“Planar” tautologies hard for Resolution

Stefan Dantchev!?
IBRICS; Dept. of Computer Science
University of Aarhus
540 Ny Munkegade
DK-8000 Aarhus C, Denmark
dantchev@dcs.qmw.ac.uk

Abstract

We prove exponential lower bounds on the resolution
proofs of some tautologies, based on rectangular grid
graphs. More specifically, we show a 2(") |ower bound for
any resolution proof of the mutilated chessboard problem
on a2n x 2n chessboard aswell asfor the Tseitin tautolo-
gy based on the n x n rectangular grid graph. The former
result answers a 35 year old conjecture by McCarthy.

1 Introduction

In the paper, we prove an exponential lower bound for
any resolution proof of the mutilated chessboard problem
as well as for the Tseitin tautologies on a rectangular grid
graph.

Exponential lower bounds for resolution are known for
matching problems based on the complete bipartite graph
K, 11, as well as for a special class of graphs, namely ex-
panders (see [4], [8], [3]). Exponential lower bounds for T-
seitin tautologies are also known for expander graphs only
[7]. In the recent paper [2], a common framework is given
that generalises and simplifies all the known proofs. Unfor-
tunately, it does not work for tautologies based on planar
graphs.

Thus our main contribution is that we obtain exponen-
tial lower bounds for tautologies, based on grid graphs. The
main tool, we use in our proofs, is the representation of res-
olution proofs as Prover-Adversary games. It is introduced
by Pudlak in his recent paper [6]. On a technical level, our
contribution is a new way to introduce randomness in Ad-
versary’s strategy (although Pudlak, himself, speaks about
“super-strategy” rather than “randomised strategy”). In do-
ing so, we introduce the concept of tiling games. It turns out

*Basic Research In Computer Science, Centre of the Danish National
Research Foundation

Sgren Riis?

’Dept. of Computer Science
Queen Mary, University of London
Mile End Road
London E1 4NS, UK
smriis @dcs.qmw.ac.uk

that the combination of our reduction of the original prob-
lems to tiling games and Pudlak’s idea of considering proofs
as games gives very “clean” proofs of the lower bounds.
The paper is organised as follows. First, we define the
two problems and explain briefly Pudlak’s idea of consid-
ering resolution proofs as games. We then introduce tiling
games and prove lower bounds for them. Finally, we show
the reduction from the original problems to tiling games.

Figure 1. The two original problems

Mutilated chessboard This problem has the distinction
to be the earliest proposed hard problem for theorem prover-
s [5]. The problem is the following: given a 2n x 2n chess-
board with two diagonally opposite squares missing (see the
left side of Fig. 1), prove that it cannot be covered with
dominoes. We can consider it as a matching problem (the
left part of Fig. 2): squares are vertices of the graph, and
there is an edge between every two neighbouring squares.
Thus one component of the bipartite graph consists of black
squares and the other consists of white ones. Two miss-
ing squares are of the same colour which implies one of the
components in the graph has two more vertices than the oth-
er. That is why there is no perfect matching, i.e., dominoes
tiling of the mutilated chessboard.

The formalisation of the problem as a set of clauses is
as follows. For every square, we introduce (at most) four

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS’01)
0-7695-1390-5/02 $17.00 © 2002 9 IEEE

variables u, r,d, ! corresponding to the four possible ways
of covering a square by a domino. We then write down
the following clauses, saying that every square is covered
exactly once:

1. {u,r,d,l}
2. {u, 7}, {ud}, {ul}, {r,d}, {71}, {d,1}

Whenever a variable does not make sense, i.e., a domino,
going outside the chessboard, we replace the corresponding
variable by “false”.

Figure 2. The “reverse” formulations

Tseitin tautologies on grid graphs The definition of the
problem is as follows. Given a undirected graph, we at-
tach a propositional variable to every edge. We also selec-
t one vertex and label it by “true”, all others are labelled
by “false”. We require the exclusive-or of all the adjacent
edges of every vertex to be equal to its label. Obviously, this
is impossible as every variable occurs exactly twice in the
exclusive-or part of these equations, but the exclusive-or of
all the labels is “true”.

On an x n rectangular grid graph, we colour white one
of the corners, and all the other vertices are black (see the
right side of Fig. 1). We then write the following set of
clauses:

false for all the black vertices
true for the only white vertex

I}, {u,r,a,l}, {u,r,d,i},
boAu,7,d, 1}, {uF,d,l} fora

u@r@d@l:{

L4 {ﬂa ’I", dal}a {U'aFa d7
{u,?,a,i}, {ﬂ, T,E,Z
black vertex

b {U,T, dal}’ {Ea F: dal}’ {ﬂ, T,E,l}’ {ﬂ, r, d,Z},
fu,r, @ 1Y, {uFd,0) {u,rd,l), {a,7d,1)} for
the white vertex

Again, all the variables that do not make sense are replaced
by “false”.

