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Abstract

Let m be any fixed polynomial-time testable, non-trivial, hereditary property of graphs.
Suppose that the vertices of a graph G are not necessarily linearly ordered but partially
ordered, where we think of this partial order as a collection of (possibly exponentially
many) linear orders in the natural way. We prove that the problem of deciding whether
a lexicographically first maximal subgraph of G satisfying 7, with respect to one of these
linear orders, contains a specified vertex is NP-complete.

1 Introduction

Miyano [6] proved that the problem of computing the lexicographically first maximal
subgraph of a given graph, where this subgraph should satisfy some fixed polynomial-
time testable, non-trivial, hereditary property m, is P-hard (even when the given
graph is restricted to be either bipartite or planar and 7 is non-trivial on the class
of bipartite or planar graphs, respectively). Because of the stipulations on 7, the
lexicographically first maximal subgraph satisfying the property m can be computed
by a generic greedy algorithm. Note that Miyano’s result is widely applicable; to
any polynomial-time testable, non-trivial, hereditary property m, such as whether
a graph is planar, bipartite, acyclic, of bounded degree, an interval graph, chordal,
and so on. Miyano states that his work was inspired by that of Asano and Hirata
[1], Lewis and Yannakakis [5], Watanabe, Ae and Nakamura [7] and Yannakakis [8]
on node- and edge-deletion problems in INP. Typical is this work is the result of
Lewis and Yannakakis [5] that the problem of finding the minimum number of nodes
needing to be deleted from a graph so that the graph satisifes a fixed polynomial-time
testable, non-trivial, hereditary property 7 is NP-hard.

*An extended abstract of this paper is to appear in Proceedings of 27th International Workshop
on Graph-Theoretic Concepts in Computer Science (WG’01), Lecture Notes in Computer Science.



Of course, a tacit assumption in Miyano’s work is that the vertices of any graph
are linearly ordered. In this paper, inspired by Miyano’s results, we return to the
setting of NP in that we consider computing lexicographically first maximal sub-
graphs of given graphs, where these subgraphs should satisfy some given polynomial-
time testable, non-trivial, hereditary property m, except that now the graphs come
equipped with not just one linear ordering of their vertices but several. Hence, for a
given graph we will be involved with a collection of lexicographically first maximal
subgraphs and not just one. Note that if we gave our linear orderings explicitly then
a graph on n vertices could only come with a polynomial (in n) number of such
linear orderings (as otherwise it would be unreasonable to define that the whole
input has size n) and we would still be working within P. In order to work with
an exponential number of linear orderings, we present our collection of linear or-
derings in the form of a partial order, i.e., an acyclic digraph, with a source vertex
providing the (common) least element of any of the linear orderings. Similarly to
as in Miyano’s deterministic scenario, a non-deterministic polynomial-time greedy
algorithm computes all lexicographically first maximal subgraphs.

Our main result is that the problem of deciding whether a lexicographically
first maximal subgraph of a given partially ordered graph, where this subgraph
should satisfy some fixed polynomial-time testable, non-trivial, hereditary property
7, contains some specified vertex is NP-complete (even when the given graph is
restricted to be planar bipartite and 7 is non-trivial on this class of graphs). We
use similar techniques to Miyano although our proofs are comparatively simpler and
the combinatorics is very different.

It is not at all obvious as to how we might use Miyano’s result for P-completeness
directly to prove an analogous result for NP-completeness but with partial orderings
replacing linear orderings (indeed, we have failed with this approach and have had
to revert back to ‘first principles’). Furthermore, the NP-completeness results from
[1, 5, 7, 8] can not be formulated in our framework. For example, the result of Lewis
and Yannakakis [5], mentioned above, is concerned with sizes of maximal subgraphs
satisfying a specific property and as such is unrelated to our problems.

2 Basic definitions

For standard graph-theoretic definitions, the reader is referred to [2]. A property
7 on graphs is hereditary if whenever we have a graph with the property m, the
deletion of any vertex and its incident edges does not produce a graph violating 7,
i.e., m is preserved by induced subgraphs. A property 7 is called non-trivial on a
class of graphs if there are infinitely many graphs from this class satisfying = but 7
is not satisfied by all graphs of the class.

Let m be some property of graphs. Let G be a graph, let H be a partial order of
the vertices of GG, and let s and ¢ be vertices of G. We assume that the partial order
H is given in the form of an acyclic digraph detailing the immediate predecessors,



i.e., the parents, and the immediate successors, i.e., the children, of each vertex.
We think of a partial order H as encoding a collection of linear orders of the form
§ = S0, S1, 52, - .., Sk, where s;,; is a child of s; and s has no children. Note that a
partial order can encode an exponential number of linear orders.

