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(implicit) Material Point Method focus
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Background
Screwpiles for wind energy foundation systems

I Designing foundations for offshore
wind turbines is challenging because of
the complex dynamic mechanical
loading environment;

I monopiles are currently the most
commonly used foundation in the
offshore wind market due to their ease
of installation;

I this research is part of a larger UK
research council funded grant
investigating alternative foundation
solutions for offshore wind.
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Background
Screwpiles for wind energy foundation systems

I The research aims to make screw piles a more
attractive foundation (or anchoring) option for
offshore wind farms;

I installation torque in different seabed
conditions is a key question;

I computational modelling of screw pile
installation is Durham’s focus;

I challenging problem: truly 3D, large
deformation, non-linear material behaviour -
MPM appears to be ideal?
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Implicit material point formulation
governing equations

governing equation of elasticity

∇σij + fi
b = 0 in Ω

subject to the following

ui = gi on ∂ΩD and σijnj = ti on ∂ΩN

where gi and ti are the Dirichlet and Neumann boundary conditions

discretised into the conventional updated Lagrangian form∫
ϕt(E)

[∇Svp

]T {σ}dv − ∫
ϕt(E)

[Svp]T {b}dv −
∫
ϕt(∂ΩN )

[Svp]T {t}ds = {0}
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Implicit material point formulation
finite deformation mechanics

linear isotropic relationship is assumed between elastic logarithmic strains
and Kirchhoff stresses

τij = De
ijklε

e
kl where εe

ij =
1

2
ln
(
F e
ikF

e
jk

)
and the deformation gradient is obtained as

Fij =
∂xi
∂Xj

and Fij = F e
ikF

p
kj

the Cauchy stress is recovered using

σij =
1

J
τij where J = det

(
Fij
)

the adopted stress and strain measures provide the most straightforward
way of implementing large strain elasto-plasticity

Will Coombs (Durham) MPM simulations for large rotation 14th June 2018 5 / 15



Implicit material point formulation
finite deformation mechanics

linear isotropic relationship is assumed between elastic logarithmic strains
and Kirchhoff stresses

τij = De
ijklε

e
kl where εe

ij =
1

2
ln
(
F e
ikF

e
jk

)
and the deformation gradient is obtained as

Fij =
∂xi
∂Xj

and Fij = F e
ikF

p
kj

the Cauchy stress is recovered using

σij =
1

J
τij where J = det

(
Fij
)

the adopted stress and strain measures provide the most straightforward
way of implementing large strain elasto-plasticity

Will Coombs (Durham) MPM simulations for large rotation 14th June 2018 5 / 15



Implicit material point formulation
finite deformation mechanics

linear isotropic relationship is assumed between elastic logarithmic strains
and Kirchhoff stresses

τij = De
ijklε

e
kl where εe

ij =
1

2
ln
(
F e
ikF

e
jk

)
and the deformation gradient is obtained as

Fij =
∂xi
∂Xj

and Fij = F e
ikF

p
kj

the Cauchy stress is recovered using

σij =
1

J
τij where J = det

(
Fij
)

the adopted stress and strain measures provide the most straightforward
way of implementing large strain elasto-plasticity

Will Coombs (Durham) MPM simulations for large rotation 14th June 2018 5 / 15



Implicit material point formulation
finite deformation mechanics

linear isotropic relationship is assumed between elastic logarithmic strains
and Kirchhoff stresses

τij = De
ijklε

e
kl where εe

ij =
1

2
ln
(
F e
ikF

e
jk

)
and the deformation gradient is obtained as

Fij =
∂xi
∂Xj

and Fij = F e
ikF

p
kj

the Cauchy stress is recovered using

σij =
1

J
τij where J = det

(
Fij
)

the adopted stress and strain measures provide the most straightforward
way of implementing large strain elasto-plasticity

Will Coombs (Durham) MPM simulations for large rotation 14th June 2018 5 / 15



Implicit material point formulation
finite deformation mechanics: deformation gradient update

A point of departure of implicit MP methods from conventional finite
elements is the calculation of the deformation gradient

Fij = ∆FikF
n
kj where ∆Fij = δij +

∂∆ui

∂X̃j

and X̃i = xi −∆ui are the coordinates at the start of the loadstep.

However, equilibrium is satisfied in the updated frame, requiring mapping
of the shape function derivatives

∂Svp
∂xi

=
∂Svp

∂X̃j

∂X̃j

∂xi
=

∂Svp

∂X̃j

(∆Fji)
−1
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Note that the spatial derivatives are needed to integrate the stiffness and internal force contribution of a material point in an
updated Lagrangian formulation.
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Numerics & implicit implementation
basis functions
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Svp = 1 + (X̃p − X̃v)/h −h < X̃p − X̃v ≤ 0

Svp = 1− (X̃p − X̃v)/h 0 < X̃p − X̃v ≤ h,
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Numerics & implicit implementation
non-linear solution

fully implicit Newton process used to solve the non-linear equation

{foobf} = {f int}+ {fext} = {0}

where
{f int} =A

∀p

([
∇Svp

]T {σp}Vp) and

{fext} =

∫
ϕt(∂ΩN )

[Svp]
T {t}ds+A

∀p

(
[Svp]

T {f b}Vp
)

global consistent tangent determined analytically for optimal convergence
(linearisation of the internal force with respect to the unknown displacements)
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Numerics & implicit implementation
computational procedure
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For each loadstep:

1. assemble the internal force stiffness
contribution of all material points;

2. increment the external tractions
and/or body forces in and solve for
the nodal displacements within a
loadstep using the Newton process;

3. update material point positions,
stresses, volumes, domains, etc.;

4. reset or replace the background grid.
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Numerical examples
simple stretch (validation)
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I l0 = 2, h = 1

I E = 103, ν = 0

I von Mises, ρy = 400

I 22 MPs/element

I plane strain

I moving mesh, edge
displacement
u/l0 = 2
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Numerical examples
corner stretch
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I l0 = 2, h = 1

I E = 103, ν = 0.4

I elastic behaviour

I 22 & 82 MPs/e

I plane strain

I moving mesh, corner
displacement
∆x,∆y = 4
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Numerical examples
doughnut twist
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I A unified implicit computational framework
for sMPM and CPDIs has been developed;

I moving mesh concept extended to include
rotational deformation;

I CPDI approaches reduce the instabilities
inherent in material point methods; but

I only the sMPM and CPDI1 approaches
obtain physically meaningful solutions for
large rotational problems;

I CPDI2q faces issues due to distortion of
particle domains; and

I CPDI2t has degenerative cases with spurious
spatial derivatives of the basis functions.
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