There is another, chessboard-style formulation of the
problem. Given a chessboard, tile it by dominoes, such that
every square is covered by even number of tiles and one of
the corners is covered by odd number of tiles. The formula-
tion is illustrated on the right side of Fig. 2.

2 Preliminaries

Resolution We first give some definitions. A literal is ei-
ther a propositional variable or the negation of propositional
variable. A clauseis a set of literals. It is satisfied by a truth
assignment if at least one of its literals is true under this
assignment. A set of clauses is satisfiable if there exists a
truth assignment satisfying all the clauses.

Resolution is a proof system designed to refute given set
of clauses, i.e., to prove that it is unsatisfiable. This is done
by means of the resolution rule

GiU{v} G U{w}
C1J0C, ’

i.e., we can derive a new clause from two clauses that con-
tain a variable and its negation respectively. The goal is to
derive the empty clause from the initial ones. For technical
reasons only, we use the weakening rule

¢
CUA{v}

even though its use is not essential and can be avoided.

Anywhere we say we prove some proposition, we mean
that first we take its negation in a clausal form and then use
resolution to refute these clauses.

There is an obvious way to represent every resolution
refutation as a directed acyclic graph whose nodes are la-
belled by clauses. The sources, i.e., the vertices with no
incoming edges, are the initial clauses, and the only sink,
i.e., the vertex with no outgoing edges, is the empty clause.
If we reverse the directions of the edges, and consider the
sink as a root and the sources as leaves we get a branching
program. It is easy to see that it solves the following search
problem, associated with the given set of unsatisfiable claus-
es: given an assignment, find a clause that falsifies it. Un-
fortunately, the reverse is not true, that is we cannot convert
any branching program, solving the search problem, into a
resolution proof.

As a matter of fact, there are polynomial-size branching
programs, solving both problems from the paper. Of course,
this does not contradict to our main result, as it shows that
these branching programs cannot be transformed into reso-
lution proofs.

In our proof we essentially use a representation of resolu-
tion proofs as Prover-Adversary games, called further Res-
olution Games. This approach is introduced by Pudlak in
[6]. A brief description follows.

Proofs as Games There are two players, named Prover
and Adversary. An unsatisfiable set of clauses is given. Ad-
versary claims wrongly that there is a satisfying assignment.
Prover’s task is to convict him in lying. A position in the

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS’01)
0-7695-1390-5/02 $17.00 © 2002 9 IEEE

game is a partial assignment of the propositional variables.
The game start from the empty position. Prover has two
kind of moves:

1. She queries a variable, whose value is unknown in the
current position. Adversary answers, and the position
then is extended with the answer.

2. She forgets a value of a variable, which is known. The
current position is then reduced, i.e., the variable value
becomes unknown.

The game is over, when the current partial assignment fal-
sifies one of the clauses. Prover then wins, having shown a
contradiction.

As she can always win, simply querying consecutive-
ly all the variables and not forgetting anything, Adver-
sary’s task is to force Prover to use big memory, “big”
meaning exponential in the number of variables. We as-
sume that she keeps her strategy as a list of ordered pairs
(position, move), where “position” and “move” have their
natural meaning. Thus, it is enough for Adversary to use
a strategy, which ensures big number of different possible
positions, no matter how Prover plays.

The reduction from a resolution proof to Resolution
Game should now be clear. Although trivial, we will not
explain it here and refer to [6] for all the details. We should
however note that a deterministic Adversary’s strategy cor-
responds to a single path in the proof’s graph. Therefore, he
has to use a randomised strategy (called “super-strategy” in
Pudlak’s paper) in order to enforce a big enough subgraph.

It is very important to make the following convention-
s: Every time we say “Prover’s strategy”, we mean wining
strategy, as only a wining strategy corresponds to a resolu-
tion proof. Every time we say ‘“Prover ... in order to win”
we also mean wining strategy, i.e., Prover is not interest-
ed in wining a single game, but any game, no matter how
Adversary plays.

We can finally state the main results and explain infor-
mally the main ideas behind the proofs.

Main results and outline of the proofs. We prove the
following two theorems:

Theorem 2.1 Any resolution proof of the Mutilated Chess-
board problemis of size 29()

A weaker version of the above theorem, with /7 in the
exponent, is proven independently in [1].

