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A B S T R A C T

We present a software that predicts non-cleft facial images for patients with cleft lip, thereby facilitating
the understanding, awareness and discussion of cleft lip surgeries. To protect patients’ privacy, we design
a software framework using image inpainting, which does not require cleft lip images for training, thereby
mitigating the risk of model leakage. We implement a novel multi-task architecture that predicts both the
non-cleft facial image and facial landmarks, resulting in better performance as evaluated by surgeons. The
software is implemented with PyTorch and is usable with consumer-level color images with a fast prediction
speed, enabling effective deployment.
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1. Introduction

A cleft lip/palate is a medical condition where the lip/palate of a
patient does not join completely before birth, which usually occurs in
the early stages of pregnancy. In the UK, cleft lips are the most common
facial birth defect, with one out of every 700 children suffering from
cleft lip and palate every year [1]. This explains the importance of cleft
lip and palate surgeries, which are usually performed on orofacial cleft
patients at an average age of three months [2]. Although the surgical
treatment for cleft lip and palate varies, their common objective is to
achieve symmetry and enhance a nasolabial look [3].

As cleft lips are pre-born defects, many parents of the patients would
find it hard to imagine what the non-cleft faces of their children would
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be like. To facilitate the understanding, awareness and discussion of
cleft lip surgeries, we have worked with the UK’s Royal Victoria Infir-
mary (RVI) to collect a dataset of cleft lips patients, and designed a
system that allows the prediction of non-cleft faces from the cleft lip
counterparts.

A core challenge of our software design is to protect the privacy
of cleft lip patients. Research has shown that due to the high memory
capacity of deep learning models, it is possible to reconstruct original
training samples from the network parameters, a scenario known as
model leakage [4]. While it may be straightforward to formulate the
non-cleft facial-prediction task using a style transfer [5] framework,
training such systems requires both cleft and non-cleft facial images,
resulting in a risk of model leakage. We present a novel software
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engineering design by tackling non-cleft facial-prediction with an image
in-painting framework. This allows us to train the system using open
facial datasets [6] with a tailor-made algorithm to mask out the mouth
area, and test the system with cleft lip images. As a result, the model
parameters do not store any cleft lip information.

In particular, we develop a PyTorch-based software that utilizes
a state-of-the-art image inpainting network [7] as the backbone, and
develop a multi-task system that predicts both images and the facial
landmarks, thereby generating non-cleft faces. The facial landmark task
provides geometric information that facilitates the image generation
task. Compared to existing work that utilizes a multi-stage framework
to first predict landmarks and then predict images [7,8], ours is supe-
rior as both tasks are performed at the same time, avoiding any error
propagation from the first stage to the second stage.

The quality of images produced by our software has been evaluated
by NHS surgeons, showcasing its superior performance to alternative
designs. It has a fast inference speed and works with color images
captured by consumer-level cameras, allowing an effective deployment
process. It is open-source, facilitating research and development in this
area.

The source code presented in this paper has been originally de-
veloped to implement the theory proposed in [9], which is accepted
in a biomedicine-focused conference. In this paper, we explain the
implementation details of this software and its impact in the real
world. In particular, we focus on the design concepts of the software
architecture and the details of the engineering considerations. This is
further supported by a validated version of the source code in the
CodeOcean environment.

2. System description

To protect the privacy of patients’ data, we decide to implement
the non-cleft facial image prediction system as an image inpainting
framework. One key software engineering decision in this research
is the framework we use to implement the solution. Existing style
transfer-based frameworks [5] allow effective facial image generation
with different features. However, they require training data from both
the source (i.e. cleft lip images in our case) and target (i.e. non-
cleft lip images) domains, which may lead to model leakage where
the trained model memorizes the training images. Conditional image
translation frameworks using GAN [5] or VAEs [10] may resolve the
issue, but those methods mainly focus on the synthesis of new color
patterns instead of geometric structures. Our investigation led us to the
image inpainting framework [7] as a suitable solution, as it does not
necessitate using cleft facial data for training. Additionally, the binary
mask effectively defines the lip area for synthesis with the rest of the
face, serving as conditions, making it well-suited to our requirements.

