
Computing statistics from a graph representation of road networks in

satellite images for indexing and retrieval∗

Avik Bhattacharya & Ian H. Jermyn & Xavier Descombes & Josiane Zerubia
Ariana (joint research group INRIA/I3S), INRIA, BP 93, 06902 Sophia Antipolis, Cedex France
Email: FirstName.LastName@inria.fr

Retrieval from remote sensing image archives relies on the extraction of pertinent information from the data
about the entity of interest (e.g. land cover type), and on the robustness of this extraction to nuisance variables
(e.g. illumination). Most image-based characterizations are not invariant to such variables. However, other
semantic entities in the image may be strongly correlated with the entity of interest and their properties can
therefore be used to characterize this entity. Road networks are one example: their properties vary considerably,
for example, from urban to rural areas. This paper takes the first steps towards classification (and hence retrieval)
based on this idea. We study the dependence of a number of network features on the class of the image (‘urban’
or ‘rural’). The chosen features include measures of the network density, connectedness, and ‘curviness’. The
feature distributions of the two classes are well separated in feature space, thus providing a basis for retrieval.
Classification using kernel k-means confirms this conclusion.

1 INTRODUCTION

The retrieval of images from large remote sensing im-
age archives relies on the ability to extract pertinent
information from the data, and on the robustness of
this extraction (Daschiel and Datcu 2005). In partic-
ular, most queries will not concern, for example, the
atmospheric conditions or illumination present when
the images were acquired, but instead information that
is invariant to these quantities, for instance land cover
type. Most image-based characterizations are, how-
ever, far from invariant to changes in such nuisance
variables, and thus fail to be robust when dealing
with a large variety of images acquired under differ-
ent conditions. Characterizations based on semantic
entities detected in the scene, in contrast, are invari-
ant to such changes, and inferences based on such
entities can thus be used to retrieve images in a ro-
bust way. For this to work, the properties of the en-
tity in question must be strongly dependent on the
query. Road networks provide one example of such
an entity: their topological and geometrical properties
vary considerably, for example, from urban to rural
areas. Features computed from an extracted road net-
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work can therefore in principle be used to character-
ize images, or parts of images, as belonging to one
of these classes. Our work differs from much previ-
ous work, for example (Wilson and Hancock 1997;
Luo and Hancock 2001), in that we are not interested
in identifying the same network in different images,
or in a map and an image, and producing a detailed
correspondence, but rather in using more general net-
work properties to characterize other entities in an im-
age. The work to be described in this paper takes the
first steps towards classification (and hence retrieval)
based on such inter-semantic dependencies. Specifi-
cally, we study the dependence of a number of road
network features on the class of the image, which for
the moment we restrict to be either ‘urban’ or ‘rural’.
The chosen features when taken in isolation measure
the density of the network and its ‘curviness’ in var-
ious ways. Taken together they also measure its con-
nectedness. We find that the feature distributions of
the two classes are well separated in feature space,
and thus provide a basis for retrieval given an appro-
priate feature metric. Classification based on kernel k-
means confirms that this is the case. We also discover
an unexpected relation between two of the features
that is consistent across images and classes.
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2 NETWORK EXTRACTION AND REPRESEN-
TATION

In order to compute topological and geometrical fea-
tures of the network, we first need to extract the road
network from an image, and then convert the output
to an appropriate representation. This representation
should be independent of the output of the extraction
algorithm, since we do not want to be committed to
any single such method. We consider two network
extraction methods (Lacoste et al. 2005; Rochery
et al. 2006). The method of (Rochery et al. 2006)
is based on ‘higher-order active contours’. Higher-
order active contours are a generalization of standard
active contours that use long-range interactions be-
tween contour points to include non-trivial prior in-
formation about region shape, in this case that the
region should be network-like, that is composed of
arms with roughly parallel sides meeting at junctions.
The output of this method is a distance function defin-
ing the region corresponding to the road network. The
method of (Lacoste et al. 2005) models the line net-
work as an object process, where the objects are in-
teracting line segments. The output of (Lacoste et al.
2005) is a set of line segments of varying length, ori-
entation, and position. This output is converted to the
output of (Rochery et al. 2006) by performing a dila-
tion and then a distance function computation on the
resulting binary image.

