleum products distribution (Ronen, 1995).

In the following, we briefly outline the related works on
AHH research and their solution approaches in the litera-
ture to clearly position the contributions of this article.

1.1. Related literature

The AHH scheduling and routing problem has been exten-
sively studied in recent years. We refer interested readers to
Fikar and Hirsch (2017) for a comprehensive overview. In
this context, continuity of care (consistency) is an important
determinant of service quality and patient satisfaction
(Kovacs et al., 2015a). Among others, most studies on the
ConVRP focus on vehicle consistency and visiting time con-
sistency, where the vehicle and visiting time are determined
for each customer (Kovacs et al., 2015b; Goeke et al., 2019).
Kovacs et al. (2015b) generalized the vehicle consistency
constraint by considering a limited set of vehicles, which is
a widely accepted practice in AHH problems, to create a
long–term consistent schedule in the caregiver–patient
assignments by introducing an additional decision variable
(Cappanera and Scutell�a, 2015; Cappanera et al., 2018).
Moreover, caregivers are rarely homogeneous in practice,
and most studies assume that caregivers are heterogeneous
and differ by demographic characteristics (e.g., residence
and address) or by professional characteristics (e.g., skill and
gender) (Cappanera et al., 2011; Cappanera and Scutell�a,
2015; Grenouilleau et al., 2019; Hashemi Doulabi et al.,
2020). The most similar work to us is Stavropoulou (2022),

which considered heterogeneous vehicle fleets that arose in
practical ConVRP environments. However, to the best of
our knowledge, HSDConVRPTW has not yet been consid-
ered in the literature. We also refer the reader to some other
interesting studies related to AHH, such as periodic fixed
appointment scheduling (Bennett and Erera, 2011), the mul-
tigraph representation (Bard et al., 2014), and studies on
fixed and overtime costs (Naderi et al., 2023).

There are a large number of studies that have designed
solution approaches for AHH scheduling and routing prob-
lems. In this regard, Cappanera and Scutell�a (2015) pro-
posed an integrated pattern-based heuristic to address
weekly assignments, scheduling and routing decisions with
continuity constraints, where the pattern specifies a possible
schedule for skilled visits and provides the key insight to
address skill-matching requirements. Grenouilleau et al.
(2019) investigated a practical weekly routing and scheduling
problem in home health care and designed a set partitioning
heuristic to incorporate most of the AHH service require-
ments. However, most previous studies focused on efficient
heuristics, such as the scenario-based approach in
Demirbilek et al. (2019), or the adaptive large neighborhood
search metaheuristic in Yang et al. (2021), to efficiently find
acceptable solutions for large-scale cases. In addition, there
are some studies reporting that the Logic-Based Benders
Decomposition (LBBD) method may have been applied to
address AHH variations by focusing on maximizing the
number of patients visited or determining the optimal num-
ber of caregivers, taking into account overtime costs
(Heching et al., 2019; Grenouilleau et al., 2020). However,
requiring a tailored design of master and subproblems based
on compatible decomposition structures, the LBBD method
has not been developed to effectively address complex prob-
lems like the HSDConVRPTW here. Consequently, in this
regard, there is still no existing exact solution approach cap-
able of solving such problem for practical requirements.

Figure 1. A 2-day scheduling example in Pinetree.
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In recent decades, the Branch-Price-and-Cut (BPC) method
has been widely applied in VRP and its variants to achieve
optimality (Archetti et al., 2011; Zhen et al., 2023). We recom-
mend readers to Costa et al. (2019) for a comprehensive dis-
cussion of this method. Focusing on AHH problems, the BPC
method is able to incorporate all the AHH service features
into pricing subproblems and solve them efficiently through
dynamic programming. In fact, several studies have applied
the BPC method to solve the scheduling and routing problem
in the AHH industry. For example, Trautsamwieser and
Hirsch (2014) considered homogeneous caregivers for weekly
schedules and developed BPC algorithms for single-depot
VRP, and Liu et al. (2019) considered heterogeneous care-
givers in terms of single-day planning, which is a special case
of our work. In this article, we propose a dedicated BPC algo-
rithm to solve the HSDConVRPTW. In particular, we con-
sider continuity constraints in the master problem, which can
be handled as robust cuts by incorporating corresponding
pricing graphs in terms of different days and doctors, hence
maintaining the structure of the pricing problem. Moreover,
our BPC method can incorporate chance constraints to deal
with uncertain travel and service times by extending the
resource and path inequalities from the deterministic to the
robust optimization context and generating robust routes on
the premise of on-time service and working time regulation
(Liu et al., 2019; Munari et al., 2019). For brevity, a summary
of the relevant literature is presented in Table 1.

1.2. Contributions

Facing the above challenges in AHH scheduling and routing
decisions, this article aims to answer the following questions:
(i) How should visits be scheduled and solved in advance to
maximize visit effectiveness and minimize travel time? (ii)
How are the performances (e.g., the efficiency of the solution
approach and the effectiveness of the routing results) affected
by the design parameters and how can the values of these
parameters be determined? To answer these questions, the
main contributions of this article are summarized as follows:

� We formally model the CSRP as a mixed-integer pro-
gram and present a compact, arc-based formulation with

a polynomial number of constraints and variables, which
is quite inclusive of practical characteristics such as skill-
matching requirements, continuity of care, working time
regulation and doctor heterogeneity. Mathematically, the
CSRP compact formulation is categorized as an
HSDConVRPTW, which captures most of the required
practical features as hard constraints. These practice-
required features allow our model to characterize more
general AHH operations and variations. As far as we
know, there is no evidence of a compact model in the lit-
erature that has handled all the above practical features
as hard constraints, and our HSDConVRPTW model
aims to fill this gap.

� Since the compact formulation is NP-hard, commercial
solvers cannot solve it optimally for medium- and large-
scale instances in real environments. We therefore
present a set-partitioning reformulation and propose a
dedicated BPC algorithm to solve the problem. We
develop a greedy algorithm to generate the initial route
pool and a tabu search heuristic pricing algorithm to effi-
ciently obtain potential routes with a negative reduced
cost. Among other advances, we apply the acceleration
approaches including bi-direction and ng-route to
increase computational efficiency and speed up the con-
vergence of column generation. Finally, since the subset
row cuts, which are generated as Chvatal–Gomory cuts
to eliminate infeasible solutions, are non-robust cuts, we
also redesign the dominance rule accordingly. As the lit-
erature review indicated, our tailored BPC algorithm is
the first exact method to solve the AHH problem with
continuity constraints, or mathematically speaking, an
HSDConVRPTW. Specifically, we measure the impact of
continuity constraints across different temporal and geo-
graphical horizons. We demonstrate that, by handling
pricing graphs in terms of different days and doctors, the
induced continuity constraints in the master problem are
robust cuts and will not change the structure of the pric-
ing problem.

� Given the uncertain nature of travel and service times,
optimal solutions for deterministic CSRP usually fall
short in practice to ensure the promised on-time service
and the working time regulation. In other words, doctors

Table 1. Position of this article in the literature regarding AHH problem characteristics.

Literature

Time horizon Depot

TW SK WT UC C

Solution method

Single Multiple Single Multiple Exact Heuristic

Cordeau et al. (1997) � � H �
Cappanera and Scutell�a (2015) � � H H H �
Cappanera et al. (2018) � � H H RO H �
Liu et al. (2019) � � H CC BP
Heching et al. (2019) � � H H H LBBD
Grenouilleau et al. (2019) � � H S S EP �
Hashemi Doulabi et al. (2020) � � S H S SO L-shaped
Saur�e et al. (2020) � � H H SO �
Yang et al. (2021) � � S S SO SO �
Zhan et al. (2021) � � S SA L-shaped
Naderi et al. (2023) � � H S RO LBBD
This article � � H H H CC H (DAM-)BPC

TW, Time Windows (arrive on time); SK, Skill-matching Requirements; WT, Working Time Regulation; UC, Uncertainty; C, Continuity Constraint
H, Hard constraints (i.e., forced to satisfy); S: Soft constraints (i.e., violated with penalty); EP: Exogenous Parameters
RO, Robust Optimization; SO, Stochastic Optimization; CC, Chance-Constrained; SA, Scenarios Approximation
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probably arrive later than the pre-determined appoint-
ments with patients and complete all assigned work later
than the working time regulation. Aligning with more
practical requirements, we further investigate a
Stochastic Continuity-Skill-Restricted scheduling and
routing Problem (SCSRP). More precisely, chance con-
straints are formulated for each patient and doctor to
impose that the probability of lateness is less than a
prescribed criterion. To reduce the risk of lateness, the
method developed for the deterministic problem is fur-
ther extended by integrating the BPC algorithm with a
Discrete Approximation Method (DAM-BPC), which
renders flexibility for the set partitioning model in
dealing with on-time service and completion con-
straints against uncertain travel and service times in
pricing subproblems. To this end, we update the
resource extension functions and dominance rule in
the column generation procedure by incorporating the
uncertainty features. The DAM-BPC framework
presents the potential of integrating the BPC method
with advanced stochastic or distributionally robust
optimization methods where the column generation
approach is adopted to tackle problems that involve
uncertain elements. For instance, the effectiveness of
the DAM method can be enhanced with the service ful-
fillment risk index (SRI) which is evaluated under
specific ambiguity set close to practical operational
contexts (Zhang et al., 2021).