The algorithm GREEDY () is as follows:

input (G, H, s)

S =10
current-vertexr := s
if 7(SU{current-vertez},G) then (%)
S := SU{current-vertez}
fi
while current-vertexr has at least one child in H do
current-vertexr := a child of current-vertex in H
if 7(SU{current-vertez},G) then (xx)
S := SU{current-vertez}
fi
od
output (S)

where 7(S U {current-vertez},G) is a predicate evaluating to ‘true’ if, and only
if, the subgraph of G induced by the vertices of S U {current-verter} satisfies .
We say that a vertex v is the current-verter if we have ‘frozen’ an execution of
the algorithm GREEDY (7) immediately prior to executing either line (x) or line
(%) and the value of the variable current-vertex at this point is v. Note that in
general the algorithm GREEDY (7) is non-deterministic and produces a collection
of sets of vertices as outputs. If the property 7 is hereditary and can be checked in
polynomial-time then the algorithm GREEDY (7) non-deterministically computes,
in polynomial-time, the lexicographically first maximal subgraphs of the graph G
satisfying 7 with respect to the linear orders encoded within the partial order H.

Let C be a class of graphs and let m be some property of graphs. The problem
GREEDY (partial order, C, 7) has: as its instances tuples (G, H, s,t), where G is a
graph from C, H is a partial order of the vertices of G and s and ¢ are vertices of G,
and as its yes-instances those instances for which there exists an execution of the
algorithm GREEDY (7) on input (G, H, s) resulting in the vertex ¢ being output.
The problem GREEDY (linear order, C, ) is defined similarly. Miyano’s result from
[6] can be stated as follows.

Theorem 1 Let 7 be a polynomial-time testable, non-trivial, hereditary property on
the class of graphs C, where C 1is the class of all graphs, the class of planar graphs
or the class of bipartite graphs. Then the problem GREEDY (linear order, C, m) is
P-complete. O



3 Our results

In order to prove our main result, we need to first establish a completeness result
for the specific problem GREEDY (partial order, planar bipartite, independent set)
(we only sketch the proof due to space limitations).

Theorem 2 The problem GREEDY (partial order, planar bipartite, independent
set) is NP-complete.

Proof We reduce from the known NP-complete problem Directed Hamiltonian
Path (DHP): whose instances are triples (G, s,t), where G is a digraph and s and ¢
are vertices of (G; and whose yes-instances are instances for which there is a Hamil-
tonian path in G from s to ¢ (see [3]).

Let (G = (V, E), s, t) be an instance of DHP of size n. W.l.o.g. we assume that
|V| > 2, that the vertex set of G is {1,2,...,n} and that s = 1 and t = n. Cor-
responding to this instance, we build an instance (G', H', s',t') of GREEDY (partial
order, planar bipartite, independent set). The vertex set V' of G' and H' is

{U,Z‘,j, Ui,j, ’LUiyj, Zj . Z,j = 2, 3, e, — 1} U {iU, S,, tl}.
The edges of G’ are
{(us,vig), (wig,wiy) 24,5 =2,3,...,n =1}
U{(wiyj,uiﬂyj) = 2,3,...,71— 2,] = 2,3,...,7’L— 1}
U{(wn-1,4,2) 1 j=2,3,...,n—1}
U{(Zj, wn_l,j+1) : ] = 2, 3, e, — 2}
U{(zn-1,)}
and the edges of H' are
{(ijsvigry) 11 =2,3,...,n—2;5,7' =2,3,...,n—1;(j,j') € E}
u{(s, ve) 1 j=2,3,...,n—1;(1,j) € E}
U{(vn_1,2) 17 =2,3,...,n—1;(j,n) € E}

uyj,w”) i=23,...,n—2;7=2,3,....,n—1}
w,],uZ_H]):i:2,3,...,n—2;j:2,3,...,n—1}
Up—1j,Ujt1:] =2,3,...,n—2}
Up—1,n—1, Wn— 12)}
Wn-14,%j) 1 J =2,3,...,n—1}
{zj,wn 1j+1) 1) =2,3,...,n—2}
U{(zn-1,)}
The construction of the instance (G',H',s',t') is illustrated in Figs. 1, 2

and 3 which depict: a digraph G; the resulting graph G’; and the resulting par-
tial order H', respectively.
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Figure 1. A digraph G.
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Figure 3. The partial order H' corresponding to G.



