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Abstract

We consider the Kudla-Millson lift from elliptic modular forms of weight
(p + g)/2 to closed g-forms on locally symmetric spaces corresponding to
the orthogonal group O(p, g). We study the L?-norm of the lift following the
Rallis inner product formula. We compute the contribution at the Archimedian
place. For locally symmetric spaces associated to even unimodular lattices, we
obtain an explicit formula for the L2-norm of the lift, which often implies that
the lift is injective. For O(p, 2) we discuss how such injectivity results imply
the surjectivity of the Borcherds lift.

1. Introduction

In previous work [8], we studied the Kudla-Millson theta lift (see e.g. [19]) and
Borcherds’ singular theta lift (e.g. [3, 6]) and established a duality statement
between these two lifts. Both of these lifts have played a significant role in the
study of certain cycles in locally symmetric spaces and Shimura varieties of
orthogonal type. In this paper, we study the injectivity of the Kudla-Millson
theta lift, and revisit part of the material of [6] from the viewpoint of [§], to
obtain surjectivity results for the Borcherds lift. Moreover, we provide evi-
dence for the following principle: The vanishing of the standard L-function of
a cusp form of weight 1 + p/2 at 5o = p/2 corresponds to the existence of a
certain “exceptional automorphic product” on O(p, 2) (see Theorem 1.8).

We now describe the content of this paper in more detail. We begin by recall-
ing the Kudla-Millson lift in a setting which is convenient for the application
to the Borcherds lift. Let (V, Q) be a non-degenerate rational quadratic space
of signature (p, q). We write (-, -) for the bilinear form corresponding to the
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Injectivity of the Kudla-Millson Lift 13

quadratic form Q. We write r for the Witt index of V, i.e., the dimension of
a rational maximal isotropic subspace. Throughout we assume for simplicity
that the dimension m = p 4 g of V is even. We realize the symmetric space D
associated to V as the Grassmannian of oriented negative g-planes in V (R).

Let L C V be an even lattice of level N, and write L* for the dual lattice.
The quadratic form on L induces a non-degenerate (Q /Z-valued quadratic form
on the discriminant group L¥/L. Recall that the Weil representation p; of
the quadratic module (L¥/L, Q) is a unitary representation of SL,(Z) on the
group ring (C[L#/L], which can be defined as follows [3], [6]. If (ey)yeL#/L
denotes the standard basis of C[L¥ /L], then py, is given by the action of the
generators T = (1) and § = (9 ) of SL2(Z) by

pL(T)(ey) = e(y?/2ey.
e(=(p—q)/9
PLS)(ey) = === ) e(=(r. ).
|L /L| 5EL#/L
where e(w) 1= €271V,
SLo(Z/NZ).
Let I' € O(L) be a torsion-free subgroup of finite index which acts trivially

on L*/L. Then

This representation factors through the group

X =T\D
is a real analytic manifold. For x € L* with Q(x) > 0, we let
Dy ={z€eD; z 1l x}.

Note that Dy is a subsymmetric space attached to the orthogonal group H,, the
stabilizer of x in H. Put I’y = I' N H,.. The quotient

Z(x) =Ty \Dy — X

defines a (in general relative) cycle in X. For h € L¥/L and n € Q, the group
Iactson Ly, = {x € L + h; Q(x) = n} with finitely many orbits, and we
define the composite cycle

Z(h,n) = Z Z(x).

X€l\Lp,n

Kudla and Millson constructed Poincaré dual forms for such cycles by
means of the Weil representation, see e.g. [19]. They constructed a Schwartz
form gx € [S(V(R)®Z4(D)]°V)®) on V(R) taking values in Z9(D), the
closed differential g-forms on D. Let w, be the Schrodinger model of the Weil
representation of SL;(R) acting on the space of Schwartz functions S(V (R)),
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14 Jan Hendrik Bruinier and Jens Funke

associated to the standard additive character. We obtain a C[L* /L]-valued
theta function on the upper half plane H by putting

O, z, kM) =1 YY" (0eo(g)ex M) (X, e

heL#/L x€L+h

Here t = u+iv e Hand g = (%) (\(/)5 \/S*) € SLy(R) is the standard
element moving the base point i € H to t. In the variable 7, this theta func-
tion transforms as a (non-holomorphic) modular form of weight x = m /2 for
SLy(Z) of type pr. In the variable z, it defines a closed g-form on X. Kudla
and Millson showed that the Fourier coefficient at 27" ¢), is a Poincaré dual
form for the cycle Z(h, n).

Let S, 1 denote the space of C[L¥/L]-valued cusp forms of weight ¥ and
type pr. for the group SLo(Z). We define a lifting A : S, 1, — Z9(X) by the
theta integral

dud
fHAm=/ @, 0z ok L

SLa(Z)\H v?
where (-, -) denotes the standard scalar product on C[L*/L].
In the present paper, we consider the question whether A is injective. We
compute the L2-norm of the differential form A(f) in the sense of Riemann
geometry by means of the Rallis inner product formula [27]. First, using the
see-saw

Sp(2) O(V) x O(V)

SLz X SL2 O(V)

and the Siegel-Weil formula (see e.g. [20], [21], [23], [30]), the inner product
can be expressed as a convolution integral of f against the restriction of a
genus 2 Eisenstein series to the diagonal (see Proposition 4.7).

Such convolution integrals can be evaluated by means of the doubling
method, see e.g. [5], [13], [25], [27]. If f is a Hecke eigenform of level N,
one obtains a special value of the partial standard L-function of f (where the
Euler factors corresponding to the primes dividing the level N and oo are omit-
ted) times a product of “bad” local factors corresponding to the primes dividing
N and oo. If m > 4, then, by the Euler product expansion, the special value of
the partial standard L-function is non-zero. Therefore the lift A(f) vanishes
precisely if at least one of the “bad” local factors vanishes. By the analysis of
the present paper we determine the local factor at infinity.
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Injectivity of the Kudla-Millson Lift 15

In the special case where L is even and unimodular, the level of Lis N =1,
so that oo is the only “bad” place. The space Sy 1, is equal to the space S, (I"(1))
of scalar valued cusp forms of weight « for I'(1) = SL;(Z). We obtain the
following explicit formula for the L>-norm of the lift (see Theorem 4.9):

Theorem 1.1. Assume that m > 3 + r, where r is the Witt index of V. Let
f € S (I'(1)) be a Hecke eigenform, and write ||f||%for its Petersson norm,
and D ¢ (s) for its standard L-function. Then A(f) is square integrable and

IADIE _ o Dm/2—1)
113 ¢/t (m —2)°

where C = C(p,q) is an explicit real constant, which does not depend
on f.The constant C vanishes if and only if p = 1.

