
Stop-List Slicing

Keith Gallagher∗

Computer Science Department

University of Durham

South Road

Durham DH1 3LE, UK

k.b.gallagher@durham.ac.uk

David Binkley

Computer Science Department

Loyola College in Maryland

4501 N. Charles St.

Baltimore, MD. 21210 USA

binkley@cs.loyola.edu

Abstract

Stop lists are used in information retrieval to re-
duce the size of language processing tasks by eliminat-

ing non-content words. Stop lists are a collection of
stop-words, words that do not contribute information

to the language processing task. Stop-list program slic-

ing uses a stop list of variables to reduce the size of a
program slice. In a fashion similar to selecting vari-

ables of interest for a program slice, the programmer

selects variables that are not of interest. Stop-list slices
are computed by removing certain data dependences for

variables in the non-interest set. In order to further
understand and assess stop-list program slicing as a re-

duction technique, we evaluated the size of reductions

obtained by computing slices when dependences involv-
ing stop words are ignored during the computation of

the slices on a collection of C programs. In a suite

of 42 programs of approximately 800,0000 source lines,
over 600,000 slices were computed. Using a list of stop

words reduced the size of the computed slices by an av-
erage of 34%.

1 Introduction

Mark Weiser[12, 13] devised program slicing to aid
program debugging. When debugging, the program-
mer has a particular variable in mind. In slicing argot,
this particular variable is the variable that the pro-
grammer has determined to be “of interest.” The task
of any program slicing technique is to then find the
other variables (and statements) that could impact the
value of this variable. Two significant problems occur
in computing program slices. The first is finding the
slicing criterion, i.e., finding the particular variable of

∗On sabbatical leave from Loyola College in Maryland, USA

interest; the second is that the slices are often large
and unwieldy.

While a program slice elides irrelevant computa-
tions, it may be that some of the (data flow) relevant
computations included in the slice are not of interest to
the programmer. For instance, in any piece of software
there are variables that do the computation (e.g., out-
puts), and variables that help to do the computation
(e.g., counters, indices, and temporaries). But, are all
variables that are included in the program slice of equal
importance to the debugger or comprehender? Could
a programmer determine that a variable is not of in-
terest and have computations that affect this variable
“sliced” away too? Is the removed information neces-
sary to show the comprehender in the first place? As
part of a comprehension task could it be that just to
“wrap one’s head around” what is going on that as-
signments to control variables, or some other subset
of slice’s variables, could be sliced out, too? We in-
vestigate the reduction in the size of slices when these
“helper” variables are omitted from the computation
of a program slice.

The problem of finding variables of non-interest
would seem to be the same sort of problem as finding
variables of interest. Locating these interesting / un-
interesting variables is not the immediate focus of this
work; we presume that both the variables of interest
and non-interest have been obtained in some fashion.
In this work, we are interested only in determining if
pursuing this idea has merit by determining the reduc-
tions that could be obtained if uninteresting variables
were tagged for exclusion in the same way the inter-
esting variables are tagged for inclusion in a program
slice.

The motivation for this work is to attempt to re-
duce the size and complexity of program slices. Previ-
ous work in this area has been concerned with devising
ever more efficient data structures and algorithms to

1

obtain more precise slices. We consider an alternative
approach which can be informally described as taking
the slices as emitted from a high quality program slicer
and post process them to see if further reductions are
possible. Conceptually, this is akin to the technique
used [5], in which slices of differing criteria were com-
bined by simple set equivalence.

In this paper we borrow a concept from information
retrieval, that of stop words, and present evidence that
using a set of stop words whilst computing a program
slice reduces the size of a slice enough that is indeed
worth the effort. First, we present background, moti-
vation and support for the application of stop words
to program analysis. Then we present an operational
definition and discussion of a stop-list slice via a collec-
tion of examples. This discussion is followed by a de-
scription the techniques used to compute the stop-list
slices. The collected data is summarized and followed
by a discussion of how this effort fits into the slicing
corpus.

