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(implicit) Material Point Method focus
at Durham University

seabed ploughing (Cortis)
screwpile installation (Wang)

overcoming volumetric locking (CMAME, 2018)
IGA-based MPM (Ghaffari-Motlagh)
B-spline representation & enforcement of boundaries (Bing)

generalised interpolation & gradient plasticity (Charlton)
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Screwpiles for wind energy foundation systems University
» Designing foundations for offshore
wind turbines is challenging because of
the complex dynamic mechanical
loading environment; |, Wind

/’\ turbine
» monopiles are currently the most

commonly used foundation in the

offshore wind market due to their ease | | Transition
of installation; piece
~ Foundation
— Monopile
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the complex dynamic mechanical
loading environment; _, Wind
turbine
» monopiles are currently the most
commonly used foundation in the
offshore wind market due to their ease | | Transition
of installation; prece
» this research is part of a larger UK Foundation
research council funded grant . Monopite

investigating alternative foundation
solutions for offshore wind.
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Background

Screwpiles for wind energy foundation systems

» The research aims to make screw piles a more
attractive foundation (or anchoring) option for
offshore wind farms;

> installation torque in different seabed
conditions is a key question;

» computational modelling of screw pile
installation is Durham's focus;
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Screwpiles for wind energy foundation systems

] ground level
» The research aims to make screw piles a more
attractive foundation (or anchoring) option for l lshaftresislance
offshore wind farms;
> installation torque in different seabed C’é
conditions is a key question;
» computational modelling of screw pile l g oo
installation is Durham's focus; C’é
» challenging problem: truly 3D, large 5
deformation, non-linear material behaviour - g ~
MPM appears to be ideal? C# ST

Will Coombs (Durham) MPM simulations for large rotation 14th June 2018 3/15



. : : : )
Implicit material point formulation W Durham
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governing equations
governing equation of elasticity
Voij+f'=0 in Q
subject to the following
u; =g¢; on JQp and oyn; =t; on 00y

where g; and t; are the Dirichlet and Neumann boundary conditions
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Implicit material point formulation W Durham

. . University
governing equations

governing equation of elasticity
Voij+f'=0 in Q
subject to the following
u; =g¢; on JQp and oyn; =t; on 00y

where g; and t; are the Dirichlet and Neumann boundary conditions

discretised into the conventional updated Lagrangian form

/WWS”P] {o}dv— / PREORUE / o (Sl s = (0}
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Implicit material point formulation W Durham

o . . University
finite deformation mechanics

linear isotropic relationship is assumed between elastic logarithmic strains
and Kirchhoff stresses

— € e e __ e e
Tij = D’L]klgkl where Eij = 5111( ik ]k)
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Implicit material point formulation W Durham

o . . University
finite deformation mechanics

linear isotropic relationship is assumed between elastic logarithmic strains
and Kirchhoff stresses

— € e e __ e e
Tij = D’L]klgkl where Eij = 5111( ik ]k?)

and the deformation gradient is obtained as

. axz
- 0X;

Ej and Fij = F&FIEJ
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Implicit material point formulation W Durham

- . . University
finite deformation mechanics
linear isotropic relationship is assumed between elastic logarithmic strains
and Kirchhoff stresses
.= D¢ € h e _ 11 e e
Tij = Lijki€ri where €5 = B N\ Ltk
and the deformation gradient is obtained as

. 8%

i = 5x;

I [e P
and ] T kj
the Cauchy stress is recovered using

%Tij where J = det (FZ])

Uij =
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Implicit material point formulation W Durham

o . . University
finite deformation mechanics

linear isotropic relationship is assumed between elastic logarithmic strains
and Kirchhoff stresses

— e e e __ e e
Tij = D’L]k?lgk‘l where Eij = 5111( ik ]k)

and the deformation gradient is obtained as

. 6x,
- 0X;

Ej and Fij = kaF’?]

the Cauchy stress is recovered using

%Tij where J = det (Fl])

Uij =

the adopted stress and strain measures provide the most straightforward
way of implementing large strain elasto-plasticity
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Implicit material point formulation W Durham
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finite deformation mechanics: deformation gradient update

A point of departure of implicit MP methods from conventional finite
elements is the calculation of the deformation gradient

Fij = AFyFy where AF,; = 6 + TXJ

and Xi = x; — Awuy; are the coordinates at the start of the loadstep.
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Implicit material point formulation W Durham

L . . i . University
finite deformation mechanics: deformation gradient update

A point of departure of implicit MP methods from conventional finite
elements is the calculation of the deformation gradient

Fij = AFyFy where AF,; = 6 + TXJ

and Xi = x; — Awuy; are the coordinates at the start of the loadstep.