Corollary 1.2. Assume that m > max(4, 3 + r) and that L is even unimod-
ular. When p # 1, the theta lift A is injective. When p = 1, the lift vanishes
identically.

It would be interesting to compute the bad local factors at finite primes (or at
least to show their non-vanishing) as well. However, in our setting, this requires
first a Hecke theory for vector valued modular forms in S, ;. Its foundations
are developed in [9], but a newform theory is not yet available. It seems con-
ceivable that one could prove more general injectivity results along these lines.
For the relationship between the vector-valued modular forms in Sy ; and the
adelic language, see [17].

Note that in this context, J.-S. Li [15] has used the theta correspondence
and the doubling method for automorphic representations in great generality
to obtain non-vanishing results for cohomology when passing to a sufficiently
large level.

In the body of the paper, we actually consider the generalization of the
Kudla-Millson lift due to Funke and Millson [12]. It maps cusp forms in
Sk 1 to closed differential g-forms with values in certain local coefficient sys-
tems. Moreover, we use an adelic set-up for the theta and Eisenstein series in
question.

1.1. Surjectivity of the Borcherds lift

We briefly discuss how the injectivity results on the Kudla-Millson lift imply
surjectivity results for the Borcherds lift. We revisit part of the material of [6]
in the light of the adjointness result of [8] between the regularized theta lift and
the Kudla Millson lift. We restrict ourselves to the Hermitean case of signature
(p,2) where X is a p-dimensional complex algebraic manifold. The special
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16 Jan Hendrik Bruinier and Jens Funke

cycles Z(h, n) are algebraic divisors on X, also called Heegner divisors or
rational quadratic divisors.

We say that a meromorphic modular form for I" has a Heegner divisor, if its
divisor on X is a linear combination of the Z(k, n). A large supply of modular
forms with Heegner divisor is provided by the Borcherds lift, see [2], [3]. We
briefly recall its construction.

A meromorphic modular form for a congruence subgroup of SL,(Z) is
called weakly holomorphic, if its poles are supported on the cusps. If k € Z,
we write M ,'C ;, Tor the space of weakly holomorphic modular forms of weight
k for SL»(Z) of type pr. Any f € M,!cy ;. has a Fourier expansion of the form

fo= Y Y chmenvi,

hel#/L neZ+Q(h)

where only finitely many coefficients c(h, n) with n < 0 are non-zero. We
write V~ for the quadratic space (V, —Q) of signature (2, p) and L™ for the
lattice (L, —Q) in V™.

Theorem 1.3 (Borcherds [3], Theorem 13.3). Let f € Mi—p/Z .- be a
weakly holomorphic modular form with Fourier coefficients c(h, n). Assume
that c(h,n) € Z for n < 0. Then there exists a meromorphic modular form

W(z, f) for T (with some multiplier system of finite order) such that:

(1) The weight of V is equal to c(0, 0) /2.
(1) The divisor Z(f) of WV is determined by the principal part of f at the
cusp oo. It equals

Z(f)= Y. > cth.mZ(h.n).

heL*/L n<0

@iii) In a neighborhood of a cusp of T the function V has an infinite
product expansion analogous to the Dedekind eta function, see [3],
Theorem 13.3 (5.).

The proof of this result uses a regularized theta lift. Let gog 2es (V(R)) be
the Gaussian for signature (p, 2). The corresponding Siegel theta function

O 2,00 =0 Y Y (@u(gc)90)(x, Den

heL#/LxeL+h

transforms like a non-holomorphic modular form of weight p/2 — 1 of type
pr in the variable t. Hence the theta integral
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Injectivity of the Kudla-Millson Lift 17

Oz, f) = / (f(0).0(t, 2z, 0)%))dn (1.2)
r(O\H

formally defines a I'-invariant function on D. Because of the singularities of
f at the cusps, the integral diverges. However, Harvey and Moore discovered
that it can be regularized essentially by viewing it as the limit 7 — oo of the
integral over the standard fundamental domain truncated at J(7) = T, see [3],
[14]. It turns out that ®(z, f) defines a smooth function on X \ Z(f) which
has a logarithmic singularity along Z( f). Moreover,

®(z, f) = —2log || W(z, f)llpet + constant,

where || - ||pet denotes the Petersson metric on the line bundle of modular
forms of weight c(0, 0)/2 over X. From this identity, the claimed properties
of W(z, f) can be derived.

Modular forms for the group I' C O(L) arising via this lift are called
automorphic products or Borcherds products. By (ii) they have a Heegner
divisor.

Here we consider the question whether the Borcherds lift is surjective.
More precisely we ask whether every meromorphic modular form for I'
with Heegner divisor is the lift W(z, f) of a weakly holomorphic form f €
M; —p/2,L~ ?

An affirmative answer to this question was given in [6] in the special case
that the lattice L splits two hyperbolic planes over Z. In the (more restric-
tive) case that L is unimodular, a different proof was given in [7] using
local Borcherds products and a theorem of Waldspurger on theta series with
harmonic polynomials [29].

The approach of [6] was to first simplify the problem and to consider the
regularized theta lift for a larger space of “input” modular forms. Namely, we
let Hy 1, be the space of weak Maass forms of weight k and type p;.. This space
consists of the smooth functions f : H — C[L*/L] that transform with p; in
weight k under SL,(Z), are annihilated by the weight & Laplacian, and satisfy
f(r) = 0 V) as v = u +iv — ioo for some constant C > 0 (see [8]
Section 3).

Any f € Hy, 1, has a Fourier expansion of the form

f@= Y Y cthmemnvie,

heL*/LneQ
+ Z c_(h,O)vl_keh+Zc_(h,n)H(2rmv)e(nu)eh, (1.3)
heL*/L neQ

n#0
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18 Jan Hendrik Bruinier and Jens Funke

where only finitely many of the coefficients ¢ (, n) (respectively ¢~ (h, n))
with negative (respectively positive) index n are non-zero. The function H (w)
is a Whittaker type function.

For f € Hyp, put &(f) = R_k(ka), where R_j is the standard rais-
ing operator for modular forms of weight —k. This defines an antilinear map
&  Hrp — Mé_ go- 0 the space of weakly holomorphic modular forms in
weight 2 — k. It is easily checked that M ,'( ;. 1s the kernel of &;. According to
[8], Corollary 3.8, the sequence

&k

M ——0

|
0 M Hi, 1 2k, L~

L

is exact. We let H,:’r ; be the preimage under & of the space of cusp
forms Sp_j ;- of weight 2 — k with type p;-. Hence we have the exact
sequence

&
0 M]!c,L H]:_L ‘ S2—k,L’ >( .