The contributions of this paper are a definition of
a stop-list slice and an examination of 42 C programs
that shows that stop-list slicing is a viable technique for
program analysis. Stop-list slicing is a way to “slice the
slice” and thereby can aid comprehenders in the same
way that slicing does: removal of unneeded, unwanted,
or irrelevant information.

2 Background

This section begins with a short discussion of stop-
lists; discusses how they might be used in program
analysis; and introduces the data set used in the study.

2.1 Stop Lists

A stop list is used in information retrieval to reduce
the size of an index.

A stop list is a list of words that are excluded
from some language processing task, usually
because they are viewed as non–informative
or potentially misleading. Usually they are
non–content words like conjunctions, deter-
miners, prepositions, etc. These are often
called function words[10].

For instance, words such as “the”, “of,” “is,” etc, need
not be included in an exhaustive index of a document
and can thus be ignored when constructing the index.

Here is the quotation of the previous paragraph after
stop words have been removed:

stop list list words excluded language process-
ing task viewed non–informative misleading
non–content words conjunctions determiners
prepositions called function words

With the stop words removed the number of words
in the quotation is reduced from 42 to 19, a reduction
of almost 55%. If one knows that this quotation has

had the stop words removed, its sense remains, with a
little work.

2.2 Non-interesting Variables

Do programs contain the functional equivalent of
stop words? In other words, are there variables in pro-
grams that meet the generic criteria of stop words?
While the quotation in Section 2.1 notes that stop
words may be misleading, we will ignore this possi-
bility; if a variable is used in a program, we will as-
sume that its use is not to mislead a program reader.
Two questions are studied. First, “do uninteresting
variables exist?” and second (assuming so) “how does
elimination of assignments to these variables affect the
slice size?”

The study of stop-list slicing begins with an analy-
sis to determine if there are variables in programs that
qualify as stop words. Such variables would need to
be uninteresting to a software engineer. In addition,
discounting such variables would have to have an effect
on slice size (i.e., the quantity of code a maintainer
must consider). To study these questions, the suite of
programs shown in Table 1 was analyzed. For each
program, the table provides two measures of program
size, first, as reported by the Unix word count utility
wc. While line counts as reported by word count are
useful when comparing with past studies, they provide
a rather crude measure. To provide an alternative es-
timate of program size, the third column reports the
number of non-blank non-comment lines of code as re-
ported by sloc count [14].

3 Stop List Slicing

Stop-list slicing is the application of a stop list to the
slicing computation. The selection of variables to go on
the stop-list is akin to the selection of variables with
respect to which to slice. In some sense, their selection
can be considered “the dual” of slice variable selection.
When program slicing, an engineer selects variables “of
interest;” when stop-list slicing, the engineer also picks
a set of variables “of non-interest.”

To compute a stop-list slice, we first obtains a list
of stop words (identifiers). Before computing a slice

2

Size (Loc)
Program wc sloc

a2ps 63,600 40,222
acct 10,182 6,764
barcode 5,926 3,975
bc 16,763 11,173
byacc 6,626 5,501
cadp 12,930 10,620
compress 1,937 1,431
copia 1,170 1,110
csurf-pkgs 66,109 38,50
ctags 18,663 14,29
cvs 101,306 67,828
diffutils 19,811 12,705
ed 13,579 9,046
empire 58,539 48,800
EPWIC-1 9,597 5,719
espresso 22,050 21,780
findutils 18,558 11,843
flex2.4.7 15,813 10,654
flex2.5.4 21,543 15,283
ftpd 19,470 15,361
gcc.cpp 6,399 5,731
gnubg-0.0 10,316 6,988
gnuchess 17,775 14,584
gnugo 81,652 68,301
go 29,246 25,665
ijpeg 30,505 18,585
indent 6,724 4,834
li 7,597 4,888
named 89,271 61,533
ntpd 47,936 30,773
oracolo2 14,864 8,333
prepro 14,814 8,334
replace 563 512
sendmail 46,873 31,491
space 9,564 6,200
spice 179,623 136,182
termutils 7,006 4,908
tile-forth 4,510 2,986
time 6,965 4,185
userv 8,009 6,132
wdiff 6,256 4,112
which 5,407 3,618
wpst 20,499 13,438

sum 1,156,546 824,935
average 26,896 19,185

Table 1. The subject programs with simple
line counting metrics.