In particular, to implement an image inpainting framework, we
utilize the image generation network in [7] as the backbone, which is
ameliorated from [8], given its good performance in image inpainting.
We also re-implemented the gated convolution algorithm proposed
in [11] to dynamically select features for each channel and location,
resulting in better inpainting quality.

On top of the backbone, we implement a multi-task system that
predicts both the non-cleft facial image and facial landmarks. Facial
landmark has shown to be effective in assisting facial image inpaint-
ing [7,8], and is used extensively for cleft lip analysis [12]. Our work
differs from existing approaches in that we employ a multi-task model,
where two tasks share a part of a common network and facilitate each
other.

To prepare the training data, we employ an open facial dataset
and a tailor-made masking algorithm. In particular, we use the CelebA
dataset [6], which consists of 202,599 face images of over 10,000
celebrities. To prepare the data for training our inpainting network,
we apply an irregular mask algorithm following [13], such that our

To test the system, we work with the NHS to collect a dataset
of cleft lip images. Due to the sensitive nature of the data, ethical
approvals are obtained from the Research Ethics Committee (REC), the
Health Research Authority (HRA), and Health and Care Research Wales
(HCRW), under Approval Nos. 19/LO/1690 and under IRAS Project ID:
240451. Given a cleft lip image, we manually draw a mask that covers
the mouth area. The masked image is fed into our multi-task network
to create the non-cleft facial counterpart, with the facial landmark as a
side-product. Since cleft lip images are only used in testing, we mitigate
any risk of model leakage [4].

2.1. Network design and implementation

Here, we provide details for the design and implementation of our
deep neural network, as shown in Fig. 1.

The encoder is used to encode an image into a feature represen-
tation. We develop a gated convolution block that includes a gated
convolution layer [11], a normalization layer and an activation layer
(ReLU). A masked image is fed into three gated convolution blocks with
decreasing feature sizes from 256 × 256 to 64 × 64. Subsequently,
the encoded feature is passed into multiple dilated residual blocks to
extend the receptive field of the encoder. At the end of the encoder, we
follow [14] to implement an attention mechanism to match the masked
and unmasked regions. After a skip connection, the encoder outputs the
shared feature map 𝑓share, which is practically a concise representation
of the image. The feature map is passed to both the image generator
and predictor.

The image generator is used to predict the non-cleft facial image.
Given the shared feature 𝑓share, we employ a gated convolution block
to implement upsampling. This is followed by two 1 × 1 convolution
layers, 𝐹1 and 𝐹2, for feature fusion. The first one is utilized to fuse
the encoder feature with the skip connection, while the second one
is responsible for parameter sharing to fuse the landmark indicator.
This is followed by another upsampling gated convolution block with
a fusion layer 𝐹3 and a convolutional layer to synthesize the non-cleft
lip image.

The landmark predictor is used to predict the landmark of the non-
cleft facial image. Following [7], the shared feature 𝑓𝐬𝐡𝐚𝐫𝐞 is passed into
different 1 × 1 convolution layers followed by global average pooling to
extract features of different numbers of channels. The feature with the
largest number of channels (i.e. 𝑉 ) is further passed into a PReLU [15]
activation layer. These features are concatenated and fused with the
image features to predict the landmark.