� We perform extensive numerical studies on several
benchmark data sets in the literature and a real-world
dataset to demonstrate the effectiveness of our
approach and analyze the impact of various underlying
parameters. The results show that the proposed algo-
rithms clearly outperform the commercial solver
CPLEX and other existing methods (e.g., BP, L-Shaped
and LBBD), and are significantly efficient in handling
practical scale instances. The results also provide
important managerial insights to improve operational
performance. After implementing our scheduling strat-
egy, the collaborating company reported a significant
improvement in their home visit operations. The aver-
age daily home visits increased by almost 20%, from
2.76 to 3.35, and the average travel time per visit was
reduced by at least 30.6minutes (from 113.9minutes to
83.3minutes). Furthermore, they were able to reduce
the number of employed doctors from 145 to 119,
resulting in a 17% reduction in employment costs and
an estimated monthly cost savings of CNY 117,000
($17,035.2). These results demonstrate the efficacy and
cost-effectiveness of our method when compared with
the manual scheduling scheme previously used in the
company. In addition, patient satisfaction has been
improved as patients can receive care from their trusted
doctors. Our analysis shows that it is worthwhile to
calibrate the continuity constraint in scheduling to bal-
ance the trade-off between patient satisfaction and
scheduling flexibility.

The remainder of this article is organized as follows.
First, in Section 2, we give a brief problem description and
an arc-based compact formulation for the CSRP. Section 3
describes the BPC algorithm, including the set-partitioning
reformulation and the pricing subproblem. In Section 4, we
introduce the SCSRP and address it with a DAM-BPC. The
computational results and managerial insights are presented
in Section 5, followed by the concluding remarks and future
research in Section 6.

2. Problem description and formulation

In this section, we formulate the CSRP formally as the fol-
lowing Mixed-Integer Programming (MIP) model. Let T be
the planning time horizon. The CSRP is defined on a com-
plete directed graph, G ¼ ðV ,AÞ, where V is the set of verti-
ces and A is the set of edges. We partition set V as
V ¼ I [ J, where I ¼ f0, :::, jIj � 1g is the node set of doc-
tor depots and J ¼ fjIj, :::, jIj þ jJj � 1g is the node set of
patients. The edge set A is defined as fði, jÞ : i 2 V, j 2 Vg
by removing arc set fði, jÞ : i 2 I, j 2 Ig: The deterministic
travel times on arcs ði, jÞ 2 A are denoted as tij, and the
deterministic service times at patients j 2 J are denoted as tj.
Let edj (i.e., ldj ) denote the earliest (i.e., the latest) service

(appointment) start time for patient j 2 J on day d 2 T, and
let B denote a sufficiently large constant. According to the
working time regulation, let n represent the maximum
workload criterion in a day, which is the upper bound for
the total service and travel times of doctors. For modeling
convenience, we also declare an additional index set O ¼
f0, :::, jIj � 1g to represent the doctors. The doctor index in
O is aligned with the depots in I, so we might slightly abuse
either of them to represent doctors for notational conveni-
ence when it is not misleading.

We now describe the elements of availability and skill-
matching requirements. First, we define a binary parameter
Pd
v that specifies the availability of node v on day d. On the

one hand, if v 2 I, then Pd
v ¼ 1 means that doctor v is able

to provide services on day d; otherwise, the doctor cannot
visit patients on that day. On the other hand, if v 2 J, then
Pd
v ¼ 1 means that patient v needs to be served on day d;

otherwise, the patient does not require the service.
Moreover, the heterogeneity of doctors is also reflected in
the requirements of patients. We define a set M to represent
the service requirements of patients, while M should also be
the corresponding skill set of doctors. With the set M, let
another binary parameter Kom denote whether doctor o 2 O
owns skill m 2 M: If so, Kom ¼ 1; otherwise, Kom ¼ 0.
Similarly, we use a binary parameter Djm ¼ 1 to represent
service requirement m 2 M of patient j 2 J: Finally, we
define a continuity parameter x, indicating that the number
of different doctors serving the same patient within the time
horizon should not exceed x. Note that, x can be patient-
differentiated. However, as it does not significantly affect the
model applicability, we keep the same x for all patients for
modeling convenience. With these notations, the decision
variables of the arc-based model are defined as follows:
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xodij ¼
�
1, if doctor o traverses arc ði, jÞ on day d, ði, jÞ 2 A, o 2 O, d 2 T;

0, otherwise:

uoj ¼
�
1, if doctor o serves patient j at least once within T, o 2 O, d 2 T;

0, otherwise:

Sdi ¼ the actual service start time of node i on day d, i 2 V, d 2 T:

The objective of the CSRP is to minimize the total travel time for all doctors within the planning time horizon:

min
X
d2T

X
o2O

X
ði, jÞ2A

tijx
od
ij (1)

To satisfy the above requirements and obtain exact solutions, the constraints are described as:X
o2O

X
j2J

xodij � Pd
i ,8d 2 T, i 2 I (2)

X
o2O

X
ði, jÞ2A

xodij ¼ Pd
j , 8d 2 T, j 2 J (3)

X
o2O

X
j2J

xodij ¼
X
o2O

X
k2J

xodki , 8d 2 T, i 2 I (4)

X
ði, jÞ2A

xodij ¼
X
ðj, kÞ2A

xodjk ,8d 2 T, o 2 O, j 2 J (5)

Sdj þ tj þ tji � nþ Bð1� xodji Þ, 8d 2 T, o 2 O, i 2 I, j 2 J (6)

Sdi þ ti þ tij � Sdj þ Bð1� xodij Þ, 8d 2 T, o 2 O, i 2 V, j 2 J, i 6¼ j (7)

edj � Sdj � ldj , 8d 2 T, j 2 J (8)

Sdi ¼ 0,8d 2 T, i 2 I (9)X
ði, jÞ2A

xodij � Kom þ Djm � 1,8d 2 T, o 2 O, j 2 J,m 2 M (10)

X
o2O

uoj � x, 8j 2 J (11)

xodij � uoj, 8ði, jÞ 2 A, d 2 T, o 2 O, j 2 J (12)

uoj �
X
d2T

X
ði, jÞ2A

xodij , 8o 2 O, j 2 J (13)

xodij 2 f0, 1g, 8d 2 T, o 2 O, ði, jÞ 2 A (14)

uoj 2 f0, 1g, 8o 2 O, j 2 J (15)

Sdi � 0,8d 2 T, i 2 V (16)

These constraints can be described in three aspects: route-
defining constraints (2)-(9), skill-matching constraints (10) and
continuity constraints (11)-(13). Specifically, constraints (2)-(3)
guarantee the availability of doctors and patients, and ensure
that demanding patients are visited. Constraints (4)-(5) refer to
the flow conservation requirements on depots and patient
nodes. Constraints (6) ensure that working time regulation is
fulfilled. Constraints (7)-(9) specify that the start time for serv-
ing patient j on day d should be no earlier than edj and no later

than ldj : Constraints (10) impose skill-matching on each visit

and enforce that all skill requirements are satisfied. Constraints
(11) guarantee that at most x doctors are assigned to a patient
within the time horizon. In addition, mimicking the
Emergency Medical Systems for ambulances usage constraints

such as “at least 90% of the emergency calls must be answered
within 9minutes”, we also provide and test alternative service
level requirement constraints by imposing that at least a pre-
scribed percentage of patients receiving service with the cohort
size of doctors being less than x in Appendix A. Constraints
(12)-(13) are linking constraints between routing and assign-
ment variables. Constraints (14)-(16) define the variable
characteristics.

In summary, the above formulation (1)-(16) contains at

least OðjTjjIjjAjÞ variables and OðjTjjIjjJj2Þ constraints. This
model becomes intractable for commercial solvers as the
instance scale increases (as shown in Section 5). Therefore,
we develop a BPC algorithm that can obtain optimal solu-
tions for large instances in the following sections.
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Algorithm 1: BPC algorithm for the CSRP

Input: Data sets with pattern information and distance matrix T, I, J,O,M,P,D; Parameters x, n:
Output: Solbest is the optimal solution or best-known upper bound.
Initialization: Original graph G ¼ ðV,AÞ; Best incumbent value Solbest  1; Last LP value Sollast  1; Branch-and-
bound search tree ST  ;:
Generate column set ~R with the CWS-H algorithm & Solve the RMP & Obtain current solution Solcurt.

while 9min
r2~Rd

i

f�Cd
i, rg < 0ð8i 2 I, d 2 TÞ & (Sollast � Solcurt) > 0 do

Sollast  Solcurt:

Update f�Cd
i, rgr2~Rd

i
ð8i 2 I, d 2 TÞ according to Algorithm 1 in Appendix C.

~R ¼ ~R [
i2I, d2T

~R
d
i & Resolve Solcurt.