using the standard graph reachability algorithm [8], all
data dependences that originate from simple assign-
ments to these identifiers are removed from system de-
pendence graph (the underlying representation used by
the slicer [4]). The kinds of assignment that qualify as
“simple” are described in Table 2. In the next two sec-
tions, we show first, by example, that stop-words, i.e.,
variables that are not relevant to the computation), ex-
ist in production code, and then we show, in Section 5,
the potential affect on slice size that their removal has.

Deleted

Assignments

v = ... (v = ...

v++ v--

++v --v

*v++ *v--

v <op>= ... v[...] = ...

Table 2. Stop List Statement Types

4 Examples

This section presents four examples that illustrate
the kind of variables we expect to be placed on a stop-
list. We start with a traditional example. Consider the
“usual suspect,” Wordcount, shown on the left of Fig-
ure 1. The center of the figure is the program slice on
variable nw, the number of words, at the last statement,
which includes definitions and references to the variable
inword, the status variable that indicates whether or
not the scanner is advancing over white space, and to c,
the input variable. The slice omits 5 statements from
the original program.

The right of Figure 1 shows the corresponding
stop-list slice computed using the stop list of c

and inword. It thus ignores assignments to these
variables. Clearly we have lost execution seman-
tics, for now the program is effectively equivalent
to while (<constant>) { ...}; indeed, it will not
even compile with the declarations removed. In a
display environment, the sliced statements might be
dithered to indicate that they were elided via the stop
list. But note that by simple line counting, we have
reduced the slice size by 31%, from 26 lines to 18.

The question arises: is the fragment on the right
of Figure 1 comprehensible? We argue that it is in

the context of a comprehension exercise. Return to
the textual example of Section 2.1. If one is merely
handed the collection of words in the second quote,
confusion reigns. If one knows that this list of words

3

#include <stdio.h> #include <stdio.h> #include <stdio.h>

#define YES 1 #define YES 1 #define YES 1

#define NO 0 #define NO 0 #define NO 0

main() main() main()

{ { {

int c, nl, nw, nc, inword; int c, nw inword; int c, nw inword;

inword = NO; inword = NO; inword = NO;

nl = 0;

nw = 0; nw = 0; nw = 0;

nc = 0;

c = getchar(); c = getchar();

while (c != EOF) while (c != EOF) while (c != EOF)

{ { {

nc = nc + 1;

if (c == ’\n’)

nl = nl + 1;

if (c == ’ ’ || if (c == ’ ’ || if (c == ’ ’ ||

c == ’\n’ || c == ’\n’ || c == ’\n’ ||

c == ’\t’) c == ’\t’) c == ’\t’)

inword = NO; inword = NO;

else else else

if (inword == NO) if (inword == NO) if (inword == NO)

{ { {

inword = YES; inword = YES;

nw = nw + 1; nw = nw + 1; nw = nw + 1;

} } }

c = getchar(); c = getchar();

} } }

printf("%d "%d "%d \n", printf("%d "%d "%d \n", printf("%d "%d "%d \n",

nl, nw, nc); nl, nw, nc); nl, nw, nc);

} } }

Figure 1. Wordcount program on the left. The program slice on variable nw at the last statement of
Wordcount program in the center. On the right a stop-list slice of the program with assignments to
inword and c, and their respective declarations, removed.

has had the stop words removed, a reasonable guess at
its sense can be obtained. The same argument applies
to a the fragment: we know it is a stop-list slice and in
this context we can make some reasonable assumptions
about the intent of missing variables, and the probable
actions where the assignments are deleted.