The distance function resulting from these meth-
ods is then converted to a graph representation of the
road network for feature computation purposes. The
graph itself captures the network topology, while the
network geometry is encoded by decorating vertices
and edges with geometric information. The conver-
sion is performed by computing the shock locus of
the distance function using the method of (Dimitrov
et al. 2000; Siddiqi et al. 2002), extended to deal
with multiple, multiply-connected, components. The
method identifies shock points by examining the lim-
iting behaviour of the average outward flux of the dis-
tance function as the region enclosing the shock point
shrinks to zero. A threshold on this flux yields an ap-
proximation to the shock locus. The graph is then con-
structed by taking triple points and end points as ver-
tices, corresponding to junctions and termini, while
the edges are composed of all other points, and cor-
respond to road segments between junctions and ter-
mini. Figure 1 shows an example of the representa-
tion graph. The road network (top right) is first ex-
tracted from the input image (top left). The methods
cited above are then used to generate the shock lo-
cus (bottom left), which is then converted to the graph
representation (bottom right).

The vertices and edges are decorated with geomet-
ric quantities computed from the shock locus. The
features are then computed from the graph and its dec-

Figure 1: An example of a graph representation. Top
left: original image c©CNES; top right: extracted road
network; bottom left: shock locus of road network;
graph representation.

Notation Description
m Number of edges in graph
Ω Area of image
a Quadrant label
le Length of road segment correspond-

ing to edge e
mv Number of edges at a vertex

∑
e:v∈e 1

NJ Number of junction vertices∑
v:mv>2

1

ÑJ Junction density Ω−1NJ

L̃ Length density Ω−1
∑

e le
de Euclidean distance between vertices

in an edge
pe Ratio of lengths le/de

var(p) Ratio of lengths variance
m−1

∑
e p

2

e − (m−1
∑

e pe)
2

ke Average curvature l−1

e

∫
e
ds |ke(s)|

var(k) Average curvature variance
m−1

∑
e k

2

e − (m−1
∑

e ke)
2

MJ,a Number of junction edges per quad-
rant

∑
v∈a:mv>2

mv

M̃J,a Density of junction edges per quad-
rant Ω−1

a MJ,a

var(M̃J) Variance of density of junction edges

(1/4)
∑

a M̃
2

J,a − ((1/4)
∑

a M̃J,a)
2

Table 1: Summary of features
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orations. They are described in the next section.

2.1 Feature vectors

We focus on five features, summarized in table 1.
They fall into three groups: two measures of ‘den-
sity’, two measures of ‘curviness’, and one measure
of ‘homogeneity’. Let v be a vertex, and e be an
edge. Let le be the length of the road segment cor-
responding to e, and let de be the length of e, that is
the Euclidean distance between its two vertices. Let
mv =

∑
e:v∈e 1 be the number of edges at a vertex.

Then NJ =
∑

v:mv>2
1 is the number of junction ver-

tices. Let Ω be the area of the image in pixels. We

define the ‘junction density’ to be ÑJ = Ω−1NJ . This
is intuitively a useful measure to separate urban and
rural areas: we expect urban areas to have a higher

value of ÑJ than rural areas. Similarly, we define the

‘length density’ to be L̃ = Ω−1
∑

e le. Again, we ex-

pect urban areas to have a higher value of L̃ than rural

areas. Note than one can have a high value of L̃ and a

low value of ÑJ if junctions are complex and the road
segments are ‘space-filling’.

Let pe = le/de, and ke = l−1

e

∫
e
ds |ke(s)|, i.e. the

absolute curvature per unit length of the road segment
corresponding to e. Although it may seem natural to
characterize the network using the average values per
edge of these quantities, in practice we have found
that more useful features are obtained by using their
variances. We thus define the ‘ratio of lengths vari-
ance’ to be the variance of pe over edges, var(p), and
the ‘average curvature variance’ to be the variance of
ke over edges, var(k). Note that it is quite possible
to have a large value of pe for an edge while having
a small value of ke if the road segment is composed
of long straight segments, and vice-versa, if the road
‘wiggles’ rapidly around the straight line joining the
two vertices in the edge. We expect rural areas to have
high values of one of these two quantities, while ur-
ban areas will probably have low values, although this
is less obvious than for the density measures.

To measure network homogeneity, we divide each
image into four quadrants, labelled a. Subscript a in-
dicates quantities evaluated for quadrant a rather than
the whole image. Let MJ,a =

∑
v∈a:mv>2

mv be the
number of edges emanating from junctions in quad-
rant a. This is very nearly twice the number of edges
in a, but it is convenient to restrict ourselves to junc-
tions to avoid spurious termini at the boundary of the

image. Let M̃J,a = Ω−1

a MJ,a be the density of such
edges in quadrant a. Then we define the ‘network in-

homogeneity’ to be the variance of M̃J,a over quad-

rants, var(M̃J).
In the experiments reported in the next section,

all the images have the same resolution. However,
more generally we need to consider the scaling of the

above quantities with image resolution. We assume
that changing the resolution of the image does not
change the extracted road network. This can happen,
for example, if the network extracted from a lower
resolution image lacks certain roads contained in the
network extracted from a higher resolution image be-
cause they are less than one pixel wide. This effec-
tively limits the range of the resolutions that we can
consider simultaneously. Having assumed this, invari-
ance to image resolution is easily accomplished by
converting quantities in pixel units to physical units
using the image resolution.