Suppose that (G, s, t) is a yes-instance of DHP. Then there is a Hamiltonian path
S = 81,82,83,---,5,_ 1,5, = t in G. Consider the following path in H':

’
S§,U2,59yU3,539++ 3y Un—1,5,_19T

(note that this is indeed a path in H'). In the execution of the algorithm GREEDY
(independent set) on (G', H',s',t'), following this path in H' clearly results in the
vertices of {s', vas,, U355, - -->Un—1,5, 1,2} all being output.

Henceforth, the path chosen in H' is fixed. With reference to Fig. 2, following
this path we work down the first column of u- and w-vertices of G' (that is, the
column with index 2, i.e., involving vertices of the form u_, and w_j), then the
second column (the column with index 3), until having worked down the last column
(the column with index n — 1), we work along the bottom row of w- and z-vertices.
For every j = 2,3,...,n — 1, a vertex v;;, for some ¢, has been output by the
algorithm GREEDY (independent set); that is, there is exactly one v-vertex output
from every column. Hence, as we work down the columns of u- and w-vertices, the
vertex w,_o ; is output by the algorithm GREEDY (independent set) but the vertex
up—1,; is not, for all j = 2,3,...,n — 1. Consequently, when we work along the
bottom row of w- and z-vertices of G’, the vertex wy,_; ; is output but the vertex z;
is not, for all j = 2,3,...,n—1. Finally, the vertex ¢’ is output. Hence, (G', H', s, ')
is a yes-instance of H.

Conversely, suppose that (G', H',s',t') is a yes-instance of H and consider an
execution of the algorithm GREEDY (independent set) witnessing this fact. The
path chosen in H' from s’ to z yields a path of length n — 1 in G from 1 to n.
Suppose that this path in G is such that a vertex j appears on it more than once.
This means that vertices v; ; and vy ; appear on the path in H' from s’ to x, where
i # 1'. Hence, with reference to Fig. 2, there must be some column in G’ for which
a v-vertex has not been output by the algorithm GREEDY (independent set). Let
the largest index of any such column be k. When we work down the u- and w-
vertices of column £ in G’ in our execution of the algorithm GREEDY (independent
set), the result is that all of the u-vertices are output and none of the w-vertices
are. When we work down the u- and w-vertices of column m, for any m > k, in
our execution of the algorithm GREEDY (independent set), the result is that the
vertex u,_i,, is not output. Hence, when we work along the bottom row of w- and
z-vertices in our execution of the algorithm GREEDY (independent set), the vertices
Zky Zkaly - - -5 2n_1 are all output but not the vertex ¢'. This yields a contradiction;
and so we have a Hamiltonian path in G from 1 to n. Hence, (G, s,1) is a yes-instance
of DHP.

As the construction (G', H',s',t') from (G, s,t) can clearly be completed using
log-space, the result follows. O

Now we consider the problem GREEDY (partial order, planar bipartite, 7) where
m is any polynomial-time testable, non-trivial, hereditary property. We begin with
some specific graph-theoretic definitions.



A cut-point of a connected graph G is a vertex ¢ such that its removal (along with
its incident edges) from G results in a graph with at least 2 connected components.
A component relative to a cut-point ¢ is a subgraph consisting of ¢, one of the
derived connected components and all those edges of GG joining ¢ and a vertex of the
component. If a connected graph does not have any cut-points then it is biconnected.

Let a = (ai, az,...,as) and b = (by, by, ..., b;) be two tuples of positive integers.
We order these tuples lexicographically as follows. We say that a >, b if either:

e there exists some ¢ € {1,2,...,min{s,¢}} such that a; = b;, for all j €
{1,2,...,i—1}, and a; > b;; or

e s>tanda; =0b;,forall j€{1,2,...,t}.

The a-sequence ag of a connected graph G is defined as follows. Suppose
that G is not biconnected. If ¢ is a cut-point of G whose removal results in a
graph with & connected components then define a.c = (ni,ne,...,n), where
ny > no > ... > n; are the numbers of vertices in the components relative to
c. We define ag to be the lexicographically-minimal tuple of the (non-empty)
set {a. ¢ @ cis a cut-point of G}, and we define ¢i to be any cut-point for which
ag = Q- If G is biconnected then we define ag = (|G]) and ¢ as any vertex.

Given a graph G with connected components Gi,Go,..., Gy, the [-sequence
Be of G is defined as (aq,,aq,,...,aq,), where ag, >1 ag, >1 ... > ag,. A
[-sequence is therefore a tuple of tuples of integers.

Theorem 3 Let m be a property satisfying the following conditions:
(1) 7 is non-trivial on planar bipartite graphs;
(71) m is hereditary on induced subgraphs;
(79i) m is satisfied by all sets of independent edges; and
)

(iv) 7 is polynomial-time testable.