The space H,:r 1 can also be characterized as the subspace of those f € Hy

whose Fourier coefficients ¢~ (h, n) with non-negative index n vanish. This
implies that

f(r) = Z Zc+(h,n)e(m)eh+0(1), (1) = 00,

heL*)L n<0

i.e., the singularity at oo, called the principal part of f, looks like the
singularity of a weakly holomorphic form.

For f € Hy_, 5 -, we can define the regularized theta lift ®(z, f) as in
(1.2), see [6], [8]. This generalized lift is related to the Kudla-Millson lift A
defined in (1.1) in the following way (see [8], Theorem 6.1).

Theorem 1.4. Let f € H1+, DL~ and denote its Fourier expansion as in
(1.3). The (1, 1)-form dd“®(z, f) can be continued to a smooth form on X. It
satisfies

dd°®(z, ) = AE1-p2()) (@) + 7 (0,0)%.

Here 2 denotes the invariant Kdhler form on D normalized as in [8].

On the other hand, the following “weak converse theorem” is proved in [6],
Theorem 4.23.
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Injectivity of the Kudla-Millson Lift 19

Theorem 1.5. Assume that p > r. Let F be a meromorphic modular form for
the group T" with Heegner divisor

div(F) =YY et (h,m)Z(h. n)
h n<0
(Where ¢ (h, n) = ¢ (—h, n) without loss of generality). Then there is a weak
Maass form f € Hltp/zL— with principal part Y, 3", _oct(h, n)e(nt)ey,
whose regularized theta lift satisfies

®(z, f) = —2log || F||pet + constant. (1.4)

Note that the proof in [6] is only given in the case that p > 3 (where the
assumption on the Witt index is automatically fulfilled). However, the argu-
ment extends to the low dimensional cases. It is likely that the hypothesis on
the Witt index can be dropped as well, but we have not checked this.

Corollary 1.6. Assume that p > r. Let F be a meromorphic modular form for
the group T with Heegner divisor as in Theorem 1.5. Let [ € Hltp/z’L_ be a
weak Maass form whose regularized theta lift satisfies (1.4). Then

AE1-p2(f)) =0.

Proof. The assumption on f implies that
dd°®(z, f) = —2dd°log || F|lpet = ¢ (0, 0)Q.
On the other hand, according to Theorem 1.4, we have

dd°®(z, f) = AE1—p2())(@) +c(0,09.
If we combine these identities, we obtain the claim. O

Corollary 1.7. Assume the hypotheses of Corollary 1.6. If A is injective, then
f is weakly holomorphic, and F is a constant multiple of the Borcherds lift
W (z, f) of f in the sense of Theorem 1.3.

Proof. By Corollary 1.6 we have A(§1—,,2(f)) = 0. Since A is injective, we
find that &1, /2(f) = 0. But this means that f is weakly holomorphic. U

When the lattice L splits two hyperbolic planes over Z, it was proved in
[6] that A is injective by considering the Fourier expansion of the lift. In
Section 4 of the present paper we show (for even unimodular lattices) how
such injectivity results can be obtained by the Rallis inner products formula.

We end this section by stating a converse of Corollary 1.6. If r > 0, we
let £ € L be a primitive isotropic vector, and let £ € L* be a vector with
(£, 2"y = 1. We let L be the singular lattice L N¢+ and let K be the Lorentzian
lattice Lo/ZX.
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20 Jan Hendrik Bruinier and Jens Funke

Theorem 1.8. Assume that p > 2and p > r. Let f € H,",_ and assume that

k,L~
the Fourier coefficients ¢t (h, n) (n < 0) of the principal part of f are integral.
If&1_p2(f) € ker(A), then there exists a meromorphic modular form F for T

(with some multiplier system of finite order) such that:

(i) The weight of F is equal to ¢+ (0, 0)/2.
(i1) The divisor of F is equal to

Z(fy= Y Y cth.mZhn).

heL*/L n<0

@iii) In a neighborhood of a cusp of ', given by a primitive isotropic vector
L € L, the function F has an automorphic product expansion

.
F@ =Ce(p.2) [] [l (1—e(G.2)+@ ) o
reK' seL*/L
A, W)>0 8|Lo=A
Here C is a non-zero constant, and we have used the notation of [3].

Proof. Theorem 1.4 and the fact that A (51_ p2(f )) = 0 imply that
dd“®(z, f) = ¢t (0,0)Q.

(In particular, if ¢* (0, 0) = 0, then f is pluriharmonic.) Now we can argue as
in [6], Lemma 3.13 and Theorem 3.16 to prove the claim. O

We note that the assumption on r and p is needed to guarantee that the
multiplier system of F has finite order. (When f is not weakly holomorphic,
we cannot argue with the embedding trick as in [4], Correction).

If f is weakly holomorphic, then &1, /2(f) = 0 and the Theorem reduces
to Theorem 1.3. However, if A is not injective, and f is a weak Maass form
such that &, ,2(f) is a non-trivial element of the kernel, then Theorem 1.8
leads to exceptional automorphic products. If there are any cases where A
is not injective, it would be very interesting to construct examples of such
exceptional automorphic products.

Remark 1.9. If p > 4, the existence of the meromorphic modular form F
with divisor (ii) is related to the fact that H'(X, Ox) = 0 in this case, which
can be proved following the argument of [10] §3.1. Therefore the Chern class
map Pic(X) — H*(X,Z) is injective.

We thank S. Bocherer, E. Freitag, W. T. Gan, S. Kudla, and J. Millson for
very helpful conversations on the content of this paper. The second named
author also thanks the Max Planck Institut fiir Mathematik in Bonn/Germany
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Injectivity of the Kudla-Millson Lift 21

for its hospitality during the summer 2005 where substantial work on this paper
was done.

2. Theta functions and the Siegel-Weil formula

Let (V, Q) be anon-degenerate rational quadratic space of of dimension m. We
write (-, -) for the bilinear form corresponding to the quadratic form Q so that
o) = %(x, x). For simplicity we assume that m is even. We let G = Sp(n)
be the symplectic group acting on a symplectic space of dimension 2n over Q.
The embedding of U(n) into G(R) givenbyk = A+iB — k = (7AB g ) gives
rise to a maximal compact subgroup Ko, C G(R). At the finite places, we pick
the open compact subgroup K, = Sp(n,Zp). Then K = Ky x ]_[p K, is
the corresponding maximal compact subgroup of G (A), the symplectic group
over the ring of adeles of Q. We let o = w, be the Schrédinger model of
the Weil representation of G4 acting on S(V"(A)), the space of Schwartz-
Bruhat functions on V" (A), associated to the standard additive character of
A/Q (which on R is given by # > () = ¢*'"). Note that since m is even
we do not have to deal with metaplectic coverings. We form the theta series
associated to ¢ € S(V"(A)) by

0 ho)= Y, (@@eh '), @.1)
xeV"(Q)
with g € G(A) and i € O(V)(A). We assume ¢ = ¢oo ® ¢ With g €
S(V"(R)) and g5 € S(V"(A ).
We now briefly review the Siegel-Weil formula, see e.g. [16]. We put

1(g,9) = f 0(g, h, p)dh, 22)
O(V)@)\O(V)(A)

where dh is the invariant measure on O(V)(Q)\ O(V)(A) normalized to have
total volume 1. By Weil’s convergence criterion [30], /(g, ¢) is absolutely
convergent if either V is anisotropic or if

m—r >n-+1. (2.3)

Here r is the Witt index of V, i.e., the dimension of a maximal isotropic

subspace of V over Q.