Thus, when a comprehender knows that a stop-list
slice is presented, we submit that eliminating assign-
ments to the input variable, c, does not adversely affect
comprehension of this slice. Nor does eliding references
to the assignments to inword adversely affect compre-
hension of this program slice. That the loop depends
on variable c is easily seen; likewise, the assignment to
nw depends on inword. This is because control depen-
dences are not removed from the stop list slice, just

simple assignments.

Before presenting the second example, we switch to
a more precise measure of slice size. To introduce the
fundamental concepts of stop-list slicing and illustrate
the sizes of reductions obtained, the proceeding exam-
ple counted statements. This technique of text com-
parison and line counting does not extend to the larger
programs analyzed. Thus, in subsequent examples of
this section and in the next section, we will use ver-
tex counts in the System Dependence Graph [8] (SDG)
for measuring the percent reduction, rather than state-
ment counts. For ease or presentation, we will continue
to present snippets of code (rather than dependence
graphs) to illustrate the stop-list slices.

The second example is shown on the left of Figure 2,

4

main() main()

{ {

int i; int i;

int number;

int max = 0; int max = 0;

scanf("%d", &number);

while (1 << max <= number)

{

max++;

}

for(i = max - 1; i >= 0; i--) for(i = max - 1; i >= 0; i--)

{ {

int current_digit = 1 << i; int current_digit = 1 << i;

printf("%c", printf("%c",

current_digit <= number ? ’1’ : ’0’); current_digit <= number ? ’1’ : ’0’);

if (current_digit <= number) if (current_digit <= number)

number = number - current_digit; number = number - current_digit;

} }

printf("\n"); printf("\n");

} }

Figure 2. The fragment to the right shows the stop-list slice of the fragment on the left using a stop-list
of {i, number}.

which writes out the binary representation of the value
received as input. The first loop serves only to compute
the number of iterations of the second loop. Placing
i on the stop list causes the stop-list slice to exclude
the first loop; adding variable number to the stop-list
removes the scanf. The stop-list slice of this fragment
is shown on the right of Figure 2. The reduction in this
instance is from 19 to 11, 42%.

The third example, shown in Figure 3, is from the
utility slowcat [3]. It pauses while “cat”ing a file af-
ter a certain number of bits have been output; thus,
“cat”ing the file slowly. Within the main loop pauses
are inserted after a certain number of bits have been
output. The main input-output loop is preceded by
standard command line processing.

The main loop of slowcat is

while ((c = getc(infile)) != EOF) { ... } .

The slice on this loop includes 18 vertices while the slice
on the counter increment “bits read += 8” includes
21 vertices. The stop-list slice using c as the stop-list
taken with respect to “bits read += 8” includes only
9 vertices (a 57% reduction). What is being excluded
here is opening the file, deciding the file name, etc. The

int arg_ptr_index = 2;

/* first arg is required infile name */

while (arg_ptr_index < argc)

{

if (!strcmp(argv[arg_ptr_index], "-o"))

{

arg_ptr_index++;

filename = argv[arg_ptr_index];

}

[[check other arguments]]

...

}

Figure 4. Argument Processor

reduction occurs because c has a data dependence on
infile and data dependences on c are ignored.