Theorem 2.2 Any resolution proof of Tseitin tautologies,
based on n x n rectangular grid graph, is of size 22("),

The general idea of the proofs is following:

We consider Resolution game. Clearly, Prover’s queries
are pairs of neighbouring squares, and Adversary’s answers
are dominoes, covering these pairs. A domino can be ei-
ther “yes” or “no”, with the natural meaning. We divide
the chessboard into non-overlapping constant-size squares
called zones. During the game every zone is either com-
pletely empty or completely covered by dominoes by Ad-
versary. Here “completely” means the entire zone, excep-
t possibly few squares on the borders. In the first, ran-
domised, phase of his strategy, Adversary first construct-
s many covers of the zone, depending on all the possible
shapes of its neighbouring zones, and he then picks one
of them at random and remembers it. These covers satisfy
certain conditions that will be explained later in the paper,
when proving the results. The second, deterministic, phase
is the real game. When Prover queries a variable, i.e., a
domino, inside an empty zone, Adversary puts the cover, al-
ready chosen in the first phase. He does not however reveal
the cover to Prover, but only answer the question consistent-
ly with the cover. If Prover forgets all the queried variables
inside a covered zone, Adversary removes the cover, so that
the zone becomes empty again. Thus a zone is nonempty if
and only if it contains at least one “significant” variable (the
exact meaning of this is given in the detailed proof), whose
value is kept by Prover. There are two main points in our
proof:

1. Prover has to remember (2 (n) variable values at some
point in the game in order to win. That is in any reso-
lution proof we have a clause, containing linear in n
number of variables. This can be proven on some-
what higher level, depending on the connection be-
tween zones, but not on their specific covers or partic-
ular shapes. A nice abstraction of that is Tiling Games.
They are considered in a separate section.

2. Every two values, kept by Prover and belonging to dif-
ferent zones are independent of each other. Moreover,
given any value, kept by Prover, there is a constant
probability, bounded away from 0 and 1, that the value
agrees with the first, randomised phase. These prop-
erties depend on randomised phase only, and on some
specific properties of the zone covers, designed there.
This can be thought as a reduction of Tilling Game to
Resolution Game.

It is not hard to see that these two conditions imply an ex-
ponential lower bound on Provers’s memory, and therefore
on any resolution proof of the corresponding problem.

The rest of the paper is organised as follows. We first
introduce Tiling Games. They allow us to work on the level
of zones only, when proving the first main claim. We also
prove an exponential lower bound for these games. After
that, we show a reduction between Resolution Games and

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS’01)
0-7695-1390-5/02 $17.00 © 2002 9 IEEE

Tiling Games that preserves the lower bound. This proves
the second main point.

3 Tiling games

In this section, we introduce tiling gamesand prove some
results about their complexity.

Definition of a general tiling game. The board of the
game consists of m X m squares. Any of them is a per-
fect square, except the bottommost right one that has a dent
on its right side. The board is shown on the left of Figure
3. The tiles of the game are squares. Their sides are of

2 50

Shapes of the tiles

The board

Figure 3. The tiling games

three kinds: “flat wall”, “hump”, and “dent”, as shown on
the right of Figure 3, pictures A, B, and C, respectively. A-
part from its shape, every tile has also a colour, either red
or blue. When we say a general tiling game, we mean a
game where any set of shapes is allowed, whereas to get a
particular tiling game, we fix this set. Thus, a (particular)
tiling game is completely determined by its set of tiles. In
both cases, every colour, either red or blue, is allowed for
every shape.

In what follows, we will however consider only sets of
tiles, having the property that they cannot completely cov-
er the board. In particular, we put the restriction that the
difference between the number of dents and the number of
humps has to be even for any tile from the set. A trivial
parity argument then implies the impossibility of tiling the
board. We can also note that there are 41 such tiles, and
therefore 24! possible tiling games, as any subset of tiles
defines a different one. We will however be interested in
only two of them.

There are two players, whose names are Prover and Ad-
versary. Adversary claims that there is a tiling of the board.
Prover’s task therefore is to force a clear contradiction, i.e.,
a tile on the board, which is inconsistent with one of it-
s neighbours. In that case, she wins the game, which is
played as follows: At the beginning the table is empty. At
any round Prover starts by doing one of the following two:

1. She asks Adversary to put a tile on a particular square.
He does so, and the round is over. We assume that

Prover has infinite number of tiles of any kind (that is
any allowed shape and any colour).

2. She removes any tile, already on the board. Adversary
does not do anything, and the round is over.

The game is over, when Adversary is not able to play in the
first case. That is, there is no tile, whose shape is consis-
tent with the tiles, already on the board (note that the colour
does not play any role here). Prover can always win by sim-
ply asking about all the squares and not removing anything.
Adversary, knowing this, does not hope to play forever. His
task instead is to force Prover to use big memory, no matter
what she does.

Therefore, we need finally to explain how Prover “mem-
orises” her strategy: The strategy is kept again as a list of or-
dered pairs (position, move), where “position” and “move”
have their natural meaning. It is now clear how Prover
plays: In the beginning, she finds a pair, having its position-
part empty. She then makes the move-part of the pair. A
new position appears. Prover finds a pair, having the new
position in its position part, and then makes the move-part,
and so on... We need also the restriction, that every two
pairs from Prover’s list have to have different position-parts,
that is Prover’s strategy is deterministic.