We set n(b) = ((1) ’1’) for b a symmetric n x n matrix and m(a) = (‘6 ,ao_l

for a € GL(n). Then the Siegel parabolic is given by P(A) = N(A)M(A)
with N = {n(b); b € Mat,, b = 'b} and M = {m(a); a € GL(n)}. Then
using the Iwasawa decomposition G(A) = P(A)K we define

D(g,5) = (@(8)9) (0) - det|alg)[, ™, (2.4)
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22 Jan Hendrik Bruinier and Jens Funke

where

m n-+1
50 = — — .
0=3 2

Thus & defines a section in a certain induced parabolic induction space (see
[16] (I.3.6)). Note that @ is determined by its values on K. Since ® comes from
¢ € S(V*(A)), we also see that @ is a standard section, i.e., its restriction to K
does not depend on s, and we write ® (k) = P (k, s) for k € K. Furthermore,
® factors as ® = O ® Py

We then define the Eisenstein series associated to @ by

E@g.s.®)= Y  O(yg.9), (2.6)
yeP(@QN\GQ)
which for Re(s) > p, := (n + 1)/2 converges absolutely and has a meromor-
phic continuation to the whole complex plane. The extension of Weil’s work
[30] by Kudla and Rallis in the convergent range is:

2.5)

Theorem 2.1. ([20], [21].) Assume Weil’s convergence criterion holds.

(i) Then E(g, s, ®) is holomorphic at s = 5.
(i) We have

1(g, ¢) = coE(g, s0, ),
whereco =1ifm >n+1landco=2ifm <n+ 1.
We translate the adelic Eisenstein series into more classical language, see

[16] section IV.2. We let K r(N) C I1 » K, be a subgroup of finite index of
level N, i.e.,

I''=GQ)N(GR)K((N))

contains the principal congruence subgroup I'(N) C Sp(n, Z). We assume that
® ¢ is K y(N)-invariant. Furthermore, if ¢ s corresponds to the characteristic
function of a coset of an even lattice L of level N in V, then we have

o) =]]2,()
PIN

for y eI". Via G(A) =G(Q)G(R)K s (N) we see that the Eisenstein series
E(g,s, ®) is determined by its restriction to G(R). We assume that the
restriction of ® (g, s) to K is given by

DY (k, s) := det(k)“. 2.7)

We denote the unique section at the Archimedian prime with this property by
@k . Let g = n(u)m(a) with ‘aa = v be an element moving the base point
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Injectivity of the Kudla-Millson Lift 23

i1, of the Siegel upper half plane Hl, to T = u +iv. Then we obtain a classical
Eisenstein series of weight « (and level N):

E@gr.s.®) = Y  ®(rg)®s(y)
y€(P(@)ND\I!

= det(v)*/ Z ( det(v)

(s4pn—rK)/2
Tdeter £ A2 det(ct +d)~ @ ().
ye(P@)ND\T |det(ct + d)lz) (et +4d) r)

with y = (? Z) In particular, if N = 1 then
E(gr,s, ®) = det)?EM (z, (s + pu — &) /2), (2.8)
where
EM(t,5) = > (det(yr)) det(et +d)* (2.9)
y€ls\ Sp(n,Z)

is the classical Siegel Eisenstein series for Sp(n, Z) of weight «.
For later use, we introduce an embedding ¢o of Sp(n) x Sp(n) into Sp(2n) by

a b

a b a b a b
<c d>x<c/ d/>|—> . J . (2.10)

3. Special Schwartz forms

We change the setting in this section and consider the real place only. We
assume that V is now a real quadratic space of signature (p, g) of dimen-
sion m. Since it does not make any extra work we do allow m odd in this
section. We pick an oriented orthogonal basis {v;} of V such that (v, vy) = 1

fora = 1,...,p and (vy,v,) = —1forpu = p+1,...,m, and we
denote the corresponding coordinate functions by x, and x,. We let K V be
the maximal compact subgroup of O(V') stabilizing span{v,1, ..., vy,}. Thus

KV ~ O(p) x O(q). We realize the symmetric space D associated to V as the
Grassmannian of oriented negative g-planes in V. Thus D has two components

D=D,UD._.

Picking for the base point zo the space span{v,1, ..., vy} together with the
induced orientation, we see

Dy ={zCV; dimz=gq,(,)|; <0, zhas the same orientation as zp}.
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24 Jan Hendrik Bruinier and Jens Funke

Thus D1 =~ SOy(V)/K V. where the subscript indicates the connected com-
ponent of the identity. We associate to z € D the standard majorant (, ),
given by

(-xvx)z = (-lei le) - (xz»xz),

where x = x,+x,1 € V is given by the orthogonal decomposition V = 2@zt
We write (, )o = (, )z-

Let o(V) be the Lie algebra of O(V) and let o(V) = p" @ ¢V with ¢V =
Lie(K") be the associated Cartan decomposition. Then p = p" is isomorphic
to the tangent space at the base point zg of D. With respect to the above basis

of V we have
0 X
p:{(,x 0); XeMatp,q(R)}.

Welet Xy (1 <a < p,p+1=<pu =< p+ q)denote the element of p which
interchanges v, and v, and annihilates all the other basis elements of V. We
write wy,, for the element of the dual basis corresponding to X .