Add the current RMP to ST.
while ST 6¼ ; do

Get the branching node with the smallest Solcurt value.
for d 2 T do

for i 2 I do
Generate a graph for depot i on day d: Gd

i  ðVd
i ,A

d
i Þ:

Compute the reduced cost for �Cd
i, r  ESPPRC(Gd

i ), where r 2 ~R
d
i :

while The first iteration jj 3-SRCs are added in the last iteration do

if 9min
r2~Rd

i

f�Cd
i, rg < 0ð8i 2 I, d 2 TÞ then

Update column set ~R ¼ ~R [
i2I, d2T

~R
d
i with negative reduced cost.

Given ~R, solve the RMP & Obtain current solution Solcurt.
else

for d 2 T do
Separate the 3-SRCs and add the violated cuts to the RMP and resolve.

Every five iterations, run the MIP-H algorithm & Update Solbest.
if Solcurt � Solbest then

if Integer solution is found then
Update Solbest ¼ Solcurt & Remove the branching node from ST.

else
if total flow of an arc in one day is fractional then

Branching on total arc flow & Add two branching nodes to ST.
else if node-visited in one graph is fractional then

Branching on node & Add two branching nodes to ST.
else if arc-visited in one graph is fractional then

Branching on arc & Add two branching nodes to ST.
else

Remove the branching node from ST.
return Solbest

3. Solution approach

In this section, we present a BPC algorithm for solving
the CSRP. BPC is a combinatorial optimization method
for solving MIP with many variables (Costa et al., 2019),
where the restricted linear relaxation of the Master
Problem (MP) is solved by the column generation
approach at each node of the branch-and-bound search
tree. In the remainder of this section, we first reformulate
the compact model into an extended MP, and then dis-
cuss the solution process and two acceleration strategies
for the subproblem. Later, we present the separation
inequalities, warm-up procedures, and branching strat-
egies. The overall procedure for organizing these

components and implementing the BPC approach is sum-
marized in Algorithm 1.

3.1. MP

Let ~R denote the set of feasible routes. The corresponding
travel time for route r 2 ~R is denoted as wr, which is the
sum of the travel times connecting all traversed nodes
within the route. We define a binary parameter air to
indicate whether node i is visited (air ¼ 1) in route r or not
(air ¼ 0). The remaining notations are defined as the same
in the arc-based model. We introduce the following two
decision variables:
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zdr ¼
1, if route r is used on day d, d 2 T, r 2 ~R;

0, otherwise:

(

uij ¼ non-negative continuous value if patient node j is

assigned to doctor node

i, i 2 I, j 2 J:

Then, the formulation (1)-(16) can be reformulated as
the MP:

min
X
d2T

X
r2~R

wrz
d
r (17)

subject to X
r2~Rd

ajrz
d
r � Pd

j , 8d 2 T,8j 2 J (18)

X
r2~Rd

airz
d
r � Pdi , 8d 2 T, 8i 2 I (19)

X
r2~Rd

airajrz
d
r � uij,8d 2 T,8i 2 I, 8j 2 J (20)

X
i2I

uij � x,8j 2 J (21)

zdr 2 f0, 1g, 8d 2 T, 8r 2 ~R (22)

ui, j � 0,8i 2 I, 8j 2 J (23)

The objective function in (17) minimizes the total travel
time in the selected routes. Constraints (18)-(19) guarantee
the availability of doctors and patients and ensure that
patients with needs are visited. Constraints (20) link
together routing variables and continuity variables.
Constraints (21) guarantee that at most x doctors are
assigned to a patient within the time horizon. Note that, the
advantages of current reformulation are two fold: On the
one hand, it can process the skill-matching constraints
implicitly in the following pricing subproblem; On the other
hand, the continuity constraints (20)-(21) are robust and
they will not destroy the subproblem structure in the itera-
tive solving procedure, which will be further explained in
Section 3.3.

3.2. Column generation scheme

Column generation follows the following principle, which
iteratively solves the linear relaxation and search problems
for routes (columns) that are not in the Restricted MP
(RMP). We call MP the linear relaxation of MP. The solu-
tion to MP is a lower bound. We restrict MP to a subset of
routes R̂ � ~R, namely, RMP. In the column generation step,
we iteratively search for routes r 2 ~R with negative reduced
costs that could be added to the RMP to reduce the Linear
Programming (LP) objective value. If there are no routes
with negative reduced costs, then the LP solution of the
RMP in the last iteration is optimal and also the best solu-
tion for MP; otherwise, the found routes with negative
reduced costs are added to the RMP, and the iteration pro-
cess continues until no improvement is found. Finally, all

desired routes with negative reduced costs are added to the
RMP, and we obtain the optimal solution.

3.3. Pricing subproblem

The LP solution to the RMP provides dual variables

adj , a
d
i , b

d
ij, and �j associated with constraints (18)-(21). In

this model, adj is non-negative, while adi and bdij are nonposi-

tive. The reduced cost of route r 2 ~R
d
on day d is:

�Cd
r ¼ wr �

X
j2J

ajra
d
j �

X
i2I

aira
d
i �

X
i2I

X
j2J

airajrb
d
ij (24)

If route r 2 ~R
d
i , where ~R

d
i is a column set that collects

routes generated in a graph with doctor node i as the depot,
then the reduced cost can be further simplified as:

�Cd
i, r ¼ wr �

X
j2J

ajra
d
j � adi �

X
j2J

ajrb
d
ij

¼
X

ðj, kÞ2A, j 6¼i
brjk�c

r
jk � adi ðwhere �crjk ¼ djk � adj � bdij, b

d
ii ¼ 0Þ

(25)

In addition, we make a small change with respect to the
notification of graph G ¼ ðV ,AÞ: Previously, in Section 2,
we denote the service time at node j 2 J as tj and the travel
time on arc ðj, kÞ 2 A as tjk. Now we define a new arc-based
time djk on arc ðj, kÞ 2 A, which includes both the travel
time to connect node j to k and the service time spent at
node j. According to (25), we can conveniently obtain the
modified cost �crjk on node j by changing the values of its

outgoing arcs to generate support graph Gd
i ði 2 I, d 2 TÞ

with values only on arcs. The binary parameter brjk indicates

whether arc (j, k) is selected in route r 2 ~R
d
i , which is gen-

erated through the dynamic programming method (label set-
ting) introduced later. Note that by incorporating multiple

graphs Gd
i ð8i 2 I, d 2 T), the dual variable bdij in constraints

(25) is subtracted from the values of its outgoing arcs (j, k)
in graph Gd

i : However, �j are not included in the ingredients

of reduced cost �Cd
i, r: Therefore, the continuity constraints

(20)-(21) have no impact on the subproblem structure. In

other words, the minimization of the reduced cost �Cd
i, r can

be transformed into the search for the shortest route consid-
ering the working time regulation and time window con-
straints on Gd

i : Consequently, the pricing subproblem is an
NP-hard Elementary Shortest Path Problem with Resource
Constraints (ESPPRC). Below, we present the label setting
algorithm and focus on one support graph Gd

i :

The ESPPRC on Gd
i can be solved by the label setting

algorithm. That is, at each node we define a list of labels
representing information about partial paths starting from
doctor (depot) node i and extending (directly/indirectly) to
the current node. After initializing the labels at depot i,
more nodes are iteratively added to the paths by the forward
extension to their descending nodes in Gd

i through Resource
Extension Functions (REFs). The feasibility of each selected
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node to extend is determined according to several aspects of
resource constraints, including working time regulation,
time windows and skill-matching requirements, thereby
excluding infeasible nodes from the paths.

Now, we introduce our forward label setting algorithm
for ESPPRC. We define a label Lj ¼ ð�Cj, Sj, ðNv

j Þv2VÞ that

represents the partial path p originating from depot node i
and arriving at node jðj 2 V). The elements in Lj are
described in detail as follows:

� �Cj : reduced cost of path p;
� Sj: earliest service start time at node j along path p;
� Nv

j : binary value indicating whether node v has been vis-

ited (Nv
j ¼ 1) or not (Nv

j ¼ 0) along path p. It is also set

to 1 if node v is not visited, but is unreachable from
path p. Node v is said to be unreachable if Sj þ djv >

ldv , maxfSj þ djv, edvg þ dvi > n or Kim < Dvmð8m 2 M), in
which case it cannot be part of any feasible extension of
path p. The above three conditions indicate that the time
window constraints, the maximum working time regula-
tion, or the skill-matching requirements are violated at
least once.