Finally, Figure 4 is shows a program fragment (ex-
tracted from a large system) which does some com-
mand line argument processing. The slice on the loop
while (arg ptr index < argc) includes 50 vertices.
The slice on filename = argv[arg ptr index] from

5

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#define DEFAULT_RATE 14400

#define DELAY_POINT 256

void main(int argc, char* argv[]){

FILE *infile;

long rate = DEFAULT_RATE;

int bits_read = 0;

int c;

unsigned long delay_time;

/**/

if ((argc < 2) || (strcmp(argv[1],"-h") == 0)){

printf("usage:\n %s file_name [bits/sec]\n",argv[0]);

printf(" The default time is 14400 bits/sec.\n");

exit(0);

}

if (argc >= 3){

rate = atol(argv[2]);

if (rate <= 200){

fprintf(stderr,"%s: illegal rate %s\n",argv[0],argv[2]);

exit(-1);

}

}

infile = fopen(argv[1],"r");

if (infile == NULL){

fprintf(stderr,"%s: unable to open %s for read\n",argv[0],argv[1]);

exit(-1);

}

/**/

delay_time = DELAY_POINT * 1000000 / rate;

while ((c = getc(infile)) != EOF){

putc(c,stdout);

fflush(stdout);

bits_read += 8;

if (bits_read > DELAY_POINT){

usleep(delay_time);

bits_read = 0;

}

}

fclose(infile);

}

Figure 3. Slowcat source. The stop-list slice eliminates the argument processing. The elided source
is noted between the starred lines

6

the “-o” (output file name) option includes 52 vertices.
Placing arg ptr index on the stop list (thus ignoring
the dependence on arg ptr, also essentially making the
loop while (<constant>) { ...}, this slice includes
47 vertices. (The slice on the loop header contains only
6 vertices.) Thus, we get a 10% reduction from 52 to
47 vertices.

5 Results and Discussion

Having illustrated in the proceeding section that
stop-list slicing is advantageous in real code, the next
question to ask is what is the maximum reduction pos-
sible, which occurs when all variables are on the stop
list. This is not the same as removing all data depen-
dences as only data dependences associated with ‘sim-
ple’ assignments are removed. Those data dependences
from non-simple assignments (e.g., through pointers)
and control dependences are not elided.

The maximal reductions for each program, when the
simple (as noted in Table 2) are shown in Table 3. The
table includes the number of slices taken and the av-
erage slice size using an empty stop-list and a “full”
stop-list. The final column of the first presents the
percent reduction for each program. Summary statis-
tics over all program are presented in the last five rows
of the table. Over all programs the reduction ranges
from 8% to 77% with an average reduction of 34%.

Finally, the program copia was used as a case study
to examine the expected reduction for a realistic stop-
list (rather than all the variables in the program). Ta-
ble 4 shows the average slice size computed using an
empty stop-list, then with all variables on the stop-
list, and finally with a representative stop-list as might
be chosen by a software engineer studying copia. The
variables on the representative stop list are shown in
Table 5.

For copia, including all variables on the stop-list re-
sults in a 41% reduction in average size size. While,
as expected, the average reduction obtained using the
representative stop list was smaller, at 25% it still rep-
resents a significant reduction in average slice size. This
indicates that presenting a stop-list slice to a program-
mer may be of interest.

5.1 Interpretation Context

There are two external threats to these results: pro-
gram selection and slice selection. Most of the pro-
grams come from the open-source community. There
are no event-driven, real-time or embedded systems in
the sample. Thus, these results may not be extrapo-
lated to these domains, without further analysis. The

sample size assuages the concern that the sample does
not represent “typical” programs. The slice selection
threat is assuaged by taking all slices; this eliminates
concerns that a bias may be introduced by a program-
mer selected criterion. However, it does raise the con-
cern that computing all slices is not representative of
engineering activity. In this case we argue that, as our
sample comprises all slices, it would include any slice
chosen at random.

The only internal threat to these results is errors
that may be in in CodeSurfer itself, thereby compro-
mising the data. To this we respond that CodeSurfer
is a mature “industrial strength” tool.