We let @ = w,, be the Weil representation of the metaplectic cover Mp(n, R)
of Sp(n,R) acting on the Schwartz functions S(V"). We let K = [NJ(n)
be the maximal compact subgroup of Mp(n, R) given by the inverse image
of the standard maximal compact subgroup U(n) in Sp(n, R). Recall that K
admits a character det!/? whose square descends to the determinant character
of U(n). We also write w for the associated Lie algebra action on the space of
K -finite vectors in S(V"). It is given by the so-called polynomial Fock space
S(V™ c S(V"). It consists of those Schwartz functions on V" of the form
p(X)po(x), where p(x) is a polynomial function on V”. Here ¢q(x) is the stan-
dard Gaussian on V". More precisely, for x = (x,...,x,) € V"and z € D,
we let

¢o(X, 2) = exp (—n > i, x,->z) :

i=1

and set ¢o(X) = @o(X, z9). We view

90 €[SV ® 2PV = [svh @ N eHIK,

where the isomorphism is given by evaluation at the base point zo of D. In the
following we will identify corresponding objects under this isomorphism.

Kudla and Millson (see [18]) constructed (in much greater generality)
Schwartz forms ¢gp on V taking values in A9(D), the differential g-forms
on D. More precisely,
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Injectivity of the Kudla-Millson Lift 25

gxu € [S(V)® A1 DPY) = [S(V)a ® N\ e51F".

Here S(V)4 is the Schwartz space for V twisted by the spinor norm character
aonO(V).OnKV = O(p) x O(q), « is given by 1 ® det. The Schwartz form
@K M 1s given by

1 p+q P 1 9
OKM = 5472 1_[ |:Z (xa - Eg) ® Aau] ©®o-
pn=p+1 La=1 «

Here Ay, denotes the left multiplication by wy,,. More generally, we consider
the Schwartz forms

g € [SW)e ® N\ (0% ® Sym’ (V)1K"

with values in the £-th symmetric powers of V introduced by Funke and
Millson [12]. The forms ¢, ¢ are given by

1< 1 9 ‘
(pq,g:|:52<xa 5 axa>®l®Ava:| VKM

a=I

1 2”: [lﬁ[ 1 9 ﬁ
=7 (Xa,- - = ) R1l® Avai:| OKM-
2 ap,...ap=1 Li=1 27 Xy, i=1

Here A, denotes the multiplication with the vector v in the symmetric algebra
of V. Note that SymZ(V) is not an irreducible representation of O(V), and
we denote by ¢, ¢] the projection of ¢, ¢ onto HY(V), the harmonic £-tensors
in V. It consists of those symmetric £- tensors which are annihilated by the

D 8 g Here we view v,

and v, as independent variables. It can be also characterlzed as the space of
symmetric £-tensors in V which are orthogonal with respect to the induced
inner product on Sym (V) to vectors of the form r2w. Here w € Syme_2(V)
and r2 denotes the multiplication with 37 S 2 ZZ’ 1V M Recall that we
have Syrn WM =HWV)®r Symz 2(V) as representations of O(V).

The Schwartz form ¢, ¢ (and also ¢, [¢]) is an eigenfunction of weight
m/2 + £ under the action of k € K, see [12, 18], i.e.,

w(k)gg.e = det(k)"* g, 4. (3.1)

signature (p, ¢)-Laplacian A = Y7

a= lau2

Here Kk is the element in ﬁ(l) corresponding to k € STO(Z) C Mp(1, R).
Moreover, @4 ¢(x) is a closed differential form on D.
We normalize the inner product on Sym® (V) inductively by setting

(wl"'wli»w/l"'wé):ZZ(wlaw})(UO“'wva/]"'w;"'wé)
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26 Jan Hendrik Bruinier and Jens Funke

With this normalization we easily see that for the restriction of (, ) to the
positive definite subspace span{vy; 1 <« < p} of V we have

14 14 ¢

3 (Hva,.,nvﬂ,.)zpf.
AYyeeny ap=1 \i=1 i=1
Bi.....Be=1

We let Sf};nK(V) be the local system on D associated to SymE(V). Then for
the wedge product, we have A : A" (D, S%[(V)) x A%(D, S%Z(V)) —
A"5(D) by taking the inner product on the fibers Sym®(V). We are ulti-
mately more interested in the form ¢ [¢], but calculations with ¢, ¢ are more
convenient. In this context the following lemma will be important later.

Lemma 3.1. Let n € A?=D4(D, Sym"' ™ *(V)). Then
1
2
A\ = —— R _2) AN.
Qg0 NTD 2ﬂ(w( )Pg,6-2) A1

Here R = 5 (1 i ) € sl(2, C) is the standard SL(2)-raising operator.

Proof. By the adjointness of mA and 72 with respect to the inner product
in Sym*®(V), we have ¢, ¢ A r’n = /é(ﬁl_—l)(A(pq*‘Z) A 1. Note that A operates
on the coefficient part of ¢, ¢. Then switching to the Fock model of the Weil

representation, see the proof of Lemma 3.5, and using (3.9) one easily sees

Apg e = Z(E 1)a)(R)(pq ¢—2. We leave the details to the reader. O

We let * denote the Hodge *-operator on D. Then @, ¢(x1) A *@q ¢(x2)
with X = (x1, x2) € V2, being a top degree differential form, gives rise to a
scalar-valued Schwartz function ¢, ¢ on V2 defined by

Qg e (X, D = @q.0(x1, 2) A *@q (X2, 2). (3.2)

Here p is the volume form on D induced by the Riemannian metric coming
from the Killing form on g. For convenience we scale the metric such that the
restriction of u to the base point zg is given by

M=l prl A ADLpig N2 pr1 A+ AWp pig- 3.3)
Note that
boc €[SV ® 2DV = [s(vH & N\ K"
Lemma 3.2. We have

! P 9 1 9
bq.0() = 2q+2€ Z H( " 2% O 1)(%,.2—58%2)%@)
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Injectivity of the Kudla-Millson Lift 27

=7 D xer - L9 Xo2 — L9 @0 (X).
2q+2¢ o 27T 3Xg1 27T 30Xy

Example 3.3. For signature (p, 2), we have

P p
1 1
$g.000 =) (xél - E) <x§2 — H) PoX)+4 D Xu1Xp1Xa2Xp200(X).

a=1 a,B=1
a#p

Note that (3.1) immediately implies:
Lemma 3.4. Fork;, k» € SO(2) C Mp(1, R), we have

w(olkr, k2))py.¢ = det(kika)™* e, 4.

The action of the full maximal compact K C Mp(2, R) on ¢, ¢ via the Weil
representation is more complicated, as we now explain. We let

g=t®p L Dp- 3.4

be a Harish-Chandra decomposition of g = sp(2, C), where ¢ = Lie(K)c,

L/X iX\. p
Py = {p+(X) =3 (,-x _X> ;X € Map(C),'X = X} SNER)
and p_ = py. Note that p is the holomorphic tangent space of Hj at the base
point i 1, and is spanned by the raising operators

Ri=Riu=ps(}9). Ry=Rn=pi(99), (3.6)

1
R12=§P+(%)- (3.7)

Note that Ry = (p(R, 0) and Ry = 10(0, R) are the images of the SL,-raising
operator R in sp(2, C) under the two standard embeddings of s[(2) into sp(2).