The initialization of the label at depot node i sets all
components to zero. The extension of label Lj ¼
ð�Cj, Sj, ðNv

j Þv2VÞ along arc ðj, kÞ 2 A is performed respecting

the following REFs:

�Ck ¼ �Cj þ �crjk (26)

Sk ¼ maxfSj þ djk, e
d
kg (27)

Nv
k ¼

Nv
j þ 1, if v¼k;

maxfNv
j ,URvðSkÞg, otherwise:

(
(28)

Let URvðSkÞ ¼ 1 denote that node v is unreachable from
label Lk, which implies that at least one of the following
conditions is satisfied (we assume that the triangle inequality
for travel times holds): (i) Sk þ dkv > ldv , (ii) maxfSk þ
dkv, edvg þ dvi > n, or (iii) Kim < Dvmðm 2 MÞ: Under condi-
tions (i-iii), for a node to be unreachable from a label, the
infeasibility check to reach node v is performed by setting
Nv

k ¼ 1 in vector ðNv
j Þv2V : Moreover, we explain (28) in

detail as follows:

� If v ¼ k, since we extend the partial path from node j to
node k, it means that node v has not yet been visited,
i.e., Nv

j ¼ 0, and hence, Nv
k ¼ Nv

j þ 1 ¼ 1;

� If v 6¼ k, there are two cases: (i) node v has not been vis-
ited in the partial path and is reachable, namely, Nv

j ¼ 0

and URvðSkÞ ¼ 0,Nv
k ¼ maxðNv

j ,URvðSkÞÞ ¼ 0; (ii) node

v was visited in the partial path to node j or node v is
unreachable from node k, namely, Nv

j ¼ 1 or URvðSkÞ ¼
1,Nv

k ¼ maxðNv
j ,URvðSkÞÞ ¼ 1: In both cases, we have

Nv
k ¼ maxðNv

j ,URvðSkÞÞ:

Finally, the path is feasible only if all the following condi-
tions hold:

Sj þ djk � ldk (29)

maxfSj þ djk, e
d
kg þ dki � n (30)

Kim � Dkm,m 2 M (31)

Nv
k � 1, v 2 V (32)

3.4. Acceleration strategies for the pricing problem

We adopt two strategies to accelerate the solving process of
the pricing problem. Even though the elementary routes in
the subproblem produce tighter bounds in final results, the
computational effort to obtain them also grows exponen-
tially. Therefore, our first strategy is to relax the subproblem
by allowing paths containing cycles. We use ng-route relax-
ation as a compromise between elementary and non-elemen-
tary routes to efficiently obtain the desired lower bounds.
Our second acceleration strategy is to use bidirectional
search with resource-based bounds to rapidly generate feas-
ible routes. We present the formal formulation and imple-
mentation details for the ng-route and bidirectional search
approaches in Appendix B.

3.5. Subset row inequalities

To improve the quality of the lower bound obtained by the
column generation scheme, we also add valid inequalities
violated by the current linear relaxation solution and con-
sider Subset-Row Cuts (SRCs) for the CSRP. The subset-row
inequalities introduced by Jepsen et al. (2008) for the
VRPTW are special cases of Chv�atal–Gomory rank-1
inequalities and were later applied with success by
Desaulniers et al. (2008) and Zhang et al. (2019). They can
also be adapted to our problem concerning daily decisions
as follows:X
r2~Rd

�
1
k

X
j2S

ajr

�
zdr �

� jSj
k

�
, 8S � J, 2 � k � jSj, d 2 T (33)

where S is a subset of patients. As described in Pecin et al.
(2017) and Costa et al. (2019), we focus on the 3-SRCs
defined for the subsets of three customers with parameter
k¼ 2. The resultant set of inequalities is given byX

r2~Rd
S

zdr � 1,8S � J, jSj ¼ 3, d 2 T (34)

where ~R
d
S is the subset of routes [i2I ~Rd

i and covers at least
two patients in S of day d. Constraints (34) ensure that at
most one route will be selected in a feasible solution where
the route visits at least two of the three patients in S. Let us
denote the set of all 3-SRCs (i.e., constraints (34)) as a set H
in the MP. Furthermore, for any cut s 2 H, rs is the associ-
ated dual variable of constraints (34). Enlarging the support
graph Gd

i ðd 2 T, i 2 IÞ, given (25) and (34), the reduced

cost of a route r 2 ~R
d
i after adding a 3-SRC inequality s to

the MP is defined as
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Ĉ
d
i, r ¼ �Cd

i, r � rs

�
1
2

X
j2S

ajr

�
(35)

where the associated dual value rs � 0 can be interpreted as
the penalty upon visiting two patients in S.

For every s 2 H, a new resource RsðLÞ is added to the
definition of label L, which counts the number of times
(mod k¼ 2) that the patients in S have been visited. The
REFs of resource RsðLjÞ along arc ðj, j0Þ are updated as
follows:

RsðLj0 Þ ¼
RsðLjÞ, if j0 62 S;

ðRsðLjÞ þ 1Þ mod 2, if j0 2 S:

(
(36)

Note that once the case RsðLj0 Þ ¼ 0 occurs, the value rs
will be subtracted from �Cj0 :

The 3-SRC inequalities can be separated by full enumer-
ation (Zhang et al., 2019); that is, for every subset S � J
with three patients, we check whether the inequality is vio-
lated. Note that handling the dual variables of SRCs (34) in
the pricing problem will be computationally intensive. To
alleviate its impact on the overall runtime, we limit the 3-
SRC usage by only generating them in the first two levels of
the branching tree and adding at most Qmax cuts simultan-
eously (Qmax ¼ 50 in our tests).

Finally, to avoid enumerating all feasible paths, given that
all the REFs are nondecreasing functions, we use a domin-
ance condition to eliminate partial paths that will not be
included in the final solution.

Definition 1. (Dominance) Let L1j ¼ ð�C1
j , S

1
j , ðN1, v

j Þv2V ,
ðR1

s Þs2HÞ and L2j ¼ ð�C2
j , S

2
j , ðN2, v

j Þv2V , ðR2
s Þs2HÞ represent two

labels associated with different routes from depot node i to

node j. Then, L1j dominates L2j if and only if �C1
j �

P
s2H1, 2

rs � �C2
j , S

1
j � S2j , ðN1, v

j Þv2V � ðN2, v
j Þv2V, and L1j 6¼ L2j , where

s 2 H1, 2 and H1, 2 � H is the subset of 3-SRC cuts for
which R1

s > R2
s ði:e:,R1

s ¼ 1,R2
s ¼ 0Þ:

3.6. Warm-up and upper bound

The warm-up procedure is incorporated to generate a pool
of initial columns. These columns are produced using the
Clark–Wright Saving Heuristic (CWS-H) algorithm, which
generates a set of feasible routes that satisfy the continuity
constraints to visit all nodes and provide AHH services.
With the initial columns, we are able to build the initial ver-
sion of ~R and solve the RMP. Later, the dual variables with
respect to the RMP constraints are extracted to facilitate the
search for more promising columns with negative reduced
costs. We further develop a tabu-column-generation algo-
rithm motivated by Archetti et al. (2011). Based on the basic
columns with zero reduced cost in the current RMP solu-
tion, the tabu search algorithm iteratively removes or inserts
nodes on each of these routes independently to find poten-
tial routes with negative reduced costs. The process is
repeated until no more routes with negative reduced costs
are generated or the objective value is no longer improved.

The notations and implementation details for the tabu-col-
umn-generation algorithm can be found in Appendix C.

At the end of the column generation phase, if no col-
umns with negative reduced costs and violated 3-SRCs are
found, then the value of the RMP is the value of MP: We
run an MIP solver on the subset of columns in the current
RMP by setting the route selection variables as binary. Such
a procedure, called MIP-H, is executed every five iterations
and can obtain an upper bound on the integer solutions. If
the MIP is difficult to optimize, then we terminate the pro-
cess by limiting its running time to less than 5% of the total
computational time limit. The upper bound obtained is use-
ful to prune unpromising nodes in the branch-and-bound
tree.

3.7. Branching scheme

For each node in the branch-and-bound search tree, if the
decision variable in the final solution of the RMP obtained
after column generation is an integer and the objective value
is less than the upper bound, then we update the upper
bound; if the decision variable in the final solution of the
RMP is not an integer and the objective value is less than
the upper bound, then branching occurs in the node; other-
wise, this node is discarded from the search tree. To derive
integer solutions, we enforce the following types of branch-
ing decisions in the search tree: (i) on the total flow of an
arc in a day; (ii) on the node visited a fractional number of
times; (iii) on the total flow of an arc in graph Gd

i : Since
these branching rules are standard in the literature
(Desaulniers et al., 2016), we defer the complete explanation
to Appendix D.

The branch-and-bound search tree is explored with a
best-first search strategy. In each subtree, one node is eval-
uated, and only the node whose objective value is less than
the current upper bound is added to the search tree for
future exploration. The upper bound can be updated either
by the solution determined by the MIP-H based on the cur-
rent column pool or by the integer solution found in the
previous exploration of the subtree. The branching process
is repeated until the exploration of the search tree is com-
pleted or the time limit for the calculation is reached, result-
ing in a final integer solution. If the branch-price process
terminates within the time limit, then the final integer solu-
tion is optimal, otherwise it is an upper bound.

4. Extension: SCSRP and adapted solution approach

In the previous sections, we present the CSRP formulation
with deterministic travel and service times. However, in
real-world environments, these elements can be highly
uncertain due to the complex and unexpected contingencies.
In this section, we investigate an SCSRP by considering
uncertain travel and service times. The remainder of this
section is organized as follows. After a review of previous
work and the problem description in Section 4.1, we provide
a chance-constrained modification of the SCSRP. Section 4.2
states the iterative process of DAM to calculate the on-time
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service probability. In Section 4.3, we present a DAM-label
setting algorithm.