The problem GREEDY (partial order, planar bipartite, w) is NP-complete.

Proof For brevity, we refer to the problem GREEDY (partial order, planar bipar-
tite, m) as G. The property 7 is, by assumption, non-trivial on planar bipartite
graphs. It follows that amongst all planar bipartite graphs violating m, there must
be (at least) one with smallest S-sequence, where [-sequences are ordered lexico-
graphically but where the comparison of components, i.e., a-sequences, is according
to >r. Let us call such a graph J; that is,

By = min{f¢ : G is a planar bipartite graph violating 7}.

Let Ji, Ja, ..., Ji be the connected components of J ordered according to ay, >,
ay, >r ... > oy It follows that J has f-sequence f; = (ay,,ay,...,q).

7



Let ¢ = ¢y, and let the connected components of J; relative to ¢ be Iy U {c}, I; U
{c},..., I, U{c}, where |Iy| > |I]| > ... > |I;,]. Denote by I, the subgraph of J;
induced by the vertices of {c} U I, U...U I,,. By (ii) and (iii) it follows that 7 is
satisfied by any independent set of vertices, and so Iy must contain at least one edge
(otherwise J would be a set of independent vertices).

To prove the NP-completeness of the problem G, we reduce from the problem
GREEDY (partial order, planar bipartite, independent set), which, for brevity, we
denote by H, and which was proven to be NP-complete in Theorem 2. That is,
from an instance (G, H, s,t) of H, we create an instance (G', H', s',t') of G (with the
appropriate properties).

We will divide the construction of G from @ into three phases. For any subset
of vertices U of .J, we denote by (U) the subgraph of J induced by the vertices of
U. Note that as (Iy U {c}) contains at least one edge and is connected, there exists
a vertex d of Iy U {c} such that (c,d) is an edge of (Ip U {c}).

Phase 1 For each vertex u of G, we attach a copy of (I, U{c}) by identifying u with
¢ (all such copies are disjoint). Call the resulting graph G. Note that the vertex
set of G consists of the vertices of G, which we call the G-vertices, together with
disjoint copies of the vertices of I,. As both (I,) and G are planar and bipartite, G
maintains these properties.

Phase 2 We replace each edge (u,v) of é, where u and v are G-vertices, by a copy
of (IyU{c}) by identifying u with ¢ and v with d (all such copies are disjoint). Note
that our choice of d results in the graph so formed being planar and bipartite.
Phase 3 We add disjoint copies of .Js, Js, ..., J; to obtain G’, which is clearly planar
and bipartite.

The partial order H' consists of a linear order onto which is concatenated the
partial order H (of the G-vertices). The linear order consists of: all vertices of G’
that are vertices of some copy of (Iy); followed by all vertices in the copies of (I.);
followed by all vertices of .Js, J3, ..., Jr. It does not matter how we order the vertices
of some copy of (Iy), for example, in the linear order. We concatenate this linear
order prior to H by including an edge from the last vertex of the linear order to
the vertex s of H. Denote the vertex s’ to be the first vertex of the above linear
order, and denote the vertex ¢’ to be the G-vertex of G’ formerly known as t. Our
construction can be visualised in Fig. 4.

We will now state three lemmas to be used in the remainder of the proof (the
proofs are straightforward and are omitted due to space limitations).

Lemma 4 Any graph K consisting of any number of disjoint copies of (Iy \ {d})
plus any number of disjoint copies of (I..) plus a disjoint copy of each of Jo, J3, ..., Ji
satisfies .

Proof The connected components of K consist of Jy, Js, ..., J; together with the
connected components of the copies of (I \ {d}) and (I.). Consider the a-sequence
« of a connected component of either (Iy \ {d}) or (I,). All components of « are
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strictly less than [Iy| 4+ 1; and so « is strictly less than «;,. Hence, Sk has one less
component equal to «;, than 3, with all other components strictly less than ay,;
and so K satisfies 7 by minimality of 3. 0

e« ® ¢

the partial the graph G the graph J,
order H

the graph G the graph G’

s

g vertices of /. /\
vertices of [, vertices of J,, ..., J, M

tl °® 4/.

Figure 4. Our basic construction.

the partial order H'

Lemma 5 Take a single copy of (I. U {c}) and any number of disjoint copies of
((Io\ {d}) U{c}), and identify the vertices named ¢ in all of these graphs. Then the
resulting graph M satisfies m.