Recall that the adjoint action of K on p, is isomorphic to the standard
action of K on Symz((Cz). Explicitly, the intertwiner is given by R,; — e, ey,
where e, e denotes the standard basis of C2. We obtain an isomorphism of
K -modules

o0
Sym® Sym® C* = €P Sym’ Sym*> C* ~ U (p ) (3.8)
j=0

of the symmetric algebra on Sym? C2 with the universal enveloping algebra
of pa.
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28 Jan Hendrik Bruinier and Jens Funke

Lemma 3.5. We have

pi(=D*

Pq.e = 2ZJTWCU(RIZ)HZ‘PO

Proof. We indicate a quick proof using the Fock model of the Weil represen-
tation. For more details for what follows, see the appendix of [12]. There is
an intertwining map ¢ : S(V") — P(C"P+9) from the polynomial Fock
space to the infinitesimal Fock model of the Weil representation acting on the
space of complex polynomials P(C"(P*49)) in n(p + ¢) variables such that
1(¢o) = 1. We denote the variables in P(C"?T9)) by z,; (1 < a < p) and Zui
(p+1<u<p+gqg)withi = 1,...,n. Moreover, the intertwining map ¢

satisfies
1 9 1
\fei T o Xy LT e

Hence in the Fock model, we have
g+t
Zochoz21| .

¢ 1 2(g+4) p
_ P
Pa.t = 2 (2—,”) >
On the other hand, for the action of the raising operators, we find

a=1

o (Rps) = Z ZarZas — 27 Z (3.9)

p=pt1 8ZuraZp,s

q+L
In the Fock model, we therefore have w (R12)? gy = I:SLJT 2521 ZalZaZ:I >

and the lemma follows. O
We obtain:

Proposition 3.6. Fork € K ~ I~J(2), we have

pl (- 1)q+€

i 4etd) T (AdUORi) T g

w(k)d)q,i =
Proof. This follows immediately from Lemma 3.5 and the fact that the
Gaussian ¢q has weight (p — gq)/2. O

Remark 3.7. The Kudla-Millson forms ¢g s cannot be expressed in terms of
elements in p.

Proposition 3.6 reduces the K -action on ¢, ¢ to the representation theory of
the group U(2)(C) = GL,(C) on Sym*® Sym? C2, which is given as follows.

Downloaded from Cambridge Books Online by IP 129.234.252.67 on Wed May 28 15:42:35 BST 2014.
hitp://dx.doi.org/10.1017/CB09780511730054.004
Cambridge Books Online © Cambridge University Press, 2014




Injectivity of the Kudla-Millson Lift 29

Lemma 3.8. The GL,(C)-representation Sym’ Sym? C? decomposes as

[j/21
Sym’ Sym? C? ~ @ Sym* ~4 C? @ det ¥
i=0

into its irreducible constituents. The summand fori = [j/2] is given by

Sym2i 4/ 2 @ ge20i/21 = | ¢ i o iiseven o
Sym? C? @ det/~' if j is odd,
and is generated by the vector
aj = (V) DD e eren) ™
i=0
_ [(6162)2 — e% %]]/2 . if j is even,
(e1e2) [(e]e2)2 — e%e%][]/ ] if j is odd. (3.11)

Proof. For the first statement, see e.g. [11], p.81/82. For (3.11), note that in
Sym? Sym? C? = Sym* C & det?,

the vector

oy = (6162)2 — e%e%
generates the one-dimensional sub-representation. Then, for j even, «; is given
by the image of (a2)//> € Sym//? Sym? Sym? C? under the projection onto
Sym/ Sym? C2. The argument for j odd is analogous. O

By slight abuse of notation, we also write o ; for the corresponding element
in U(p, ) and define another Schwartz function§ =&, , € S (V3 by

pi=DTH
2 g+t

E=&,0= (e j)eo. (3.12)

Proposition 3.9. For the Schwartz function ¢4 ¢, there exists a ¢ € S (V?)
such that

bq.0 =840+ 0(R)w(R2)Y. (3.13)
Proof. We have

[(q+0)/2] o _ .
(ere0™ —agre=eled Y (M) =1 e D) T eren
i=1
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30 Jan Hendrik Bruinier and Jens Funke

Using the intertwiner with U(p. ), we recall that eiz corresponds to R;. Thus v
is given by

[(g+6)/2]

¢ +

pr(=1? +0)/2 i i—1 pi—1 pg+€—2i

V= 2+t Z ([(q 7 ])(_1)lw<Rll Ry Ry, )‘P0~ O
i=1

One easily sees using (3.9):

Lemma 3.10. The Schwartz function & vanishes identically if and only if
p=landqg+1¢>1.

Example 3.11. Forg =2, p > 1, and £ = 0, we have
$2.0- QP = Coxm Aorm AL+ C'o(RDw(Ry)go - QP

for some nonzero constants C and C’. Here Q denotes the Kihler form on the
Hermitian domain D. But we will not need this.

In view of Lemma 3.8 and Proposition 3.6, we see for g + £ even that
w (k) = det(k)"/*H'¢ (3.14)

for ke K. We let E(g,s) be the section in the induced representation
corresponding to the Schwartz function § via (2.4).

Proposition 3.12. Let g + £ be even. Then E is the standard section (2.7) at
the infinite place of weight m /2 + £. More precisely,

B(s) = C(s)D™/ > (s) (3.15)

for a certain (explicit) polynomial C (s). Moreover,
C(s0) #0

with so = (m — 3)/2 as in (2.5) for p > 1, while C(s) = 0for p = 1.

Proof. The identity (3.15) follows from (3.14) and the uniqueness of @glo/ 2+t
The precise statement follows from considerations in [22]. The element o, ¢
is trivially a highest weight vector of weight u = (¢ + £, g + £) of GL,(C).
Therefore we can take o1 ¢ equal to the element u% € U(py) (oruy, € U(g))
in the notation of [22], p.31/32. Then by Corollary 1.4 of [22], we have E(s) =
uMCDgg_q)/z(s) = cP,Ep_q)/z(s)CI)’"/ZHZ (s), for a certain polynomial P,ip_q)/z
and a nonzero constant c¢. One easily sees P,ip —/ 2(so) # 0 for p > 1. See
also [22], p. 38. For p = 1, E vanishes identically, since already & = 0 by
Lemma 3.10. O
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Remark 3.13. For g + ¢ odd, we see in the same way

E(s) = C(s)Rin® > (s)

for a certain polynomial C(s). Note that o1 is not a highest weight vector
for Sym? C? ® det 4+~ (which has weight (g + £ + 1, g + £ — 1)).