We can now explain how Adversary enforces the use of
big memory.

Adversary’s strategy and general lower bounds. First
of all, let us note, that Adversary’s strategy cannot be deter-
ministic, as Prover can query about all the squares in some
fixed order, never removing anything from the board, thus
wining the game in m? memory.

We will now describe a randomised strategy, which is
optimal against any Prover’s strategy.

The first, randomised, part is very simple. It involves
the colours only. We choose the colour for all the squares
independently, at random, with equal probabilities of 1/2.
During the game, when asked to put a tile on a particular
square, Adversary always uses the initially chosen colour.

The second part is completely deterministic. It involves
the shapes of the tiles only. To explain it, we need some
definitions.

Definition 3.1 Given a position, a bad square (for this po-
sition) is a square, such that the board, except this square,
can betiled. Thebad region isthe set of all the bad squares.

In general, it is not even clear that a bad square exists for
any position. From now on, we shall however consider only
tiling games, which satisfy the following

Property 1 Thebad region for the starting position, i.e., an
empty board, is the entire board, itself.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS’01)
0-7695-1390-5/02 $17.00 © 2002 9 IEEE

Informally speaking, we would like to be able to move
the “problematic” square from the south-eastern corner to
any other position. We can make the following trivial ob-
servation:

Proposition 3.2 Given a position where the bad region
consists of two or more sguares, Prover cannot win imme-
diately, i.e., at thisround.

The next observation, although simple, is essentially the
second part of Adversary’s strategy.

Proposition 3.3 Adversary can play in such a way, that the
size of the bad component decreases by at most a constant
factor after every round.

Proof Let us denote the bad region by B. If Prover re-
moves a tile from the board, the size of B remains the
same or increases. Let us suppose now that Prover asks
Adversary to put a tile on the empty square s. Adversary
then tries all possible tiles t1,t2 ..., i.e., shapes consis-
tent with the non-empty neighbours of s, as the colour has
already been decided in the first part of the strategy. For
each of these k possibilities, we denote the new bad region
by B1, B> ... By. Let us now observe that any bad square
for the initial position, b, has either to be s (if it is bad it-
self) or to belong to some B;. The latter holds, because in
tiling the entire board except b, there is a tile among the #;s,
put on s, and then b certainly is in the corresponding B;.
Therefore, we have

|B1| + |B2| + ...+ |Bx| > |B| - 1.

It is now clear that Adversary has to take the most natural
decision, that is to maximise the size of the new bad region.
In this case
IBl-1 @.

ko~ 2k
This completes the proof, as k is less or equal to the number
of all possible shapes of tiles, which is a constant (at most
41, as already mentioned). O

An important consequence is the following fact.

|Bnew| Z

Proposition 3.4 Inany play of atiling gamethere hasto be
a point, when the bad region area is am? for some constant
«, strictly between 0 and 1. At the same round the border
of the bad area has to be of length fm for some positive
constant 3 depending on a.

Informally speaking, there must be a point, when the bad
region is “big”, i.e., quadratic in m. Naturally, in order to
“surround” such a big area, we need a “big”, i.e., linear in
m, border. Of course, we need first to rigorously define
the concepts mentioned in the statement, even though their
meaning is intuitively clear.

Two squares on the board are neighbours if they have
a common side. A region is an arbitrary set of squares.
The border and the complement of the region R, 0 (R) and
co (R), are defined as follows: O (R) is the set of squares,
having the property that each element in-there has a neigh-
bour in R. co(R) is all the rest, i.e., it contains every
square that is in neither R nor 0 (R). The closure of R
is R = RU O (R). When we say “area” and “length”, we
really mean “number of squares”.

We can now prove the proposition, itself.
Proof Let us observe that the area of the bad region goes
from its initial value m? to 0 at the end, as it is a wining play
for Prover (Proposition 3.2). Consider the first round, after
which the area drops below m?2 /2. After that round, it has to
be bigger than m?/ (2 x 2 x 41), according to Proposition
3.3. This proves the first part, with o € [1/164, 1/2].

For the second part, we will use the following lemma
whose proof is omitted, because of the space restriction.

Lemma3.5 For any 8(R)]> >

min{|}_2 m‘}

region R,

)

Clearly, it implies the second claim in the proposition, with
B = min {\/a,+/1 — a}. In our special case 3 = v/, as
a<l1/2.0

Let us summarise what has been done so far: We have
considered a general tiling game, under the only (rather
weak) assumption that the bad region is the entire board
at the starting position. We have proven that in any game
played, there is a point, when the bad region has to have a
border linear in m . We can note that we have not used the
colours of the tiles in any way.

We can now formulate our second assumption.

Property 2 Inany position in the game, the number of tiles
on the board is linear in the length of the border of the bad
component.