However, equilibrium is satisfied in the updated frame, requiring mapping
of the shape function derivatives

OSup  OSu 0X;

0x; 0X; Ox;

Note that the spatial derivatives are needed to integrate the stiffness and internal force contribution of a material point in an
updated Lagrangian formulation.
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Implicit material point formulation W Durham

L . . i . University
finite deformation mechanics: deformation gradient update

A point of departure of implicit MP methods from conventional finite
elements is the calculation of the deformation gradient

Fij = AFyFy where AF,; = 6 + TXJ

and Xi = x; — Awuy; are the coordinates at the start of the loadstep.

However, equilibrium is satisfied in the updated frame, requiring mapping
of the shape function derivatives

S,y 08y, 09X, S,

= — = 2(AF;)!
O; 0X; Ox; BXj( 2

Note that the spatial derivatives are needed to integrate the stiffness and internal force contribution of a material point in an
updated Lagrangian formulation.
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Numerics & implicit implementation W Durham
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basis functions
sMPM
O
SUP(Xi)
h
Sup =1+ (X, — X,)/h ~h < X,—-X, < 0
Spp =1~ (X, — X,)/h 0 < X,-X, < h,
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sMPM

CPDI1
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Numerics & implicit implementation W Durham
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basis functions

CPDI2q

CPDI1

< X,-X,
Spp=1— (X, — X,)/h 0 < X,-X,

VARVAY
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basis functions

CPDI2q

CPDI2t

Sp =14 (X, — X,)/h —h

< X,-X,
Spp=1— (X, — X,)/h 0 < X,-X,

VARVAY
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Numerics & implicit implementation W Durham

non-linear solution

fully implicit Newton process used to solve the non-linear equation

{Fo8T} = {5y + ("} = {0}

where . .
{17 = A ([95w] {op}V;)  and
Vp
= [ s+ A (a7100)
@1 (00N) Vp
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Numerics & implicit implementation W Durham

) . University
non-linear solution

fully implicit Newton process used to solve the non-linear equation

{0y = {F™y + {5} = {0}
where

= A ([9Sw]" {onV,) and

U= [ il s+ A (Isul" 1)

global consistent tangent determined analytically for optimal convergence

(linearisation of the internal force with respect to the unknown displacements)
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computational procedure

max (o)

For each loadstep:

1. assemble the internal force stiffness
contribution of all material points;

min(z..,)
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Numerics & implicit implementation W Durham

) University
computational procedure

max(0.y)

For each loadstep:

1. assemble the internal force stiffness

contribution of all material points; g |

2. increment the external tractions ‘
and/or body forces in and solve for
the nodal displacements within a
loadstep using the Newton process; |

min(og,)
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Numerics & implicit implementation W Durham
Durh;
computational procedure niversiy

—a

max(0,

For each loadstep: T

1. assemble the internal force stiffness
contribution of all material points;

2. increment the external tractions
and/or body forces in and solve for
the nodal displacements within a .
loadstep using the Newton process; |

3. update material point positions,
stresses, volumes, domains, etc.;

4. reset or replace the background grid.

min(oy,)
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simple stretch (validation)

O000000000
<

lo=2h=1
E=103v=0

von Mises, p, = 400
22 MPs/element

plane strain

vVvyVvyVvyyvyy

moving mesh, edge
displacement
u/lyg =2
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Numerical examples

simple stretch (validation)
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E=103v=0

von Mises, p,; = 400
22 MPs/element

plane strain

vVvyVvVyVvyyvyy

moving mesh, edge
displacement
u/lyg =2
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simple stretch (validation)