4. The L2-norm of the theta lift

We now return to the global situation and retain the notation of Section 2. Let
V be a non-degenerate quadratic space over Q of signature (p, ¢) and even
dimension m = p + q. We let L C V be an even lattice and write L* for the
dual lattice. We let H = GSpin(V'). For each prime p, welet L, = L®Z, and
let K f be the subgroup of H(Q) which leaves L, stable and acts trivially on
L% /L,. Then K" =T, K" is an open compact subgroup of H (A r). We let
K be a maximal compact subgroup of H(R). By strong approximation we
write

HA) =] [H@Q)H®RohKf (4.1)
j

with h; € H(Ay). Then we put
X =Xgn =H@QN\D x H(Ap) /K] (4.2)
such that

x~]]x; (4.3)
j

with X; =T ;\D,, where I'; =H(Q) N (H(R)oth}{h;l). We let pf €

H
S(V(A f))Kf bea K ]Ic{ -invariant Schwartz function on the finite adeles. Then
@ corresponds to a linear combination of characteristic functions on the
discriminant group L#/L. Since ®g,¢ is an eigenfunction of weight

k=m/2+¢

under the action of U(1), we can form the classical theta function on H, the
upper half space, by setting

0(t, 2,046 ®0p) =072 3" 41 (0)00(g0)0ge(x, 2)
xeV(@Q)

=17 3" r (). (Vox, 7)™
xeV(Q)
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Here 7 = u +iv € H,and g, = (} %) (f fi’_.) € SLy(R) C SLa(A) is the
standard element moving the base point i € H to . Then 0(t,z, ;¢ ® @)
transforms like a non-holomorphic modular form of weight « for the principal
congruence subgroup I'(N) of SL;(Z) taking values in the differential g-forms
on X. Here N is the level of L, i.e., the smallest positive integer such that
IN(x,x) € Zfor all x € L*. In particular, if L is unimodular, 6(t, z, ¢4.¢ ®
@) is a form for the full modular group SL>(Z).

We write S, (I'(N)) for the space of cusp forms of weight « for I'(N). We
normalize the Petersson scalar product be putting

1 _
)= - “d 4.4
(f. 9 T T Jronns f@egn du(r) 4.4

for f, g € S (C'(N)). Here diu(t) = dL;f” is the invariant measure on H. For

f € Se(I'(N)), we consider the theta lift

AP = (£.0(1, 95,0 ® 9p)) = fr(N)\H F(DO(T, g0 ® pp)v* du(r).

4.5)
It defines a linear map
A S (T(N)) — 29X, S%Z(V)) (4.6)
into the S%e (V)-valued closed differential g-forms on X.
In order to show the injectivity of A, we study its L?-norm given by
IAHIZ = /X ACf) A*AC). @.7)

We will use the doubling method to compute || A(f) ||%, see [5, 13, 25, 27].

Proposition 4.1. Assume that m >3 +r so that Weil’s convergence crite-
rion (2.3) in genus 2 holds. Then A(f) is square integrable, and

AN = (FE @ F@), [, 8. 00 ®9p),  @8)

where (, ) denotes the Petersson scalar product on T'(N) x I'(N) and

it 900 = [ 00 mnd.00p @)
X
is the integral over the locally symmetric space of the theta series

0(t1, 72,2, g 1®P ) = (W1v2) Y " hr(X) (@0 (10(8r, > 8By (X, 2),

e 4.10
(4.10)
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(which by (3.1) defines a modular form of weight k on I'(N) x I'(N)). Here
¢r=0r®ps € S(VI(Af)).

Proof. The formula (4.8) implies the square integrability since the right hand
side of (4.8) is absolutely convergent by Weil’s convergence criterion (2.3).
We have

IACHIR = /

X

(/ F@DO(z1, ¢q.¢ ®<Pf)v'fdﬂ(11))
T(N\H

A </ S (2)0(12, %40 ® wf‘)vgdu(fz))
C(N)\H

Interchanging the integration, we obtain

//f(fl)f(fz)</x O(T1, @q,0 @ 9 r) NO(T2, ¢4 ¢ @ <ﬂf)>(v1vz)KdM(fl)dM(fz)-

Since ¢ ¢ is real valued, we easily see by the explicit formulas of the Weil
representation that

0(T2, ¥0g,0 @ 9f) = 0(=T2, ¥@g,0 ® ¢ f)

and therefore

O(T1, @q.0 @ @) NO(T2, %@q.0 @ @f) = 0(T1, =12, 2, g P
by (3.2). This implies the assertion. O

Remark 4.2. For signature (p, 2), the lift A(f) is actually always square inte-
grable, see [0, 8]. We expect this to be true for other signatures as well even
if Weil’s convergence criterion does not hold. In that case, one would need to
regularize the theta integral [ asin [23].

Note that the Schwartz function £ introduced by (3.12) is K V-invariant. We
can therefore consider & € [S(VH) ® Cw(D)]O(V)(R) by setting

E(x,2) = E(hy)x)
with ko, € O(V)(R) such that ho,z0 = z. In particular, (X, z9) = §(X).
Proposition 4.3. Define 6(z1, 12,2, @ ¢ ) and I~(r1, 72,& @ ¢y) in the same
way as for ¢4 ¢ in (4.10), (4.9). Then
1A = (f@) @ F@). I, —0.6 ©4))).

Proof. By Proposition 3.9 and Proposition 4.1, we see (omitting ¢ s from the
notation)

IAHIE = (f) & T I, 8. 90.0))
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= (r@ @ f@), i@, ~2.9))

+ (fe @ T I, —o, 0 (Rw(R)Y))
= (re @ f@). I, ~2.9))

+ (£ @ T@), Rkl (x1, %2 1))

By the adjointness of the Maass lowering and raising operators with respect to
the Petersson scalar product, the latter summand vanishes. O

Corollary 4.4. Let p = 1 and q + £ > 1. Then A vanishes identically.

Proof. This is obvious from Proposition 4.3 and £ = 0 (Lemma 3.10). ]

Remark 4.5. We could have defined the lift A of f by using the Schwartz
form ¢, [¢] instead of the form ¢, ¢. Using Lemma 3.1 we see by the argument
of the proof of Proposition 4.3 that the L?-norms || A( )l coincide.