Adding this general, though still weak, assumption, to
the first one, we can easily prove an exponential in m lower
bound on Prover’s memory.

Theorem 3.6 In a tiling game, satisfying properties 1 and
2, any Prover’swining strategy is of size 29(m),

Proof According to Lemma 3.4, there is a point in the game,
when the bad area is of size quadratic in m. At the same
point, the border has to be of sizeQ2 (m). By Property 2,
the number of tiles on the board is 2 (m), too. The prob-
ability, that this position is consistent with the first part of
Adversary’s strategy, random colouring, is 1/2%(™) There-
fore Prover has to have at least 2(™) different position in
the memory, as otherwise, there would be a choice of the
colours, for which she does not win.O

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS’01)
0-7695-1390-5/02 $17.00 © 2002 9 IEEE

At the end, let us note that our two lower bounds on the
size of both a position in the game (linear) and Prover’s
memory (exponential) are tight. A simple divide-and-
conquer algorithm yields upper bounds of O (m) for the
size of the position at any time and 2°(™) for the memory
Prover needs.

What remains to be done is to prove that our two assump-
tions are indeed correct for the concrete tiling games we are
interested in.

Length lower bounds for particular games We shal-
1 first define the two games.

1. Tseitin is the tiling game, having as a set of tile-shapes
all the shapes for which the difference between the
number of dents and the number of humps is even.

2. Mutilated Chessboard is the tiling game, having as a
set of tile-shapes all the shapes for which the number
of dents equals the number of humps.

Clearly, Mutilated Chessboard game is a restricted version
of Tseitin game. Thus, every lower bound for the former
game applies to the latter, too. On the other hand, one could
expect that proving lower bounds for Mutilated Chessboard
game would be much harder. It is indeed the case, as the
reader will see. This is the reason, we spend most of the
rest of the paper on Mutilated Chessboard game rather than
on Tseitin one.

First of all, let us observe that both games trivially fulfill
the first assumption, saying that initially, the bad region is
the entire board.

Thus only the second assumption, namely that at any
round, the number of tiles on the board is linear in the
border-length of the bad region, is to be checked.

We start with the easier, Tseitin, tiling game. In this case,
the deterministic part of Adversary’s strategy can be simpli-
fied. The key observation is that we can always keep the bad
region isolated.

Definition 3.7 The bad region is isolated iff it is separated
by tiles from any other region of the board, consisting of
empty squares. In other words, a neighbour of a bad square
is either another bad square or a tile, but never a square,
which is not bad.

In general, we need to consider all the connected com-
ponents of empty squares. We can keep the following in-
variant: exactly one of them is bad and the others are good,
i.e., they can be tiled. It can be easily proven that the on-
ly component having one more dent that humps is the bad
one, and moreover any component, having equal number of
dents and humps, is good. When Prover asks a question, she
may disconnect the component, where the question is, into

(at most four) other components. Conversely, if Prover re-
moves a tile from the board, she may join some previously
disconnected components into a new one. Adversary need-
s to be careful only in the case when the Prover’s question
disconnects the current bad component. If so, Adversary
answers in such a way that the biggest of the new obtained
components becomes bad and the rest become good. It is
easy to see that Adversary can always do that by a tile, con-
sistent with the neighbours of the queried square. After any
round of the game, the bad component can decrease by a
factor of four at most, thus Proposition 3.3 holds, and so
does Proposition 3.4 with o € [1/16,1/2]and 8 = 1/4. As
the bad region is always isolated, its border consists of tiled
squares only. Therefore the second assumption is fulfilled,
and Theorem 3.6 then applies, giving us the following:

Lemma 3.8 Prover needs at least 2% memory cellsin or-
der to win Tseitin tiling game.

Let us now consider the other tiling game, Mutilated
chessboard one. It is now not so easy as before, as the bad
region does not need to be isolated. This is illustrated on

Figure 4. Tiling to flow correspondence

Figure 4. Black squares are the tiled ones. We call them also
marked squares. The bad region is shown in gray. Its bor-
der contains not only marked squares, but also some empty
squares, which are shown dashed. One could, in general,
think that it is possible, in some clever way, to “surround”
a “big” bad area, using only “few” tiles. Our intuition how-
ever tells us, that it should be impossible. If the border of
the bad region is coarse, it would be possible to “push” a
problematic square through it, thus “extending” the bad re-
gion, which is impossible by its definition. The following
argument formalises the intuition.