6 Related Work

The program slicing tool CodeSurfer[4] has the abil-
ity to chase the data dependences of the system depen-
dence graph. It does not have the ability, through the
current user interface, to ignore selected dependences
in the systematic way that stop-list slicing does. The
CodeSurfer internal representation of the system de-
pendence graph can be modified to ignore dependences
by simply eliminating the selected dependences; this is
how the data presented in Table 3 was collected. The
SeeSlice [2] system has the ability to limit the graph
edge distance considered by a slicer. The distance lim-
itation permits the comprehender to “drill down” into
a specific area (distance) of interest. Our work would
integrate nicely into the CodeSurfer or SeeSlice envi-
ronments. The only enhancement required would be
to tell the underlying slicing engines to ignore selected
data dependences.

The canto maintenance environment of Antoniol,
et al. [1] uses an incremental technique to integrate
software and architecture. canto can be used to con-
struct stop-list slices, although it was not designed to
do so. The construction of the slice is controlled by the
comprehender. We just provide the stop-list slice.

Orso, et al., [11] use an incremental technique to ex-
pand slices in steps by using types to elide subtle data

Stop-list Average Slice Reduction
Size Size in Percent
Empty 13,035
All variables 7,723 41%
“Reasonable” 9,810 25%

Table 4. Average size of slices of program
copia with various stop-lists. The “Reason-
able” stop-list is given in Table 5

7

Average Slice Size Average as Percent

Program Slices Empty Full Empty Full Reduction

Taken Stop-List Stop-List Stop-List Stop-List

a2ps 58,280 26,937 21,747 46% 37% 19%
acct 7,250 826 498 11% 7% 40%
barcode 3,908 1,700 1,080 44% 28% 37%
bc 5,132 3,827 2,755 75% 54% 28%
byacc 10,150 2,407 1,346 24% 13% 44%
cadp 15,672 1,906 1,337 12% 9% 30%
compress 1,084 315 140 29% 13% 56%
copia 4,686 2,113 1,449 45% 31% 31%
csurf-pkgs 43,044 11,122 8,773 26% 20% 21%
ctags 20,578 12,427 9,762 60% 47% 21%
cvs 103,264 75,247 58,784 73% 57% 22%
diffutils 17,092 4,894 3,592 29% 21% 27%
ed 16,532 11,001 8,698 67% 53% 21%
empire 120,246 56,279 44,582 47% 37% 21%
EPWIC-1 12,492 1,817 419 15% 3% 77%
espresso 29,362 12,917 8,950 44% 30% 31%
findutils 14,444 5,369 3,698 37% 26% 31%
flex2-4-7 11,104 3,885 2,258 35% 20% 42%
flex2-5-4 14,114 3,996 2,367 28% 17% 41%
ftpd 25,018 12,630 7,174 50% 29% 43%
gcc.cpp 7,460 4,442 2,750 60% 37% 38%
gnubg-0.0 9,556 3,372 2,491 35% 26% 26%
gnuchess 15,068 8,084 4,759 54% 32% 41%
gnugo 68,298 33,331 29,205 49% 43% 12%
go 35,862 28,803 18,917 80% 53% 34%
ijpeg 24,028 9,734 7,019 41% 29% 28%
indent-1.10.0 6,748 3,496 2,129 52% 32% 39%
li 13,690 8,292 5,514 61% 40% 33%
named 106,828 58,939 44,675 55% 42% 24%
ntpd 40,198 16,026 12,234 40% 30% 24%
oracolo2 11,812 2,161 1,036 18% 9% 52%
prepro 11,744 2,110 989 18% 8% 53%
replace 1,734 162 104 9% 6% 36%
sendmail 47,344 22,792 16,406 48% 35% 28%
space 11,276 2,239 1,080 20% 10% 52%
spice 212,620 67,515 41,932 32% 20% 38%
termutils 3,112 1,136 575 37% 18% 49%
tile-forth-2.1 12,076 6,653 6,105 55% 51% 8%
time-1.7 1,044 165 113 16% 11% 31%
userv-0.95.0 12,516 3,515 2,441 28% 20% 31%
wdiff.0.5 2,420 373 240 15% 10% 36%
which 1,162 474 175 41% 15% 63%
wpst 20,888 3,547 2,702 17% 13% 24%

sum 626,646
average 29,759 13,925 10,124 40% 28% 34%
max 212,620 75,246 58,783 80% 57% 77%
min 1,044 162 104 9% 3% 8%
stdev 40,339 19,530 14,545 19% 15% 13%