Proof Let M' be the connected component of M containing c¢. We begin by
remarking that any other connected component of M has an a-sequence strictly less
than the a-sequence (|I| + 1); and so strictly less than «ay,.
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Suppose that ¢ is a cut-point of M'. Then «. p has components |I;|+ 1, |I] +
1,..., [In| +1 as well as possibly some other components which are all strictly less
than |Iy| + 1. Hence, by arguing similarly to as in the proof of Lemma 4, ay is
strictly less than «;,. By the remark above, ), is strictly less than 3, and so M
satisfies m by the minimality of 3.

Suppose that ¢ is not a cut-point of M'. Then I, = [}, i.e., m = 1, and M' = (I,);
hence, ayy is at most (|/;| +1). Any connected component of M different from M’
has size at most |Ip| — 2, and so oy, = (|Io| + 1,|I1| + 1) is strictly greater than
the a-sequence of any connected component of M. Consequently, 3, is strictly less
than 3;; and M satisfies 7 by the minimality of (. O

Lemma 6 Any graph N consisting of disjoint copies of Ja, J3, ..., Jr plus any num-
ber of disjoint copies of the graph M from Lemma 5 satisfies .

Proof By the proof of Lemma 5, the graph M is such that the maximal component
of By is strictly less than a;,. By reasoning as we did in the proof of Lemma 4, it
follows that [y is strictly less than §; and so N satisfies 7 by the minimality of (3.
O

Throughout, we refer to a G-vertex in G' and the corresponding vertex in G
by the same name (and also to a vertex of H and the corresponding vertex in the
portion of the partial order H' corresponding to H by the same name).

Consider the algorithm GREEDY () on input (G', H', s',¢'). The partial order
H' consists of a linear order, whose vertices are Sy, say, concatenated with the partial
order H. The subgraph of G’ induced by the vertices of Sy is as is the graph K of
Lemma 4 and consequently every vertex of Sy is always placed in every output from
GREEDY (7). Note that the algorithm GREEDY(7) on input (G', H',s',t") with
current-vertex s is working with exactly the same partial order, namely H, as is the
algorithm GREEDY (independent set) on input (G, H, s,t) with current-vertex s.

Suppose, as our induction hypothesis, that:

e the algorithm GREEDY (independent set) on input (G, H,s,t) has current-
vertex u, for some ancestor u of s in H, and has so far output the set of
vertices S;

e the algorithm GREEDY (7) on input (G', H', s',t') has current vertex u in H’
and has so far output the set of vertices Sy U S; and

e the subgraph of G’ induced by the vertices of Sy U S’ is in the form of a
subgraph of the graph N in Lemma 6.

Note that the induction hypothesis clearly holds, in the base case, when the vertex
u is actually s.

Suppose that the algorithm GREEDY (7) outputs the vertex u. If u is such that
adding u to SyUS’ completes a copy of Iy then we would have a copy of J within the
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subgraph of G' induced by the vertices of Sp U S U {u}. This would yield a contra-
diction because this subgraph satisfies w (by definition), 7 is hereditary on induced
subgraphs, and .J would then have to satisfy 7. Hence, the vertex u is not joined to
any vertex of S in G and so u is output by the algorithm GREEDY (independent set).

Conversely, if the algorithm GREEDY (independent set) outputs u then this is
because S U {u} is an independent set in G; and consequently Sy U S U {u} induces
in G’ a subgraph of the form of a subgraph of the graph N in Lemma 6. Hence, by
Lemma 6, u is output by the algorithm GREEDY (7).

By induction, we obtain that if S is a set of vertices output by the algorithm
GREEDY (independent set) on input (G, H, s,t) then Sy U S is output by the al-
gorithm GREEDY (7) on input (G',H',s',t'), and conversely. Hence, we have a
log-space reduction from H to G. 0

Just as Miyano did in [6], we can actually remove the necessity in Theorem 3 for
m to be satisfied by all sets of independent edges. Ramsey theory can be applied to
show that any graph property that is non-trivial and hereditary on a class of graphs
is either satisfied by all independent sets or by all cliques. We can then use this
fact to eliminate the need for 7 to be satisfied by all independent edges (we omit
the details here but point out that we proceed exactly as Miyano did). Hence, we
obtain the following.

Corollary 7 Let m be a polynomial-time testable, hereditary graph property that is
non-trivial on planar bipartite graphs. The problem GREEDY (partial order, planar
bipartite, ) is complete for NP. O

We conclude by remarking that in future we will extend Corollary 7 so that it
applies to directed graphs and we will examine degree bounds on graphs so as to
delineate when a problem GREEDY (partial order, graphs, 7) becomes solvable in
polynomial-time (for specific properties 7).
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