10° : : : : : : 10°

residual

10“5(L(L(L(L(L(L ] 1078

107 10°
NR iteration step previous residual
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corner stretch

O0O00000000

lo=2h=1
E=10% v=04
elastic behaviour
22 & 82 MPs/e

plane strain

vyVvYvyVvVvyYyYyy

moving mesh, corner
displacement
Az, Ay =4
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corner stretch
0
ol
ol
o
. o
o
o
o o ® o
o oo ® o
o 9% ©
e ol o sMPM
> lp=2,h=1
> E=10%,v=0.4
» elastic behaviour
> 22 & 82 MPs/e
» plane strain
» moving mesh, corner

displacement
Az, Ay =4

Will Coombs (Durham) MPM simulations for large rotation 14th June 2018 12 /15



: )
Numerical examples W Durham

University
corner stretch
0]
o
0
° o
Y O]
o
o
° o 0. ole '. 5
o ©o° ° o]
o 90e ° Q X
e oo o sMPM eo/ojo]e CPDI1
lo=2 h=1

E=10% v=04
elastic behaviour
22 & 82 MPs/e

plane strain

vVvyYvyVvYVvyy

moving mesh, corner
displacement
Az, Ay =14

Will Coombs (Durham) MPM simulations for large rotation 14th June 2018 12 /15



Numerical examples

corner stretch

.
.
° o ® ol ol %
o o0 ® D y,
° L0 r g
e oo o sMPM eo/ojo]e CPDI1
()
1%
® g o o
e o ® ° P
Te[®® v
B 22 OIS
e/ojoie CPDI2q ° CPDI2t

Will Coombs (Durham)

MPM simulations for large rotation

O0O000000O0

AR
Q¥ Durham

University

vVvyYvyVvYVvyy

lo=2h=1
E=103%v=04
elastic behaviour
22 & 82 MPs/e
plane strain

moving mesh, corner
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corner stretch
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Numerical examples

doughnut twist

normalised reaction, f/R;E

2
—FEM
“©~sMPM
| -0-cPDI |
1.5 -E-CPDI2q
-A-CPDI2t
1l i
051 1
0 L L L
0 20 40 60 80
rotation, o (degrees)
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> R, =10, R; =5
> E=105v=0
» von Mises, py = 106
> 22 MPs/element
» plane strain

fixed outer boundary and
incremental rotation A« on

inner boundary with
rotational moving mesh
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elastic unloading
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fixed outer boundary and
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inner boundary with
rotational moving mesh
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> A unified implicit computational framework Cp»
for sMPM and CPDIs has been developed;

» moving mesh concept extended to include
rotational deformation;

» CPDI approaches reduce the instabilities
inherent in material point methods; but
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» only the sMPM and CPDI1 approaches
obtain physically meaningful solutions for
large rotational problems;

» CPDI2q faces issues due to distortion of
particle domains; and

» CPDI2t has degenerative cases with spurious
spatial derivatives of the basis functions.

Will Coombs (Durham) MPM simulations for large rotation 14th June 2018 14 / 15



AR
Q¥ Durham

University

Acknowledgements

O
NI TAA

BRI
R ORAIRIANK Ot
o A
RRES
KE
RE
XREREE]
KRR
RRRSRERE:
BRRRRERRT
RERRREEH]
ERRRERRK:
)
RRRRIKEL:
KRR
ERERERERE:
KERRREER
KIRERERRRESER
ORI
SRR
s

The research presented is the work of Dr Lei Wang supported by the
Engineering and Physical Sciences Research Council (EPSRC) grant
EP/N006054/1: Screw piles for wind energy foundation systems.

Will Coombs (Durham) MPM simulations for large rotation 14th June 2018 15 / 15



AR
P Durham

University

On the use of the Material Point Method
for large rotation problems

Lei Wang, Will Coombs, Charles Augarde & Michael Cortis

Associate Professor in Computational Mechanics
Department of Engineering, Durham University, UK

w.m.coombs@durham.ac.uk

www.screwpilesforoffshorewind.co.uk

14th June 2018


www.screwpilesforoffshorewind.co.uk

	Introduction
	motivation
	implicit material point method
	numerics & implementation
	numerical examples
	observations