4.1. SCSRP

The existing AHH studies with uncertain durations are
rather limited, and the SCSRP is not suitable for most meth-
ods, due to factors such as on-time service requirements and
working time regulation (Rostami et al., 2021; Naderi et al.,
2023). More specifically, as the patients’ time windows and
the doctors’ maximum working time in the SCSRP are fixed,
uncertain travel and service times may lead to violations of
on-time service and completion. Popular stochastic opti-
mization methods such as (distributionally) robust optimiza-
tion, which were developed to analyze problems with
uncertainty from a worst-case (probability distribution) per-
spective (Bartolini et al., 2021; Zhang et al., 2021), are not
applicable here as their conservative results are not the pri-
mary concern for practitioners, particularly when the sto-
chastic distributions can be properly estimated from
historical information. Therefore, we need to seek alternative
ways to handle these constraints.

A more reasonable method is to utilize Sample Average
Approximation (SAA), which generates a series of discrete
points to approximate different scenarios (different time nodes
in our settings) and represent the uncertainty regarding time
windows. Furthermore, the optimality of the SAA approach
can be guaranteed with a sufficiently large sample size (Dai
et al., 2000; Shapiro et al., 2002). This technique has been
applied to address similar problems. For example, Zhan et al.
(2021) proposed an integer L-shaped method to solve the SAA
version of the AHH problem with random service durations,
whereas Guo et al. (2021) used the SAA approach to model
the stochastic operating room scheduling problem and adopted
LBBD cuts to obtain solutions. Florio et al. (2021) developed a
branch-and-price algorithm to address the VRP with stochastic
demands and probabilistic duration constraints by Monte
Carlo sampling and statistical inference. Motivated by these
studies, we attempt to combine the SAA approach with the
BPC method to solve our SCSRP.

The combined algorithm embeds the DAM approach into
the previous BPC algorithm to solve the SCSRP (DAM-BPC
hereafter). The DAM approach inherits the essence of the
SAA approach and is adapted to generate a sequence of
time-related variables. Let b (0 � b � 1) represent a prede-
fined service level. Therefore, a path is feasible if and only if
the on-time service/completion probability to visit each
patient/doctor (on the path) is no less than b. Intuitively,
the larger b, the higher level of service and the more strin-
gent are the punctuality requirements. On the other hand, b
also represents the risk preference of the decision maker: if
b is large, then it indicates that the decision maker is con-
servative in securing service quality; on the contrary, if the
decision maker is not conservative in securing service qual-
ity and emphasizes objective minimization, then b is small.
Specifically, the On-Time Service Probability (OSP) at each
patient node can be achieved by satisfying the following
chance constraints:

PðSjðUÞ � ldj Þ � b, 8j 2 V, d 2 T (37)

where SjðUÞ is a random variable that represents the service
start time on node j and U is the set of random scenarios.
The On-Time Completion Probability (OCP) at each doctor
node can be achieved in the same manner.

To integrate with Algorithm 1, we need to consider the
new chance constraints in each pricing problem while
the MP remains unchanged. Specifically, in subproblem Gd

i ,
the pointwise chance constraints associated with the
OSP/OCP of node j are described as

PðSjðUÞ � ldj Þ � b,8j 2 i [ J (38)

4.2. Calculate the OSP/OCP

In this section, we present the details for calculating Z dis-
crete time points of each node, where Z is called the discre-
tized level and can help us check whether the OSP/OCP
condition is satisfied along a path. In the remaining parts,
we represent such an iterative calculation process for each
node as ¼DAM for simplicity.

As the arrival times at each node are uncertain values in the
stochastic situation, the arrival time distributions need to be
evaluated to obtain feasible SCSRP solutions. Let Fð�Þ denote
the Cumulative Distribution Function (CDF) of the travel time
or service time. Then, we can calculate the OSP/OCP as the
procedure in Figure 2 with the known Fð�Þ: Note that, even if
the CDFs are unknown, the corresponding Fð�Þ can be
approximated by its empirical counterpart, which is the discrete
uniform distribution induced from the real-world data. For
conciseness, we defer the step-by-step explanation of Figure 2
to Appendix E and illustrate the details here with a simple
example: Figure 3 describes an SCSRP instance with five
patients and four doctors, which inherits the settings in Figure
1. In this figure, we use the DAM procedure to generate Z¼ 3
discrete points for the time-related variables and obtain feasible
routes. In particular, Figure 3 presents the optimal route solu-
tions of the first day after implementing the DAM-label setting
algorithm with parameters Z¼ 3, b ¼ 0:65 and a uniformly
distributed Fð�Þ: If we set the deviation parameter c ¼ 0:3,
then the time window range is described as ½ð1� cÞl, ð1þ
cÞl	, where l is the corresponding average travel time and ser-
vice time; thus, the three discrete time points are chosen as
f0:8l, l, 1:2lg: To derive the optimal routes, each step of the
DAM iteration alternates between service start time points and
departure time points (or the departure time points and the
arrival time points), thereby generating Z2 ¼ 9 new points. We
first sort them, slice them into Z¼ 3 parts, and then compute
the corresponding average values in each part. Finally, we com-
pute the optimal solution by the DAM-label setting algorithm
discussed in Section 4.3, where each patient/doctor should sat-
isfy the OSP/OCP with b ¼ 0:65:

4.3. DAM-label setting algorithm

Similar to the label definition in Section 3, an SCSRP label
is denoted by Lj ¼ ð�Cj, Sj, ðNv

j Þv2VÞ, where j is the last
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visited node, �Cj is the reduced cost, Sj is the service start
time at patient node j and Nv

j is a binary value indicating

whether node v is unreachable from the current node j.
Note that Sj is a vector here including Z discrete approxima-
tion points Ssj , s ¼ 1, :::,Z: The extension of label Lj ¼
ð�Cj, Sj, ðNv

j Þv2VÞ along arc ðj, kÞ 2 A is performed respecting

the following REFs:

�Ck ¼ �Cj þ �crjk (39)

Sk ¼DAMmaxfSj þ djk, e
d
kg (40)

Nv
k ¼

1 if v ¼ k or if Nv
j ¼ 1 and v 2 NGk,

maxf0,URvðSkÞg otherwise:

�
(41)

Given these REFs, (39) calculates the reduced cost of the
route from patient j to k, and (40) computes the service start
time distribution for patient k, where the calculation of Sj þ
djk is based on the DAM procedure shown in Appendix E.
Specifically, the DAM-label differentiates from the trad-
itional label by inserting an additional “OSP/OCP” resource,
which is checked frequently upon the moment to extend
labels along arcs. Notably, when incorporating the DAM
label into the label extension, we also tighten the URvðSkÞ
rule. Recall that URvðSkÞ ¼ 1 indicates that node v is
unreachable from label Lk. In the DAM-label setting algo-
rithm, except for the previously mentioned feasibility rules,
an additional rule is that if the probability b cannot be guar-
anteed under the time restriction from node k to node v,
then URvðSkÞ ¼ 1:

Finally, the feasibility conditions of a path, i.e., (29)-(32),
are still necessary for the DAM-label setting algorithm.
However, (29)-(30) are required to be updated as follows:

PðSk � ldkÞ � b (42)

PðSk þ dki � nÞ � b (43)

Regarding the dominance rule for this DAM-label setting
algorithm, we need to compare some label elements point-
wisely, which is summarised as a new DAM-dominance rule;
that is,

Definition 2. (DAM-dominance) Let L1j ¼ ð�C1
j , S

1
j , ðN1, v

j Þv2V ,
ðR1

s Þs2HÞ and L2j ¼ ð�C2
j , S

2
j , ðN2, v

j Þv2V , ðR2
s Þs2HÞ represent two

SCSRP labels associated with different routes from depot
node i to node j. Then, label L1j dominates L2j if and only

if �C1
j �

P
s2H1, 2

rs � �C2
j , S

1
j � S2j , ðN1, v

j Þv2V � ðN2, v
j Þv2V, and

L1j 6¼ L2j , where s 2 H1, 2 and H1, 2 � H is the subset of 3-SRC

cuts for which R1
s > R2

s (i.e., R1
s ¼ 1,R2

s ¼ 0). Notably, S1j �
S2j here means that S1, sj is not greater than S2, sj pointwisely

for s ¼ 1, 2, :::,Z:

5. Numerical experiments

In this section, we present our computational experiments
to empirically evaluate the performance of the proposed
algorithms on benchmark and real-world data sets. We
implement the designed algorithms in Cþþ and use IBM
ILOG CPLEX V20.1 to solve the LP and MIP models. Our
experimental environment is an AMD Ryzen Threadripper
Pro 3955wx CPU. All experiments are run on a single
thread. The time limit to terminate the solution process is
set to 3600 seconds (denoted as T.L.).