We shall first explain the connection between of a po-
sition in the Mutilated Chessboard game to max—flow in a
graph. The vertices of the graph are the empty squares and
there is an edge between any two neighbours. We call a

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS’01)
0-7695-1390-5/02 $17.00 © 2002 9 IEEE

source an empty square such that there are more dents in-
side it than the dents in the neighbours, adjacent to the con-
sidered square, i.e., the humps of the square if it were tiled.
The difference between the number of these two number-
s is the capacity of the source. On the picture, there are
four sources of capacity one and one source of capacity t-
wo. They are the squares with outgoing arrows only. In
general, when counting them, we take into account the ca-
pacity, so that we can say that there are six sources on the
picture. If we exchange “dents” by “humps” and vice versa
in the above definition, we get the definition of a Sink. There
are five sinks on the picture that are exactly the squares with
incoming edges only. Obviously, the number of sources is
always greater by exactly one than the number of sinks dur-
ing the game. It is clear that the bad squares and only they
have the following property: if we choose one of them as
a sink, so that the number of sources equals the number of
sinks, there is a max—flow of capacity equal to the num-
ber of sources. An example is given on Figure 4, where
the crossed square is chosen and a max—flow (of value 6) is
shown by the arrows. It is also straightforward to convert
the flow into the corresponding tiling an vice versa.

Proposition 3.9 In any position of Mutilated Chessboard
tiling game, the number of empty border squaresis a con-
stant fraction of the total number of border squares.

Proof We now consider the border of the bad region. What
we need to prove first is that the empty squares, belonging to
it, are not “too many”, namely they are less than the number
of sources.

The proof uses a max—flow - min—cut argument. Let
us introduce a new, artificial vertex A, and a directed edge
from every empty border square to A. Let us put the new
vertex as a sink of capacity one, and denote the number of
sources by k. We now claim that there is no flow of value
k in the new graph. Suppose there were. Then it had to go
trough one of the new edges. But then we could “stop” it
in the corresponding border squares that would imply this
square is bad - a contradiction.

Since the max—flow equals the min—cut, there has to be
a cut of size less than k. Let us take one such cut, and call
the sourcesside “ right” and the sinks side “ left”.

We first need to show that the artificial vertex A is not
contained in the cut! (note that a cut can, in general, contain
not only edges but also vertices, having capacities). Sup-
pose that the cut contained A. Consider the part of the cut
when restricted to the original graph, i.e., before adding A
and the edges from any empty border square to A. This part
of the cut must be of capacity at least £ — 1 as it separates
the k£ sources from k — 1 sinks, and there is a max—flow of

'We thank Mikhail Alekhnovitch for pointing out that we have forgot-
ten to include this part of the argument in an earlier version of the paper.

value k£ — 1 in the original graph. Therefore any cut contain-
ing A is of capacity at least k. This implies that it cannot be
minimal as there is no flow of value k in the new, containing
A graph.

We can now see that all the bad squares are on the right
side. Suppose there were at least one on the other side. But
this implies that the size of the cut is greater or equal to k,
because there is a flow of size k if a bad square is taken as a
sink - a contradiction.

Let us denote the sets of border squares on the left/right
side by L/R respectively. What we have proven so far is
shown on Fig. 5. We should however note that there are

border R

$FSE¥ZzzzzzZoopco-
> T == - F - -
NS - = -
NN - -
NN -
Os

border L bad area
k sinks k+1 sources

min—cut
Figure 5. Max—flow - min—cut argument

two properties, which we “ignore” in our proof, because we
do not need them. First, as a matter of fact, it can be proven
that all the border squares are on the left side of the cut.
Therefore, R = (), and the cut contains no artificial edges.
Second, it can be shown that the bad area is connected.

The cut we consider contains at least the following
edges: exactly one edge from every vertex in R to the new
vertex and at least one edge from every vertex in L to some
bad vertex (as every vertex in L is on the border of the bad
area). This implies that |L| + |R| < k, that is the number of
border squares is less than the number of sources.

We can finally prove that the second property, saying that
at any round, the number of tiles on the board is linear in the
border-length of the bad region, is fulfilled. Given a position
on the board, denote the border-length of the bad region by
[. Suppose the number of sourcesis at most //2. There are
then at most that many empty squares on the border, thus
the number of marked squares, that is the number of tiles
on the board, is at least [/2. Suppose now the opposite, the
number of sources is at least [/2 + 1. Observe now that
every marked square generates at most two sources, as any
tile has at most two humps. Thus, there have to be at least
[/4 tiles on the board. This completes the argument.O

As proven before, the above proposition implies

Lemma 3.10 Prover needs 29("™) memory cellsin order to
win Mutilated Chessboard tiling game.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS’01)
0-7695-1390-5/02 $17.00 © 2002 9 IEEE

4 Reduction

In this section, we show how to reduce Resolution game,
played on a chessboard, into Tiling game. To understand
what “reduction” really means in this context, we need to
look at Fig. 6.