We develop a parameter-sharing mechanism to share information
between the image generator and the landmark predictor. We imple-
ment an adaptive feature fusion algorithm, in which the image feature
𝑓1 from the layer 𝐹1 is passed from the image generator to the landmark
predictor. This is followed by a fully connected layer to generate the
68 landmark points, �̂�:

�̂� = 𝐹𝐶(𝛾 ∗ 𝑓1 ⊕ 𝑓𝑙𝑚𝑘), (1)

where 𝛾 is a trainable parameter with zero initialization, ⊕ is element-
wise addition, 𝑓1 is obtained by passing 𝑓1 through a global average
pooling layer and 𝑓𝑙𝑚𝑘 is the extracted landmark feature map. The
predicted landmark points �̂� are mapped into a 128 × 128 image
corresponding to the landmark position. The image is stacked channel-
wise to increase its influence (68 times in our setup), and passed from
the landmark predictor back to 𝐹2 in the image generator.

2.2. Implementation details

This multi-tasking image inpainting system is programmed in Py-
Torch. The main packages include numpy 1.15.4, torch 1.10.2 and
torchvision 0.11.3. All of our experiments are implemented with
256 × 256 images and masks. We employ the imageio 2.15.0 to load
network can learn to inpaint any masked regions of the face. and Pillow 8.4.0 to resize both images and masks. For each facial
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Fig. 1. The overview of proposed multi-task architecture.

Algorithm 1 GAN-based training for proposed Multi-task model 𝑀𝑇𝜃
his is the new pseudo code
Inputs: Generated image 𝑥, image ground truth 𝑋, predicted landmark
, landmark ground truth 𝐾, irregular mask 𝑀 , max number of itera-
ions 𝑇 , batch size = 4.
utput: Multi-task model 𝑀𝑇𝜃

1: Build dataloader.
2: Initialize the network.
3: if t < T then:
4: Sample 4 images and corresponding landmark from dataloader.
5: Sample 4 irregular mask from dataloader.
6: 𝑥, 𝑘, 𝐿pixel, 𝐿landmark, 𝐿tv, 𝐿style, 𝐿perceptual, 𝐿𝑔 , 𝐿𝑑 ← 𝑀𝑇𝜃(𝑋,𝑀,𝐿).
7: 𝐿𝐺 ← 𝐿pixel + 𝐿landmark + 𝐿tv + 𝐿style + 𝐿perceptual + 𝐿𝑔
8: 𝐿𝐷 ← 𝐿𝑑
9: Freeze the 𝜃𝐺 in multi-task model, update discriminator with

adversarial loss 𝐿𝐷.
10: Freeze the 𝜃𝐷 in discriminator, update multi-task model with

adversarial loss 𝐿𝐺.
11: 𝑡 ← 𝑡 + 1
12: Save the trained Multi-task model 𝑀𝑇𝜃 .

image, Face Align Network (FAN) generates 136 values to denote the
x- and y- positions of the 68 landmark points.

To train the network, a GAN-based [16] training flow is employed
as shown in Algorithm 1. We first apply FAN [17], a Face Align Net-
work, to generate the ground truth landmark points from CelebA [6],
following the default training and testing split of the dataset. We then
apply Optuna [18] for hyperparameter tuning. Specifically, we fix all
hyperparameters except the weight of landmark loss, and train our
model with one epoch using Optuna to sample such weights. With the
same method, we also tune other hyperparameters, such as the learning
rate, the decay weight of the learning rate and batch size.

The collected dataset is used for inference. From both quantitative
and qualitative results, our system generates semantically plausible
non-cleft facial images [9]. The results are further evaluated by cleft

lip surgeons, showcasing that our proposed network generates better
images than state-of-the-arts [7,8,19].

The run-time cost of the proposed system is very low. Using our real-
world cleft lip data, the inference step is implemented using an NVIDIA
GeForce GTX 970 on a laptop, with an inference time of 200 ms for
a single image. This means that our trained system does not require
a particularly powerful computing system to perform the inference,
and a standard workstation or laptop computer can use our system.
For training the network, one NVIDIA TITAN Xp is used for four days,
which is typical in deep learning applications of a similar scale.