We name the instances by the time horizon, the number
of doctors, the number of patients, and the instance identi-
fier in a group (e.g., a, b or c). For example, an instance
named “7.20.67.a” refers to instance “a” with a scale of 7
days, 20 doctors, and 67 patients. For notational conveni-
ence, we also use (20, 67) to represent that there are 20 doc-
tor nodes and 67 patient nodes in an instance. We then
report the following characteristics of solutions to evaluate
the computational performance: Instances (instance names),
x (the continuity parameter), Opt (the optimality indicator,
where -1/0/1 represents infeasible/time-out/optimal), t(s)
(the computational time in seconds), obj (the optimal or
best-known value, where “–” indicates that an upper bound
with at least one integer solution cannot be derived, so does
the corresponding gap), Gapð%Þ (the relative gap (in %)
computed with respect to the upper bound and best-know
values obtained in the branch-and-bound tree, (upper
bound - best-known value)/upper bound). If the instance is

Figure 2. The iterative procedure to calculate the OSP/OCP.
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optimally solved, then the gap is controlled within 0.01%.
BPnodes represents the number of nodes in the branch-and-
bound search tree when the solution process terminates.

The computational tests are organized as follows. First, in
Section 5.1, we test the proposed algorithm on several
benchmark data sets adopted from the literature to verify its
efficiency. Second, we generate a set of AHH instances origi-
nating from real operations and conduct a sensitivity ana-
lysis to evaluate the impacts of continuity constraints in
Section 5.2. Comprehensive tests show that we are able to
achieve high-quality solutions with considerable computa-
tional efficiency. Third, we investigate the effectiveness of
our DAM-adapted solution approach to solve the SCSRP
with a few benchmark instances in Section 5.3. Finally, we
summarize helpful managerial insights derived from our
experiments for practitioners to make better decisions in
Section 5.4.

5.1. Benchmark data set tests

The proposed algorithm is tested on three benchmark data
sets. As there is no data set from previous studies that are
exactly the same as our settings, we make a few modifica-
tions to three related benchmark data sets in the VRP and
AHH literature for computational purposes. The details of
the test bed are described as follows:

1. CordeauIns The instances proposed by Cordeau
et al. (1997) describe a set of MDVRPs within one day
and have been widely used. We adopt 20 instances with
the scale of 8 
 30 doctor nodes and 48 
 288 patient
nodes into our test bed. Since skill-matching and con-
tinuity constraints are absent in these instances, we
relax the corresponding constraints in the CSRP formu-
lation by setting the doctor proficiency level to meet all
patient requirements and the continuity parameter x to

infinity. Moreover, we extend the capacity constraints in
our pricing problem so that we can handle the capacity
constraints here.

2. LiuIns The instances proposed by Liu et al. (2019)
describe a single-day home-caregiver scheduling and
routing problem. Given the different combinations of
doctor nodes and patient nodes, we consider 10 instan-
ces for each doctor–patient node combination, i.e.,
ð5, 30Þ, ð7, 40Þ and (9, 50) nodes, in our test bed. We
reserve the availability of each node when considering
the time horizon of a week; since the patterns of doc-
tors and patients are the same every day, it is reasonable
to define x¼ 1. The default configurations of the skill-
matching constraints for these instances are the same as
those in CordeauIns.

3. HechingIns The instances proposed by Heching
et al. (2019) describe a multi-day healthcare aide sched-
uling and home visit problem over a given time hori-
zon. The skill-matching constraints are relaxed, as
previously mentioned. Moreover, as multi-day oper-
ational problems, instances with the same scales of
nodes are different in terms of the continuity parameter
x and the availability pattern of doctors and patients.
Within a week, Heching et al. (2019) defined only the
required number of visits to each patient, but the
detailed visiting pattern is a decision. However, such
visiting patient patterns are pre-determined parameters
in the CSRP, so we randomly generate the visiting pat-
terns for all patients. For each x ¼ 1, ::, 7, we extract 10
instances with (20,40) and (20,50) nodes. Preliminary
computational results eliminate the instances with x ¼
1, 2 (infeasible) and x ¼ 6, 7 (objectives remain
unchanged compared with x¼ 5).

For conciseness, we summarize the benchmark test bed
information in Table 2 and all experimental results are

Figure 3. A simple SCSRP instance.
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presented in Tables 1, 2, and 3 in Appendix I. After analyz-
ing the numerical results, we have the following
observations:

1. The size of the problem is determined by three factors:
the time horizon, the number of doctors, and the num-
ber of patients. Increasing any of these factors will slow
down the solving procedure because the dynamic pro-
gramming method used to solve the subproblem
requires more iterations to identify beneficial routes.

2. The computational tests show that our designed method
can efficiently solve most of the benchmark instances in
the test bed to proven optimality. Even for unsolved
instances due to time limitations, the average gap is less
than 0.5%. Specifically, all LiuIns instances are solved
to optimality within an average of 13 seconds. In add-
ition, more than 80.0% CordeauIns instances are
solved to optimality within the time limit, and the aver-
age exit gap is less than 0.43% for the unsolved instan-
ces. With regards to HechingIns instances, our
approach achieves acceptable performance by success-
fully solving 28.3% of the instances to optimality, and

the average exit gap is less than 0.61% for the unsolved
instances.

3. Our designed algorithm clearly outperforms the com-
mercial solver CPLEX. As indicated in Tables 1, 2 and 3
in Appendix I, with CPLEX, 96.6% LiuIns instances
are solved to optimality within 261 seconds and 14464
BPnodes on average; Furthermore, CPLEX only solves
one Coredeaux instance and cannot obtain feasible
upper bounds for the rest of the instances and all
HechingIns instances within the time limit.
Obviously, the BPC algorithm has a better performance
and is superior to CPLEX in terms of both the compu-
tational time and the number of solved instances. In
addition, for a fair comparison between the BPC
method and other existing methods such as BP, L-
Shaped and LBBD algorithms that are widely used in
healthcare optimization studies (summarized in Table
1), we also conduct additional comparative analysis in
Appendix F. The performance comparison further
strengthens the BPC advantages and provides more evi-
dence to the practitioners to consider this method.

4. As the problem instance scales increase, the average
computing times to solve one instance and one node in
the branch-and-bound tree also increase. For example,
when given the problem scales 7.20.40 and 7.20.50 in
the HechingIns test bed, the average computing
times are 2189 and 3434 seconds for each category/scale,
and the average computing times to solve one node in
the branch-and-bound tree are 0.56 and 1.13 seconds,
respectively. Similar phenomena are observed in the
CordeauIns and LiuIns tests.

Table 2. The benchmark instances description for our test bed.

Data set T jIj jJj x Number of Instances

CordeauIns 1 8 
 30 48 
 288 1 20
LiuIns 7 5 30 1 10

7 7 40 1 10
7 9 50 1 10

HechingIns 7 20 40 3 
 5 3� 10
7 20 50 3 
 5 3� 10

Table 3. The CSRP results of real-world instances.

Instances x

BPC CPLEX

Opt t(s) obj Gap(%) BPnodes Opt t(s) obj Gap(%) BP nodes

7.20.67.a 2 0 T.L. 3767 0.08 3715 0 T.L. – – 71,678
7.20.67.b 2 1 93 3978 0.00 283 0 T.L. – – 60,335
7.20.67.c 2 1 700 4007 0.00 2369 0 T.L. – – 45,906
7.20.67.d 2 0 T.L. 4133 0.21 2661 1 959 4133 0.00 13,453
7.20.67.e 2 0 T.L. 4157 0.34 1891 0 T.L. – – 62,899
7.20.67.f 2 0 T.L. 4406 0.05 2699 0 T.L. – – 60,313
7.20.67.g 2 0 T.L. 3870 0.66 1845 0 T.L. – – 27,804
7.20.67.h 2 0 T.L. 3475 0.63 1265 0 T.L. – – 77,722
7.20.67.i 2 0 T.L. 3844 0.23 1823 0 T.L. – – 30,043
7.20.67.j 2 0 T.L. 4200 0.07 2509 1 1307 4200 0.00 10,545
7.20.67.a 3 1 1184 3764 0.00 4055 0 T.L. – – 125,973
7.20.67.b 3 1 57 3970 0.00 187 0 T.L. – – 115,917
7.20.67.c 3 1 690 4001 0.00 2967 1 912 4001 0.00 36,213
7.20.67.d 3 1 430 4123 0.00 1797 0 T.L. – – 68,962
7.20.67.e 3 1 290 4146 0.00 1095 0 T.L. – – 75,356
7.20.67.f 3 1 181 4392 0.00 687 0 T.L. – – 125,970
7.20.67.g 3 0 T.L. 3857 0.39 2579 1 2742 3857 0.00 59,814
7.20.67.h 3 0 T.L. 3464 0.35 2345 0 T.L. – – 117,025
7.20.67.i 3 1 1207 3831 0.00 4471 1 423 3831 0.00 11,406
7.20.67.j 3 1 309 4195 0.00 1275 0 T.L. – – 79,121
7.20.67.a 4 0 T.L. 3767 0.15 2597 0 T.L. – – 159,235
7.20.67.b 4 1 122 3970 0.00 425 0 T.L. – – 139,451
7.20.67.c 4 1 688 4001 0.00 3117 1 487 4001 0.00 23,054
7.20.67.d 4 1 162 4122 0.00 687 1 304 4122 0.00 10,516
7.20.67.e 4 1 415 4146 0.00 1687 0 T.L. – – 149,567
7.20.67.f 4 1 173 4392 0.00 635 0 T.L. – – 161,846
7.20.67.g 4 0 T.L. 3857 0.38 2659 0 T.L. – – 46,043
7.20.67.h 4 1 1671 3463 0.00 5319 1 3545 3463 0.00 92,285
7.20.67.i 4 1 1114 3831 0.00 4145 1 461 3831 0.00 11,641
7.20.67.j 4 1 47 4189 0.00 165 1 299 4189 0.00 10,268
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5.2. Real-world data set tests