1. PR’s move, 2. transformed into PT’s move.

4. AR’s reply, derived from 3. AT’s reply.

Reducer . D <ﬂ
Resolution Game Tiling Game

Figure 6. The general schema of the reduction

The resolution game is played by Prover Resolution (PR)
and Adversary Resolution (AR), while the tiling game is
played by Prover Tiling (PT) and Adversary Tiling (AT). We
think of AR and PT as a single person, named Reducer, who
carries the reduction. As shown on the figure, he first looks
at the PR’s move in the resolution game. He then trans-
forms it into PT’s move in the resolution game and plays it
there. After having got AT’s reply, Reducer transforms it
into AR’s move and replies by it to the initial PR’s move in
the resolution game.

Thus, one can think that the real game is played be-
tween PR and AT. We already have a particular AT’s strat-
egy which forces an exponential lower bound on any PT’s
strategy. We will prove, that this important property can be
carried trough the reduction, that is to imply an exponential
lower bound on any PR’s strategy, too. We will only consid-
er the reduction of Mutilated Chessboard problem, which is
technically harder. That is why, we describe it in full detail,
leaving the reduction for Tseitin tautologies to the reader.

Mutilated chessboard As we mentioned before, we first
divide the chessboard into non-overlapping constant-size
squares, called further zones. In our rigorous proof, we use
48 x 48 squares. A zone in Mutilated Chessboard prob-
lem corresponds to a square in Mutilated Chessboard tiling
game. We also “move” one of the missing squares near to
the other as shown on Fig. 7 for a (48n + 2) x (48n + 2)
chessboard. We first define what a zone is. It is a “big”,
48 x 48, square, with “few” small squares cut off. We need
to explain how the missing squares can exactly appear.

1O
HEW

3

Figure 7. The reduction: zones, correspond-
ing to tiles

We divide a zone into 12 x 12 smaller, 4 x 4, squares,
further called sub-zones, as done in the middle of Figure
7. Missing squares can only appear on the Sides of a zone,
inside the four dashed “bands” which are the border part of
the four gray five-sub-zone areas. Moreover, there are only
the following possible shapes:

1. No missing squares (Fig. 8A). This corresponds to a
flat wall, in the tiling game.

2. Two neighbours, of different colour, belonging to a
sub-zone, and not being the two middle squares (Fig.
8B). In the tiling game, this corresponds to a flat wall,
similar to the previous case.

3. Two squares of the same colour, belonging to sub-
zones, that are a sub-zone away from each other (Fig.
8C). Two black missing squares correspond to a hump
in the tiling game, whereas two white missing squares
correspond to a dent.

4. Four missing squares, that are a combination of the
previous two cases, and, moreover, no two mutilated
sub-zones can be neighbours (Fig. 8D). Again, if two
more white squares than black ones are missing, this is
adent in the tiling game. The symmetric case, i.e., two
more blacks, corresponds to a hump.

Figure 8 shows all possible shapes of a zone border. They
imply all possible connections between two neighbouring
zones. In particular, two neighbours can have only 0, 2 or 4
dominoes in common, and, moreover, these can only appear
as explained above.

We are now almost ready to explain the essence of the
section, namely Reducer’s algorithm. The last, but the most
important concepts, we need, are the different kind of ques-
tions we have in Resolution Game. At any round in the
game, we have a partial tiling of the chessboard. The tiling
satisfies the condition that any zone is either completely
empty or completely covered by dominoes from Adversary’s
point of view. There are the following three kind of Prover’s
questions:

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS’01)
0-7695-1390-5/02 $17.00 © 2002 9 IEEE

<>
W
B
1]
i

[]

2 C D

Figure 8. The reduction: possible shapes of
zones and connections between them

Definition 4.1 Dummy question is a question about a
domino, connecting two neighbouring zones, and within 3
sub-zones (that is 12 squares) from one of the two common
corners of the zones.

The answer to an impossible question is always “no”, so
we can assume Prover gets them for free, and she never asks
such a question.

Definition 4.2 Forced question is a question, which is not
dummy, but the domino involved affects the current partial
tiling.

The answer clearly depends on the current tiling.

Definition 4.3 Open question is a question, which is nei-
ther dummy nor forced.

That is, an open question is about a domino:

1. The domino does not intersect the current (partial) cov-
er.

2. Iteither is completely inside an empty zone or connects
two empty neighbouring zones. In the latter case, the
domino is also 12 squares away from any zone corner.

We should note that “dummy” is a static concept, i.e., it
does not depend on the current partial tiling, whereas the
concepts “forced” and “open”are dynamic.

We should also note that a forced/open question may be
assigned to any of two neighbouring zones. Sometimes, we
will need to assign a question to a particular zone. We will
then use the following deterministic rules:

1. If the question is open, we associate it to either the
right zone (if the border is vertical) or the bottom one
(if the border is horizontal).

2. If the question is forced, we associate it to the zone,
which has been covered first, starting from the last
point in the game, when both zones were empty. In
this way we ensure that the question was open to its
zone at that time.