Table 3. The Data

8

RAND SEED ALARM CLOCK
FILE SYSTEM HEAP

PROCESS UMASK adx
ady dot dot dot

errno fp
i j

m max
min n

p p1
ptr q
q1 seed

temp FILE SYSTEM temp ALARM CLOCK
temp FILE SYSTEM temp HEAP

temp dot dot dot temp optind
temp star stderr temp star stdin
temp star stdout temp star stream

temp star strm vm
y z

Table 5. The “Reasonable” Stop-List for pro-
gram copia

dependences and statements. The contribution of this
work is a more accurate slice that regards the semantic
information contributed by the data types of the vari-
ables under consideration. Our distinction from it is
that we are not refining the slice to be more accurate;
we are eliminating information to assuage information
overload.

Program dicing uses the information that some vari-
ables fail some tests, whilst other variables pass all
tests, to automatically identify a set of statements
likely to contain the bug [9]. A program dice is ob-
tained using set operations on backward program slices.
Dices relate to this work insofar as they eliminate state-
ments from program slices.

Decomposition slice equivalence can be used to sig-
nificantly reduce the number of slice a programmer
needs to comprehend, by forming equivalence classes
of slices that were exactly the same, regardless of the
slice criteria [5]. The slices computed by this technique
are still large. The current work enhances the reduc-
tion by further reducing the size of the slice that must
be comprehended.

7 Future Work

The results presented here are promising and have
led us to formulate a research plan.

7.1 Control Stop-List Slicing

As noted in Section 3 this paper focuses on data
stop-list slicing. It is also possible to consider control

stop list slicing. This subsection lays out a conceptual
framework for control stop-list slicing.

In the SDG, for the code fragment “if (p) a =

1”, the assignment “a = 1” is control dependent on
if (p). Furthermore, a procedure is also control de-
pendent on each call-site to the procedure. Thus, if p
were a control stop word then the slice of

if (p > 0)

a = 1;

would stop at “if (p > 0)” and not look for definition
of p. Similarly, in the code fragment

a() { b(); }

b() { c(); }

c() { x = 1; }

the slice on the assignment “x = 1” includes the entry
points for c, b, and a because of control dependences.
Using a control stop-word list of b, the slice would stop
at b.

7.1.1 Output Statements

In the system dependence graph, “printf("%d", a)”
is represented by a call vertex (to printf), parameter
vertices for “%d”, a, and a vertex for the return value.
The call vertex is only involved in control dependence,
so having it on a stop list would not change the (data)
stop-list slice as defined in Section 3. Thus, an applica-
tion of control stop-list slicing is the printf statement.
The variables referenced in a printf do not represent
data stop words because the call to printf is actually a
control point in the system dependence graph. Output
statements have always caused difficulties in computing
program slices. Output statements do not contribute
to the value of the variable in a slice, but they cer-
tainly are of interest to a programmer considering a
program slice. For output statements, we use the same
approach as decomposition slicing [7], in which output
statements are not added to the slice computation, per
se, but added in at the behest of the programmer.

7.2 Locating Stop Words

We have deliberately avoided the question of finding
candidate stop-words. Now that we have some data
that shows that stop-list slicing is worth the effort,

9

we will have to spend some time determining what
variables are likely candidates. One incipient idea is
using unchangeable variables from the decomposition
slice on the variable of interest[6, 7]. The unchange-
able variables are used in other computations and thus
cannot be changed in the decomposition slicing soft-
ware evolution model. Unchangeable variables cer-
tainly contribute to the computation in question, but
their data and control flows are beyond the focus of
interest. Eliminating the data (and perhaps control)
dependences on these variables is a reasonable place to
start.