To show the effectiveness of our approach in solving prac-
tical problems, we obtained 300 AHH visiting appointment
data points from November 1, 2019, to November 6, 2019.
In this data set, the nodes represent doctors and patients
geographically distributed within all areas in Beijing. The
distance matrix is acquired with the longitudes and latitudes
of nodes from Amap (https://developer.amap.com), i.e., the
shortest travel time by taking a combination of metro and
bus between any two nodes (the connection between any
two nodes exists and the travel times satisfy the triangular
inequality conditions). The planning horizon is set as a
week and the time window, service time and visiting pattern
for each patient are pre-determined within the time horizon.

To investigate the effect of continuity constraints on the
computational efficiency and solution quality in practical
environments, we conduct a sensitivity analysis to evaluate
the impacts of x. For each x ¼ 1–4, we generate 10 instan-
ces of 20 doctors and 67 patients, which are randomly
selected with respect to the five most common medical serv-
ices to construct a real graph. Approximately 75% of the
doctors and 45% of the patients are available per day, and
the total number of requests per patient is less than four
within the planning horizon. The compatibility set of
patients that each doctor is capable to provide services to is
obtained through data preprocessing considering skill-
matching requirements. We report the overall information
of the real-world instances and solution results in Table 3
and analyze the computational performance as follows:

1. The numerical results show that our designed algorithm
clearly outperforms the commercial solver CPLEX with
respect to the computational time and number of solved
instances. The former solves 60% instances to optimality
and can obtain a feasible solution on average within
1758 seconds and 0.12% gap, whereas the commercial
solver only solves very few real-world instances to opti-
mality within the time limit and even cannot obtain a
feasible solution for the rest instances.

2. Regarding the impact of the continuity constraints on
the computational performance, the problem becomes
more challenging as the continuity parameter x
decreases and all instances become infeasible when
x¼ 1 (thus being removed from Table 3). This is intui-
tive since the solution space is suppressed by the stricter
continuity constraints, and more iterations are required
to solve the subproblem for beneficial routes generation.
In other words, the scheduling flexibility increases in x.
However, if we relax the continuity constraints by
increasing x, then it can have a negative impact on
patient satisfaction as large x values will lead to poor
service experience. As a result, the continuity parameter
x should be calibrated to reach a balance between
scheduling flexibility and patient satisfaction.

3. The overall computational results indicate that the BPC
approach is capable of handling real-world operational
route scheduling requirements. In fact, our algorithm
outperforms the scheduling method currently being

used by the company (i.e., mainly manual scheduling
outcomes by experience), the average travel time per
visit is reduced by 30.6minutes (from 113.9minutes to
83.3minutes) and the average daily visits increase from
2.76 to 3.35, resulting in a � 20% improvement in ser-
vice capability. Moreover, patient satisfaction is
improved because the company invested efforts to
assign familiar doctors to serve the same patients.
Figure 4 describes a routing and scheduling example for
one specific day solution by solving the instance
“7.20.67.a” (x¼ 3), and we defer the rest scheduling fig-
ures to Appendix H. The red and blue icons represent
doctors and patients respectively, and the lines connect-
ing the nodes represent the scheduling and movement
paths. Note that the unvisited nodes are not available
on that day but can be visited in other days. Compared
with the original scheme in the collaborating company,
the new scheduling results are fairly acceptable by elimi-
nating cost-expensive routes, such as situations in which
doctors have to travel across the city to provide service.

5.3. Uncertain data set tests

To test the DAM-BPC method and measure the modified
approach in solving the SCSRP, we further conduct sensitiv-
ity analysis on LiuIns instances to investigate the effects
of discretized-level Z and OSP/OCP parameter b. Since the
discretized-level (or the number of points) Z is crucial to
control uncertainty and reduce accidents risks, we start with
experiments on different configurations of Z 2 f5, 10, 20g
given a baseline parameter b ¼ 0:75: The computational
results are reported in Table 4. In addition, the OSP/OCP
parameter b reflects the service quality of providers, so we
also present the results for different configurations of b
from 0.55 to 0.95 given Z¼ 10 in Table 4 (and also Tables
4-5 in Appendix I). For each parameter configuration, the
travel and service times are assumed to follow uniform dis-
tributions and the deviation parameter is set as c ¼ 0:3,
which corresponds to the uniform distribution of travel time
used by Adulyasak and Jaillet (2016). To verify the general-
ity and applicability of the DAM-BPC method, we further
conduct the following experiments: (i) On the one hand,
apart from the uniform distribution, we also test several
other distributions that were investigated in the literature,
including the asymmetric triangular distributions and two-
point distributions (Zhang et al., 2021). The results and
insights based on these distributions are similar to those
obtained from the baseline uniform distributions, so we
report their details in Tables 6-9 in Appendix I. (ii) On the
other hand, to evaluate the out-of-sample performance of
the proposed method, we also conduct out-of-sample tests
for all the above parameter configurations and summarize
the results and analysis in Appendix G. The testing results
indicate that our method shows strong adaptivity and
robustness to various parameter configurations as the
insights derived from the out-of-sample tests do not signifi-
cantly deviate from those obtained from the previous sensi-
tivity analysis.
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With numerical experiments on SCRSP instances, we
have the following observations. To address the SCSRP, the
adoption of discrete points within the DAM procedure ren-
ders the problem rather difficult to solve, since it requires
additional computational efforts to verify whether an exten-
sion is feasible. Notably, from Z¼ 5 to Z¼ 20, the number
of infeasible instances increases and the proportion of feas-
ible instances that can be solved to optimality decreases
from 100.0% to 85.7%. Moreover, the average computing
times of instances with optimal solutions are 65, 200 and
573 seconds for Z¼ 5, 10, 20 scenarios, and the average exit
gaps for unsolved instances are 0.00%, 0.00% and 1.28%,
respectively. Clearly, the SCSRP takes much longer time to
solve than the CSRP counterpart as the algorithmic com-
plexity increases by at least Z2 folds, which also explains
why larger Z values yield solutions of larger exit gaps. Note
that, a certain number of instances might turn into infeas-
ible as Z increases because the service starting time eval-
uated via DAM underestimates the mean value of the
uncertain service starting time according to Jensen’s inequality
(Zhang et al., 2021). However, we also found that the effects of
tackling uncertainties by increasing Z are indeed diminishing;
that is, when Z increases to a certain value, the density of the
discrete time points renders the model robust enough, after
which increasing Z will not improve the final solution signifi-
cantly or even become worse due to the over-fitting effect. As
for the impact of OSP/OCP parameter b on computational
performances, from b ¼ 0:55 to b ¼ 0:95, the average object-
ive values are increasing in b (i.e., from 838.36 to 866.71).

Such an upward trend indicates that a higher on-time service/-
completion requirement would inevitably lead to additional
costs, which poses challenges for managers to find a balance
between service quality and cost-efficiency.

In summary, through the previous numerical experi-
ments, we conclude that our approaches are efficient in solv-
ing the CSRP and SCSRP and also lead to the following
managerial insights.

5.4. Managerial insights

In this section, we investigate the effects of design parame-
ters on company performance. The preceding sensitivity
analysis provides decision-makers with some helpful man-
agerial insights:

1. Scale configuration: We believe that careful consider-
ation should be given to scale configuration, which is a
fundamental aspect affecting the solution procedure that
involves planning horizon selection and graph structure
selection (the cardinality of doctors and patients). On
the one hand, a shorter planning horizon, i.e., weeks, is
preferred for scheduling and circulation. On the other
hand, a graph structure with no more than 30 doctors
and 100 patients is recommended; for which, the prob-
lem can be solved efficiently. For even larger instances,
an appropriate graph partition method is thus closely
required to guarantee the solutions’ quality. To this end,
the main functional and topological constraints in the

Figure 4. The optimal 1-day routing solution for the Pinetree instance “7.20.67.a” (x¼ 3).
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districting problem, i.e., integrality, balancing, compact-
ness and contiguity should be ensured. We refer inter-
ested readers to Mostafayi Darmian et al. (2021) for
districting and partition details.