‘We can now describe
Reducer’s algorithm

The randomised phase. For any zone, further called
“current”, we do the following: For any possible shape of
any combination of its nonempty neighbours and any pos-
sible connection to its empty neighbours, either dent, hump
or flat wall, we design a set of tilings of the current zone.
These tilings have to have the property that not all of them
agree on any open question associated to the current zone.
It is very important to note, that the number of all the tilings
is a constant. Adversary then chooses one of the tilings u-
niformly at random and remembers the choice through the
entire Resolution Game. What remains to be proven is that
a set of tilings, having the desired properties exists. The
proof is a long case analysis, omitted because of the space
restriction.

The deterministic phase. We should first note that at
any round in Resolution Game, there are some “yes” and/or
“no” dominoes on the mutilated chessboard. These are visi-
ble to both Prover Resolution and Reducer, who is also Ad-
versary Resolution. Apart from them, there is a partial tiling
of the board, which is visible only to Reducer. This tiling
is consistent with all the “yes”/’no” dominoes until the end
of the game, when Reducer gives up. In Tiling Game, there
are some tiles on the board. Moreover, there is a correspon-
dence between any tile and the corresponding zone in Res-
olution Game, as explained at the beginning of the section.

Let us now consider the four stages of the reduction for
the two possible Prover Resolution’s moves, either asking a
question or forgetting:

1. Asking a question about a domino.

(a) Prover Resolution asks a question in Resolution
Game.

i. The question is forced. Reducer answers im-
mediately, without going to the next stage.

ii. The question is open, and therefore it is the
first one such question about the considered
empty zone. Reducer switches from Adver-
sary Resolution to Prover Tiling, thus going
to the stage (b)

(b) Prover Tiling asks a question in Tiling Game.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS’01)
0-7695-1390-5/02 $17.00 © 2002 9 IEEE

(c) Adversary Tiling puts a tile on the board. [2] E. Ben-Sasson and A. Wigderson. Short proofs are narrow -
resolution made simple. In Symposiom on Theory Of Com-
puting, pages 517-526, 1999.

[3] S. Buss and G. Turdn. Resolution proofs of generalized pi-
geonhole principles. Theoretical Computer Science, 62:311-

(d) Given that tile and the neighbouring zones, Re-
ducer gets the already chosen (in the randomised
phase) cover of the zone and puts it on the mu-

tilated chessboard, not revealing it to Resolution 317, 1988,
Prover. Reducer then switches back to Adversary [4] A. Haken. The intractability of resolution. Theoretical Com-
Resolution and answers to Prover Resolution’s puter Science, 39:297-308, 1985.
question consistently with the cover just put. [5] J. McCarthy. A tough nut for proof procdures. Stanford Ar-
tifical Intelligence Project Memo 16, July 1964.
2. Forgetting a domino, which is already on the mutilated [6] P.Pudlik. Proofs as games. American Mathematical Monthly,
chessboard. June—July 2000.
[7]1 G. Tseitin. On the complexity of derivation in the proposition-
(a) Prover Resolution forgets a domino, already on al calculus. Sudies in Constructive Mathematics and Mathe-
the chessboard. matical Logic, Part 11, 1968.

[8] A. Urquhart. Resolution proofs of matching principles.

i. The domino is not the only “yes”/’no Manuscript, 1998.

domino inside the corresponding zone. Re-
ducer does not do anything else.

ii. The domino is the only “yes”/”’no” domino
inside that zone. Reducer goes to stage (b).

(b) Reducer, acting as Prover Tiling, removes the
corresponding tile in the tiling game. After that,
acting as Adversary Resolution, he forgets the
cover of the zone, so that it becomes empty a-
gain.

The important lemma, that follows from our construction is
the following:

Lemma 4.4 At any round of Resolution Game, we can take
a set of “yes’ /" no” tiles, no two of them belonging to the
same zone. They are independent and the probability that
each of them agrees with the randomised phase is a con-
stant, bounded away fromboth 0 and 1.

Proof Because of the way we associate a question to a zone
at the time when the zone was covered, the question was
open for it. We can now use the fact, that the cover was
chosen at random, among the set of covers, such that not all
of them agree on any open question.O

That is enough to ensure that Theorem 3.6 applies, with
the two colours, corresponding to the two possible answers
to the chosen questions. The probabilities now are not 1/2
and 1/2, but some (small) constants, different from 0 and 1.
This however does not affect the argument, so that the ex-
ponential lower bound is carried from Tiling Game through
the reduction to Resolution Game.
Acknowledgements We would like to thank Mikhail
Alekhnovich for finding the missing point already men-
tioned.

References

[1] M. Alekhnovich. Mutilated chessboard is exponentially hard
for resolution. Manuscript, 2000.

YF]',F.

Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS’01) COMPUTER
0-7695-1390-5/02 $17.00 © 2002 9 IEEE SOCIETY