A second approach is to use techniques from infor-
mation retrieval. A simple enumeration of variable uses
could be a starting place. For instance, in text process-
ing one could create a list words ordered the number
of occurrences as a likely list of stop words. Applying
the same technique to program source may be fruitful.

7.3 User Study

We will consider a user study. The goal of such a
study would be to determine the “comprehension loss,”
if any, that might occur when a user is presented with
a program slice and with a stop-list slice on the same
criteria. An empirical evaluation would be difficult for
the usual reasons that threaten any user study: caliber
of subjects; size of sample; size of program used; etc.

8 Conclusion

Program slicing was devised to assist program com-
prehenders and maintainers in their difficult task. The
central premise of this work is that all variables are
not of equal importance to a software maintainer or
comprehender. There are certain idioms and patterns,
that are repeatedly used and can be considered as back-
ground noise in a comprehension environment. Exam-
ples of these are for-statements and their associated
counter and argument processing code. To further as-
sist comprehenders and maintainers, we have shown
how the size of the slice itself can be reduced with-
out significant loss of information. Moreover, this lost
information can be easily retrieved by returning to a
typical program slice.

References

[1] G. Antoniol, R. Fiutem, G. Lutteri, P. Tonella, S. Zan-
fei, and E. Merlo. Program understanding and main-
tenance with the canto environment. In ICSM ’97:
Proceedings of the International Conference on Soft-

ware Maintenance, page 72. IEEE Computer Society,
1997.

[2] T. Ball and S. Eick. Visualizing program slices. In
Proceedings of the Tenth International Symposium on
Visual Languages, 1994.

[3] R. W. Buccigrossi and E. P. Simoncelli. EP-
WIC: Embedded Predictive Wavelet Image Coder.
http://www.cns.nyu.edu/ eero/EPWIC/.

[4] CodeSurfer. GrammaTech, Inc.
http://www.grammatech.com/products/codesurfer.

[5] K. Gallagher and D. Binkley. An empirical study of
computation equivalence as determined by decomposi-
tion slice equivalence. In Proceedings of the 10th Work-
ing Conference on Reverse Engineering, WCRE–03,
2003.

[6] K. Gallagher, M. Harman, and S. Danicic. Guaran-
teed inconsistency avoidance during software evolu-
tion. Journal of Software Maintenance and Evolution:
Research and Practice, 2003. To appear Dec. 2003.

[7] K. B. Gallagher and J. R. Lyle. Using program slic-
ing in software maintenance. IEEE Transactions on
Software Engineering, 17(8):751–761, August 1991.

[8] S. Horwitz, T. Reps, and D. Binkley. Interprocedural
slicing using dependence graphs. ACM Transactions
on Programming Languages and Systems, 12(1):35–46,
January 1990.

[9] J. R. Lyle and M. D. Weiser. Automatic program bug
location by program slicing. In Proceeding of the Sec-
ond International Conference on Computers and Ap-
plications, pages 877–882, Peking, China, June 1987.

[10] T. Pedersen.
www.d.umn.edu/˜ tpederse/Group01/wordnet.html.

[11] A. Orso, S. Sinha, and M. J. Harrold. Incremental slic-
ing based on data-dependence types. In Proceedings of
the IEEE International Conference on Software Main-
tenance (ICSM 2001), pages 158–167, Firenze, Italy,
november 2001.

[12] M. Weiser. Programmers use slices when debugging.
CACM, 25(7):446–452, July 1982.

[13] M. Weiser. Program slicing. IEEE Transactions on
Software Engineering, 10:352–357, July 1984.

[14] D. A. Wheeler. SLOC count user’s guide, 2005.
http://www.dwheeler.com/sloccount/sloccount.html.

10