We want to relate the integral I (t1,72,§ ® ¢y) to the pullback of a
genus 2 Eisenstein series via the Siegel-Weil formula. We first need to
relate the integral over the locally symmetric space X to an integral over
O(V)(@Q@)\O(V)(A). We do this following [17], pp. 332. First we define
the theta series associated to & more generally for g € Sp(2,A) and h =
(hooh £) € O(V)(A) by

0. hE§@¢) = Y w@ihyx 0¢rh; '),
xeV2(Q)

where 7 is the base point of D. Note that

0(t1, 1,2, E ® Pr) = (11v2) “"%0(10(81,, 81y)> hoor € @ B )

with 1o € O(V)(R) such that z = heozp.
Proposition 4.6. We have

1 -
——— (1,02, §@¢y) = (vlvz)*”/ 0(t0(gr,, 8rs)s 1, € ® Pp)dh.
vol(X, ) O(V)(Q)\O(V)(A)

Proof. Arguing as in the proof of Proposition 4.17 of [17], we first obtain

- 1
(11,0, E®¢f) = (vjv2) /> =

> f 0(t0(8z» 812), . E@f)dh,
SO(V) @)\ SO(V)(4)

vol(X, u)
where dh is the Tamagawa measure on SO(V)(A). But now the sign repre-
sentation of O(V,)/ SO(V,) does not occur in the local theta correspondence
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for the pair (Sp(2), O(V)) for any place v if dimV = m > 2, see [26]. Then
arguing as in [17], p. 326, we see

1

3/ 0. h €06 dh = [ (s, h, £@0y)dh,
SO(V)(Q)\SO(V)(A) O(V)(@)\O(V)(A)

from which the proposition follows. O

Proposition 4.7. Let Z(s) ® ® s(s) be the section associated to & @ ¢ via
(2.4) and let s = (m — 3)/2. Then

it A OIE = @i ™2 (£ ) © F@). Ettolgr: 8- 50 2@ @)

Proof. Using Proposition 4.6 and the Siegel-Weil formula, Theorem 2.1,
we find

mim, 0, E®¢r) = W1v2) “*E((gr,, 81), 50, E ® D).

Now the assertion follows from Proposition 4.3. O

Corollary 4.8. Assume that g 4 £ is even and p > 1. Let ®¥_(s) be the stan-
dard section defined by (2.7), and let ® 7 (s) be the section associated to ¢y via
(2.4). Then

1 —
volor o MWD = Clso) i)™ (@) ® T, Eolgn s 8-2). 50, ¥, © @)

where C(sq) is the nonzero constant in Proposition 3.12.

Proof. We have E(g,s) = C(s)P% (g, s) by Proposition 3.12. Hence the
Corollary immediately follows from Proposition 4.7. O

Suppose that f is an eigenform of level N and let S denote the set of
primes dividing N together with co. Then the doubling method [5, 13, 25, 27]
expresses a convolution integral as on the right hand side above as a product
of the standard L-function L* (sg + %, f) with the Euler factors corresponding
to p € S omitted times a product of “bad” local factors corresponding to the
primes in S. If m > 4 then s + % lies in the region of convergence of the Euler
product of L5(s, f). Hence the L-value does not vanish. Therefore the lift
A(f) vanishes precisely if at least one of the “bad” local factors vanishes. By
the analysis of the present paper we determine the local factor at infinity.

We now specialize to the case when the lattice L is even and unimodular.
Then ¢ corresponds to the characteristic function of L and ® ¢(s) = 1. The
level of L is N = 1, so that oo is the only “bad” place. By the above analysis
we obtain a very explicit formula for || A(f) ||% as we shall now explain.
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In this case 0(t, z, ¢4,¢) is a modular form of weight x = m/2 + £ for
SL>(Z) and vanishes unless g + £ is even, which we assume from now on as
well. Then « is even, because 8 | p — g. By Corollary 4.8 and (2.8) we have

IADIE = Clso) (f (o) ® T, EP (11, —T2, —/2))
4.11)

vol(X, u)

where E,@(tl, T2, §) is the pullback of the classical genus 2 Siegel Eisenstein
series E,Ez)(r, s) (see (2.9)) to the diagonal.

We recall the definition of the standard L-function of a Hecke eigenform
f € Sc(I'(1)). We use the normalization of [1], [5], [24]. We denote the
Fourier coefficients of f by c(n) and assume that f is normalized, i.e.,
¢(1) = 1. Let p be a prime. The Satake parameters o, p, a1,, of f at p are
defined by the factorization of the Hecke polynomial

(I —c(PX +p71XH) = (1 —ap , X)(1 — ap par pX). (4.12)

Hence

af o p = p< a0,p(1 +a1,p) = c(p).

According to Deligne’s theorem, formerly the Ramanujan-Petersson conjec-
ture, we have |a, ,| = 1. The standard L-function of f is defined by the Euler
product

D)=l -p™)A—oibp™ A —ar,p™] @13
p

It converges for 9 (s) > 1. The corresponding completed L-function

3 s+1 s+x—1 s+ K
Ve(s)=m 2F( > )F( > )F( 5 )Df(s) (4.14)

has a meromorphic continuation to C and satisfies the functional equation

Wi(s) = Wp(l —s) (4.15)

(see e.g. [5], [28]). It is well known (see [28], Introduction, [31]) that Dz (s)
can be interpreted as the Rankin L-series

Dy (s) = ¢(2s) Zc(nz)rf“’“rl = % Zc(n)ans—KH.
N
n=1

n=1

Theorem 4.9. Assume that m > 3 + r so that Weil’s convergence crite-
rion (2.3) in genus 2 holds. Furthermore, assume that q + £ is even and that

Downloaded from Cambridge Books Online by IP 129.234.252.67 on Wed May 28 15:42:35 BST 2014.
hitp://dx.doi.org/10.1017/CB09780511730054.004
Cambridge Books Online © Cambridge University Press, 2014




Injectivity of the Kudla-Millson Lift 37

L is even unimodular. Let f € S.(I'(1)) be a Hecke eigenform, and write
I f||% = (f, f) for its Petersson norm normalized as in (4.4). We have

N PN OH]
vol(X, 1) |I£13

Ds(m/2—1)
c(m/2)(m —2)

= C(so)u(l, k, —£/2)

where

r 2440/2 -1
w(l, k, —£/2) = 2372 (1)< x (m/2+¢/ )
['(m/2+¢/2)
Proof. The statement follows from (4.11) by means of [5], identities (14)
and (22). )

Remark 4.10. By the same argument it is easily seen that (A(f), A(g)) =0
for two different normalized Hecke eigenforms f and g.

Corollary 4.11. Assume that m > max(4,3+r), p > 1, g + £ even, and that
L is even unimodular. Then the theta lift A : S, (I'(1)) — 2Z9(X, SymZ(V)) is
injective.

Proof. This follows from Theorem 4.9, Proposition 3.12, and the convergence
of the Euler-product for D (m/2 — 1) in this case. O
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