2.3. How to use

To retrieve the training dataset for this image inpainting applica-
tion, users are required to download the CelebA Dataset [6] and the
irregular mask dataset [13] from the respective official websites. The
CelebA dataset should then be divided into a standard training set and
a validation set, according to the official instruction. Additionally, the
corresponding landmark points should be generated with FAN [17].
Furthermore, the irregular mask dataset should be divided into three
groups according to the mask ratios (0%–20%, 20%–40%, 40%–60%).
3,300 masks are randomly selected from each group, resulting in a total
of 9,900 mask images for training. Another 200 masks are selected from
each group, resulting in a total of 600 mask images for verification.
For the inference step, all cleft facial images and their corresponding
masks serve as the image test set and the mask test set, respectively. The
user should then run the provided ‘‘./scripts/filst.py’’ script to generate
training, test and validation set file lists, and update the information in
the ‘‘config.yml’’ file accordingly to set the model configuration. Once
the python environment has been set up using the released ‘‘require-
ments.txt’’ file, the user may proceed to run the ‘‘train.py’’ script for
training and the ‘‘test.py’’ script for testing. For the inference process,
although we recommend using our system with GPUs for better speed,
the system is fully runnable with only CPUs. Due to the sensitivity of
patient privacy, we are not allowed to upload the cleft lip data for an
online demonstration. Therefore, we show the reproducibility of our
system with the images from CelebA and the irregular masks.
3
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3. Impact overview

While our method primarily focuses on cleft lips, the uses of the
implemented source code can be extended to other applications. The
key idea of this software is to mask out a particular region of a face,
and to employ inpainting techniques for predicting the masked area.
The versatility of our system allows for the implementation of extended
facial applications, such as makeup and plastic surgery prediction. To
utilize these capabilities, a customized dataset is required for training,
such as the Facial Beauty Database [20] or a plastic surgery facial
dataset [21]. The users then need to retrain our model according to
section 2.3. The resulting model can then be tested using a corre-
sponding mask that covers specific facial components, such as nose or
eyebrows, to generate the image of the subject after makeup or plastic
surgery. Therefore, it can also be used for supporting plastic surgeries
and makeup prediction [22] on specific facial components. This would
facilitate the understanding and discussion of those operations and
applications among stakeholders.

We put a particular effort in selecting a software framework that
is robust against model leakage and attack [4,23]. In particular, we
propose the idea of excluding patient data in training deep learning
models if possible, mitigating any privacy concerns and risk of data
loss. The high-level concept of training with open data and testing with
sensitive data can be employed in other machine learning applications
to protect data privacy, particularly those in the healthcare domain or
involving people of vulnerable groups.

In theory, our system is also capable of synthesizing cleft facial
images from non-clelf lip ones. In practice, due to the wide variety
of cleft lip conditions, training such a system would require a large
dataset of cleft images, which is currently not available. Should there
be enough data (and we only need the lip area to protect patients’
privacy), this system can be used to generate synthetic cleft lip facial
images, which enable the training of machine learning algorithms. As
the data is artificially created, there is no privacy or model leakage con-
cern, and an unlimited amount of samples can be created. This aligns
with the recent trend of using computer graphics techniques to mock
up real-world data [24], facilitating the training of machine learning
systems for patient-related applications [25]. Since the beginning of
this research, there is raising awareness from both UK universities and
hospitals in collecting cleft lip data for research purposes. We believe
our vision will be made possible in the future.

4. Conclusion

This work implements a multi-task image inpainting model to pre-
dict non-cleft lip facial images from cleft lip ones. We make an im-
portant software engineering decision to implement the system under
an inpainting framework, which does not require patient data for
training and mitigates model leakage risks. We design and develop
a multi-task neural network that co-predicts a facial image and the
corresponding facial landmarks, and we find that the two tasks support
each other. Apart from detailing the design and implementation details
of our software, we also discuss its impact within and beyond cleft lip
applications. The source code is now publicly released on CodeOcean
and Github.
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