Figure 2 shows scatter plots of selected pairs of the
features described above as computed from a data-
base of 52 SPOT5, 5m resolution images, 26 images
of each class, representing various types of urban and
rural landscapes. The plots show, from left to right,

top to bottom: ÑJ versus var(k); L̃ versus var(k);
ÑJ versus var(p); L̃ versus ÑJ ; var(p) versus var(k);
var(M̃J) versus L̃. Blue circles correspond to images
of urban areas, red stars from images of rural areas.

As can be seen from the plots, the junction densi-

ties, ÑJ , for urban areas are for the most part higher
and more varied than those for rural areas, where the
values are small. The network length density, L̃, be-
haves similarly. The behaviour of the average curva-
ture variance, vark, is perhaps less expected. Urban
areas show generally higher values of this feature, and
there is also a wide spread of values, while rural areas
demonstrate, with a few exceptions, very little curva-
ture variance. The ratio of lengths variance, var(p) is
also interesting. Both classes cluster around low val-
ues, again with a few exceptions in the case of rural
areas. The average curvature variance varies widely
w.r.t ratio of length variance for urban areas, whereas
the ratio of length variance varies widely w.r.t aver-
age curvature variance for rural areas. The network

inhomogeneity var(M̃J) for rural areas is low and
does not vary with with the network length density,
whereas for urban areas the network inhomogeneity
is low but varies widely with the network length den-
sity. Perhaps the most intriguing plot is length density
against junction density, in which both rural and urban
data points follow a well defined curve, well approxi-

mated by L̃ = 1.4Ñ
1/2

J . Naively, if there is on average
one junction for every a2 pixels, the junctions will be
separated by a distance O(a). If each junction has r
edges, there will be on average r/2 segments of length

O(a) for every a2 pixels, and thus L̃≃ (r/2)Ñ
1/2

J . For

a square lattice L̃= 2Ñ
1/2

J , so that in some sense road
networks are ‘less connected’ than a square lattice.
However, this analysis effectively assumes a uniform
distribution of junctions and no symmetry-breaking
‘clustering’ effects due to dependencies between dif-
ferent junction positions. In general, there seems to be
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Figure 2: Scatter plots of selected pairs of features.
Red stars correspond to rural areas, blue circles to ur-

ban areas. From left to right, top to bottom: ÑJ versus

var(k); L̃ versus var(k); ÑJ versus var(p); L̃ versus

ÑJ ; var(p) versus var(k); var(M̃J) versus L̃.

no reason a priori why even the exponent 1/2 should
be consistent across images and classes, let alone the
pre-factor. It remains to be seen whether this relation
is preserved in a larger data set. Finally, and most im-
portantly, note that the points from the two classes are
quite well separated in many of the plots, making it
reasonable to use these features for classification.

3 CLUSTERING

The above results indicate that the selected features
represent suitable choices for classification based on
road network properties given an appropriate feature
metric. In order to classify the images from the two
classes, we use the kernel k-means algorithm since
the feature data are not linearly separable. We use a
Gaussian kernel,

ψ(X1,X2) = e−
‖X1−X2‖

2

2σ2 ,

where X1 and X2 are two feature vectors. The clus-
tering result, displayed in table 2, shows that the two
classes can be well partitioned using the above five
features. 19 and 25 images from ’rural’ and ’urban’
classes respectively were correctly classified, while 1
and 7 images from ’urban’ and ’rural’ classes respec-
tively were incorrectly classified.

Urban Rural
Class 1 1 19
Class 2 25 7

Table 2: Kernel k-means clustering result with σ =
0.5.

4 CONCLUSION

The preliminary studies reported above indicate that
certain features of road networks can serve as char-
acterizations for various image classes that are robust
to nuisance parameters and in principle also to imag-
ing modality. Future work will involve extracting road
networks from many more images and studying the
features described above and others (e.g. area density,
number and angles of roads at junctions, network con-
nectivity) on the resulting database of graphs. Proba-
bilistic models of selected features will be developed,
both for the above coarse classes, and refinements
of them. These models will then enable classification
and retrieval based on road networks.
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