2. Impact of care continuity: The configuration of continu-
ity constraints plays an important role in the optimiza-
tion process. Table 3 shows that instances with larger x
values tend to be solved faster due to higher scheduling
flexibility. However, the significantly higher x values
might result in low patient satisfaction, workload imbal-
ance in doctors and more cost components such as add-
itional coordination efforts and information systems
infrastructure for the system. If the continuity restric-
tion is calibrated appropriately, then it is possible to
facilitate the company in scheduling doctors with more
flexible plans without incurring downside effects.
Therefore, determining a decent x is critical to making
the trade-off between resolving the CSRP efficiently and
searching for high-quality solutions. In addition, moti-
vated by the EMS for ambulances usage constraints, we
also investigate alternative service level requirement
constraints by imposing at least a prescribed percentage
of patients receiving service with the cohort size of doc-
tors being less than x, which renders more managerial
flexibility to implement the continuity restriction in
practical AHH business.

3. Impact of on-time service/completion requirement: Our
computational experiments show that the discretized
level Z affects performance in a complicated way. The
inclusion of uncertain elements degrades both the
objective value and computational time. Consequently,

the objective value (e.g., average cost) increases when
pursuing a more robust solution. Therefore, choosing
an appropriate number of discrete points is important
for trading off robustness versus the corresponding cost.
Values of Z that are too large, resulting in large
resource costs, or too small, leading to lower robustness,
should be avoided, and the value needs to be decided
according to practical circumstances. For example, in
our experiments, Z¼ 10 is a suitable value, while the
selection of b in a proper range is trivial.

4. Labor-force management: To improve service quality,
the company should employ additional doctors accord-
ing to their geographical addresses and skills, which will
improve labor management and scheduling flexibility. If
any particular region is resource-limited and patients in
the region need to be served by doctors from remote
places, then a newly employed doctor in that region will
significantly reduce labor costs. Consequently, when
rescheduling the new timetable, sufficient doctors are
critical to producing better schedules for the next circu-
lated horizon.

5. Generalizable applications: The proposed model can be
successfully generalized to address similar problems
under different conditions. As previously indicated, the
benchmark problems from the literature are specific
variants of our models. Numerical experiments show
that our approaches can also obtain high-quality solu-
tions with reasonable computational resources.

6. Note to the practitioners: The CSRP/SCSRP is dedicated
to determining optimal schedules with certificated, con-
tracted and full-time doctors to provide primary

Table 4. The SCSRP results of instances LiuIns.

Instances x

Z ¼ 5 Z ¼ 10 Z ¼ 20

Opt t(s) obj Gap(%) BPnodes Opt t(s) obj Gap(%) BPnodes Opt t(s) obj Gap(%) BPnodes

7.5.30.a 1 1 8 733 0.00 7 1 21 738 0.00 9 1 110 733 0.00 5
7.5.30.b 1 1 3 801 0.00 1 1 11 801 0.00 1 1 64 801 0.00 1
7.5.30.c 1 1 4 689 0.00 1 1 13 689 0.00 1 1 62 689 0.00 1
7.5.30.d 1 1 5 953 0.00 1 �1 – – – – �1 – – – –
7.5.30.e 1 1 21 681 0.00 35 1 38 677 0.00 9 1 225 679 0.00 19
7.5.30.f 1 �1 – – – – �1 – – – – �1 – – – –
7.5.30.g 1 1 4 665 0.00 1 1 9 665 0.00 1 1 64 665 0.00 1
7.5.30.h 1 1 16 824 0.00 15 1 40 821 0.00 9 1 232 828 0.00 9
7.5.30.i 1 1 5 786 0.00 1 1 13 786 0.00 1 1 58 786 0.00 1
7.5.30.j 1 1 9 830 0.00 13 1 12 830 0.00 1 1 108 830 0.00 7
7.7.40.a 1 1 25 954 0.00 11 1 93 954 0.00 13 1 394 954 0.00 9
7.7.40.b 1 1 118 814 0.00 131 1 408 815 0.00 145 0 T.L. 835 2.95 293
7.7.40.c 1 1 47 810 0.00 25 1 86 795 0.00 3 1 380 795 0.00 3
7.7.40.d 1 1 22 755 0.00 9 1 73 759 0.00 11 1 407 759 0.00 11
7.7.40.e 1 1 46 854 0.00 29 1 132 854 0.00 25 1 699 854 0.00 29
7.7.40.f 1 1 40 812 0.00 27 1 82 816 0.00 13 1 457 816 0.00 15
7.7.40.g 1 1 13 833 0.00 3 1 40 833 0.00 3 1 227 833 0.00 3
7.7.40.h 1 1 32 806 0.00 21 1 67 803 0.00 11 1 298 803 0.00 7
7.7.40.i 1 1 212 856 0.00 183 1 164 858 0.00 19 0 T.L. 866 0.07 147
7.7.40.j 1 1 55 940 0.00 35 1 212 940 0.00 39 1 1047 942 0.00 39
7.9.50.a 1 1 82 939 0.00 15 1 264 938 0.00 15 1 1079 935 0.00 9
7.9.50.b 1 1 42 955 0.00 9 1 264 963 0.00 27 1 868 955 0.00 11
7.9.50.c 1 1 120 939 0.00 43 1 560 941 0.00 77 1 2837 939 0.00 53
7.9.50.d 1 1 45 940 0.00 11 1 88 935 0.00 5 1 490 935 0.00 5
7.9.50.e 1 1 21 905 0.00 3 1 86 905 0.00 3 1 347 905 0.00 3
7.9.50.f 1 1 249 935 0.00 163 1 305 933 0.00 39 0 T.L. 936 0.19 99
7.9.50.g 1 1 85 885 0.00 19 1 287 885 0.00 19 1 1337 885 0.00 17
7.9.50.h 1 1 39 836 0.00 5 1 627 857 0.00 93 1 713 836 0.00 5
7.9.50.i 1 1 437 1019 0.00 113 1 1408 1019 0.00 121 0 T.L. 1035 1.90 47
7.9.50.j 1 1 81 883 0.00 13 1 211 888 0.00 11 1 1250 883 0.00 13
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healthcare services for long-term patients, whose basic
information including medical conditions and care
requirements (e.g., type, service dates, time windows)
are obtained by attended home assessment services in
advance, considering the aforementioned features and
respecting the continuity restrictions. It is noted that
real-time scheduling, such as assessment services or
(unexpectedly) short-term patient visits, is necessary but
beyond the scope of the current study. Finally, the time
horizon is typically framed as a week since the service
patterns of patients repeat across weeks (usually lasting
for 3–6 months).

6. Conclusion

In this article, we address a complex routing and scheduling
problem with skill-matching and continuity constraints
(CSRP) in the AHH industry. We aim to minimize the total
travel time while considering a series of comprehensive and
challenging constraints extracted from practical environ-
ments. This problem is modeled as a HSDConVRPTW. To
the best of our knowledge, while similar problems have been
investigated in the literature, there is no clear evidence of a
compact model that can characterize all the practical fea-
tures in this article and any exact approaches for solving the
HSDConVRPTW that is practically implementable.
Motivated by this gap, we first propose an arc-based com-
pact formulation that can adequately characterize the afore-
mentioned constraints. The compact model is intractable
and cannot be solved optimally for large-scale instances with
commercial solvers. Therefore, we consider a route-based
reformulation and develop a BPC approach that speeds up
the solving efficiency and provides high-quality solutions in
a reasonable time. In addition, we have extended our CSRP
to a stochastic variant SCSRP by taking into account uncer-
tainty on travel and service times in practical settings, and
also adapted the BPC to DAM-BPC, which can handle the
uncertainty in an elegant way. Finally, extensive numerical
experiments on benchmark and real-world data sets show
that our algorithms are efficient in solving the CSRP and
SCSRP and clearly outperform both the commercial solver
CPLEX and state-of-art solution approaches in literature. In
summary, this article not only contributes to the literature
in this stream of research but also helps AHH practitioners
to make better decisions and reduce labor costs for enter-
prises. According to the feedback from the collaborating
company, the implementation of our approach significantly
improves the service capability and patient satisfaction in
the company by increasing the average daily visits to 20%.
In addition to the economic benefits, our approach also
reduces reliance on scheduler experience and develops pro-
fessional standards for operational-level decision-making.
We believe that our algorithm can be a widely accepted
alternative to replace manual scheduling and routing opera-
tions in many companies facing similar performance
improvement targets.

Our research also has a few limitations. When consider-
ing uncertain travel and service time, we impose an

assumption that the distribution of each uncertain duration
is known and then apply the DAM approach to handle the
SCSRP. Therefore, one of the potential venues for future
studies is to address the SCSRP with unknown distributions
under the umbrella of distributionally robust optimization,
which is related to characterizing uncertain travel and ser-
vice times with appropriate ambiguity sets and solving the
problem rigorously, and contributes significantly to the sto-
chastic vehicle routing problem area (Zhang et al., 2021).
Another future venue is to consider more complicated
requirements, for example, synchronized visits among sev-
eral doctors or overtime penalty charged induced by uncer-
tainty (Malagodi et al., 2021) and general precedence
relationships among patients (Sarin et al., 2014).
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